1
|
Guo L, Zeng P, Zhou X, Li W, Zhang J, Li J. Structural basis of main proteases of MERS-CoV bound to antineoplastic drug carmofur. Biochem Biophys Res Commun 2024; 735:150469. [PMID: 39106601 DOI: 10.1016/j.bbrc.2024.150469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/09/2024]
Abstract
Recurrent epidemics of coronaviruses have posed significant threats to human life and health. The mortality rate of patients infected with the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is 35 %. The main protease (Mpro) plays a crucial role in the MERS-CoV life cycle, and Mpro exhibited a high degree of conservation among different coronaviruses. Therefore inhibition of Mpro has become an effective strategy for the development of broad-spectrum anti-coronaviral drugs. The inhibition of SARS-CoV-2 Mpro by the anti-tumor drug carmofur has been revealed, but structural studies of carmofur in complex with Mpro from other types of coronavirus have not been reported. Hence, we revealed the structure of the MERS-CoV Mpro-carmofur complex, analysed the structural basis for the binding of carmofur to MERS-CoV Mpro in detail, and compared the binding patterns of carmofur to Mpros of two different coronaviruses, MERS-CoV and SARS-CoV-2. Considering the importance of Mpros for coronavirus therapy, structural understanding of Mpro inhibition by carmofur could contribute to the design and development of novel antiviral drugs with safe and broad-spectrum efficacy.
Collapse
Affiliation(s)
- Li Guo
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen, China
| | - Pei Zeng
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China
| | - Xuelan Zhou
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China
| | - Wenwen Li
- Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China
| | - Jin Zhang
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen, China; Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China.
| | - Jian Li
- Shenzhen Crystalo Biopharmaceutical Co., Ltd., Shenzhen, China; Jiangxi Jmerry Biopharmaceutical Co., Ltd., Ganzhou, China.
| |
Collapse
|
2
|
Denz PJ, Speaks S, Kenney AD, Eddy AC, Papa JL, Roettger J, Scace SC, Rubrum A, Hemann EA, Forero A, Webby RJ, Bowman AS, Yount JS. Innate immune control of influenza virus interspecies adaptation via IFITM3. Nat Commun 2024; 15:9375. [PMID: 39477971 PMCID: PMC11525587 DOI: 10.1038/s41467-024-53792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/20/2024] [Indexed: 11/02/2024] Open
Abstract
Influenza virus pandemics are caused by viruses from animal reservoirs that adapt to efficiently infect and replicate in human hosts. Here, we investigate whether Interferon-Induced Transmembrane Protein 3 (IFITM3), a host antiviral factor with known human deficiencies, plays a role in interspecies virus infection and adaptation. We find that IFITM3-deficient mice and human cells can be infected with low doses of avian influenza viruses that fail to infect WT counterparts, identifying a new role for IFITM3 in controlling the minimum infectious virus dose threshold. Remarkably, influenza viruses passaged through Ifitm3-/- mice exhibit enhanced host adaptation, a result that is distinct from viruses passaged in mice deficient for interferon signaling, which exhibit attenuation. Our data demonstrate that IFITM3 deficiency uniquely facilitates potentially zoonotic influenza virus infections and subsequent adaptation, implicating IFITM3 deficiencies in the human population as a vulnerability for emergence of new pandemic viruses.
Collapse
Affiliation(s)
- Parker J Denz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Samuel Speaks
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adam D Kenney
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adrian C Eddy
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jonathan L Papa
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jack Roettger
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Sydney C Scace
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adam Rubrum
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Emily A Hemann
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Andrew S Bowman
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine, Columbus, OH, USA.
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Zhang J, Zhao L, Bai Y, Li S, Zhang M, Wei B, Wang X, Xue Y, Li L, Ma G, Tang Y, Wang X. An ascidian Polycarpa aurata-derived pan-inhibitor against coronaviruses targeting M pro. Bioorg Med Chem Lett 2024; 103:129706. [PMID: 38508325 DOI: 10.1016/j.bmcl.2024.129706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Coronaviruses (CoVs) are responsible for a wide range of illnesses in both animals and human. The main protease (Mpro) of CoVs is an attractive drug target, owing its critical and highly conserved role in viral replication. Here, we developed and refined an enzymatic technique to identify putative Mpro inhibitors from 189 marine chemicals and 46 terrestrial natural products. The IC50 values of Polycarpine (1a), a marine natural substance we studied and synthesized, are 30.0 ± 2.5 nM for SARS-CoV-2 Mpro and 0.12 ± 0.05 μM for PEDV Mpro. Our research further demonstrated that pretreatment with Polycarpine (1a) inhibited the betacoronavirus SARS-CoV-2 and alphacoronavirus PEDV multiplication in Vero-E6 cells. As a result, Polycarpine (1a), a pan-inhibitor of Mpro, will function as an effective and promising antiviral option to combat CoVs infection and as a foundation for further therapeutic research.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Lili Zhao
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Yuxin Bai
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Shanshan Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Meifang Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Bo Wei
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xianyang Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yan Xue
- Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Li Li
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Guiliang Ma
- Department of General Surgery, Qingdao Municipal Hospital, No. 5, Donghaizhong Road, Qingdao 266071, China.
| | - Yu Tang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| | - Xin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Center for Innovation Marine Drug Screening & Evaluation of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China; Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China.
| |
Collapse
|
4
|
Denz PJ, Speaks S, Kenney AD, Eddy AC, Papa JL, Roettger J, Scace SC, Hemann EA, Forero A, Webby RJ, Bowman AS, Yount JS. Innate immune control of influenza virus interspecies adaptation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554491. [PMID: 37662304 PMCID: PMC10473703 DOI: 10.1101/2023.08.23.554491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Influenza virus pandemics are caused by viruses from animal reservoirs that adapt to efficiently infect and replicate in human hosts. Here, we investigated whether Interferon-Induced Transmembrane Protein 3 (IFITM3), a host antiviral factor with known human deficiencies, plays a role in interspecies virus infection and adaptation. We found that IFITM3-deficient mice and human cells could be infected with low doses of avian influenza viruses that failed to infect WT counterparts, identifying a new role for IFITM3 in controlling the minimum infectious viral dose threshold. Remarkably, influenza viruses passaged through Ifitm3-/- mice exhibited enhanced host adaptation, a result that was distinct from passaging in mice deficient for interferon signaling, which caused virus attenuation. Our data demonstrate that IFITM3 deficiency uniquely facilitates zoonotic influenza virus infections and subsequent adaptation, implicating IFITM3 deficiencies in the human population as a vulnerability for emergence of new pandemic viruses.
Collapse
Affiliation(s)
- Parker J. Denz
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Samuel Speaks
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Adam D. Kenney
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Adrian C. Eddy
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Jonathan L. Papa
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Jack Roettger
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Sydney C. Scace
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Emily A. Hemann
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Adriana Forero
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital; Memphis, TN, USA
| | - Andrew S. Bowman
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
- Department of Veterinary Preventive Medicine, Ohio State University; Columbus, OH, USA
| | - Jacob S. Yount
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine; Columbus, OH, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University; Columbus, OH, USA
| |
Collapse
|
5
|
Budhadev D, Hooper J, Rocha C, Nehlmeier I, Kempf AM, Hoffmann M, Krüger N, Zhou D, Pöhlmann S, Guo Y. Polyvalent Nano-Lectin Potently Neutralizes SARS-CoV-2 by Targeting Glycans on the Viral Spike Protein. JACS AU 2023; 3:1755-1766. [PMID: 37388683 PMCID: PMC10302749 DOI: 10.1021/jacsau.3c00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
Mutations in spike (S) protein epitopes allow SARS-CoV-2 variants to evade antibody responses induced by infection and/or vaccination. In contrast, mutations in glycosylation sites across SARS-CoV-2 variants are very rare, making glycans a potential robust target for developing antivirals. However, this target has not been adequately exploited for SARS-CoV-2, mostly due to intrinsically weak monovalent protein-glycan interactions. We hypothesize that polyvalent nano-lectins with flexibly linked carbohydrate recognition domains (CRDs) can adjust their relative positions and bind multivalently to S protein glycans, potentially exerting potent antiviral activity. Herein, we displayed the CRDs of DC-SIGN, a dendritic cell lectin known to bind to diverse viruses, polyvalently onto 13 nm gold nanoparticles (named G13-CRD). G13-CRD bound strongly and specifically to target glycan-coated quantum dots with sub-nM Kd. Moreover, G13-CRD neutralized particles pseudotyped with the S proteins of Wuhan Hu-1, B.1, Delta variant and Omicron subvariant BA.1 with low nM EC50. In contrast, natural tetrameric DC-SIGN and its G13 conjugate were ineffective. Further, G13-CRD potently inhibited authentic SARS-CoV-2 B.1 and BA.1, with <10 pM and <10 nM EC50, respectively. These results identify G13-CRD as the 1st polyvalent nano-lectin with broad activity against SARS-CoV-2 variants that merits further exploration as a novel approach to antiviral therapy.
Collapse
Affiliation(s)
- Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James Hooper
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Cheila Rocha
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Madeleine Kempf
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Markus Hoffmann
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Nadine Krüger
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|