1
|
Brosseau S, Abreu P, Bouchez C, Charon L, Kieffer Y, Gentric G, Picant V, Veith I, Camonis J, Descroix S, Mechta-Grigoriou F, Parrini MC, Zalcman G. YAP/TEAD involvement in resistance to paclitaxel chemotherapy in lung cancer. Mol Cell Biochem 2025; 480:231-248. [PMID: 38427166 DOI: 10.1007/s11010-024-04949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
The Yes-associated protein (YAP) oncoprotein has been linked to both metastases and resistance to targeted therapy of lung cancer cells. We aimed to investigate the effect of YAP pharmacological inhibition, using YAP/TEA domain (TEAD) transcription factor interaction inhibitors in chemo-resistant lung cancer cells. YAP subcellular localization, as a readout for YAP activation, cell migration, and TEAD transcription factor functional transcriptional activity were investigated in cancer cell lines with up-regulated YAP, with and without YAP/TEAD interaction inhibitors. Parental (A549) and paclitaxel-resistant (A549R) cell transcriptomes were analyzed. The half-maximal inhibitory concentration (IC50) of paclitaxel or trametinib, which are Mitogen-Activated protein kinase and Erk Kinase (MEK) inhibitors, combined with a YAP/TEAD inhibitor (IV#6), was determined. A three-dimensional (3D) microfluidic culture device enabled us to study the effect of IV#6/paclitaxel combination on cancer cells isolated from fresh resected lung cancer samples. YAP activity was significantly higher in paclitaxel-resistant cell lines. The YAP/TEAD inhibitor induced a decreased YAP activity in A549, PC9, and H2052 cells, with reduced YAP nuclear staining. Wound healing assays upon YAP inhibition revealed impaired cell motility of lung cancer A549 and mesothelioma H2052 cells. Combining YAP pharmacological inhibition with trametinib in K-Ras mutated A549 cells recapitulated synthetic lethality, thereby sensitizing these cells to MEK inhibition. The YAP/TEAD inhibitor lowered the IC50 of paclitaxel in A549R cells. Differential transcriptomic analysis of parental and A549R cells revealed an increased YAP/TEAD transcriptomic signature in resistant cells, downregulated upon YAP inhibition. The YAP/TEAD inhibitor restored paclitaxel sensitivity of A549R cells cultured in a 3D microfluidic system, with lung cancer cells from a fresh tumor efficiently killed by YAP/TEAD inhibitor/paclitaxel doublet. Evidence of the YAP/TEAD transcriptional program's role in chemotherapy resistance paves the way for YAP therapeutic targeting.
Collapse
Affiliation(s)
- S Brosseau
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
- Medicine Faculty, Université Paris Cité, 26 rue Henri Henri Huchard, 75018, Paris, France
- Thoracic Oncology Department, Clinical Investigation Centre (CIC) 1425 INSERM, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris (AP-HP), 46 rue Henri Huchard, 75018, Paris, France
| | - P Abreu
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | - C Bouchez
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | - L Charon
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | - Y Kieffer
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
- PSL Research University, Paris, France
| | - G Gentric
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
- PSL Research University, Paris, France
| | - V Picant
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
- PSL Research University, Paris, France
| | - I Veith
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
- PSL Research University, Paris, France
| | - J Camonis
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
- PSL Research University, Paris, France
| | - S Descroix
- PSL Research University, Paris, France
- UMR 168 CNRS "Physics and Chemistry Curie" Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
| | - F Mechta-Grigoriou
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
- PSL Research University, Paris, France
| | - M C Parrini
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France
- PSL Research University, Paris, France
| | - G Zalcman
- U830 INSERM "Cancer, Heterogenity, Instability, Plasticity", Team "Stress and Cancer", Institut Curie Research Centre, 26 rue d'Ulm, 75248 Cedex 05, Paris, France.
- Medicine Faculty, Université Paris Cité, 26 rue Henri Henri Huchard, 75018, Paris, France.
- Thoracic Oncology Department, Clinical Investigation Centre (CIC) 1425 INSERM, Hôpital Bichat-Claude Bernard, Assistance Publique-Hôpitaux de Paris (AP-HP), 46 rue Henri Huchard, 75018, Paris, France.
| |
Collapse
|
2
|
Huang Z, Xiao Z, Yu L, Liu J, Yang Y, Ouyang W. Tumor-associated macrophages in non-small-cell lung cancer: From treatment resistance mechanisms to therapeutic targets. Crit Rev Oncol Hematol 2024; 196:104284. [PMID: 38311012 DOI: 10.1016/j.critrevonc.2024.104284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains one of the leading causes of cancer-related deaths worldwide. Different treatment approaches are typically employed based on the stage of NSCLC. Common clinical treatment methods include surgical resection, drug therapy, and radiation therapy. However, with the introduction and utilization of immune checkpoint inhibitors, cancer treatment has entered a new era, completely revolutionizing the treatment landscape for various cancers and significantly improving overall patient survival. Concurrently, treatment resistance often poses a critical challenge, with many patients experiencing disease progression following an initial response due to treatment resistance. Increasing evidence suggests that the tumor microenvironment (TME) plays a pivotal role in treatment resistance. Tumor-associated macrophages (TAMs) within the TME can promote treatment resistance in NSCLC by secreting various cytokines activating signaling pathways, and interacting with other immune cells. Therefore, this article will focus on elucidating the key mechanisms of TAMs in treatment resistance and analyze how targeting TAMs can reduce the levels of treatment resistance in NSCLC, providing a comprehensive understanding of the principles and approaches to overcome treatment resistance in NSCLC.
Collapse
Affiliation(s)
- Zhenjun Huang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Ziqi Xiao
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Liqing Yu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Jiayu Liu
- The Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yihan Yang
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China; Jiangxi Clinical Research Center for Respiratory Diseases, Nanchang 330006, Jiangxi Province, China.
| | - Wenhao Ouyang
- Department of Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|
3
|
Lei P, Ju Y, Peng F, Luo J. Applications and advancements of CRISPR-Cas in the treatment of lung cancer. Front Cell Dev Biol 2023; 11:1295084. [PMID: 38188023 PMCID: PMC10768725 DOI: 10.3389/fcell.2023.1295084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024] Open
Abstract
Lung cancer is one of the most malignant diseases and a major contributor to cancer-related deaths worldwide due to the deficiency of early diagnosis and effective therapy that are of great importance for patient prognosis and quality of life. Over the past decade, the advent of clustered regularly interspaced short palindromic repeats/CRISPR associated protein (CRISPR/Cas) system has significantly propelled the progress of both fundamental research and clinical trials of lung cancer. In this review, we review the current applications of the CRISPR/Cas system in diagnosis, target identification, and treatment resistance of lung cancer. Furthermore, we summarize the development of lung cancer animal models and delivery methods based on CRISPR system, providing novel insights into clinical diagnosis and treatment strategies of lung cancer.
Collapse
Affiliation(s)
- Pan Lei
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yixin Ju
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Fenfen Peng
- Department of Pharmacy, Jianyang City Hospital of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Jianyang, Sichuan, China
| | - Jie Luo
- Hubei Clinical Research Center for Precise Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Hubei Hongshan Laboratory, College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
4
|
Xue W, Cai L, Li S, Hou Y, Wang YD, Yang D, Xia Y, Nie X. WNT ligands in non-small cell lung cancer: from pathogenesis to clinical practice. Discov Oncol 2023; 14:136. [PMID: 37486552 PMCID: PMC10366069 DOI: 10.1007/s12672-023-00739-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the malignant tumor with the highest morbidity and leading cause of death worldwide, whereas its pathogenesis has not been fully elucidated. Although mutations in some crucial genes in WNT pathways such as β-catenin and APC are not common in NSCLC, the abnormal signal transduction of WNT pathways is still closely related to the occurrence and progression of NSCLC. WNT ligands (WNTs) are a class of secreted glycoproteins that activate WNT pathways through binding to their receptors and play important regulatory roles in embryonic development, cell differentiation, and tissue regeneration. Therefore, the abnormal expression or dysfunction of WNTs undoubtedly affects WNT pathways and thus participates in the pathogenesis of diseases. There are 19 members of human WNTs, WNT1, WNT2, WNT2b, WNT3, WNT3a, WNT4, WNT5a, WNT5b, WNT6, WNT7a, WNT7b, WNT8a, WNT8b, WNT9a, WNT9b, WNT10a, WNT10b, WNT11 and WNT16. The expression levels of WNTs, binding receptors, and activated WNT pathways are diverse in different tissue types, which endows the complexity of WNT pathways and multifarious biological effects. Although abundant studies have reported the role of WNTs in the pathogenesis of NSCLC, it still needs further study as therapeutic targets for lung cancer. This review will systematically summarize current research on human WNTs in NSCLC, from molecular pathogenesis to potential clinical practice.
Collapse
Affiliation(s)
- Wanting Xue
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Lihong Cai
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China
| | - Su Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yujia Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Dongbin Yang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Hebi, 458030, China.
| | - Yubing Xia
- Kaifeng Key Laboratory of Radiation Oncology, Kaifeng Cancer Hospital, Kaifeng University, Kaifeng, 475003, China.
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Hebi Key Laboratory of Liver Disease, People's Hospital of Hebi, Henan University, Kaifeng, Hebi, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
5
|
Sun M, Huang D, Liu Y, Chen H, Yu H, Zhang G, Chen Q, Chen H, Zhang J. Effects of Cinobufagin on the Proliferation, Migration, and Invasion of H1299 Lung Cancer Cells. Chem Biodivers 2023; 20:e202200961. [PMID: 36522286 DOI: 10.1002/cbdv.202200961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Cinobufagin (CB), with its steroidal nucleus structure, is one of the major, biologically active components of Chan Su. Recent studies have shown that CB exerts inhibitory effects against numerous cancer cells. However, the effects of CB regarding the metastasis of non-small cell lung cancer (NSCLC) and the involved mechanisms need to be further studied. The purpose of the present study aimed to report the inhibitory function of CB against proliferation and metastasis of H1299 cells. CB inhibited proliferation of H1299 lung cancer cells with an IC50 value of 0.035±0.008 μM according to the results of MTT assays. Antiproliferative activity was also observed in colony forming cell assays. In addition, 5-ethynyl-2'-deoxyuridine (EdU) retention assays revealed that CB significantly inhibited the rate of DNA synthesis in H1299 cells. Moreover, results of the scratch wound healing assays and transwell migration assays displayed that CB exhibited significant inhibition against migration and invasion of H1299 cells. Furthermore, CB could concentration-dependently reduce the expression of integrin α2, β-catenin, FAK, Src, c-Myc, and STAT3 in H1299 cells. These western blotting results indicated that CB might target integrin α2, β-catenin, FAK and Src to suppress invasion and migration of NSCLC, which was consistent with the network pharmacology analysis results. Collectively, findings of the current study suggest that CB possesses promising activity against NSCLC growth and metastasis.
Collapse
Affiliation(s)
- Mingna Sun
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Dongyu Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yun Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.,Guangdong Provincial Institute of Biological Products and Materia Medica, Guangzhou, China
| | - Haifang Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Guobin Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qilei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Hubiao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
6
|
Chen X, Wu J, Wang J. Pyroptosis: A new insight of non-small-cell lung cancer treatment. Front Oncol 2022; 12:1013544. [DOI: 10.3389/fonc.2022.1013544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) has become one of the most common malignant tumors. Emerging evidence has shown that tumor resistance to apoptosis by damaging or bypassing apoptotic cell death is a major contributor to poor responses to therapy in patients with NSCLC. Pyroptosis is a new type of cytolytic and inflammatory programmed death distinct from apoptosis. Currently, pyroptosis has been reported to cause a strong inflammatory response and significant tumor suppression. It is considered a promising therapeutic strategy and prognosis for NSCLC. In this review, we summarized the characteristics of pyroptosis from its underlying basis and role in NSCLC, thereby providing the potential of pyroptosis as a therapeutic strategy and highlighting the challenges of activating pyroptosis in NSCLC treatment.
Collapse
|
7
|
Bagdasaryan AA, Chubarev VN, Smolyarchuk EA, Drozdov VN, Krasnyuk II, Liu J, Fan R, Tse E, Shikh EV, Sukocheva OA. Pharmacogenetics of Drug Metabolism: The Role of Gene Polymorphism in the Regulation of Doxorubicin Safety and Efficacy. Cancers (Basel) 2022; 14:cancers14215436. [PMID: 36358854 PMCID: PMC9659104 DOI: 10.3390/cancers14215436] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The effectiveness and safety of the anti-cancer agent doxorubicin (anthracycline group medicine) depend on the metabolism and retention of the drug in the human organism. Polymorphism of cytochrome p450 (CYP)-encoding genes and detoxifying enzymes such as CYP3A4 and CYP2D6 were found responsible for variations in the doxorubicin metabolism. Transmembrane transporters such as p-glycoproteins were reported to be involved in cancer tissue retention of doxorubicin. ATP-binding cassette (ABC) family members, including ABCB1 transporters (also known as Multi-Drug Resistance 1 (MDR1)) proteins, were determined to pump out doxorubicin from breast cancer cells, therefore reducing the drug effectiveness. This study critically discusses the latest data about the role of CYP3A4, CYP2D6, and ABCB1 gene polymorphism in the regulation of doxorubicin’s effects in breast cancer patients. The assessment of genetic differences in the expression of doxorubicin metabolizing and transporting enzymes should be explored for the development of personalized medical treatment of breast cancer patients. Abstract Breast cancer (BC) is the prevailing malignancy and major cause of cancer-related death in females. Doxorubicin is a part of BC neoadjuvant and adjuvant chemotherapy regimens. The administration of anthracycline derivates, such as doxorubicin, may cause several side effects, including hematological disfunction, gastrointestinal toxicity, hepatotoxicity, nephrotoxicity, and cardiotoxicity. Cardiotoxicity is a major adverse reaction to anthracyclines, and it may vary depending on individual differences in doxorubicin pharmacokinetics. Determination of specific polymorphisms of genes that can alter doxorubicin metabolism was shown to reduce the risk of adverse reactions and improve the safety and efficacy of doxorubicin. Genes which encode cytochrome P450 enzymes (CYP3A4 and CYP2D6), p-glycoproteins (ATP-binding cassette (ABC) family members such as Multi-Drug Resistance 1 (MDR1) protein), and other detoxifying enzymes were shown to control the metabolism and pharmacokinetics of doxorubicin. The effectiveness of doxorubicin is defined by the polymorphism of cytochrome p450 and p-glycoprotein-encoding genes. This study critically discusses the latest data about the role of gene polymorphisms in the regulation of doxorubicin’s anti-BC effects. The correlation of genetic differences with the efficacy and safety of doxorubicin may provide insights for the development of personalized medical treatment for BC patients.
Collapse
Affiliation(s)
- Alina A. Bagdasaryan
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Vladimir N. Chubarev
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Elena A. Smolyarchuk
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Vladimir N. Drozdov
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Ivan I. Krasnyuk
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Junqi Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Ruitai Fan
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - Evgenia V. Shikh
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenovskiy University), 8-2 Trubetskaya Str., 119991 Moscow, Russia
| | - Olga A. Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
- College of Nursing and Health Sciences, Flinders University, Bedford Park, SA 5042, Australia
- Correspondence:
| |
Collapse
|
8
|
Cai S, Hu T, Venkatesan M, Allam M, Schneider F, Ramalingam SS, Sun SY, Coskun AF. Multiplexed protein profiling reveals spatial subcellular signaling networks. iScience 2022; 25:104980. [PMID: 36093051 PMCID: PMC9460555 DOI: 10.1016/j.isci.2022.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mythreye Venkatesan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Frank Schneider
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Suresh S. Ramalingam
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shi-Yong Sun
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Corresponding author
| |
Collapse
|
9
|
Choe YJ, Min JY, Lee H, Lee SY, Kwon J, Kim HJ, Lee J, Kim HM, Park HS, Cho MY, Hyun JY, Kim HM, Chung YH, Ha SK, Jeong HG, Choi I, Kim TD, Hong KS, Han EH. Heterotypic cell-in-cell structures between cancer and NK cells is associated with enhanced anti-cancer drug resistance. iScience 2022; 25:105017. [PMID: 36105584 PMCID: PMC9464952 DOI: 10.1016/j.isci.2022.105017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
The heterotypic CIC structures formed of cancer and immune cells have been observed in tumor tissues. We aimed to assess the feasibility of using heterotypic CICs as a functional biomarker to predict NK susceptibility and drug resistance. The heterotypic CIC-forming cancer cells showed a lower response to NK cytotoxicity and higher proliferative ability than non-CIC cancer cells. After treatment with anticancer drugs, cancer cells that formed heterotypic CICs showed a higher resistance to anticancer drugs than non-CIC cancer cells. We also observed the formation of more CIC structures in cancer cells treated with anticancer drugs than in the non-treated group. Our results confirm the association between heterotypic CIC structures and anticancer drug resistance in CICs formed from NK and cancer cells. These results suggest a mechanism underlying immune evasion in heterotypic CIC cancer cells and provide insights into the anticancer drug resistance of cancer cells. Conformation of heterotypic CIC structures formed between cancer and NK cells Heterotypic CICs exhibit a higher proliferative ability than non-CIC cells Heterotypic CICs are associated with NK susceptibility Heterotypic CICs are involved in anticancer drug resistance
Collapse
|
10
|
Tang LY, Spezia M, Chen T, Shin JH, Wang F, Stappenbeck F, Lebensohn AM, Parhami F, Zhang YE. Oxysterol derivatives Oxy186 and Oxy210 inhibit WNT signaling in non-small cell lung cancer. Cell Biosci 2022; 12:119. [PMID: 35908024 PMCID: PMC9338492 DOI: 10.1186/s13578-022-00857-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Developmental signaling pathways such as those of Hedgehog (HH) and WNT play critical roles in cancer stem cell self-renewal, migration, and differentiation. They are often constitutively activated in many human malignancies, including non-small cell lung cancer (NSCLC). Previously, we reported that two oxysterol derivatives, Oxy186 and Oxy210, are potent inhibitors of HH/GLI signaling and NSCLC cancer cell growth. In addition, we also showed that Oxy210 is a potent inhibitor of TGF-β/SMAD signaling. In this follow-up study, we further explore the mechanism of action by which these oxysterols control NSCLC cell proliferation and tumor growth. RESULTS Using a GLI-responsive luciferase reporter assay, we show here that HH ligand could not mount a signaling response in the NSCLC cell line A549, even though Oxy186 and Oxy210 still inhibited non-canonical GLI activity and suppressed the proliferation of A549 cells. Further, we uncover an unexpected activity of these two oxysterols in inhibiting the WNT/β-catenin signaling at the level of LRP5/6 membrane receptors. We also show that in a subcutaneous xenograft tumor model generated from A549 cells, Oxy186, but not Oxy210, exhibits strong inhibition of tumor growth. Subsequent RNA-seq analysis of the xenograft tumor tissue reveal that the WNT/β-catenin pathway is the target of Oxy186 in vivo. CONCLUSION The oxysterols Oxy186 and Oxy210 both possess inhibitory activity towards WNT/β-catenin signaling, and Oxy186 is also a potent inhibitor of NSCLC tumor growth.
Collapse
Affiliation(s)
- Liu-Ya Tang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Marie Spezia
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Ting Chen
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Jee-Hye Shin
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Feng Wang
- Max Biopharma. Inc, 2870 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Frank Stappenbeck
- Max Biopharma. Inc, 2870 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA
| | - Farhad Parhami
- Max Biopharma. Inc, 2870 Colorado Avenue, Santa Monica, CA, 90404, USA
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Building 37, RM 2056B, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Xu G, Shi W, Ling L, Li C, Shao F, Chen J, Wang Y. Differential expression and analysis of extrachromosomal circular DNAs as serum biomarkers in lung adenocarcinoma. J Clin Lab Anal 2022; 36:e24425. [PMID: 35441736 PMCID: PMC9169211 DOI: 10.1002/jcla.24425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/07/2022] Open
Abstract
Background Extrachromosomal circular DNAs (eccDNAs) increase the number of proto‐oncogenes by enhancing oncogene expression to promote tumorigenesis. However, there are limited reports on differential eccDNA expression and analysis in lung cancer, especially in lung adenocarcinoma (LAD). Methods Three LAD and three corresponding NT tissues samples were used for eccDNA next‐generation sequencing analysis, and an additional 20 were used for quantitative PCR (qPCR) evaluations. We further performed qPCR amplification using serum samples from LAD patients and healthy medical examiners. Results eccDNAs from LAD samples were mainly 200–1000 bp in length. Gene annotation analysis revealed that most eccDNAs were derived from chromosomes 1 and 2. The top‐ten increased and top‐ten decreased eccDNAs in LAD tissues were CircD‐ARPC1B, CircD‐ARPC1A, CircD‐FAM49B, CircD‐SDK1, CircD‐KCNG1, CircD‐POLR2F, CircD‐SS18L1, CircD‐SLC16A3, CircD‐CSNK1D, CircD‐KCTD1, and CircD‐TMIGD2, CircD‐PDIA5, CircD‐VAV2, CircD‐GATAD2A, CircD‐CAB39L, CircD‐KHDC1, CircD‐FOXN3, CircD‐SULT2B1, CircD‐DPP9, and CircD‐CSNK1D. qPCR demonstrated that the expression of CircD‐DZRN3 was higher in LAD tissues than in normal lung tissues, whereas CircD‐LGR6 and CircD‐UMODL1 expression levels were lower in LAD than in normal lung tissues. Furthermore, the serum CircD‐PDZRN3 level increased, while CircD‐LGR6 decreased in LAD. Receiver operating characteristic (ROC) analysis showed that area under curve (AUC) of serum CircD‐PDZRN3 (0.991), CircD‐LGR6 (0.916) was higher than that of serum carcinoembryonic antigen (CEA) (0.825), CY211 (cytokeratin 19 fragment) (0.842), SCCA(squamous cell carcinoma antigen) (0.857) for the diagnosis of LAD. Conclusions Our study first showed that several eccDNAs were aberrantly expressed in LAD, among which CircD‐PDZRN3 and CircD‐LGR6 clearly distinguished LAD patients from healthy controls, indicating their potential as biomarkers.
Collapse
Affiliation(s)
- Gang Xu
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Wenjing Shi
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Liqun Ling
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Changhong Li
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Fanggui Shao
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jie Chen
- Department of ICUThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yumin Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
12
|
Ma F, An Z, Yue Q, Zhao C, Zhang S, Sun X, Li K, Zhao L, Su L. Effects of brassinosteroids on cancer cells: A review. J Biochem Mol Toxicol 2022; 36:e23026. [DOI: 10.1002/jbt.23026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/26/2022]
Affiliation(s)
- Feifan Ma
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Zaiyong An
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Qiulin Yue
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Chen Zhao
- Shandong Provincial Key Laboratory of Food and Fermentation Engineering, Shandong Food Ferment Industry Research & Design Institute, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Song Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Xin Sun
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Kunlun Li
- Research and Development Departments Jinan Hangchen Biotechnology Co., Ltd. Jinan China
| | - Lin Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| | - Le Su
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Shandong Academy of Sciences Qilu University of Technology Jinan China
| |
Collapse
|
13
|
Goebel J, Chmielewski J, Hrycyna CA. The roles of the human ATP-binding cassette transporters P-glycoprotein and ABCG2 in multidrug resistance in cancer and at endogenous sites: future opportunities for structure-based drug design of inhibitors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:784-804. [PMID: 34993424 PMCID: PMC8730335 DOI: 10.20517/cdr.2021.19] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp) and ABCG2 are multidrug transporters that confer drug resistance to numerous anti-cancer therapeutics in cell culture. These findings initially created great excitement in the medical oncology community, as inhibitors of these transporters held the promise of overcoming clinical multidrug resistance in cancer patients. However, clinical trials of P-gp and ABCG2 inhibitors in combination with cancer chemotherapeutics have not been successful due, in part, to flawed clinical trial designs resulting from an incomplete molecular understanding of the multifactorial basis of multidrug resistance (MDR) in the cancers examined. The field was also stymied by the lack of high-resolution structural information for P-gp and ABCG2 for use in the rational structure-based drug design of inhibitors. Recent advances in structural biology have led to numerous structures of both ABCG2 and P-gp that elucidated more clearly the mechanism of transport and the polyspecific nature of their substrate and inhibitor binding sites. These data should prove useful helpful for developing even more potent and specific inhibitors of both transporters. As such, although possible pharmacokinetic interactions would need to be evaluated, these inhibitors may show greater effectiveness in overcoming ABC-dependent multidrug resistance in combination with chemotherapeutics in carefully selected subsets of cancers. Another perhaps even more compelling use of these inhibitors may be in reversibly inhibiting endogenously expressed P-gp and ABCG2, which serve a protective role at various blood-tissue barriers. Inhibition of these transporters at sanctuary sites such as the brain and gut could lead to increased penetration by chemotherapeutics used to treat brain cancers or other brain disorders and increased oral bioavailability of these agents, respectively.
Collapse
Affiliation(s)
- Jason Goebel
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | - Jean Chmielewski
- Department of Chemistry, Purdue University West Lafayette, IN 47907, USA
| | | |
Collapse
|
14
|
Kara A, Özgür A, Nalbantoğlu S, Karadağ A. DNA repair pathways and their roles in drug resistance for lung adenocarcinoma. Mol Biol Rep 2021; 48:3813-3825. [PMID: 33856604 DOI: 10.1007/s11033-021-06314-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/24/2021] [Indexed: 01/24/2023]
Abstract
Lung cancer is the leading cancer type of death rate. The lung adenocarcinoma subtype is responsible for almost half of the total lung cancer deaths. Despite the improvements in cancer treatment in recent years, lung adenocarcinoma patients' overall survival rate remains poor. Immunetherapy and chemotherapy are two of the most widely used options for the treatment of cancer. Although many cancer types initially respond to these treatments, the development of resistance is inevitable. The rapid development of drug resistance mainly characterizes lung adenocarcinoma. Despite being the subject of many studies in recent years, the resistance initiation and progression mechanism is still unclear. In this review, we have examined the role of the primary DNA repair pathways (non-homologous end joining (NHEJ) pathway, homologous-recombinant repair (HR) pathway, base excision repair (BER) pathway, and nucleotide excision repair (NER) pathway and transactivation mechanisms of tumor protein 53 (TP53) in drug resistance development. This review suggests that mentioned pathways have essential roles in developing the resistance against chemotherapy and immunotherapy in lung adenocarcinoma patients.
Collapse
Affiliation(s)
- Altan Kara
- Molecular Oncology Laboratory, Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey.
| | - Aykut Özgür
- Laboratory and Veterinary Health Program, Department of Veterinary Medicine, Artova Vocational School, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Sinem Nalbantoğlu
- Molecular Oncology Laboratory, Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey
| | - Abdullah Karadağ
- Molecular Oncology Laboratory, Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research Center, Kocaeli, Turkey
| |
Collapse
|
15
|
Xue C, Chen C, Gu X, Li L. Progress and assessment of lncRNA DGCR5 in malignant phenotype and immune infiltration of human cancers. Am J Cancer Res 2021; 11:1-13. [PMID: 33520356 PMCID: PMC7840720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023] Open
Abstract
As a special type of noncoding RNA, long noncoding RNAs (lncRNAs) have vital roles during the development of human cancers and may be novel predictors or therapeutic targets for improving the management of patients with cancer. DiGeorge syndrome critical region gene 5 (DGCR5) is a prominent tumor-associated lncRNA, exerting tumor suppressor or oncogenic roles in various cancers. Previous studies have reported that DGCR5 has low expression in most types of cancers but high expression in triple-negative breast cancer, gallbladder cancer, and lung cancer. And DGCR5 expression is related to many hallmarks of cancer types, including cell proliferation, invasion, migration, apoptosis, stemness, and therapeutic responsiveness. Additionally, the pivotal molecules involved in DGCR5 regulation of signaling pathways are attributed to cancer hallmarks related to the pathogenesis of different types of malignant tumors. Herein, we discuss the DGCR5 expression pattern in various types of tumor tissues and relationships between DGCR5 expression and immune cell infiltration and immune purity. We also review our current understanding of DGCR5 in carcinogenesis and its potential application as a prognostic biomarker or therapeutic target in human cancers.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| | - Can Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| |
Collapse
|
16
|
Afifah NN, Diantini A, Intania R, Abdulah R, Barliana MI. Genetic Polymorphisms and the Efficacy of Platinum-Based Chemotherapy: Review. Pharmgenomics Pers Med 2020; 13:427-444. [PMID: 33116759 PMCID: PMC7549502 DOI: 10.2147/pgpm.s267625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022] Open
Abstract
Previous studies have indicated that genetic variations in individuals may result in changes in gene expression and amino acids. The effect of these changes may lead to different responses to platinum-based chemotherapy. A vast response rate interval and a short survival rate indicate that the efficacy and efficiency of the selection of chemotherapy have not been optimized. This article aims to illustrate the potential relationship of various genetic polymorphisms in response to platinum-based chemotherapy for several types of cancer. This review was conducted using articles from the last three- and five-year periods (2014-2019) that use gene polymorphism and its relationship to the efficacy of platinum-based chemotherapy as their theme. A total of 26 out of 488 relevant articles were included based on specific criteria. Through various mechanisms, genes, including ERCC1, ERCC2/XPD, XPC, XPA, XRCC1, APE-1, PARP1, OGG1, ABCC2, MRP, GSTP1, GSTM1, GSTT1, MATE1, and OCT2, have been associated with patient response to platinum-based chemotherapy. We conclude that genetic polymorphism analysis is recommended for the management of cancer so that each patient can be administered therapy based on his or her genetic profile to achieve an effective and efficient outcome.
Collapse
Affiliation(s)
- Nadiya Nurul Afifah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Ajeng Diantini
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Ruri Intania
- Dr. H.A. Rotinsulu Lung Hospital, Bandung, Indonesia
| | - Rizky Abdulah
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Melisa I Barliana
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
17
|
Wang R, Chen C, Kang W, Meng G. SNHG9 was upregulated in NSCLC and associated with DDP-resistance and poor prognosis of NSCLC patients. Am J Transl Res 2020; 12:4456-4466. [PMID: 32913519 PMCID: PMC7476120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Lung cancer, a leading cause of cancer-related mortalities worldwide and non-small cell lung cancer (NSCLC) is the main subtype of lung cancer. As a first-line chemotherapeutic drug used for NSCLC, acquired resistance retarded the clinical application of cisplatin (DDP). We herein reported long non-coding RNA SNHG9 was over-expressed in NSCLC tissues and cell lines compared with normal lung tissues and cell line; Increased SNHG9 was also observed in DDP resistant NSCLC tissues and cell lines compared with their DDP sensitive counterparts. Elevated expression of SNHG9 was associated with lower overall survival (OS) rate in NSCLC patients. Besides, silence of SNHG9 suppressed DDP resistance of NSCLC cells. Furthermore, CAPRIN1 was positively regulated by SNHG9 and mediated the promoting role of SNHG9 in DDP resistance of NSCLC cells. SNHG9 could be used as a potential target for DDP resistant NSCLC therapy.
Collapse
Affiliation(s)
- Ruixue Wang
- Department of Emergency, The First Affiliated Hospital of Anhui Medical UniversityHefei 230031, Anhui Province, People’s Republic of China
| | - Changyu Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, Jiangxi Province, People’s Republic of China
| | - Weibiao Kang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei 230031, Anhui Province, People’s Republic of China
| | - Guangjun Meng
- Department of Emergency, The First Affiliated Hospital of Anhui Medical UniversityHefei 230031, Anhui Province, People’s Republic of China
| |
Collapse
|
18
|
Stewart DJ, Bosse D, Robinson A, Ong M, Fung-Kee-Fung M, Brule S, Hilton JF, Ocana A. Potential insights from population kinetic assessment of progression-free survival curves. Crit Rev Oncol Hematol 2020; 153:103039. [PMID: 32622319 DOI: 10.1016/j.critrevonc.2020.103039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022] Open
Abstract
Progression-free survival (PFS) curves follow first order kinetics on exponential decay nonlinear regression analysis (EDNLRA). Some exhibit 1-phase-decay, some have 2-phase-decay, some are convex. We digitized, performed EDNLRA and generated log-linear plots for 887 published PFS curves for incurable solid tumors treated with various systemic therapies. Proportion of curves fitting 2-phase-decay varied by therapy (p < 0.0001). For 13 therapies, >64 % of PFS curves had 2-phase-decay. This included epidermal growth factor receptor inhibitors in unselected lung cancer patients (some with, some without mutations), immune checkpoint inhibitors, interferon, breast cancer hormonal therapies, and selected others, suggesting 2 distinct, potentially identifiable subpopulations with differing progression rates. For 22 other therapies, <25 % of PFS curves had 2-phase-decay. Only 1 therapy was in the mid-range. Small cell lung and colon carcinomas were particularly likely to yield highly convex curves (p < 0.006), probably from discontinuation of effective therapies. PFS curve shape may yield biological and clinical insights.
Collapse
Affiliation(s)
| | | | | | - Michael Ong
- University of Ottawa, Ottawa, ON, United States
| | | | | | | | - Alberto Ocana
- Experimental Therapeutics Unit, Hospital Clínico San Carlos, and CIBERONC, Madrid, Spain
| |
Collapse
|
19
|
Hanovich E, Asmis T, Ong M, Stewart D. Rechallenge Strategy in Cancer Therapy. Oncology 2020; 98:669-679. [DOI: 10.1159/000507816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/08/2020] [Indexed: 11/19/2022]
|
20
|
Sarode P, Zheng X, Giotopoulou GA, Weigert A, Kuenne C, Günther S, Friedrich A, Gattenlöhner S, Stiewe T, Brüne B, Grimminger F, Stathopoulos GT, Pullamsetti SS, Seeger W, Savai R. Reprogramming of tumor-associated macrophages by targeting β-catenin/FOSL2/ARID5A signaling: A potential treatment of lung cancer. SCIENCE ADVANCES 2020; 6:eaaz6105. [PMID: 32548260 PMCID: PMC7274802 DOI: 10.1126/sciadv.aaz6105] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 03/27/2020] [Indexed: 05/03/2023]
Abstract
Tumor-associated macrophages (TAMs) influence lung tumor development by inducing immunosuppression. Transcriptome analysis of TAMs isolated from human lung tumor tissues revealed an up-regulation of the Wnt/β-catenin pathway. These findings were reproduced in a newly developed in vitro "trained" TAM model. Pharmacological and macrophage-specific genetic ablation of β-catenin reprogrammed M2-like TAMs to M1-like TAMs both in vitro and in various in vivo models, which was linked with the suppression of primary and metastatic lung tumor growth. An in-depth analysis of the underlying signaling events revealed that β-catenin-mediated transcriptional activation of FOS-like antigen 2 (FOSL2) and repression of the AT-rich interaction domain 5A (ARID5A) drive gene regulatory switch from M1-like TAMs to M2-like TAMs. Moreover, we found that high expressions of β-catenin and FOSL2 correlated with poor prognosis in patients with lung cancer. In conclusion, β-catenin drives a transcriptional switch in the lung tumor microenvironment, thereby promoting tumor progression and metastasis.
Collapse
Affiliation(s)
- Poonam Sarode
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim 61231, Germany
| | - Xiang Zheng
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim 61231, Germany
| | - Georgia A. Giotopoulou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece and Lung Carcinogenesis Laboratory, Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich 81377, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt 60323, Germany
| | - Carste Kuenne
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim 61231, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim 61231, Germany
| | - Aleksandra Friedrich
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim 61231, Germany
| | - Stefan Gattenlöhner
- Department of Pathology, Member of the DZL, Justus Liebig University, Giessen 35390, Germany
| | - Thorsten Stiewe
- Institute of Molecular Oncology, Philipps-University Marburg, Member of the DZL, Marburg 35043, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt 60323, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60596 Frankfurt am Main, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392 Giessen, Germany
| | - Georgios T. Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, 26504, Greece and Lung Carcinogenesis Laboratory, Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich 81377, Germany
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim 61231, Germany
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392 Giessen, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim 61231, Germany
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim 61231, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, 60596 Frankfurt am Main, Germany
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, 35392 Giessen, Germany
- Institute for Lung Health (ILH), Justus Liebig University, 35392 Giessen, Germany
- Corresponding author.
| |
Collapse
|
21
|
Jin HF, Wang JF, Song TT, Zhang J, Wang L. MiR-200b Inhibits Tumor Growth and Chemoresistance via Targeting p70S6K1 in Lung Cancer. Front Oncol 2020; 10:643. [PMID: 32435616 PMCID: PMC7218114 DOI: 10.3389/fonc.2020.00643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 04/07/2020] [Indexed: 01/17/2023] Open
Abstract
Downregulation of microRNA-200b (miR-200b) has been identified in a range of cancers, yet the specific mechanisms whereby it influences lung cancer growth require further exploration. We determined that lung cancer patient tumor samples exhibit decreased miR-200b expression, and we further found this miRNA to inhibit tumor growth via interfering with ERK1/2 and AKT signaling, targeting p70S6K1 to suppress HIF-1α expression. This miRNA further rendered H1299 cells more sensitive to cisplatin while impairing their proliferative and invasive potential through its ability to target and inhibit the activity of p70S6K1. These results were further confirmed in a murine xenograft model in which miR-200b also inhibited the growth of tumor and suppressed p70S6K1, p-AKT, p-ERK1/2, and HIF-1α expression. These findings clearly demonstrate a role for miR-200b in suppressing lung cancer development, making it a potentially relevant target for future diagnostic and therapeutic interventions.
Collapse
Affiliation(s)
- Hui-Fang Jin
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ju-Feng Wang
- Department of Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Ting-Ting Song
- Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jun Zhang
- Department of Thoracic Surgery, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Naghizadeh S, Mansoori B, Mohammadi A, Sakhinia E, Baradaran B. Gene Silencing Strategies in Cancer Therapy: An Update for Drug Resistance. Curr Med Chem 2019; 26:6282-6303. [DOI: 10.2174/0929867325666180403141554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/10/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
RNAi, post-transcriptional gene silencing mechanism, could be considered as one of the
most important breakthroughs and rapidly growing fields in science. Researchers are trying to use this
discovery in the treatment of various diseases and cancer is one of them although there are multiple
treatment procedures for treatment-resistant cancers, eradication of resistance remain as an unsolvable
problem yet. The current review summarizes both transcriptional and post-transcriptional gene silencing
mechanisms, and highlights mechanisms leading to drug-resistance such as, drug efflux, drug inactivation,
drug target alteration, DNA damages repair, and the epithelial-mesenchymal transition, as
well as the role of tumor cell heterogeneity and tumor microenvironment, involving genes in these
processes. It ultimately points out the obstacles of RNAi application for in vivo treatment of diseases
and progressions that have been achieved in this field.
Collapse
Affiliation(s)
- Sanaz Naghizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ebrahim Sakhinia
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
23
|
Zhang F, Wang J, Fu J, Hu L, Zheng X, Wang Y, Chen B. Clinical value of combined detection of reactive oxygen species modulator 1 and adenosine deaminase in pleural effusion in the identification of NSCLC associated malignant pleural effusion. J Clin Lab Anal 2019; 34:e23091. [PMID: 31709646 PMCID: PMC7083413 DOI: 10.1002/jcla.23091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/11/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022] Open
Abstract
Background Reactive oxygen species modulator 1 (ROMO1) is recognized to be involved in cell proliferation and is elevated in serum of various cancer patients. However, ROMO1 had little research in distinguishing between malignant pleural effusions (MPEs) and benign pleural effusions (BPEs). Methods Malignant pleural effusion samples from patients with non–small‐cell lung cancer (NSCLC) and benign pleural effusion (BPE) samples containing tuberculous and inflammatory pleural effusions were collected. The samples were tested for ROMO1, pleural effusion adenosine deaminase (pADA), pleural effusion carbohydrate antigen (pCA125, pCA153, pCA199), pleural effusion ferritin (pFER), and pleural effusion lactate dehydrogenase (pLDH) levels, and the other relevant partial clinical data that were gathered were used to conduct statistical analysis. Results The ROMO1, pCA125, pCA199, pCA153, pADA + ROMO1, pCA153 + ROMO1, pCA125 + ROMO1, and pCA199 + ROMO1 levels in MPE were appreciably higher in comparison with BPE group (all P = .000). The concentration of pADA in MPE was markedly lower than BPE (P = .000). When the cutoff = 0.38, the sensitivity of combined detection of ROMO1 + pADA is 98.67% and the specificity is 70.73%, respectively, and the AUC (0.941) is the highest among other parameters. Conclusion The combined detection of ROMO1 + ADA in pleural effusion is an effective biomarker for identifying MPE caused by NSCLC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junjun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiali Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijuan Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyong Zheng
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Science and Education Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Liu X, Sun L, Zhang S, Zhang S, Li W. GINS2 facilitates epithelial-to-mesenchymal transition in non-small-cell lung cancer through modulating PI3K/Akt and MEK/ERK signaling. J Cell Physiol 2019; 235:7747-7756. [PMID: 31681988 DOI: 10.1002/jcp.29381] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023]
Abstract
Non-small-cell lung cancer (NSCLC) is a cancer with high morbidity and mortality. We aimed to define the effect of Go-Ichi-Ni-San complex subuint 2 (GINS2) acting on NSCLC. The expressions of GINS2 in NSCLC tissues and cells were detected using real-time quantitative polymerase chain reaction, western blot, and immunohistochemistry (IHC). The relationship between GINS2 expression and NSCLC prognosis or clinicopathologic features was analyzed through statistical analysis. The overexpressed or downexpressed plasmids of GINS2 were transfected into NSCLC cell lines, and then cell proliferation, invasion, and migration viability were, respectively, determined by Cell Counting Kit-8 assay, transwell, and wound healing assay. The epithelial-mesenchymal transition (EMT) was observed and the EMT-related proteins were measured using IHC and western blot. The function of GINS2 in vivo was assessed by mice model. The related proteins of mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathways were evaluated using western blot. GINS2 expression was upregulated in NSCLC tissues and cell lines, and its high expression was correlated with the poor prognosis and several clinicopathologic features, such as TMN stages (tumor size, lymph node, and metastasis) and clinical stages. GINS2 enhanced NSCLC cell proliferation, migration, and invasion viability in vivo and in vitro. GINS2 also promoted NSCLC cells EMT. In addition, GINS2 could regulate phosphorylated proteins of PI3K p85, Akt, MEK, and ERK expressions, it revealed that GINS2 effected on PI3K/Akt and MEK/ERK pathways. GINS2 promoted cell proliferation, migration, invasion, and EMT via modulating PI3K/Akt and MEK/ERK signaling pathways. It might be a target in NSCLC treatment.
Collapse
Affiliation(s)
- Xiangli Liu
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Lei Sun
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Song Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuguang Zhang
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Wenya Li
- Department of Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Isorhamnetin inhibited migration and invasion via suppression of Akt/ERK-mediated epithelial-to-mesenchymal transition (EMT) in A549 human non-small-cell lung cancer cells. Biosci Rep 2019; 39:BSR20190159. [PMID: 31467176 PMCID: PMC6753323 DOI: 10.1042/bsr20190159] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/06/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022] Open
Abstract
In the present study, we investigated the potential effects of Isorhamnetin on the growth and metastasis of A549 human lung cancer cells, as well as the underlying mechanism. Treatment with Isorhamnetin exhibited a dose- and time-dependent inhibition on A549 cell proliferation. Furthermore, the cell adhesion and Transwell assay showed that treatment with Isorhamnetin (2.5, 5, and 10 μM) for 48 h resulted in a significant inhibition effect on cell adhesion, invasion and migration of A549 cells, depending on concentration, which was associated with the suppression of matrix metalloproteinase (MMP)-2 and MMP-9 activity and protein expression. Moreover, Isorhamnetin effectively suppressed the expressions of epithelial-to-mesenchymal transition (EMT) markers, as evidenced by the down-regulation of N-cadherin, vimentin and snail, as well as up-regulation of E-cadherin protein expression. Additionally, these inhibitions were mediated by interrupting AKT/ERK1/2 signaling pathways. Taken together, the results of the current study demonstrated that Isorhamnetin may become a good anti-metastastic agent against lung cancer A549 cell line by the suppression of EMT via interrupting Akt/ERK1/2 signaling pathway.
Collapse
|
26
|
Gao B, Yang F, Chen W, Li R, Hu X, Liang Y, Li D. Multidrug resistance affects the prognosis of primary epithelial ovarian cancer. Oncol Lett 2019; 18:4262-4269. [PMID: 31579424 DOI: 10.3892/ol.2019.10745] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 04/15/2019] [Indexed: 11/06/2022] Open
Abstract
Multidrug-resistant tumor cells can tolerate different structures, functions and antidrug action mechanisms, therefore, allowing these cells to respond to various structurally unrelated mechanisms of different chemotherapy drugs and to exhibit cross-resistance. The present study aimed to investigate the role of Multi-drug resistance gene (MDR1), Placental glutathione S-transferase-P1 (GSTP1), Lung resistance protein (LRP) and Ras association domain family member 1 (RASSF1A) in primary epithelial ovarian cancer (PEOC). The mRNA (protein) expression levels of MDR1, product P glycoprotein, LRP and GSTP1 were evaluated with reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis in all tissue samples, ovarian cancer cell line A2780 and A2780/DDP. Methylation-specific PCR (MSP) was used to detect RASSF1A gene methylation in all tissue samples. The resistance genes/proteins were either poorly or not expressed in A2780, however were highly expressed in A2780/DDP cell line. The expression of resistance genes/proteins decreased following different concentrations of zebularine-stimulated A2780/DDP. Hypermethylation and low expression of RASSF1A gene were detected in PEOC and A2780/DDP. Subsequent to being exposed to different concentrations of zebularine-stimulated A2780/DDP, the RASSF1A methylation level was decreased, while the unmethylation level was increased. The expression of RASSF1A gene/protein was gradually restored, and the gene/protein expression was enhanced with the increase in drug concentration. Multivariate logistic regression indicated that the expression level of gene LRP and GSTP1 was a risk factor for PEOC prognosis. Furthermore, the expression of LRP and GSTP1 in the negative-group survival curves was higher compared with the positive group. High expression of resistance genes may serve an important role in cancer primary resistance. Low expression caused by hyper-methylation of RASSF1A gene may serve an important role in cancer-acquired resistance in PEOC. The present study suggested that resistant gene expression may be a potential prognostic biomarker.
Collapse
Affiliation(s)
- Bo Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, P.R. China.,Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Fengmei Yang
- Department of Obstetrics and Gynecology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Wei Chen
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Rui Li
- Department of Medical Office, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xiuxue Hu
- Department of Laboratory Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yong Liang
- Department of Anesthesiology, Ren-ming Hospital of Yun-xi, Shiyan, Hubei 442000, P.R. China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shanxi 710061, P.R. China
| |
Collapse
|
27
|
Koba R, Fujita H, Nishibori M, Saeki K, Nagayoshi K, Sadakari Y, Nagai S, Sekizawa O, Nitta K, Manabe T, Ueki T, Ishida T, Oda Y, Nakamura M. Quantitative evaluation of the intratumoral distribution of platinum in oxaliplatin‐treated rectal cancer:
In situ
visualization of platinum
via
synchrotron radiation X‐ray fluorescence spectrometry. Int J Cancer 2019; 146:2498-2509. [DOI: 10.1002/ijc.32592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 12/28/2022]
Affiliation(s)
- Ryo Koba
- Department of Surgery and Oncology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Hayato Fujita
- Department of Surgery and Oncology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Maiko Nishibori
- Faculty of Engineering Sciences Kyushu University Fukuoka Japan
| | - Kiyoshi Saeki
- Department of Anatomical Pathology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Kinuko Nagayoshi
- Department of Surgery and Oncology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Yoshihiko Sadakari
- Department of Surgery and Oncology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Shuntaro Nagai
- Department of Surgery and Oncology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Oki Sekizawa
- Japan Synchrotron Radiation Research Institute (JASRI) Hyogo Japan
| | - Kiyofumi Nitta
- Japan Synchrotron Radiation Research Institute (JASRI) Hyogo Japan
| | - Tatsuya Manabe
- Department of Surgery, Faculty of Medicine Saga University Saga Japan
| | - Takashi Ueki
- Department of Surgery Hamanomachi Hospital Fukuoka Japan
| | - Tatsuhiro Ishida
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences Tokushima University Tokushima Japan
| | - Yoshinao Oda
- Department of Anatomical Pathology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
28
|
Zheng Z, Wu D, Fan S, Zhang Z, Chen G, Lu J. Upregulation of miR‐675‐5p induced by lncRNA H19 was associated with tumor progression and development by targeting tumor suppressor p53 in non–small cell lung cancer. J Cell Biochem 2019; 120:18724-18735. [DOI: 10.1002/jcb.29182] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/27/2019] [Accepted: 01/30/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Zi‐Hui Zheng
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Medicine and Life ScienceNanjing University of Chinese Medicine Nanjing P. R. China
| | - Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal University Xuzhou P. R. China
- College of Health SciencesJiangsu Normal University Xuzhou P. R. China
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal University Xuzhou P. R. China
- College of Health SciencesJiangsu Normal University Xuzhou P. R. China
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal University Xuzhou P. R. China
- College of Health SciencesJiangsu Normal University Xuzhou P. R. China
| | - Gui‐Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research CenterNanjing University Nanjing P. R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life ScienceJiangsu Normal University Xuzhou P. R. China
- College of Health SciencesJiangsu Normal University Xuzhou P. R. China
| |
Collapse
|
29
|
Zhou J, Li Z, Li J, Gao B, Song W. Chemotherapy Resistance Molecular Mechanism in Small Cell Lung Cancer. Curr Mol Med 2019; 19:157-163. [PMID: 30813876 DOI: 10.2174/1566524019666190226104909] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/08/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
Abstract
The malignancy of small cell lung cancer (SCLC) is the highest amongst all
lung cancer types. It is characterized by rapid growth, early occurrence of distant sites
metastasis, poor survival rates and is initially sensitive to chemotherapy and
radiotherapy. However, most patients eventually relapse or disease progresses because
of chemotherapy resistance. Because of lack of effective second-line therapies, the
prognosis of SCLC patients is usually poor. For the development of novel therapies, it is
necessary to understand the mechanisms of chemotherapy resistance in SCLC. The
mechanism is complex, because multiple factors could lead to chemotherapy resistance.
An overview of multiple events triggering the formation of chemotherapy resistance
phenotypes of SCLC cells is discussed.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Zhaopei Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jun Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Binbin Gao
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
30
|
Wang AY, Liu H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig 2019; 6:6. [PMID: 30976603 DOI: 10.21037/sci.2019.02.03] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/11/2018] [Indexed: 12/31/2022]
Abstract
Therapies targeted at inhibiting nucleo-cytoplasmic transport have found broad applications in the field of oncology. Chromosome region maintenance 1 (CRM1), better known as exportin 1 (XPO1), is the protein transporter responsible for the nucleo-cytoplasmic shuttling of most of the tumor suppressor proteins (TSP) and growth regulatory factors. XPO1 is also upregulated in many malignancies and associated with a poor prognosis. Its inhibition has been a target of therapy, and hence, the selective inhibitors of nuclear transport (SINE) compounds were developed as a novel class of anti-cancer agents. The most well-known SINE agent is selinexor (KPT-330) and has been widely tested in phase I and II clinical trials in both solid tumors and hematologic malignancies. This review discusses how dysregulation of XPO1 promotes tumorigenesis, the historical considerations in the development of SINE compounds, and their role in current clinical therapies.
Collapse
Affiliation(s)
- Amy Y Wang
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Hongtao Liu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
31
|
Taylor J, Bebawy M. Proteins Regulating Microvesicle Biogenesis and Multidrug Resistance in Cancer. Proteomics 2019; 19:e1800165. [PMID: 30520565 DOI: 10.1002/pmic.201800165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/02/2018] [Indexed: 01/01/2023]
Abstract
Microvesicles (MV) are emerging as important mediators of intercellular communication. While MVs are important signaling vectors for many physiological processes, they are also implicated in cancer pathology and progression. Cellular activation is perhaps the most widely reported initiator of MV biogenesis, however, the precise mechanism remains undefined. Uncovering the proteins involved in regulating MV biogenesis is of interest given their role in the dissemination of deleterious cancer traits. MVs shed from drug-resistant cancer cells transfer multidrug resistance (MDR) proteins to drug-sensitive cells and confer the MDR phenotype in a matter of hours. MDR is attributed to the overexpression of ABC transporters, primarily P-glycoprotein and MRP1. Their expression and functionality is dependent on a number of proteins. In particular, FERM domain proteins have been implicated in supporting the functionality of efflux transporters in drug-resistant cells and in recipient cells during intercellular transfer by vesicles. Herein, the most recent research on the proteins involved in MV biogenesis and in the dissemination of MV-mediated MDR are discussed. Attention is drawn to unanswered questions in the literature that may prove to be of benefit in ongoing efforts to improve clinical response to chemotherapy and circumventing MDR.
Collapse
Affiliation(s)
- Jack Taylor
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, Australia
| |
Collapse
|
32
|
Xie X, Zhao W, Pang J, Xiong X, Wang H, Ma L. Long non-coding RNA, CHRF, predicts poor prognosis of lung adenocarcinoma and promotes cell proliferation and migration. Oncol Lett 2018; 16:6245-6252. [PMID: 30333887 PMCID: PMC6176409 DOI: 10.3892/ol.2018.9425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 02/27/2018] [Indexed: 11/18/2022] Open
Abstract
Research has demonstrated that long non-coding RNAs (lncRNAs) are crucial factors in carcinogenesis. LncRNA, cardiac hypertrophy-related factor (CHRF), has been demonstrated to act as an oncogene in a variety of types of tumor. However, its biological function in lung adenocarcinoma remains to be elucidated. The present study aimed to examine the level of CHRF expression in lung adenocarcinoma tissues and cell lines, and to analyze the association between CHRF and clinicopathological characteristics, as well prognosis of patients with lung adenocarcinoma. Loss-of-function assays were performed to determine the biological function of CHRF. The expression of CHRF was markedly upregulated in lung adenocarcinoma tissues and cell lines. Patients exhibiting upregulated CHRF also demonstrated advanced Tumor-Node-Metastasis stage, lymph node metastasis and larger tumor size compared with those exhibiting downregulated CHRF. Results of Cox proportional hazards regression analysis suggested that highly-expressed CHRF may be regarded as an independent prognostic factor of prognosis. In addition, loss-of-function assays indicated that downregulation of CHRF suppressed cell proliferation, migration and invasion, and induced cell cycle arrest and apoptosis. Western blotting revealed that the phosphoinositide-3-kinase/Akt signaling pathway activity is reduced in lung adenocarcinoma following the knockdown of CHRF. Together, these results indicate that lncRNA, CHRF, may serve a critical role in the development and progression of lung adenocarcinoma, and may act as a novel prognostic biomarker and therapeutic target in lung adenocarcinoma.
Collapse
Affiliation(s)
- Xiaowei Xie
- Respiratory Department, The First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Wei Zhao
- Respiratory Department, Chinese People's Liberation Army General Hospital, Beijing 100853, P.R. China
| | - Jinglin Pang
- Respiratory Department, The First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Xiaomiao Xiong
- Respiratory Department, The First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Haiyan Wang
- Respiratory Department, The First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| | - Lingyun Ma
- Respiratory Department, The First Affiliated Hospital of Chinese People's Liberation Army General Hospital, Beijing 100048, P.R. China
| |
Collapse
|
33
|
Al-Keilani MS, Alzoubi KH, Jaradat SA. The effect of combined treatment with sodium phenylbutyrate and cisplatin, erlotinib, or gefitinib on resistant NSCLC cells. Clin Pharmacol 2018; 10:135-140. [PMID: 30349406 PMCID: PMC6186900 DOI: 10.2147/cpaa.s174074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Chemotherapy resistance is the main cause of the marginal clinical benefit of platinum-based chemotherapy and tyrosine kinase inhibitors in advanced non-small-cell lung cancer (NSCLC). Thus, the identification of new therapeutic agents that can enhance the sensitivity of these drugs is of clinical importance. Histone deacetylase inhibitors (HDACIs) are emerging as new promising agents with strong antiproliferative effects against different types of cancers. This study investigates the synergistic potential of sodium phenylbutyrate (NaPB) added on top of standard chemotherapy used against NSCLC. Objective The objective of this study was to evaluate the ability of NaPB to overcome the resistance of NSCLC cell lines to cisplatin, gefitinib, and erlotinib. Methods MTT cell proliferation assay was used to measure the anticancer effects of cisplatin, erlotinib, or gefitinib alone or combined with various concentrations of NaPB against A549, Calu1, and H1650 NSCLC cell lines. Synergism was estimated by measuring synergy value (R), which is equal to the ratio of IC50 of each primary drug alone divided by combination IC50s. Student’s t-test analysis was used to evaluate the potential differences between IC50 values. ANOVA followed by Tukey’s post hoc was used to evaluate the potential differences among monotherapy and combination treatment groups. Analyses were performed using R 3.3.2 software. P-value <0.05 was considered to be statistically significant. Results NaPB was shown to inhibit the growth of A549, Calu1, and H1650 cell lines in a dose-dependent manner (IC50 10, 8.53, and 4.53 mM, respectively). Furthermore, the addition of NaPB along with cisplatin, erlotinib, or gefitinib to A549, Calu1, and H1650 cell lines resulted in a synergistic antiproliferative effect against the three NSCLC cell lines (R>1.6, P-value <0.05), thus suggesting that NaPB can potentiate the effect of cisplatin, erlotinib, and gefitinib on A549, Calu1, and H1650 cell lines. Conclusion Current results suggest a potential role of NaPB as a sensitizing agent in NSCLC.
Collapse
Affiliation(s)
- Maha S Al-Keilani
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan,
| | - Karem H Alzoubi
- Department of Clinical Pharmacy, College of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan,
| | - Saied A Jaradat
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan.,Princess Haya Center for Biotechnology, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
34
|
Wang Y, Zhang F, Wang J, Hu L, Jiang F, Chen J, Chen J, Wang L. lncRNA LOC100132354 promotes angiogenesis through VEGFA/VEGFR2 signaling pathway in lung adenocarcinoma. Cancer Manag Res 2018; 10:4257-4266. [PMID: 30323681 PMCID: PMC6178939 DOI: 10.2147/cmar.s177327] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose This study aimed to study the biological function and the molecular mechanisms associated with the promotion of angiogenesis by lncRNA LOC100132354 in lung adenocarcinoma (LAD). Patients and methods The mRNA expression levels of 100 pairs of LAD and normal tissue samples of LOC100132354, vascular endothelial growth factor A (VEGFA), VEGF receptor-2 (VEGFR2), basic fibroblast growth factor (bFGF), and thrombospondin-1 (TSP-1) were analyzed by qPCR. LOC100132354 was knockdown and overexpressed in SPCA-1 and A549 cell lines to analyze the protein and mRNA expression levels of VEGFA, VEGFR2, bFGF, TSP-1, and changes in protein expression levels of Ras, P-A-Raf, P-B-Raf, P-C-Raf, P-Mekl/2, and P-Erk1/2. Tumor microvessel density (MVD) was analyzed in experimental nude mice. Results The qPCR results showed that the mRNA expression levels of LOC100132354, VEGFA, VEGFR2, and bFGF mRNA in LAD tissues were significantly increased, while TSP-1 mRNA was significantly decreased compared with the adjacent tissues. Survival analysis showed that VEGFA, VEGFR2, and bFGF were poor predictors, while TSP-1 was a good predictor in LAD. Knockdown or overexpression of LOC100132354 affected the expression levels of bFGF, VEGFA/VEGFR2 signaling pathway, and downstream target molecules, such as Ras, P-A-Raf, P-B-Raf, P-C-Raf, P-Mekl/2, and P-Erk1/2, while decreased TSP-1. After knockdown or overexpression of VEGFA expression, no significant changes in the expression level of LOC100132354 were found. Tumorigenesis of nude mice confirmed that LOC100132354 can significantly increase the tumor MVD. Conclusion These findings suggest VEGFA was a downstream target gene of LOC100132354, promoting angiogenesis through VEGFA/VEGFR2 signaling pathway and downstream target molecules in LAD. So, LOC100132354 is considered as an antiangiogenic target in LAD.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou China
| | - Fan Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou China
| | - Junjun Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou China
| | - Lijuan Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou China
| | - Feng Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou China
| | - Jian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou China
| | - Jie Chen
- Intensive Center Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou China,
| | - Liangxing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China,
| |
Collapse
|
35
|
Guimaraes PPG, Tan M, Tammela T, Wu K, Chung A, Oberli M, Wang K, Spektor R, Riley RS, Viana CTR, Jacks T, Langer R, Mitchell MJ. Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J Control Release 2018; 290:75-87. [PMID: 30290244 DOI: 10.1016/j.jconrel.2018.09.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 01/02/2023]
Abstract
Activation of the Wnt signaling pathway promotes lung cancer progression and contributes to poor patient prognosis. The porcupine inhibitor LGK974, a novel orally bioavailable cancer therapeutic in Phase I clinical trials, induces potent Wnt signaling inhibition and leads to suppressed growth and progression of multiple types of cancers. The clinical use of LGK974, however, is limited in part due to its low solubility and high toxicity in tissues that rely on Wnt signaling for normal homeostasis. Here, we report the use of host-guest chemistry to enhance the solubility and bioavailability of LGK974 in mice through complexation with cyclodextrins (CD). We assessed the effects of these complexes to inhibit Wnt signaling in lung adenocarcinomas that are typically driven by overactive Wnt signaling. 2D 1H NMR confirmed host-guest complexation of CDs with LGK974. CD:LGK974 complexes significantly decreased the expression of Wnt target genes in lung cancer organoids and in lung cancer allografts in mice. Further, CD:LGK974 complexes increased the bioavailability upon oral administration in mice compared to free LGK974. In a mouse lung cancer allograft model, CD:LGK974 complexes induced potent Wnt signaling inhibition with reduced intestinal toxicity compared to treatment with free drug. Collectively, the development of these complexes enables safer and repeated oral or parenteral administration of Wnt signaling inhibitors, which hold promise for the treatment of multiple types of malignancies.
Collapse
Affiliation(s)
- Pedro P G Guimaraes
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States; Department of Physiology and Biophysics, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Mingchee Tan
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States
| | - Tuomas Tammela
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Katherine Wu
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Amanda Chung
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States
| | - Matthias Oberli
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, PA, United States
| | - Roman Spektor
- Graduate Field of Genetics, Genomics and Development, Cornell University, Ithaca, NY, United States
| | - Rachel S Riley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Celso T R Viana
- Department of General Pathology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tyler Jacks
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, United States; Department of Chemical Engineering, MIT, Cambridge, MA, United States.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
36
|
Yang F, Gao B, Chen W, Du E, Liang Y, Hu X, Yang X. Expression of resistance gene and prognosis of chemotherapy in primary epithelial ovarian cancer. Medicine (Baltimore) 2018; 97:e12364. [PMID: 30313031 PMCID: PMC6203479 DOI: 10.1097/md.0000000000012364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The sensitivity of tumor cells to chemotherapy drugs may become attenuated accounts for various reasons. Reduced drug sensitivity may cause the failure of chemotherapy and affect the prognosis of patients with cancer. This study investigates the relationship between the expression levels of lung resistance protein (LRP) and placental glutathione S-transferase-P1 (GSTP1), the resistance of primary epithelial ovarian cancer (PEOC) to chemotherapy, and the prognosis of patients with platinum drug-resistant PEOC.Quantitative PCR (QT-PCR) was used to detect the mRNA level of the resistance genes LRP, GSTP1 in all tissue and cell lines.The expression levels of resistance gene (LRP, GSTP1) in PEOC were the highest, followed by borderline adenoma tissues, and the lowest levels found in benign tumor tissues, the difference of genes expression between different tissues was statistically significant; the difference between the expression rates and relative expression level of drug resistance genes was statistically significant in platinum sensitive group compare with the platinum resistant group. The difference between resistant gene negative-expression and positive-expression of chemotherapy efficiency, disease free survival time, and recurrence time were statistically significant. The resistant genes expression in the PEOC patients of the negative-group survival curves was higher than that in the positive group. With ascites non-cellular component (ANCC) stimulated SKOV3 cells, the cell proliferation inhibition rate (CPIR) increased, and with ANCC stimulated SKOV3/DDP, the expression of LRP and GSTP1 also increased.ANCC may promote the expression of drug resistance genes, and the expression of genes may predict the poorly prognosis of epithelial ovarian cancer.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Ovarian Epithelial
- Drug Resistance, Neoplasm/physiology
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Glutathione S-Transferase pi/genetics
- Glutathione S-Transferase pi/metabolism
- Humans
- Middle Aged
- Neoplasms, Glandular and Epithelial/drug therapy
- Neoplasms, Glandular and Epithelial/genetics
- Neoplasms, Glandular and Epithelial/metabolism
- Neoplasms, Glandular and Epithelial/mortality
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/mortality
- Platinum Compounds/therapeutic use
- Prognosis
- Real-Time Polymerase Chain Reaction
- Survival Analysis
- Vault Ribonucleoprotein Particles/genetics
- Vault Ribonucleoprotein Particles/metabolism
Collapse
Affiliation(s)
- Fengmei Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi
- Department of Obstetrics and Gynecology
| | - Bo Gao
- Department of Laboratory Medicine
| | - Wei Chen
- Department of Laboratory Medicine
| | - Enfu Du
- Department of Radiology, Taihe Hospital, Hubei University of Medicine
| | - Yong Liang
- Department of Anesthesiology, Ren-ming Hospital of Yun-xi, Shiyan, Hubei, P.R. China
| | | | - Xiaofeng Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi
| |
Collapse
|
37
|
Tumor Platinum Concentrations and Pathological Responses Following Cisplatin-Containing Chemotherapy in Gastric Cancer Patients. J Gastrointest Cancer 2018; 50:801-807. [DOI: 10.1007/s12029-018-0153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
38
|
Zhang F, Wang J, Zheng X, Hu L, Chen J, Jiang F, Wang Y. Clinical value of jointly detection pleural fluid Midkine, pleural fluid adenosine deaminase, and pleural fluid carbohydrate antigen 125 in the identification of nonsmall cell lung cancer-associated malignant pleural effusion. J Clin Lab Anal 2018; 32:e22576. [PMID: 29797475 DOI: 10.1002/jcla.22576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Midkine (MK) level has been shown to be elevated in serum of patients with nonsmall cell lung cancer (NSCLC). However, the diagnostic value of MK in pleural effusion in NSCLC has not been well validated and established. METHODS Samples of NSCLC-associated malignant pleural effusions (MPE) and benign effusions (BPE) were collected. The pleural fluid MK (pMK), pleural fluid adenosine deaminase (pADA), pleural fluid lactate dehydrogenase (pLDH), pleural fluid glucose (pGLU), pleural fluid ferritin (pFER), pleural fluid CA199 (pCA199), pleural fluid CA125 (pCA125), pleural effusion white cell count (pWBC), and pleural effusion red cell count (pRBC) were analyzed, and the clinical data of each group were collected for statistical analysis. RESULT The level of pMK, pCA125, pMK + pCA125, and pMK + pCA125 + pADA in the MPE was significantly higher than the BPE group (P = .003, .000, .000, .000). The pADA level in the BPE was significantly higher than the MPE group (P = .003). It showed that the area under the ROC curve (AUC) (0.816) of jointly detection pMK, pCA125, and pADA was significantly higher than other markers for the diagnosis of MPE. Therefore, joint detection of pMK + pCA125 + pADA suggested that the sensitivity, specificity, and AUC was 82.54%, 74.19% at the cutoff 0.47 and diagnostic performance was higher than others. CONCLUSION Joint detection of pMK + pCA125 + pADA can be used as a good indicator for the identification of MPE of NSCLC.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Junjun Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyong Zheng
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lijuan Hu
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Chen
- Department of ICU, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Jiang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yumin Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
39
|
Niknam S, Barsoumian HB, Schoenhals JE, Jackson HL, Yanamandra N, Caetano MS, Li A, Younes AI, Cadena A, Cushman TR, Chang JY, Nguyen QN, Gomez DR, Diab A, Heymach JV, Hwu P, Cortez MA, Welsh JW. Radiation Followed by OX40 Stimulation Drives Local and Abscopal Antitumor Effects in an Anti-PD1-Resistant Lung Tumor Model. Clin Cancer Res 2018; 24:5735-5743. [PMID: 29784675 DOI: 10.1158/1078-0432.ccr-17-3279] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/22/2018] [Accepted: 05/15/2018] [Indexed: 12/11/2022]
Abstract
Purpose: Radiation is used extensively to treat localized cancer, but improved understanding of its effects on the immune system has increased interest in its potential systemic (abscopal) effects, particularly in combination with checkpoint inhibitors such as anti-PD1. The majority of patients either do not respond or develop resistance to monotherapy over time. Here, we investigated the efficacy of OX40 (CD134) stimulation as an alternative immunotherapeutic approach in combination with radiotherapy (XRT) in a murine model of anti-PD1-resistant lung tumors.Experimental Design: We established a bilateral tumor model in 129Sv/Ev mice using an anti-PD1-resistant lung tumor cell line. Primary tumors were treated with intratumoral injection of an OX40 agonist antibody, given as adjuvant therapy after XRT (36 Gy in three 12-Gy fractions), whereas secondary tumors were left untreated to investigate abscopal outcomes.Results: The combination of XRT followed by OX40 stimulation effectively inhibited local and systemic antitumor growth, limited lung metastases, and improved survival rates. This treatment regimen augmented CD4+ and CD8+ T-cell expansion. XRT induced the expression of OX40 on T cells in tumors and spleens and increased the percentages of splenic CD103+ dendritic cells.Conclusions: Our data extend the benefits of radiation to systemic disease control, especially when combined with anti-OX40 agonist to promote immunologically mediated abscopal effects. Moreover, this study provides a rational treatment approach and sequence to overcome anti-PD1-resistant poorly immunogenic tumors. Clin Cancer Res; 24(22); 5735-43. ©2018 AACR.
Collapse
Affiliation(s)
- Sharareh Niknam
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hampartsoum B Barsoumian
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan E Schoenhals
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather L Jackson
- Immuno-oncology and combinations DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Niranjan Yanamandra
- Immuno-oncology and combinations DPU, GlaxoSmithKline, Collegeville, Pennsylvania
| | - Mauricio S Caetano
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ailin Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ahmed I Younes
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandra Cadena
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Taylor R Cushman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joe Y Chang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Quynh N Nguyen
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel R Gomez
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adi Diab
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John V Heymach
- Department of Thoracic Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Angelica Cortez
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - James W Welsh
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
40
|
Kiselev Y, Andersen S, Johannessen C, Fjukstad B, Standahl Olsen K, Stenvold H, Al-Saad S, Donnem T, Richardsen E, Bremnes RM, Rasmussen Busund LT. Transcription factor PAX6 as a novel prognostic factor and putative tumour suppressor in non-small cell lung cancer. Sci Rep 2018; 8:5059. [PMID: 29568088 PMCID: PMC5864921 DOI: 10.1038/s41598-018-23417-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 03/09/2018] [Indexed: 12/21/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths. Novel predictive biomarkers are needed to improve treatment selection and more accurate prognostication. PAX6 is a transcription factor with a proposed tumour suppressor function. Immunohistochemical staining was performed on tissue microarrays from 335 non-small cell lung cancer (NSCLC) patients for PAX6. Multivariate analyses of clinico-pathological variables and disease-specific survival (DSS) was carried out, and phenotypic changes of two NSCLC cell lines with knockdown of PAX6 were characterized. While PAX6 expression was only associated with a trend of better disease-specific survival (DSS) (p = 0.10), the pN+ subgroup (N = 103) showed significant correlation between high PAX6 expression and longer DSS (p = 0.022). Median survival for pN + patients with high PAX6 expression was 127.4 months, versus 22.9 months for patients with low PAX6 expression. In NCI-H661 cells, knockdown of PAX6 strongly activated serum-stimulated migration. In NCI-H460 cells, PAX6 knockdown activated anchorage-independent growth. We did not observe any significant effect of PAX6 on proliferation in either of cell lines. Our findings strongly support the proposition of PAX6 as a valid and positive prognostic marker in NSCLC in node-positive patients. There is a need for further studies, which should provide mechanistical explanation for the role of PAX6 in NSCLC.
Collapse
Affiliation(s)
- Yury Kiselev
- Department of Life Sciences and Health, Faculty of Health Sciences, OsloMet - Oslo Metropolitan University, Oslo, Norway. .,Department of Pharmacy, UiT The Arctic University of Norway, Tromso, Norway. .,Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.
| | - Sigve Andersen
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - Charles Johannessen
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway
| | - Bjørn Fjukstad
- Department of Computer Science, Faculty of Science and Technology, UiT The Arctic University of Norway, Tromso, Norway
| | - Karina Standahl Olsen
- Department of Community Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromso, Norway
| | - Helge Stenvold
- Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - Samer Al-Saad
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Tom Donnem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - Elin Richardsen
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| | - Roy M Bremnes
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromso, Norway.,Department of Oncology, University Hospital of North Norway, Tromso, Norway
| | - Lill-Tove Rasmussen Busund
- Department of Medical Biology, UiT The Arctic University of Norway, Tromso, Norway.,Department of Clinical Pathology, University Hospital of North Norway, Tromso, Norway
| |
Collapse
|
41
|
Chuang CH, Wang LY, Wong YM, Lin ES. Anti-metastatic effects of isolinderalactone via the inhibition of MMP-2 and up regulation of NM23-H1 expression in human lung cancer A549 cells. Oncol Lett 2018. [PMID: 29541242 DOI: 10.3892/ol.2018.7862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Metastatic lung cancer is a leading cause of mortality and has a mortality rate of ≥90%. Isolinderalactone (ILL) is a sesquiterpene lactone compound that has been used in traditional Chinese medicine. Research has demonstrated that ILL has anti-inflammatory and anti-proliferative properties; however, to the best of our knowledge, studies investigating whether ILL can inhibit lung cancer cell metastasis have not been conducted. In the present study, 1-10 µM ILL was applied in the culturing of the A549 lung cancer cell line to investigate the effects of ILL on the invasion and migration of lung cancer cells, including whether the possible mechanisms of ILL are associated with the expression of matrix metalloproteinase (MMP)-2 and NME/NM23 nucleoside diphosphate kinase 1 (NM23-H1) genes. The results of the present study indicated that ILL inhibited the invasion and migration of the A549 cancer cells and exhibited a dose-response association. ILL also significantly inhibited the protein expression and activity of MMP-2 (P<0.05), exhibiting a trend similar to that of its invasion- and migration-associated properties. Further research revealed that ILL significantly increased the expression of NM23-H1 protein and inhibited the expression of β-catenin protein (P<0.05). The results of the present study is, to the best of our knowledge, the first to confirm that ILL can inhibit the invasion and migration of A549 cancer cells, with the possible mechanisms potentially involving the inhibition of MMP-2 and β-catenin protein expression resulting from the up regulation of NM23-H1 expression.
Collapse
Affiliation(s)
- Cheng-Hung Chuang
- Department of Nutrition, Hungkuang University, Taichung 43302, Taiwan, R.O.C
| | - Li-Yu Wang
- Department of Nutrition, Hungkuang University, Taichung 43302, Taiwan, R.O.C
| | - Yuen Man Wong
- Department of Nutrition, Hungkuang University, Taichung 43302, Taiwan, R.O.C
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung 40343, Taiwan, R.O.C
| |
Collapse
|
42
|
Shen H, Wang L, Ge X, Jiang CF, Shi ZM, Li DM, Liu WT, Yu X, Shu YQ. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer. Oncotarget 2018; 7:20728-42. [PMID: 26989074 PMCID: PMC4991488 DOI: 10.18632/oncotarget.8011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/14/2016] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy resistance frequently drives tumour progression. However, the underlying molecular mechanisms are poorly characterized. In this study, we explored miR-137's role in the chemosensitivity of lung cancer. We found that the expression level of miR-137 is down-regulated in the human lung cancer tissues and the resistant cells strains: A549/paclitaxel(A549/PTX) and A549/cisplatin (A549/CDDP) when compared with lung cancer A549 cells. Moreover, we found that overe-expression of miR-137 inhibited cell proliferation, migration, cell survival and arrest the cell cycle in G1 phase in A549/PTX and A549/CDDP. Furthermore, Repression of miR-137 significantly promoted cell growth, migration, cell survival and cell cycle G1/S transition in A549 cells. We further demonstrated that the tumor suppressive role of miR-137 was mediated by negatively regulating Nuclear casein kinase and cyclin-dependent kinase substrate1(NUCKS1) protein expression. Importantly, miR-137 inhibits A549/PTX, A549/CDDP growth and angiogenesis in vivo. Our study is the first to identify the tumor suppressive role of over-expressed miR-137 in chemosensitivity. Identification of a novel miRNA-mediated pathway that regulates chemosensitivity in lung cancer will facilitate the development of novel therapeutic strategies in the future.
Collapse
Affiliation(s)
- Hua Shen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Lin Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Pathology, and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xin Ge
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Pathology, and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Cheng-Fei Jiang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Pathology, and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zhu-Mei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dong-Mei Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Pathology, and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Wei-Tao Liu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Department of Pathology, and Cancer Center, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaobo Yu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, Minhang, Shanghai, 200080, China
| | - Yong-Qian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China.,Collaborative Innovation Center for Cancer Medicine, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| |
Collapse
|
43
|
Zhang G, Wang C, Sun M, Li J, Wang B, Jin C, Hua P, Song G, Zhang Y, Nguyen LLH, Cui R, Liu R, Wang L, Zhang X. Cinobufagin inhibits tumor growth by inducing intrinsic apoptosis through AKT signaling pathway in human nonsmall cell lung cancer cells. Oncotarget 2018; 7:28935-46. [PMID: 26959116 PMCID: PMC5045368 DOI: 10.18632/oncotarget.7898] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/18/2016] [Indexed: 11/25/2022] Open
Abstract
The cinobufagin (CB) has a broad spectrum of cytotoxicity to inhibit cell proliferation of various human cancer cell lines, but the molecular mechanisms still remain elusive. Here we observed that CB inhibited the cell proliferation and tumor growth, but induced cell cycle arrest and apoptosis in a dose-dependent manner in non-small cell lung cancer (NSCLC) cells. Treatment with CB significantly increased the reactive oxygen species but decreased the mitochondrial membrane potential in NSCLC cells. These effects were markedly blocked when the cells were pretreated with N-acetylcysteine, a specific reactive oxygen species inhibitor. Furthermore, treatment with CB induced the expression of BAX but reduced that of BCL-2, BCL-XL and MCL-1, leading to an activation of caspase-3, chromatin condensation and DNA degradation in order to induce programmed cell death in NSCLC cells. In addition, treatment with CB reduced the expressions of p-AKTT308 and p-AKTS473 and inhibited the AKT/mTOR signaling pathway in NSCLC cells in a time-dependent manner. Our results suggest that CB inhibits tumor growth by inducing intrinsic apoptosis through the AKT signaling pathway in NSCLC cells.
Collapse
Affiliation(s)
- Guangxin Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Chao Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Department of Integrative Endemic Area, Tongji Hospital of Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Mei Sun
- Department of Pathology, Second Hospital of Jilin University, Changchun, P.R. China
| | - Jindong Li
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Bin Wang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Chengyan Jin
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Peiyan Hua
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Ge Song
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Yifan Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| | - Lisa L H Nguyen
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, P.R. China
| | - Runhua Liu
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lizhong Wang
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xingyi Zhang
- Department of Thoracic Surgery, Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
44
|
MicroRNA-106b-5p regulates cisplatin chemosensitivity by targeting polycystic kidney disease-2 in non-small-cell lung cancer. Anticancer Drugs 2017; 28:852-860. [PMID: 28723865 DOI: 10.1097/cad.0000000000000524] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Systemic therapy with cytotoxic agents remains one of the main treatment methods for non-small-cell lung cancer (NSCLC). Cisplatin is a commonly used chemotherapeutic agent, that, when combined with other drugs, is an effective treatment for NSCLC. However, effective cancer therapy is hindered by a patient's resistance to cisplatin. Unfortunately, the potential mechanism underlying such resistance remains unclear. In this study, we explored the mechanism of microRNA-106b-5p (miR-106b-5p), which is involved in the resistance to cisplatin in the A549 cell line of NSCLC. Quantitative real-time PCR was used to test the expression of miR-106-5p in the A549 and the A549/DDP cell line of NSCLC. The cell counting kit-8 assay was used to detect cell viability. Flow cytometry was used to measure cell cycle and cell apoptosis. Luciferase reporter assays and western blot were performed to confirm whether polycystic kidney disease-2 (PKD2) is a direct target gene of miR-106b-5p. Immunohistochemistry was performed to examine the distribution of PKD2 expression in patients who are sensitive and resistant to cisplatin. The experiments indicated that the expression of miR-106b-5p was significantly decreased in A549/DDP compared with that in A549. MiR-106b-5p affected the tolerance of cells to cisplatin by negatively regulating PKD2. Upregulation of miR-106b-5p or downregulation of PKD2 expression can cause A549/DDP cells to become considerably more sensitive to cisplatin. The results showed that miR-106b-5p enhanced the sensitivity of A549/DDP cells to cisplatin by targeting the expression of PKD2. These findings suggest that the use of miR-106b-5p may be a promising clinical strategy in the treatment of NSCLC.
Collapse
|
45
|
Işcan M, Ada AO. Cytochrome P-450 Polymorphisms and Clinical Outcome in Patients with Non-Small Cell Lung Cancer. Turk J Pharm Sci 2017; 14:319-323. [PMID: 32454631 DOI: 10.4274/tjps.28291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/19/2017] [Indexed: 12/01/2022]
Abstract
Lung cancer is an increasing worldwide public health problem. Most patients with lung cancer have non-small cell lung cancer (NSCLC). These patients are mainly treated with standard platinum-based chemotherapy. Poor response and great inter-individual variety in treatment response occurs among these patients. There is accumulating evidence to support the hypothesis that genetic polymorphisms alter the drug response and survival. Cytochrome P450 (CYP) enzymes metabolize antineoplastic drugs and are involved in drug resistance. Polymorphic CYPs have altered enzyme activities and thus they may influence the response to chemotherapy and survival in patients with lung cancer. In the current review, recent findings with respect to the role of mainly CYP1A1, CYP1B1, CYP2D6, CYP2E1 and CYP3A4 gene polymorphisms in response to chemotherapy and survival in patients with NSCLC have been provided, which could be useful for clinicians in the prognosis of these patients who are mainly treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Mümtaz Işcan
- Ankara University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| | - Ahmet Oğuz Ada
- Ankara University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey
| |
Collapse
|
46
|
Sadava D, Kane SE. The effect of brassinolide, a plant steroid hormone, on drug resistant small-cell lung carcinoma cells. Biochem Biophys Res Commun 2017; 493:783-787. [DOI: 10.1016/j.bbrc.2017.08.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
|
47
|
Chen J, Zhang F, Wang J, Hu L, Chen J, Xu G, Wang Y. LncRNA LINC01512 Promotes the Progression and Enhances Oncogenic Ability of Lung Adenocarcinoma. J Cell Biochem 2017; 118:3102-3110. [PMID: 28569418 PMCID: PMC5575493 DOI: 10.1002/jcb.26178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/31/2017] [Indexed: 01/18/2023]
Abstract
Previously, a significantly upregulated lncRNA, LINC01512, in lung adenocarcinoma (LAD) was obtained, while its biological function and molecular mechanisms were unclear. The expression level of LINC01512 was estimated by qPCR from 100 pairs of LAD and NT samples. The correlation of LINC01512 to clinical data of LAD patients was analyzed. LINC01512 was knocked down and overexpressed in SPCA-1 and A549 cell lines by lentivirus-mediated technology, and the oncological behavioral changes of SPCA-1 and A549 cells were observed, as well as, tumorigenicity in experimental nude mice. Compared to the adjacent tissues, LINC01512 was obviously upregulated in LAD. The expression level of LINC01512 was closely related to lymph node metastasis and tumor node metastasis (TNM) stage. Survival analysis showed that the survival time of high expression LINC01512 group was significantly shorter than the low-expression group in LAD. Knockdown or overexpression test unanimously confirmed that LINC01512 can increase the ability of cell migration, invasion, proliferation, colony formation, adhesion, and S phase and G2/M phase cells, whereas decrease the apoptosis and G0/G1 phase cells. Nude mice experiments confirmed that LINC01512 significantly enhanced the speed and weight of tumorigenicity. LINC01512 is an oncogenic lncRNA gene that promotes the progression and distinctly enhances the oncogenic ability in lung adenocarcinoma. J. Cell. Biochem. 118: 3102-3110, 2017. © 2017 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Jie Chen
- Department of Intensive Care UnitThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Fan Zhang
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Junjun Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Lijuan Hu
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Jian Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Gang Xu
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yumin Wang
- Department of Laboratory MedicineThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
48
|
Rapp J, Jaromi L, Kvell K, Miskei G, Pongracz JE. WNT signaling - lung cancer is no exception. Respir Res 2017; 18:167. [PMID: 28870231 PMCID: PMC5584342 DOI: 10.1186/s12931-017-0650-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/27/2017] [Indexed: 02/07/2023] Open
Abstract
Since the initial discovery of the oncogenic activity of WNT ligands our understanding of the complex roles for WNT signaling pathways in lung cancers has increased substantially. In the current review, the various effects of activation and inhibition of the WNT signaling pathways are summarized in the context of lung carcinogenesis. Recent evidence regarding WNT ligand transport mechanisms, the role of WNT signaling in lung cancer angiogenesis and drug transporter regulation and the importance of microRNA and posttranscriptional regulation of WNT signaling are also reviewed.
Collapse
Affiliation(s)
- Judit Rapp
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Luca Jaromi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Krisztian Kvell
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gyorgy Miskei
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Judit E. Pongracz
- Department of Pharmaceutical Biotechnology, School of Pharmacy, University of Pecs, Pecs, Hungary
- Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
49
|
Punia R, Raina K, Agarwal R, Singh RP. Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One 2017; 12:e0182870. [PMID: 28859099 PMCID: PMC5578506 DOI: 10.1371/journal.pone.0182870] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/25/2017] [Indexed: 11/24/2022] Open
Abstract
Background Anthracyclines are efficient and potent agents to treat broad range of cancers but cytotoxicity induced by them limits their use in therapeutics. Use of plant-derived agents help to prevent or delay the process of cancer progression and their combination increases the anti-cancer potential of mainstream compound. However, multidrug resistance is major cause of treatment failure in cancer patients. Purpose In this study, combination treatments of fisetin or acacetin with doxorubicin were explored for their potential synergistic effect on non-small-cell lung carcinoma (NSCLC) cells. Study design During this study, NSCLC model cell lines A549 and H1299 were used to determine the combinatorial effect of phytochemicals namly acacetin and fisetin with doxorubicin. Methods The effects of individual compounds and their combination on cell viability, clonogenic potential and cell cycle progression were studied. Efflux of doxorubicin was measured by spectrofluorophotometer, whereas accumulation inside the cells was analyzed by flow cytometry and confocal microscopy. Expression of MDR1 was checked by semi-quantitative PCR. Results The results showed that the cell viability of A549 and H1299 cells were significantly decreased in time- and dose-dependent manner, although A549 cells showed more sensitivity toward doxorubicin than H1299 cells. Mostly, combination of doxorubicin showed good synergy with acacetin in both the cell lines whereas, fisetin exerted synergistic effect only at 72 h of treatment in H1299 cells. Acacetin with doxorubicin caused G2/M arrest by downregulating CDK-cyclin complex in A549 cells. Acacetin—doxorubicin combination decreased the clonogenic potential of A549 and H1299 cells upto 82% and 59%, respectively, as compared to control. Acacetin also decreased efflux of doxorubicin by 59% after 30 mins of exposure to A549 cells and further increased accumulation of doxorubicin inside the cells upto 55% in 2 h. The modulatory effect of acacetin-doxorubicin combination on doxorubicin influx and efflux was mediated through downregulation of MDR1 treansporter in NSCLC cells. Conclusion These findings suggested that acacetin augments the cytotoxicity of doxorubicin at lower concentrations in lung cancer cells. Their combination leads to more retention of doxorubicin in the cells by modulating drug trasporter and thus enhances its therapeutic potential.
Collapse
Affiliation(s)
- Reenu Punia
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Komal Raina
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, Aurora, Colorado, United States of America
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, Aurora, Colorado, United States of America
| | - Rana P. Singh
- School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail: ,
| |
Collapse
|
50
|
Tracz-Gaszewska Z, Klimczak M, Biecek P, Herok M, Kosinski M, Olszewski MB, Czerwińska P, Wiech M, Wiznerowicz M, Zylicz A, Zylicz M, Wawrzynow B. Molecular chaperones in the acquisition of cancer cell chemoresistance with mutated TP53 and MDM2 up-regulation. Oncotarget 2017; 8:82123-82143. [PMID: 29137250 PMCID: PMC5669876 DOI: 10.18632/oncotarget.18899] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
Utilizing the TCGA PANCAN12 dataset we discovered that cancer patients with mutations in TP53 tumor suppressor and overexpression of MDM2 oncogene exhibited decreased survival post treatment. Interestingly, in the case of breast cancer patients, this phenomenon correlated with high expression level of several molecular chaperones belonging to the HSPA, DNAJB and HSPC families. To verify the hypothesis that such a genetic background may promote chaperone-mediated chemoresistance, we employed breast and lung cancer cell lines that constitutively overexpressed heat shock proteins and have shown that HSPA1A/HSP70 and DNAJB1/HSP40 facilitated the binding of mutated p53 to the TAp73α protein. This chaperone-mediated mutated p53–TAp73α complex induced chemoresistance to DNA damaging reagents, like Cisplatin, Doxorubicin, Etoposide or Camptothecin. Importantly, when the MDM2 oncogene was overexpressed, heat shock proteins were displaced and a stable multiprotein complex comprising of mutated p53-TAp73α-MDM2 was formed, additionally amplifying cancer cells chemoresistance. Our findings demonstrate that molecular chaperones aid cancer cells in surviving the cytotoxic effect of chemotherapeutics and may have therapeutic implications.
Collapse
Affiliation(s)
- Zuzanna Tracz-Gaszewska
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Biochemistry and Biophysics, PAS, Warsaw, Poland
| | - Marta Klimczak
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Przemyslaw Biecek
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland.,Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Marcin Herok
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Marcin Kosinski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland.,Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | | | - Patrycja Czerwińska
- International Institute of Molecular and Cell Biology, Warsaw, Poland.,Laboratory of Gene Therapy, Department of Cancer Immunology, The Greater Poland Cancer Center, Poznan, Poland
| | - Milena Wiech
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Wiznerowicz
- Laboratory of Gene Therapy, Department of Cancer Immunology, The Greater Poland Cancer Center, Poznan, Poland
| | - Alicja Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Zylicz
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | | |
Collapse
|