1
|
Horsman MR. Targeting the Tumor Vascular Supply to Enhance Radiation Therapy Administered in Single or Clinically Relevant Fractionated Schedules. Int J Mol Sci 2024; 25:8078. [PMID: 39125647 PMCID: PMC11311563 DOI: 10.3390/ijms25158078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
This pre-clinical study was designed to demonstrate how vascular disrupting agents (VDAs) should be administered, either alone or when combined with radiation in clinically relevant fractionated radiation schedules, for the optimal anti-tumor effect. CDF1 mice, implanted in the right rear foot with a 200 mm3 murine C3H mammary carcinoma, were injected with various doses of the most potent VDA drug, combretastatin A-1 phosphate (CA1P), under different schedules. Tumors were also locally irradiated with single-dose, or stereotactic (3 × 5-20 Gy) or conventional (30 × 2 Gy) fractionation schedules. Tumor growth and control were the endpoints used. Untreated tumors had a tumor growth time (TGT5; time to grow to 5 times the original treatment volume) of around 6 days. This increased with increasing drug doses (5-100 mg/kg). However, with single-drug treatments, the maximum TGT5 was only 10 days, yet this increased to 19 days when injecting the drug on a weekly basis or as three treatments in one week. CA1P enhanced radiation response regardless of the schedule or interval between the VDA and radiation. There was a dose-dependent increase in radiation response when the combined with a single, stereotactic, or conventional fractionated irradiation, but these enhancements plateaued at around a drug dose of 25 mg/kg. This pre-clinical study demonstrated how VDAs should be combined with clinically applicable fractionated radiation schedules for the optimal anti-tumor effect, thus suggesting the necessary pre-clinical testing required to ultimately establish VDAs in clinical practice.
Collapse
Affiliation(s)
- Michael R Horsman
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| |
Collapse
|
2
|
Kim SJ, Lee K, Park J, Park M, Kim UJ, Kim SM, Ryu KH, Kang KW. CKD-516 potentiates the anti-cancer activity of docetaxel against epidermal growth factor receptor tyrosine kinase inhibitor-resistant lung cancer. Toxicol Res 2023; 39:61-69. [PMID: 36726834 PMCID: PMC9839922 DOI: 10.1007/s43188-022-00146-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023] Open
Abstract
Lung cancer is the leading cause of cancer death. Although docetaxel has been used as a second- or third-line treatment for non-small cell lung cancer (NSCLC), the objective response rate is less than 10%. Hence, there is a need to improve the clinical efficacy of docetaxel monotherapy; combination therapy should be considered. Here, we show that CKD-516, a vascular disruption agent, can be combined with docetaxel to treat epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI)-resistant NSCLC. CKD-516 was orally bioavailable; neither CKD-516 nor docetaxel affected the mean plasma concentration-time profile or pharmacokinetic parameters of the other drug. CKD-516 and docetaxel synergistically inhibited the growth of H1975 (with an L858R/T790M double mutation of EGFR) and A549 (with a KRAS mutation) lung cancer cell lines. In addition, docetaxel plus CKD-516 delayed tumor growth in-and extended the lifespan of-tumor-bearing mice. Thus, combination CKD-516 and docetaxel therapy could be used to treat EGFR-TKI-resistant NSCLC.
Collapse
Affiliation(s)
- Soo Jin Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Kyunghyeon Lee
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Jaewoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - Miso Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| | - U. Ji Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Se-mi Kim
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Keun Ho Ryu
- CKD Research Institution, Chong Kun Dang Pharmaceutical Corporation, 16995, Gyeonggi-do, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826 Republic of Korea
| |
Collapse
|
3
|
Vascular disrupting agent-induced amplification of tumor targeting and prodrug activation boosts anti-tumor efficacy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
4
|
Liu L, Schuetze R, Gerberich JL, Lopez R, Odutola SO, Tanpure RP, Charlton-Sevcik AK, Tidmore JK, Taylor EAS, Kapur P, Hammers H, Trawick ML, Pinney KG, Mason RP. Demonstrating Tumor Vascular Disrupting Activity of the Small-Molecule Dihydronaphthalene Tubulin-Binding Agent OXi6196 as a Potential Therapeutic for Cancer Treatment. Cancers (Basel) 2022; 14:4208. [PMID: 36077745 PMCID: PMC9454770 DOI: 10.3390/cancers14174208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
The vascular disrupting activity of a promising tubulin-binding agent (OXi6196) was demonstrated in mice in MDA-MB-231 human breast tumor xenografts growing orthotopically in mammary fat pad and syngeneic RENCA kidney tumors growing orthotopically in the kidney. To enhance water solubility, OXi6196, was derivatized as its corresponding phosphate prodrug salt OXi6197, facilitating effective delivery. OXi6197 is stable in water, but rapidly releases OXi6196 in the presence of alkaline phosphatase. At low nanomolar concentrations OXi6196 caused G2/M cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells and monolayers of rapidly growing HUVECs underwent concentration-dependent changes in their morphology. Loss of the microtubule structure and increased bundling of filamentous actin into stress fibers followed by cell collapse, rounding and blebbing was observed. OXi6196 (100 nM) disrupted capillary-like endothelial networks pre-established with HUVECs on Matrigel®. When prodrug OXi6197 was administered to mice bearing orthotopic MDA-MB-231-luc tumors, dynamic bioluminescence imaging (BLI) revealed dose-dependent vascular shutdown with >80% signal loss within 2 h at doses ≥30 mg/kg and >90% shutdown after 6 h for doses ≥35 mg/kg, which remained depressed by at least 70% after 24 h. Twice weekly treatment with prodrug OXi6197 (20 mg/kg) caused a significant tumor growth delay, but no overall survival benefit. Similar efficacy was observed for the first time in orthotopic RENCA-luc tumors, which showed massive hemorrhage and necrosis after 24 h. Twice weekly dosing with prodrug OXi6197 (35 mg/kg) caused tumor growth delay in most orthotopic RENCA tumors. Immunohistochemistry revealed extensive necrosis, though with surviving peripheral tissues. These results demonstrate effective vascular disruption at doses comparable to the most effective vascular-disrupting agents (VDAs) suggesting opportunities for further development.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jeni L. Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ramona Lopez
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samuel O. Odutola
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | | | - Justin K. Tidmore
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Emily A.-S. Taylor
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Payal Kapur
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hans Hammers
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Zhang W, Yang L, Si W, Tang M, Bai P, Zhu Z, Kuang S, Liu J, Shi M, Huang J, Chen X, Li D, Wen Y, Yang Z, Xiao K, Chen L. SKLB-14b, a novel oral microtubule-destabilizing agent based on hydroxamic acid with potent anti-tumor and anti-multidrug resistance activities. Bioorg Chem 2022; 128:106053. [DOI: 10.1016/j.bioorg.2022.106053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 01/05/2023]
|
6
|
Wordeman L, Vicente JJ. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers (Basel) 2021; 13:5650. [PMID: 34830812 PMCID: PMC8616087 DOI: 10.3390/cancers13225650] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years. However, the limited success of drugs specifically targeting mitotic proteins, and the slow growing rate of most human tumors forces a reevaluation of the mechanism of action of MTAs. Studies from the last decade suggest that the killing efficiency of MTAs arises from a combination of interphase and mitotic effects. Moreover, MTs have also been implicated in other therapeutically relevant activities, such as decreasing angiogenesis, blocking cell migration, reducing metastasis, and activating innate immunity to promote proinflammatory responses. Two key problems associated with MTA therapy are acquired drug resistance and systemic toxicity. Accordingly, novel and effective MTAs are being designed with an eye toward reducing toxicity without compromising efficacy or promoting resistance. Here, we will review the mechanism of action of MTAs, the signaling pathways they affect, their impact on cancer and other illnesses, and the promising new therapeutic applications of these classic drugs.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
7
|
Guo Y, Wang H, Gerberich JL, Odutola SO, Charlton-Sevcik AK, Li M, Tanpure RP, Tidmore JK, Trawick ML, Pinney KG, Mason RP, Liu L. Imaging-Guided Evaluation of the Novel Small-Molecule Benzosuberene Tubulin-Binding Agent KGP265 as a Potential Therapeutic Agent for Cancer Treatment. Cancers (Basel) 2021; 13:cancers13194769. [PMID: 34638255 PMCID: PMC8507561 DOI: 10.3390/cancers13194769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Vascular-disrupting agents promise significant therapeutic efficacy against solid tumors by selectively damaging tumor-associated vasculature. Dynamic BLI and oxygen-enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following administration of KGP265. BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h indicating vascular disruption, which continued over 24 h. Twice-weekly doses of KGP265 caused a significant growth delay in MDA-MB-231 human breast tumor xenografts and 4T1 syngeneic breast tumors growing orthotopically in mice. Abstract The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.
Collapse
Affiliation(s)
- Yihang Guo
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Gastrointestinal Surgery, The Third XiangYa Hospital of Central South University, Changsha 410013, China
| | - Honghong Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jeni L. Gerberich
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
| | - Samuel O. Odutola
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Amanda K. Charlton-Sevcik
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Maoping Li
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Rajendra P. Tanpure
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Justin K. Tidmore
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (S.O.O.); (A.K.C.-S.); (R.P.T.); (J.K.T.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| | - Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (Y.G.); (H.W.); (J.L.G.); (M.L.)
- Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (R.P.M.); (L.L.)
| |
Collapse
|
8
|
Liu L, O’Kelly D, Schuetze R, Carlson G, Zhou H, Trawick ML, Pinney KG, Mason RP. Non-Invasive Evaluation of Acute Effects of Tubulin Binding Agents: A Review of Imaging Vascular Disruption in Tumors. Molecules 2021; 26:2551. [PMID: 33925707 PMCID: PMC8125421 DOI: 10.3390/molecules26092551] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor vasculature proliferates rapidly, generally lacks pericyte coverage, and is uniquely fragile making it an attractive therapeutic target. A subset of small-molecule tubulin binding agents cause disaggregation of the endothelial cytoskeleton leading to enhanced vascular permeability generating increased interstitial pressure. The resulting vascular collapse and ischemia cause downstream hypoxia, ultimately leading to cell death and necrosis. Thus, local damage generates massive amplification and tumor destruction. The tumor vasculature is readily accessed and potentially a common target irrespective of disease site in the body. Development of a therapeutic approach and particularly next generation agents benefits from effective non-invasive assays. Imaging technologies offer varying degrees of sophistication and ease of implementation. This review considers technological strengths and weaknesses with examples from our own laboratory. Methods reveal vascular extent and patency, as well as insights into tissue viability, proliferation and necrosis. Spatiotemporal resolution ranges from cellular microscopy to single slice tomography and full three-dimensional views of whole tumors and measurements can be sufficiently rapid to reveal acute changes or long-term outcomes. Since imaging is non-invasive, each tumor may serve as its own control making investigations particularly efficient and rigorous. The concept of tumor vascular disruption was proposed over 30 years ago and it remains an active area of research.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Devin O’Kelly
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Regan Schuetze
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Graham Carlson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Heling Zhou
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Kevin G. Pinney
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX 76798, USA; (G.C.); (M.L.T.); (K.G.P.)
| | - Ralph P. Mason
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; (L.L.); (D.O.); (R.S.); (H.Z.)
| |
Collapse
|
9
|
Savarin M, Kamensek U, Znidar K, Todorovic V, Sersa G, Cemazar M. Evaluation of a Novel Plasmid for Simultaneous Gene Electrotransfer-Mediated Silencing of CD105 and CD146 in Combination with Irradiation. Int J Mol Sci 2021; 22:ijms22063069. [PMID: 33802812 PMCID: PMC8002395 DOI: 10.3390/ijms22063069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/12/2022] Open
Abstract
Targeting tumor vasculature through specific endothelial cell markers represents a promising approach for cancer treatment. Here our aim was to construct an antibiotic resistance gene-free plasmid encoding shRNAs to simultaneously target two endothelial cell markers, CD105 and CD146, and to test its functionality and therapeutic potential in vitro when delivered by gene electrotransfer (GET) and combined with irradiation (IR). Functionality of the plasmid was evaluated by determining the silencing of the targeted genes using qRT-PCR. Antiproliferative and antiangiogenic effects were determined by the cytotoxicity assay tube formation assay and wound healing assay in murine endothelial cells 2H-11. The functionality of the plasmid construct was also evaluated in malignant melanoma tumor cell line B16F10. Additionally, potential activation of immune response was measured by induction of DNA sensor STING and proinflammatory cytokines by qRT-PCR in endothelial cells 2H-11. We demonstrated that the plasmid construction was successful and can efficiently silence the expression of the two targeted genes. As a consequence of silencing, reduced migration rate and angiogenic potential was confirmed in 2H-11 endothelial cells. Furthermore, induction of DNA sensor STING and proinflammatory cytokines were determined, which could add to the therapeutic effectiveness when used in vivo. To conclude, we successfully constructed a novel plasmid DNA with two shRNAs, which holds a great promise for further in vivo testing.
Collapse
Affiliation(s)
- Monika Savarin
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Correspondence: (M.S.); (M.C.)
| | - Urska Kamensek
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katarina Znidar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
| | - Vesna Todorovic
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Faculty of Health Sciences, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia; (U.K.); (K.Z.); (V.T.); (G.S.)
- Faculty of Health Sciences, University of Primorska, 6310 Izola, Slovenia
- Correspondence: (M.S.); (M.C.)
| |
Collapse
|
10
|
Shiah HS, Chiang NJ, Lin CC, Yen CJ, Tsai HJ, Wu SY, Su WC, Chang KY, Wang CC, Chang JY, Chen LT. Phase I Dose-Escalation Study of SCB01A, a Microtubule Inhibitor with Vascular Disrupting Activity, in Patients with Advanced Solid Tumors. Oncologist 2020; 26:e567-e579. [PMID: 33245172 DOI: 10.1002/onco.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/15/2020] [Indexed: 11/10/2022] Open
Abstract
LESSONS LEARNED SCB01A is a novel microtubule inhibitor with vascular disrupting activity. This first-in-human study demonstrated SCB01A safety, pharmacokinetics, and preliminary antitumor activity. SCB01A is safe and well tolerated in patients with advanced solid malignancies with manageable neurotoxicity. BACKGROUND SCB01A, a novel microtubule inhibitor, has vascular disrupting activity. METHODS In this phase I dose-escalation and extension study, patients with advanced solid tumors were administered intravenous SCB01A infusions for 3 hours once every 21 days. Rapid titration and a 3 + 3 design escalated the dose from 2 mg/m2 to the maximum tolerated dose (MTD) based on dose-limiting toxicity (DLT). SCB01A-induced cellular neurotoxicity was evaluated in dorsal root ganglion cells. The primary endpoint was MTD. Safety, pharmacokinetics (PK), and tumor response were secondary endpoints. RESULTS Treatment-related adverse events included anemia, nausea, vomiting, fatigue, fever, and peripheral sensorimotor neuropathy. DLTs included grade 4 elevated creatine phosphokinase (CPK) in the 4 mg/m2 cohort; grade 3 gastric hemorrhage in the 6.5 mg/m2 cohort; grade 2 thromboembolic event in the 24 mg/m2 cohort; and grade 3 peripheral sensorimotor neuropathy, grade 3 elevated aspartate aminotransferase, and grade 3 hypertension in the 32 mg/m2 cohort. The MTD was 24 mg/m2 , and average half-life was ~2.5 hours. The area under the curve-dose response relationship was linear. Nineteen subjects were stable after two cycles. The longest treatment lasted 24 cycles. SCB01A-induced neurotoxicity was reversible in vitro. CONCLUSION The MTD of SCB01A was 24 mg/m2 every 21 days; it is safe and tolerable in patients with solid tumors.
Collapse
Affiliation(s)
- Her-Shyong Shiah
- Graduate Institute of Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Nai-Jung Chiang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Oncology-Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chi Lin
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chia-Jui Yen
- Division of Oncology-Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Jen Tsai
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Oncology-Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Yin Wu
- Division of Oncology-Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wu-Chou Su
- Division of Oncology-Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kwang-Yu Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Oncology-Hematology, Department of Internal Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Oncology-Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Division of Oncology-Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, Kaohisung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Smolarczyk R, Czapla J, Jarosz-Biej M, Czerwinski K, Cichoń T. Vascular disrupting agents in cancer therapy. Eur J Pharmacol 2020; 891:173692. [PMID: 33130277 DOI: 10.1016/j.ejphar.2020.173692] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Tumor blood vessel formation is a key process for tumor expansion. Tumor vessels are abnormal and differ from normal vessels in architecture and components. Besides oxygen and nutrients supply, the tumor vessels system, due to its abnormality, is responsible for: hypoxia formation, and metastatic routes. Tumor blood vessels can be a target of anti-cancer therapies. There are two types of therapies that target tumor vessels. The first one is the inhibition of the angiogenesis process. However, the inhibition is often ineffective because of alternative angiogenesis mechanism activation. The second type is a specific targeting of existing tumor blood vessels by vascular disruptive agents (VDAs). There are three groups of VDAs: microtubule destabilizing drugs, flavonoids with anti-vascular functions, and tumor vascular targeted drugs based on endothelial cell receptors. However, VDAs possess some limitations. They may be cardiotoxic and their application in therapy may leave viable residual, so called, rim cells on the edge of the tumor. However, it seems that a well-designed combination of VDAs with other anti-cancer drugs may bring a significant therapeutic effect. In this article, we describe three groups of vascular disruptive agents with their advantages and disadvantages. We mention VDAs clinical trials. Finally, we present the current possibilities of VDAs combination with other anti-cancer drugs.
Collapse
Affiliation(s)
- Ryszard Smolarczyk
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Justyna Czapla
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Magdalena Jarosz-Biej
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| | - Kyle Czerwinski
- University of Manitoba, Faculty of Science. 66 Chancellors Cir, Winnipeg, Canada.
| | - Tomasz Cichoń
- Center for Translational Research and Molecular Biology of Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej Street 15, 44-102, Gliwice, Poland.
| |
Collapse
|
12
|
Kwon J, Rajamahendiran RM, Virani NA, Kunjachan S, Snay E, Harlacher M, Myronakis M, Shimizu S, Shirato H, Czernuszewicz TJ, Gessner R, Berbeco R. Use of 3-D Contrast-Enhanced Ultrasound to Evaluate Tumor Microvasculature After Nanoparticle-Mediated Modulation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:369-376. [PMID: 31694771 PMCID: PMC6930329 DOI: 10.1016/j.ultrasmedbio.2019.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/16/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
A cost-effective method for serial in vivo imaging of tumor microvasculature has been developed. We evaluated acoustic angiography (AA) for visualizing and assessing non-small cell lung tumor (A549) microvasculature in mice before and after tumor vascular disruption by vascular-targeted gold nanoparticles and radiotherapy. Standard B-mode and microbubble-enhanced AA images were acquired at pre- and post-treatment time points. Using these modes, a new metric, 50% vessel penetration depth, was developed to characterize the 3-D spatial heterogeneity of microvascular networks. We observed an increase in tumor perfusion after radiation-induced vascular disruption, relative to control animals. This was also visualized in vessel morphology mode, which revealed a loss in vessel integrity. We found that tumors with poorly perfused vasculature at day 0 exhibited a reduced growth rate over time. This suggested a new method to reduce in-group treatment response variability using pre-treatment microvessel maps to objectively identify animals for study removal.
Collapse
Affiliation(s)
- Jihun Kwon
- Department of Radiation Oncology, Hokkaido University, Sapporo, Hokkaido, Japan; Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA.
| | | | - Needa A Virani
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Sijumon Kunjachan
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Erin Snay
- Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Max Harlacher
- SonoVol, Inc., Research Triangle Park, North Carolina, USA
| | - Marios Myronakis
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Shinichi Shimizu
- Department of Radiation Oncology, Hokkaido University, Sapporo, Hokkaido, Japan; Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroki Shirato
- Department of Radiation Oncology, Hokkaido University, Sapporo, Hokkaido, Japan; Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Hokkaido, Japan
| | | | - Ryan Gessner
- SonoVol, Inc., Research Triangle Park, North Carolina, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Sun CW, Wu LC, Wankhede M, Wang D, Thoerner J, Woody L, Sorg BS, Townes TM, Terman DS. Exogenous sickle erythrocytes combined with vascular disruption trigger disseminated tumor vaso-occlusion and lung tumor regression. JCI Insight 2019; 4:125535. [PMID: 30944254 DOI: 10.1172/jci.insight.125535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/14/2019] [Indexed: 12/31/2022] Open
Abstract
Hypoxic tumor niches are chief causes of treatment resistance and tumor recurrence. Sickle erythrocytes' (SSRBCs') intrinsic oxygen-sensing functionality empowers them to access such hypoxic niches wherein they form microaggregates that induce focal vessel closure. In search of measures to augment the scale of SSRBC-mediated tumor vaso-occlusion, we turned to the vascular disrupting agent, combretastatin A-4 (CA-4). CA-4 induces selective tumor endothelial injury, blood stasis, and hypoxia but fails to eliminate peripheral tumor foci. In this article, we show that introducing deoxygenated SSRBCs into tumor microvessels treated with CA-4 and sublethal radiation (SR) produces a massive surge of tumor vaso-occlusion and broadly propagated tumor infarctions that engulfs treatment-resistant hypoxic niches and eradicates established lung tumors. Tumor regression was histologically corroborated by significant treatment effect. Treated tumors displayed disseminated microvessels occluded by tightly packed SSRBCs along with widely distributed pimidazole-positive hypoxic tumor cells. Humanized HbS-knockin mice (SSKI) but not HbA-knockin mice (AAKI) showed a similar treatment response underscoring SSRBCs as the paramount tumoricidal effectors. Thus, CA-4-SR-remodeled tumor vessels license SSRBCs to produce an unprecedented surge of tumor vaso-occlusion and infarction that envelops treatment-resistant tumor niches resulting in complete tumor regression. Strategically deployed, these innovative tools constitute a major conceptual advance with compelling translational potential.
Collapse
Affiliation(s)
- Chiao-Wang Sun
- Department of Biochemistry and Molecular Genetics, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Li-Chen Wu
- Department of Biochemistry and Molecular Genetics, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Mamta Wankhede
- Department of Biomedical Engineering, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dezhi Wang
- Department of Pathology, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - Jutta Thoerner
- Histopathology Section, Hospital of the Monterey Peninsula, Monterey, California, USA
| | - Lawrence Woody
- Histopathology Section, Hospital of the Monterey Peninsula, Monterey, California, USA
| | - Brian S Sorg
- Cancer Diagnosis Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Tim M Townes
- Department of Biochemistry and Molecular Genetics, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| | - David S Terman
- Department of Biochemistry and Molecular Genetics, University of Alabama School of Medicine at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
14
|
Basic principles of drug delivery systems - the case of paclitaxel. Adv Colloid Interface Sci 2019; 263:95-130. [PMID: 30530177 DOI: 10.1016/j.cis.2018.11.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/15/2023]
Abstract
Cancer is the second cause of death worldwide, exceeded only by cardiovascular diseases. The prevalent treatment currently used against metastatic cancer is chemotherapy. Among the most studied drugs that inhibit neoplastic cells from acquiring unlimited replicative ability (a hallmark of cancer) are the taxanes. They operate via a unique molecular mechanism affecting mitosis. In this review, we show this mechanism for one of them, paclitaxel, and for other (non-taxanes) anti-mitotic drugs. However, the use of paclitaxel is seriously limited (its bioavailability is <10%) due to several long-standing challenges: its poor water solubility (0.3 μg/mL), its being a substrate for the efflux multidrug transporter P-gp, and, in the case of oral delivery, its first-pass metabolism by certain enzymes. Adequate delivery methods are therefore required to enhance the anti-tumor activity of paclitaxel. Thus, we have also reviewed drug delivery strategies in light of the various physical, chemical, and enzymatic obstacles facing the (especially oral) delivery of drugs in general and paclitaxel in particular. Among the powerful and versatile platforms that have been developed and achieved unprecedented opportunities as drug carriers, microemulsions might have great potential for this aim. This is due to properties such as thermodynamic stability (leading to long shelf-life), increased drug solubilization, and ease of preparation and administration. In this review, we define microemulsions and nanoemulsions, analyze their pertinent properties, and review the results of several drug delivery carriers based on these systems.
Collapse
|
15
|
Savarin M, Prevc A, Rzek M, Bosnjak M, Vojvodic I, Cemazar M, Jarm T, Sersa G. Intravital Monitoring of Vasculature After Targeted Gene Therapy Alone or Combined With Tumor Irradiation. Technol Cancer Res Treat 2018; 17:1533033818784208. [PMID: 29969947 PMCID: PMC6048615 DOI: 10.1177/1533033818784208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Vascular-targeted therapies exhibit radiosensitizing effects by remodeling tumor
vasculature, thus facilitating the increased oxygenation of the remaining tumor tissue. To
examine these phenomena, the effects of antiendoglin gene therapy alone and in combination
with irradiation were monitored for 5 consecutive days on a murine mammary adenocarcinoma
(TS/A) tumor model growing in a dorsal window chamber. The vascularization of the tumors
was assessed by the determination of the tumor vascular area and by measurement of tumor
perfusion by using laser Doppler flowmetry to provide insight into intratumoral gene
electrotransfer effects. The changes in the vascular area after this specific therapy
correlated with laser Doppler measurements, indicating that either of the methods can be
used to demonstrate the induced changes in the vascularization and perfusion of tumors.
Gene electrotransfer with an endothelial-specific promoter resulted in a vascular-targeted
effect on tumor vasculature within the first 24 hours and did not restore within 5 days.
The combination with the irradiation did not result in a more pronounced vascular effect,
and irradiation alone only abrogated the formation of new vessels and prevented an
increase in the tumor perfusion over time. The results indicate that tumors grown in a
dorsal window chamber facilitate intravital measurements of the vascularization of tumors
and blood perfusion, enabling the monitoring of the antiangiogenic or vascular disruptive
effects of different therapies.
Collapse
Affiliation(s)
- Monika Savarin
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ajda Prevc
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Matic Rzek
- 2 Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Masa Bosnjak
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Ilija Vojvodic
- 3 Division of Radiotherapy, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Maja Cemazar
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,4 Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Tomaz Jarm
- 2 Department of Biomedical Engineering, Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Gregor Sersa
- 1 Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.,5 Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
16
|
El Bairi K, Amrani M, Afqir S. Starvation tactics using natural compounds for advanced cancers: pharmacodynamics, clinical efficacy, and predictive biomarkers. Cancer Med 2018; 7:2221-2246. [PMID: 29732738 PMCID: PMC6010871 DOI: 10.1002/cam4.1467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023] Open
Abstract
The high mortality associated with oncological diseases is mostly due to tumors in advanced stages, and their management is a major challenge in modern oncology. Angiogenesis is a defined hallmark of cancer and predisposes to metastatic invasion and dissemination and is therefore an important druggable target for cancer drug discovery. Recently, because of drug resistance and poor prognosis, new anticancer drugs from natural sources targeting tumor vessels have attracted more attention and have been used in several randomized and controlled clinical trials as therapeutic options. Here, we outline and discuss potential natural compounds as salvage treatment for advanced cancers from recent and ongoing clinical trials and real-world studies. We also discuss predictive biomarkers for patients' selection to optimize the use of these potential anticancer drugs.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and PharmacyMohamed Ist UniversityOujdaMorocco
| | - Mariam Amrani
- Equipe de Recherche en Virologie et Onco‐biologieFaculty of MedicinePathology DepartmentNational Institute of OncologyUniversité Mohamed VRabatMorocco
| | - Said Afqir
- Department of Medical OncologyMohamed VI University HospitalOujdaMorocco
| |
Collapse
|
17
|
Kim ES, Choi YE, Hwang SJ, Han YH, Park MJ, Bae IH. IL-4, a direct target of miR-340/429, is involved in radiation-induced aggressive tumor behavior in human carcinoma cells. Oncotarget 2018; 7:86836-86856. [PMID: 27895317 PMCID: PMC5349958 DOI: 10.18632/oncotarget.13561] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
Radiotherapy induces the production of cytokines, thereby increasing aggressive tumor behavior. This radiation effect results in the failure of radiotherapy and increases the mortality rate in patients. We found that interleukin-4 (IL-4) and IL-4Rα (IL-4 receptor) are highly expressed in various human cancer cells subsequent to radiation treatment. In addition, IL-4 is highly overexpressed in metastatic carcinoma tissues compared with infiltrating carcinoma tissues. High expression of IL-4 in patients with cancer is strongly correlated with poor survival. The results of this study suggest that radiation-induced IL-4 contributes to tumor progression and metastasis. Radiation-induced IL-4 was associated with tumorigenicity and metastasis. IL-4 expression was downregulated by miR-340 and miR-429, which were decreased by ionizing radiation (IR). Radiation-regulated miR-340/429-IL4 signaling increased tumorigenesis and metastasis by inducing the production of Sox2, Vimentin, VEGF, Ang2, and MMP-2/9 via activating JAK, JNK, β-catenin, and Stat6 in vitro and in vivo. Our study presents a conceptual advance in our understanding of the modification of tumor microenvironment by radiation and suggests that combining radiotherapy with genetic therapy to inhibit IL-4 may be a promising strategy for preventing post-radiation recurrence and metastasis in patients.
Collapse
Affiliation(s)
- Eun Sook Kim
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Young Eun Choi
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Su Jin Hwang
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Young-Hoon Han
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Myung-Jin Park
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
18
|
A vascular disrupting agent overcomes tumor multidrug resistance by skewing macrophage polarity toward the M1 phenotype. Cancer Lett 2018; 418:239-249. [PMID: 29337108 DOI: 10.1016/j.canlet.2018.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/01/2018] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transporters is the major obstacle for chemotherapeutic success. Although attempts have been made to circumvent ABC transporter-mediated MDR in past decades, there is still no effective agent in clinic. Here, we identified a vascular disrupting agent, Z-GP-DAVLBH, that significantly inhibited the growth of multidrug-resistant human hepatoma HepG2/ADM and human breast cancer MCF-7/ADR tumor xenografts, although these cells were insensitive to Z-GP-DAVLBH in vitro. Z-GP-DAVLBH increased the secretion of granulocyte-macrophage colony-stimulating factor in tumor tissues and serum of tumor-bearing mice to skew tumor-associated macrophages from the pro-tumor M2 phenotype to the antitumor M1 phenotype, thereby contributing to the induction of HepG2/ADM and MCF-7/ADR cell apoptosis. Our findings shed new light on the underlying mechanisms of VDAs in the treatment of drug-resistant tumors and provide strong evidence that Z-GP-DAVLBH should be a promising agent for overcoming MDR.
Collapse
|
19
|
Lei X, Chen M, Huang M, Li X, Shi C, Zhang D, Luo L, Zhang Y, Ma N, Chen H, Liang H, Ye W, Zhang D. Desacetylvinblastine Monohydrazide Disrupts Tumor Vessels by Promoting VE-cadherin Internalization. Am J Cancer Res 2018; 8:384-398. [PMID: 29290815 PMCID: PMC5743555 DOI: 10.7150/thno.22222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/13/2017] [Indexed: 01/18/2023] Open
Abstract
Vinca alkaloids, the well-known tubulin-binding agents, are widely used for the clinical treatment of malignant tumors. However, little attention has been paid to their vascular disrupting effects, and the underlying mechanisms remain largely unknown. This study aims to investigate the vascular disrupting effect and the underlying mechanisms of vinca alkaloids. Methods: The capillary disruption assay and aortic ring assay were performed to evaluate the in vitro vascular disrupting effect of desacetylvinblastine monohydrazide (DAVLBH), a derivate of vinblastine, and the in vivo vascular disrupting effect was assessed on HepG2 xenograft model using magnetic resonance imaging, hematoxylin and eosin staining and immunohistochemistry. Tubulin polymerization, endothelial cell monolayer permeability, western blotting and immunofluorescence assays were performed to explore the underlying mechanisms of DAVLBH-mediated tumor vascular disruption. Results: DAVLBH has potent vascular disrupting activity both in vitro and in vivo. DAVLBH disrupts tumor vessels in a different manner than classical tubulin-targeting VDAs; it inhibits microtubule polymerization, promotes the internalization of vascular endothelial cadherin (VE-cadherin) and inhibits the recycling of internalized VE-cadherin to the cell membrane, thus increasing endothelial cell permeability and ultimately resulting in vascular disruption. DAVLBH-mediated promotion of VE-cadherin internalization and inhibition of internalized VE-cadherin recycling back to the cell membrane are partly dependent on inhibition of microtubule polymerization, and Src activation is involved in DAVLBH-induced VE-cadherin internalization. Conclusions: This study sheds light on the tumor vascular disrupting effect and underlying mechanisms of vinca alkaloids and provides new insight into the molecular mechanism of tubulin-targeting VDAs.
Collapse
|
20
|
Iversen AB, Busk M, Bertelsen LB, Laustsen C, Munk OL, Nielsen T, Wittenborn TR, Bussink J, Lok J, Stødkilde-Jørgensen H, Horsman MR. The potential of hyperpolarized 13C magnetic resonance spectroscopy to monitor the effect of combretastatin based vascular disrupting agents. Acta Oncol 2017; 56:1626-1633. [PMID: 28840759 DOI: 10.1080/0284186x.2017.1351622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Targeting tumor vasculature with vascular disrupting agents (VDAs) results in substantial cell death that precede tumor shrinkage. Here, we investigate the potential of hyperpolarized magnetic resonance spectroscopy (HPMRS) to monitor early metabolic changes associated with VDA treatment. METHODS Mice bearing C3H mammary carcinomas were treated with the VDAs combretastatin-A4-phosphate (CA4P) or the analog OXi4503, and HPMRS was performed following [1-13C]pyruvate administration. Similarly, treated mice were positron emission tomography (PET) scanned following administration of the glucose analog FDG. Finally, metabolic imaging parameters were compared to tumor regrowth delay and measures of vascular damage, derived from dynamic contrast-agent enhanced magnetic resonance imaging (DCE-MRI) and histology. RESULTS VDA-treatment impaired tumor perfusion (histology and DCE-MRI), reduced FDG uptake, increased necrosis, and slowed tumor growth. HPMRS, revealed that the [1-13C]pyruvate-to-[1-13C]lactate conversion remained unaltered, whereas [1-13C]lactate-to-[13C]bicarbonate (originating from respiratory CO2) ratios increased significantly following treatment. CONCLUSIONS DCE-MRI and FDG-PET revealed loss of vessel functionality, impaired glucose delivery and reduced metabolic activity prior to cell death. [1-13C]lactate-to-[13C]bicarbonate ratios increased significantly during treatment, indicating a decline in respiratory activity driven by the onset of hypoxia. HPMRS is promising for early detection of metabolic stress inflicted by VDAs, which cannot easily be inferred based on blood flow measurements.
Collapse
Affiliation(s)
- Ane B. Iversen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Ole L. Munk
- PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Nielsen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas R. Wittenborn
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jasper Lok
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Michael R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Siemann DW, Chaplin DJ, Horsman MR. Realizing the Potential of Vascular Targeted Therapy: The Rationale for Combining Vascular Disrupting Agents and Anti-Angiogenic Agents to Treat Cancer. Cancer Invest 2017; 35:519-534. [DOI: 10.1080/07357907.2017.1364745] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- D. W. Siemann
- Department of Radiation Oncology, University of Florida, Gainesville, FL, USA
| | | | - M. R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University, Denmark
| |
Collapse
|
22
|
Cancer nanotheranostics: A review of the role of conjugated ligands for overexpressed receptors. Eur J Pharm Sci 2017; 104:273-292. [DOI: 10.1016/j.ejps.2017.04.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022]
|
23
|
Satterlee AB, Rojas JD, Dayton PA, Huang L. Enhancing Nanoparticle Accumulation and Retention in Desmoplastic Tumors via Vascular Disruption for Internal Radiation Therapy. Am J Cancer Res 2017; 7:253-269. [PMID: 28042332 PMCID: PMC5197062 DOI: 10.7150/thno.16681] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/01/2016] [Indexed: 02/07/2023] Open
Abstract
Aggressive, desmoplastic tumors are notoriously difficult to treat because of their extensive stroma, high interstitial pressure, and resistant tumor microenvironment. We have developed a combination therapy that can significantly slow the growth of large, stroma-rich tumors by causing massive apoptosis in the tumor center while simultaneously increasing nanoparticle uptake through a treatment-induced increase in the accumulation and retention of nanoparticles in the tumor. The vascular disrupting agent Combretastatin A-4 Phosphate (CA4P) is able to increase the accumulation of radiation-containing nanoparticles for internal radiation therapy, and the retention of these delivered radioisotopes is maintained over several days. We use ultrasound to measure the effect of CA4P in live tumor-bearing mice, and we encapsulate the radio-theranostic isotope 177Lutetium as a therapeutic agent as well as a means to measure nanoparticle accumulation and retention in the tumor. This combination therapy induces prolonged apoptosis in the tumor, decreasing both the fibroblast and total cell density and allowing further tumor growth inhibition using a cisplatin-containing nanoparticle.
Collapse
|
24
|
Feng X, Tian L, Zhang Z, Yu Y, Cheng J, Gong Y, Li CY, Huang Q. Caspase 3 in dying tumor cells mediates post-irradiation angiogenesis. Oncotarget 2016; 6:32353-67. [PMID: 26431328 PMCID: PMC4741698 DOI: 10.18632/oncotarget.5898] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/17/2015] [Indexed: 12/30/2022] Open
Abstract
Cytotoxic radiotherapy unfavorably induces tumor cells to generate various proangiogenic substances, promoting post-irradiation angiogenesis (PIA), which is one of major causes of radiotherapy failure. Though several studies have reported some mechanisms behind PIA, they have not yet described the beginning proangiogenic motivator buried in the irradiated microenvironment. In this work, we revealed that dying tumor cells induced by irradiation prompted PIA via a caspase 3 dependent mechanism. Proteolytic inactivation of caspase 3 in dying tumor cells by transducing a dominant-negative version weakened proangiogenic effects in vitro and in vivo. In addition, inhibition of caspase 3 activity suppressed tumor angiogenesis and tumorigenesis in xenograft mouse model. Importantly, we identified vascular endothelial growth factor (VEGF)-A as a downstream proangiogenic factor regulated by caspase 3 possibly through Akt signaling. Collectively, these findings indicated that besides acting as a key executioner in apoptosis, caspase 3 in dying tumor cells may play a central role in driving proangiogenic response after irradiation. Thus, radiotherapy in combination with caspase 3 inhibitors may be a novel promising therapeutic strategy to reduce tumor recurrence due to restrained PIA.
Collapse
Affiliation(s)
- Xiao Feng
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Tian
- Experimental Research Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhengxiang Zhang
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Yu
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Cheng
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Gong
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuan-Yuan Li
- The Department of Dermatology, Duke University Medical Center, Durham, NC, USA
| | - Qian Huang
- The Comprehensive Cancer Center and Shanghai Key Laboratory for Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Tunable release of chemotherapeutic and vascular disrupting agents from injectable fiber fragments potentiates combination chemotherapy. Int J Pharm 2016; 506:1-12. [PMID: 27091295 DOI: 10.1016/j.ijpharm.2016.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 02/22/2016] [Accepted: 04/15/2016] [Indexed: 11/21/2022]
Abstract
Cancer progression and metastasis relies much on vasculature networks in tumor microenvironment, and the combination treatment with chemotherapeutic drugs and vascular disrupting agents represents apparent clinical benefits. In the current study, fiber fragments with loadings of hydroxycamptothecin (HCPT) or combretastatin A-4 (CA4) were proposed for tumor inhibition and blood vessel disruption after local administration in tumors. To address challenges in balancing the disruption of tumor vessels and intratumoral uptake of chemotherapeutic agents, this study is focus on release tuning of HCPT and CA4 from the fiber fragment mixtures. Hydroxypropyl-β-cyclodextrin (HPCD) was blended at ratios from 0 to 10% into CA4-loaded fiber fragments (Fc) to modulate CA4 release durations from 0.5 to 24days, and HCPT-loaded fiber fragments (Fh) indicated a sustained release for over 35days. In vitro cytotoxicity tests indicated a sequential inhibition on the endothelial and tumor cell growth, and the growth inhibition of tumor cells was more significant after treatment with mixtures of Fh and Fc containing 2% HPCD (Fc2) than that of other mixtures. In an orthotopic breast tumor model, compared with those of free CA4, or Fc with a fast or slow release of CA4, Fh/Fc mixtures with CA4 release durations from 2 to 12days indicated a lower tumor growth rate, a prolonged animal survival, a lower vessel density in tumors, and a less significant tumor metastasis. In addition, the tumor cell proliferation rate, hypoxia-inducible factor-1α expression within tumors, and the number of surface metastatic nodules in lungs were significantly lower after treatment with Fh/Fc2 mixtures with a CA4 release duration of 5days than those of other mixtures. It demonstrates the advantages of fiber fragment mixtures in independently modulating the release of multiple drugs and the essential role of release tuning of chemotherapeutic drugs and vascular disrupting agents in improving the therapeutic efficacy.
Collapse
|
26
|
Tumor radiosensitization by gene therapy against endoglin. Cancer Gene Ther 2016; 23:214-20. [PMID: 27199221 DOI: 10.1038/cgt.2016.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/20/2022]
Abstract
Gene electrotransfer of plasmid encoding shRNA against endoglin exerts antitumor efficacy, predominantly by vascular targeted effect. As vascular targeting therapies can promote radiosensitization, the aim of this study was to explore this gene therapy approach with single and split dose of irradiation in an endoglin non-expressing TS/A mammary adenocarcinoma tumor model to specifically study the vascular effects. Intratumoral gene electrotransfer of plasmids encoding shRNA against endoglin, under the control of a constitutive or tissue-specific promoter for endothelial cells, combined with a single or three split doses of irradiations was evaluated for the antitumor efficacy and histologically. Both plasmids proved to be equally effective in tumor radiosensitization with 40-47% of tumor cures. The combined treatment induced a significant decrease in the number of blood vessels and proliferating cells, and an increase in levels of necrosis, apoptosis and hypoxia; therefore, the antitumor efficacy was ascribed to the interaction of vascular targeted effect of gene therapy with irradiation. Endoglin silencing by the shRNA technology, combined with electrotransfer and the use of a tissue-specific promoter for endothelial cells, proved to be a feasible and effective therapeutic approach that can be used in combined treatment with tumor irradiation.
Collapse
|
27
|
Liang W, Ni Y, Chen F. Tumor resistance to vascular disrupting agents: mechanisms, imaging, and solutions. Oncotarget 2016; 7:15444-59. [PMID: 26812886 PMCID: PMC4941252 DOI: 10.18632/oncotarget.6999] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/14/2016] [Indexed: 01/04/2023] Open
Abstract
The emergence of vascular disrupting agents (VDAs) is a significant advance in the treatment of solid tumors. VDAs induce rapid and selective shutdown of tumor blood flow resulting in massive necrosis. However, a viable marginal tumor rim always remains after VDA treatment and is a major cause of recurrence. In this review, we discuss the mechanisms involved in the resistance of solid tumors to VDAs. Hypoxia, tumor-associated macrophages, and bone marrow-derived circulating endothelial progenitor cells all may contribute to resistance. Resistance can be monitored using magnetic resonance imaging markers. The various solutions proposed to manage tumor resistance to VDAs emphasize combining these agents with other approaches including antiangiogenic agents, chemotherapy, radiotherapy, radioimmunotherapy, and sequential dual-targeting internal radiotherapy.
Collapse
Affiliation(s)
- Wenjie Liang
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yicheng Ni
- Radiology Section, University Hospitals, University of Leuven, Leuven, Belgium
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Bothwell KD, Folaron M, Seshadri M. Preclinical Activity of the Vascular Disrupting Agent OXi4503 against Head and Neck Cancer. Cancers (Basel) 2016; 8:cancers8010011. [PMID: 26751478 PMCID: PMC4728458 DOI: 10.3390/cancers8010011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/13/2022] Open
Abstract
Vascular disrupting agents (VDAs) represent a relatively distinct class of agents that target established blood vessels in tumors. In this study, we examined the preclinical activity of the second-generation VDA OXi4503 against human head and neck squamous cell carcinoma (HNSCC). Studies were performed in subcutaneous and orthotopic FaDu-luc HNSCC xenografts established in immunodeficient mice. In the subcutaneous model, bioluminescence imaging (BLI) along with tumor growth measurements was performed to assess tumor response to therapy. In mice bearing orthotopic tumors, a dual modality imaging approach based on BLI and magnetic resonance imaging (MRI) was utilized. Correlative histologic assessment of tumors was performed to validate imaging data. Dynamic BLI revealed a marked reduction in radiance within a few hours of OXi4503 administration compared to baseline levels. However, this reduction was transient with vascular recovery observed at 24 h post treatment. A single injection of OXi4503 (40 mg/kg) resulted in a significant (p < 0.01) tumor growth inhibition of subcutaneous FaDu-luc xenografts. MRI revealed a significant reduction (p < 0.05) in volume of orthotopic tumors at 10 days post two doses of OXi4503 treatment. Corresponding histologic (H&E) sections of Oxi4503 treated tumors showed extensive areas of necrosis and hemorrhaging compared to untreated controls. To the best of our knowledge, this is the first report, on the activity of Oxi4503 against HNSCC. These results demonstrate the potential of tumor-VDAs in head and neck cancer. Further examination of the antivascular and antitumor activity of Oxi4503 against HNSCC alone and in combination with chemotherapy and radiation is warranted.
Collapse
Affiliation(s)
- Katelyn D Bothwell
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- College of Osteopathic Medicine, University of New England, Biddeford, ME 04005, USA.
| | - Margaret Folaron
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Molecular and Cellular Biophysics and Biochemistry, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
- Department of Oral Medicine/Head and Neck Surgery, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| |
Collapse
|
29
|
γ-H2AX promotes hepatocellular carcinoma angiogenesis via EGFR/HIF-1α/VEGF pathways under hypoxic condition. Oncotarget 2015; 6:2180-92. [PMID: 25537504 PMCID: PMC4385844 DOI: 10.18632/oncotarget.2942] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 12/09/2015] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly cancers. Using mRNA microarray analysis, we found that H2AX decreased under hypoxic conditions. Hypoxia is an important physiological and pathological stress that induces H2AX phosphorylation (γ-H2AX), but the regulatory mechanism of γ-H2AX remains elusive in the progress of HCC. We report here that increased γ-H2AX expression in HCC is associated with tumor size, vascular invasion, TNM stage and reduced survival rate after liver transplantation (LT). γ-H2AX knockdown was able to effectively inhibit VEGF expression in vitro and tumorigenicity and angiogenesis of HCC in vivo. The mechanism of γ-H2AX on the angiogenic activity of HCC might go through EGFR/HIF-1α/VEGF pathways under hypoxic conditions. Combined γ-H2AX, HIF-1α and EGFR has better prognostic value for HCC after LT. This study suggests that γ-H2AX is associated with angiogenesis of HCC and γ-H2AX or a combination of γ-H2AX/EGFR/HIF-1α is a novel marker in the prognosis of HCC after LT and a potential therapeutic target.
Collapse
|
30
|
Horsman MR. Realistic biological approaches for improving thermoradiotherapy. Int J Hyperthermia 2015; 32:14-22. [DOI: 10.3109/02656736.2015.1099169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Abstract
Vascular disrupting agents (VDAs) are an important class of compounds that exhibit selective activity against pre-existing tumor vasculature, causing rapid shutdown of the tumor blood flow and consequent necrosis of the tumor mass. The VDAs can be divided into flavonoid compounds, which are related to flavone acetic acid, and tubulin-binding agents. Tubulin-binding agents represent the largest group of VDAs and are characterized by different chemical structures, although most of them are derivatives of the lead compound combretastatin (CA-4). They demonstrated clinical activity, although recent findings have established that they have insufficient activity as single agents. Several resistance mechanisms occur, such as the resistance of the tumor rim cells, while promising results have been described in combination with other chemotherapeutics.
Collapse
|
32
|
Affiliation(s)
- Jason Sheehan
- Departments of 1 Neurological Surgery and.,Radiation Oncology, University of Virginia, Charlottesville, Virginia
| | - Dale Ding
- Departments of 1 Neurological Surgery and
| | | |
Collapse
|
33
|
Horsman MR. Therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation. Int J Hyperthermia 2015; 31:453-9. [PMID: 25915829 DOI: 10.3109/02656736.2015.1024289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The response of tissues to radiation with mild temperature hyperthermia is dependent on the interval between the two modalities. This study investigated the effect that the vascular disrupting agent OXi4503 had on this time-interval interaction. METHODS The normal right rear foot of female CDF1 mice or foot-implanted C3H mammary carcinomas were locally irradiated (230 kV X-rays) and heated (41.5 °C for 60 min) by foot immersion in a water bath. OXi4503 (50 mg/kg) was injected intraperitoneally 1.5 h before irradiating. Irradiation was performed either in the middle of the heating period (simultaneous treatment) or at 1 or 4 h prior to starting the heating (sequential treatments). Response was the percentage of mice showing local tumour control at 90 days or skin moist desquamation between days 11-23. From the radiation dose response curves the dose producing tumour control (TCD(50)) or moist desquamation (MDD50) in 50% of mice was calculated. RESULTS The TCD(50) and MDD50 values for radiation alone were 54 Gy and 29 Gy, respectively. Simultaneously heating the tissues enhanced radiation response, the respective TCD(50) and MDD50 values being significantly (chi-square test, p < 0.05) reduced to 33 Gy and 14 Gy. A smaller enhancement was obtained with a sequential treatment in both tissues. OXi4503 enhanced the radiation response of tumour and skin. Combined with radiation and heat, the only effect was in tumours where OXi4503 prevented the decrease in sensitisation seen with the sequential treatment. CONCLUSION Combining OXi4503 with a sequential radiation and heat treatment resulted in a 1.4-fold therapeutic gain.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
34
|
Nambiar DK, Rajamani P, Singh RP. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells. Biochem Biophys Res Commun 2014; 456:262-8. [PMID: 25446081 DOI: 10.1016/j.bbrc.2014.11.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 01/31/2023]
Abstract
Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p<0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro-angiogenic (VEGF, iNOS), migratory (MMP-2) and EMT promoting proteins (uPA, vimentin, N-cadherin) were up-regulated by IR in PCa cells. Interestingly, all of these invasive and EMT promoting actions of IR were markedly decreased by silibinin. Further, we found that potentiated effect was an end result of attenuation of IR-activated mitogenic and pro-survival signaling, including Akt, Erk1/2 and STAT-3, by silibinin.
Collapse
Affiliation(s)
- Dhanya K Nambiar
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rana P Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India; School of Life Sciences, Central University of Gujarat, Gandhinagar, India.
| |
Collapse
|
35
|
Liu L, Mason RP, Gimi B. Dynamic bioluminescence and fluorescence imaging of the effects of the antivascular agent Combretastatin-A4P (CA4P) on brain tumor xenografts. Cancer Lett 2014; 356:462-9. [PMID: 25305449 DOI: 10.1016/j.canlet.2014.09.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 02/08/2023]
Abstract
Combretastatin A-4 (CA4) is a natural product isolated from Combretum caffrum that inhibits tubulin polymerization by binding to the colchicine-binding site. A corresponding water soluble pro-drug (referred to as CA4P), has undergone extensive clinical trials and has been evaluated in pre-clinical studies using multiple modalities. We previously reported a novel assay based on dynamic bioluminescent imaging to assess tumor vascular disruption and now present its application to assessing multiple tumors simultaneously. The current study evaluated the vascular-disrupting activity of CA4P on subcutaneous 9L rat brain tumor xenografts in mice using dynamic bioluminescence imaging. A single dose of CA4P (120 mg/kg, intraperitoneally) induced rapid, temporary tumor vascular shutdown revealed by a rapid and reproducible decrease of light emission from luciferase-expressing 9L tumors following administration of luciferin as a substrate. A time-dependent reduction of tumor perfusion after CA4P treatment was confirmed by immunohistological assessment of the perfusion marker Hoechst 33342 and the tumor vasculature marker CD31. The vasculature showed distinct recovery within 24 h post therapy. Multiple tumors behaved similarly, although a size dependent vascular inhibition was observed. In conclusion, CA4P caused rapid, temporary tumor vascular shutdown and led to reduction of tumor perfusion in rat brain tumor xenografts and the multiple tumor approach should lead to more efficient studies requiring fewer animals and greater consistency.
Collapse
Affiliation(s)
- Li Liu
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Barjor Gimi
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
36
|
Berdis AJ. Current and emerging strategies to increase the efficacy of ionizing radiation in the treatment of cancer. Expert Opin Drug Discov 2013; 9:167-81. [DOI: 10.1517/17460441.2014.876987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|