1
|
Farrokhi Yekta R, Farahani M, Koushki M, Amiri-Dashatan N. Deciphering the potential role of post-translational modifications of histones in gastrointestinal cancers: a proteomics-based review with therapeutic challenges and opportunities. Front Oncol 2024; 14:1481426. [PMID: 39497715 PMCID: PMC11532047 DOI: 10.3389/fonc.2024.1481426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Oncogenesis is a complex and multi-step process, controlled by several factors including epigenetic modifications. It is considered that histone modifications are critical components in the regulation of gene expression, protein functions, and molecular interactions. Dysregulated post-translationally modified histones and the related enzymatic systems are key players in the control of cell proliferation and differentiation, which are associated with the onset and progression of cancers. The most of traditional investigations on cancer have focused on mutations of oncogenes and tumor suppressor genes. However, increasing evidence indicates that epigenetics, especially histone post-translational modifications (PTMs) play important roles in various cancer types. Mass spectrometry-based proteomic approaches have demonstrated tremendous potential in PTMs profiling and quantitation in different biological systems. In this paper, we have made a proteomics-based review on the role of histone modifications involved in gastrointestinal cancers (GCs) tumorigenesis processes. These alterations function not only as diagnostic or prognostic biomarkers for GCs, but a deeper comprehension of the epigenetic regulation of GCs could facilitate the treatment of this prevalent malignancy through the creation of more effective targeted therapies.
Collapse
Affiliation(s)
- Reyhaneh Farrokhi Yekta
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Farahani
- Proteomics Research Center, System Biology Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Koushki
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Cui YB, Wang LJ, Xu JH, Nan HJ, Yang PY, Niu JW, Shi MY, Bai YL. Recent Progress of CircRNAs in Hematological Malignancies. Int J Med Sci 2024; 21:2544-2561. [PMID: 39439468 PMCID: PMC11492881 DOI: 10.7150/ijms.98156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Circular RNAs (circRNAs) are now recognized as key regulators in the epigenetic control of genetic expression, being involved in a wide range of cellular activities such as proliferation, differentiation, and apoptosis. Their unique closed-loop structure endows them with stability and resistance to exonuclease degradation, making them not only key regulatory molecules within the cell but also promising biomarkers for disease diagnosis and prognosis, particularly in hematological malignancies. This review comprehensively explores the role of circRNAs in the pathogenesis, progression, and therapeutic resistance of common hematological malignancies. Furthermore, the review delves into the prognostic significance of circRNAs, underscoring their potential in predicting disease outcomes and treatment response. Given their extensive involvement in cancer biology, circRNAs present a frontier for novel therapeutic strategies.
Collapse
Affiliation(s)
- Ya-Bin Cui
- Department of Hematology, Henan University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Li-Jie Wang
- Department of Hematology, Henan University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Jin-Hui Xu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Hui-Jie Nan
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Pei-Yao Yang
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Jun-Wei Niu
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Ming-Yue Shi
- Department of Hematology, Zhengzhou University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| | - Yan-Liang Bai
- Department of Hematology, Henan University People's Hospital and Henan Provincial People's Hospital, Zhengzhou 450003, P.R. China
| |
Collapse
|
3
|
Wang Y, Zhang J, Yang Y, Liu Z, Sun S, Li R, Zhu H, Li T, Zheng J, Li J, Ma L. Circular RNAs in human diseases. MedComm (Beijing) 2024; 5:e699. [PMID: 39239069 PMCID: PMC11374765 DOI: 10.1002/mco2.699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a unique class of RNA molecules formed through back-splicing rather than linear splicing. As an emerging field in molecular biology, circRNAs have garnered significant attention due to their distinct structure and potential functional implications. A comprehensive understanding of circRNAs' functions and potential clinical applications remains elusive despite accumulating evidence of their involvement in disease pathogenesis. Recent research highlights their significant roles in various human diseases, but comprehensive reviews on their functions and applications remain scarce. This review provides an in-depth examination of circRNAs, focusing first on their involvement in non-neoplastic diseases such as respiratory, endocrine, metabolic, musculoskeletal, cardiovascular, and renal disorders. We then explore their roles in tumors, with particular emphasis on exosomal circular RNAs, which are crucial for cancer initiation, progression, and resistance to treatment. By detailing their biogenesis, functions, and impact on disease mechanisms, this review underscores the potential of circRNAs as diagnostic biomarkers and therapeutic targets. The review not only enhances our understanding of circRNAs' roles in specific diseases and tumor types but also highlights their potential as novel diagnostic and therapeutic tools, thereby paving the way for future clinical investigations and potential therapeutic interventions.
Collapse
Affiliation(s)
- Yuanyong Wang
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) The First Department of Thoracic Surgery Peking University Cancer Hospital and Institute Peking University School of Oncology Beijing China
| | - Jin Zhang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Yuchen Yang
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Zhuofeng Liu
- Department of Traditional Chinese Medicine The Third Affiliated Hospital of Xi'an Medical University Xi'an China
| | - Sijia Sun
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Rui Li
- Department of Epidemiology School of Public Health Air Force Medical University Xi'an China
| | - Hui Zhu
- Department of Anatomy Medical College of Yan'an University Yan'an China
- Institute of Medical Research Northwestern Polytechnical University Xi'an China
| | - Tian Li
- School of Basic Medicine Fourth Military Medical University Xi'an China
| | - Jin Zheng
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
| | - Jie Li
- Department of Endocrine Xijing 986 Hospital Air Force Medical University Xi'an China
| | - Litian Ma
- Department of Thoracic Surgery Tangdu Hospital Air Force Medical University Xi'an China
- Department of Traditional Chinese Medicine Tangdu Hospital Air Force Medical University Xi'an China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province Xi'an China
- Department of Gastroenterology Tangdu Hospital Air Force Medical University Xi'an China
- School of Medicine Northwest University Xi'an China
| |
Collapse
|
4
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2024:10.1007/s10528-024-10897-0. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
5
|
Guo L, Liu X, Zhang J, Liu Z, Zhang B, Sun Y, Cui D, Liu J. Circ_0028826 Promotes Growth and Metastasis of NSCLC via Acting as a Sponge of miR-758-3p to Derepress IDH2 Expression. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13802. [PMID: 39113352 PMCID: PMC11306285 DOI: 10.1111/crj.13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/05/2024] [Accepted: 06/12/2024] [Indexed: 08/11/2024]
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the cancers with the highest mortality and morbidity in the world. Circular RNAs (circRNAs) are newly identified players in carcinogenesis and development of various cancers. This study is aimed at exploring the functional effects and mechanism of circ_0028826 in the development of NSCLC. METHODS Real-time quantitative PCR (RT-qPCR) was used to detect the expression levels of circ_0028826, IDH2 mRNA, and miR-758-3p. IDH2, Bcl2, Bax, and E-cadherin protein levels were detected using a western blot. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, wound healing, and transwell assays were used to assess the capacities of proliferation, apoptosis, migration, and invasion. Interaction between miR-758-3p and circ_0028826 or IDH2 was validated using a dual-luciferase reporter assay. The role of circ_0028826 in vivo was checked based on a xenograft tumor model. RESULTS Circ_0028826 was elevated in NSCLC, and its absence inhibited NSCLC cell proliferation, migration, invasion, and induced apoptosis. In terms of mechanism, circ_0028826 increased IDH2 expression by targeting miR-758-3p. In addition, circ_0028826 knockdown also regulated IDH2 by targeting miR-758-3p to inhibit tumor growth in vivo. CONCLUSION Circ_0028826 promoted the development of NSCLC via regulation of the miR-758-3p/IDH2 axis, providing a new strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Lihong Guo
- Department of OncologyXi'an International Medical Center HospitalXi'anShaanxiChina
| | - Xueqin Liu
- Department of OncologyXi'an International Medical Center HospitalXi'anShaanxiChina
| | - Jie Zhang
- Department of OncologyXi'an International Medical Center HospitalXi'anShaanxiChina
| | - Zhuixing Liu
- Department of OncologyXi'an International Medical Center HospitalXi'anShaanxiChina
| | - Bohao Zhang
- Department of OncologyXi'an International Medical Center HospitalXi'anShaanxiChina
| | - Yang Sun
- Department of OncologyXi'an International Medical Center HospitalXi'anShaanxiChina
| | - Dandan Cui
- Department of OncologyXi'an International Medical Center HospitalXi'anShaanxiChina
| | - Jinpeng Liu
- Department of OncologyXi'an International Medical Center HospitalXi'anShaanxiChina
| |
Collapse
|
6
|
Shao Y, Yu X, Hu M, Yan J, Miao M, Ye G, Guo J. Acting mechanism and clinical significance of hsa_circ_0005927 in the invasion and metastasis of gastric cancer. J Cancer 2024; 15:4081-4094. [PMID: 38947400 PMCID: PMC11212095 DOI: 10.7150/jca.96749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background: An increasing number of studies have demonstrated that differentially expressed circular RNAs (circRNAs) play critical roles in carcinogenesis. However, the biological function and clinical significance of hsa_circ_0005927 during gastric carcinogenesis remain unclear. The aim of this study was to investigate the acting mechanism and clinical significance of hsa_circ_0005927 in the invasion and metastasis of gastric cancer (GC). Methods: Hsa_circ_0005927 was detected in GC tissues, plasma and gastric juice from patients with GC, and its correlations with clinicopathological parameters were investigated. Receiver operating characteristic curves, Kaplan-Meier survival curves and a prognostic nomogram model were generated to analyze the diagnostic and prognostic value. Real-time cell analyzer, plate colony formation, and Transwell migration and invasion assays were utilized to assess GC cell proliferation, migration and invasion, respectively. Nucleoplasmic separation was applied to determine the distribution of hsa_circ_0005927 in cells. TargetScan and miRanda software were used for target microRNA (miRNA) prediction. Transcriptome sequencing and bioinformatics analysis were performed to annotate the functions of hsa_circ_0005927 in gastric carcinogenesis and metastasis from an RNomic perspective. Key target genes and immune cell infiltrations were analysed. Results: Hsa_circ_0005927 was found downregulated in high-grade intraepithelial neoplasia (HGIEN) tissues and GC tissues. Hsa_circ_0005927 levels in GC tissues were negatively correlated not only with lymphatic metastasis and distal metastasis but also with overall survival and disease-free survival. As a screening biomarker for GC, plasma hsa_circ_0005927 levels significantly increased in the early stages of GC, with a sensitivity and specificity of 52.38% and 76.19%, respectively. Hsa_circ_0005927 was mainly distributed in the cytoplasm, and structurally, it possesses multiple miRNA response elements (MREs) that interact with five miRNAs. A total of 421 downstream target genes of hsa_circ_0005927 were identified by transcriptome sequencing; and bioinformatics analysis suggested that these genes were involved mainly in the negative regulation of the T-cell apoptotic process, the interleukin-27-mediated signaling pathway, growth factor activity, guanylate cyclase activity, transcriptional misregulation in cancer, the cGMP-PKG signaling pathway, and the GnRH signaling pathway during gastric carcinogenesis and metastasis. GUCY1A2 and STK32A are key target genes significantly associated with immune infiltration. Conclusion: Our study revealed that hsa_circ_0005927 is a new player related to the invasion and metastasis of GC and is a potential indicator for early GC screening.
Collapse
Affiliation(s)
- Yongfu Shao
- Health Science Center, Ningbo University, Ningbo 315211, China
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Xuan Yu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Meng Hu
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Jianing Yan
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Min Miao
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Guoliang Ye
- Department of Gastroenterology, the First Affiliated Hospital of Ningbo University, Ningbo 315020, China
- Institute of Digestive Disease of Ningbo University, Ningbo 315020, China
| | - Junming Guo
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Rismanbaf A. Improving targeted small molecule drugs to overcome chemotherapy resistance. Cancer Rep (Hoboken) 2024; 7:e1945. [PMID: 37994401 PMCID: PMC10809209 DOI: 10.1002/cnr2.1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 10/25/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Conventional cancer treatments face the challenge of therapeutic resistance, which causes poor treatment outcomes. The use of combination therapies can improve treatment results in patients and is one of the solutions to overcome this challenge. Chemotherapy is one of the conventional treatments that, due to the non-targeted and lack of specificity in targeting cancer cells, can cause serious complications in the short and long-term for patients by damaging healthy cells. Also, the employment of a wide range of strategies for chemotherapy resistance by cancer cells, metastasis, and cancer recurrence create serious problems to achieve the desired results of chemotherapy. Accordingly, targeted therapies can be used as a combination treatment with chemotherapy to both cause less damage to healthy cells, which as a result, they reduce the side effects of chemotherapy, and by targeting the factors that cause therapeutic challenges, can improve the results of chemotherapy in patients. RECENT FINDINGS Small molecules are one of the main targeted therapies that can be used for diverse targets in cancer treatment due to their penetration ability and characteristics. However, small molecules in cancer treatment are facing obstacles that a better understanding of cancer biology, as well as the mechanisms and factors involved in chemotherapy resistance, can lead to the improvement of this type of major targeted therapy. CONCLUSION In this review article, at first, the challenges that lead to not achieving the desired results in chemotherapy and how cancer cells can be resistant to chemotherapy are examined, and at the end, research areas are suggested that more focusing on them, can lead to the improvement of the results of using targeted small molecules as an adjunctive treatment for chemotherapy in the conditions of chemotherapy resistance and metastasis of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Rismanbaf
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| |
Collapse
|
8
|
Samavarchi Tehrani S, Goodarzi G, Panahi G, Maniati M, Meshkani R. Multiple novel functions of circular RNAs in diabetes mellitus. Arch Physiol Biochem 2023; 129:1235-1249. [PMID: 34087083 DOI: 10.1080/13813455.2021.1933047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022]
Abstract
Circular RNAs (circRNAs), as an emerging group of non-coding RNAs (ncRNAs), have received the attention given evidence indicating that these novel ncRNAs are implicated in various biological processes. Due to the absence of 5' and 3' ends in circ-RNAs, their two ends are covalently bonded together, and they are synthesised from pre-mRNAs in a process called back-splicing, which makes them more stable than linear RNAs. There is accumulating evidence showing that circRNAs play a critical role in the pathogenesis of diabetes mellitus (DM). Moreover, it has been indicated that dysregulation of circRNAs has made them promising diagnostic biomarkers for the detection of DM. Recently, increasing attention has been paid to investigate the mechanisms underlying the DM process. It has been demonstrated that there is a strong correlation between the expression of circRNAs and DM. Hence, our aim is to discuss the crosstalk between circRNAs and DM and its complications.
Collapse
Affiliation(s)
- Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghodratollah Panahi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Maniati
- English Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Zebardast A, Latifi T, shirzad M, Goodarzi G, Ebrahimi Fana S, Samavarchi Tehrani S, Yahyapour Y. Critical involvement of circular RNAs in virus-associated cancers. Genes Dis 2023; 10:2296-2305. [PMID: 37554189 PMCID: PMC10404876 DOI: 10.1016/j.gendis.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/09/2022] Open
Abstract
Virus-related cancer is cancer where viral infection leads to the malignant transformation of the host's infected cells. Seven viruses (e.g., human papillomavirus (HPV), Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human T-lymphotropic virus (HTLV), and Merkel cell polyomavirus (MCV)) that infect humans have been identified as an oncogene and have been associated with several human malignancies. Recently, growing attention has been attracted to exploring the pathogenesis of virus-related cancers. One of the most mysterious molecules involved in carcinogenesis and progression of virus-related cancers is circular RNAs (circRNA). These emerging non-coding RNAs (ncRNAs), due to the absence of 5' and 3' ends, have high stability than linear RNAs and are found in some species across the eukaryotic organisms. Compelling evidence has revealed that viruses also encode a repertoire of circRNAs, as well as dysregulation of these viral circRNAs play a critical role in the pathogenesis and progression of different types of virus-related cancers. Therefore, understanding the exact role and function of the virally encoded circRNAs with virus-associated cancers will open a new road for increasing our knowledge about the RNA world. Hence, in this review, we will focus on emerging roles of virus-encoded circRNAs in multiple cancers, including cervical cancer, gastric cancer, Merkel cell carcinoma, nasopharyngeal carcinoma, Kaposi cancer, and liver cancer.
Collapse
Affiliation(s)
- Arghavan Zebardast
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Tayebeh Latifi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Moein shirzad
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176, Iran
| | - Golnaz Goodarzi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Sadra Samavarchi Tehrani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Student Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 47176, Iran
| |
Collapse
|
10
|
Liu G, Zhang B. Age-specific cardiovascular disease-related mortality among patients with major gastrointestinal cancers: A SEER population-based study. Cancer Med 2023; 12:17253-17265. [PMID: 37387603 PMCID: PMC10501270 DOI: 10.1002/cam4.6305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Studies have reported age as a risk factor for cardiovascular disease (CVD)-related mortality; however, only a few studies have focused on the relationship between age and CVD-related mortality, especially among major gastrointestinal cancers. METHOD The present retrospective cohort enrolled patients with colorectal, pancreatic, hepatocellular, gastric, and esophageal cancer between 2000 to 2015 from the Surveillance, Epidemiology and End Results Registry (SEER). Standardized mortality ratio (SMR), competing risk regression, and restricted cubic spline (RCS) analyses were used in our study. RESULTS We analyzed 576,713 patients with major gastrointestinal cancers (327,800 patients with colorectal cancer, 93,310 with pancreatic cancer, 69,757 with hepatocellular cancer, 52,024 with gastric cancer, and 33,822 with esophageal cancer). Overall, CVD-related mortality gradually decreased every year, and the majority were older patients. All cancer patients had a higher CVD-related mortality rate than the general U.S. POPULATION The adjusted sub-hazard ratios for middle-aged with colorectal cancer, pancreatic cancer, hepatocellular cancer, gastric cancer, and esophageal cancer were 2.55 (95% CI: 2.15-3.03), 1.77 (95% CI: 1.06-2.97), 2.64 (95% CI: 1.60-4.36), 2.15 (95% CI: 1.32-3.51), and 2.28 (95% CI: 1.17-4.44), respectively. The adjusted sub-hazard ratios for older patients with colorectal cancer, pancreatic cancer, hepatocellular cancer, gastric cancer, and esophageal cancer were 11.23 (95% CI: 9.50-13.27), 4.05 (95% CI: 2.46-6.66), 4.47 (95% CI: 2.72-7.35), 7.16 (95% CI: 4.49-11.41), and 4.40 (95% CI: 2.28-8.48), respectively. A non-linear relationship between age at diagnosis and CVD-related mortality was found in colorectal cancer, pancreatic cancer, and esophageal cancer; their reference ages were 67, 69, and 66 years old, respectively. CONCLUSION This study demonstrated that age was a risk factor for CVD-related mortality among major gastrointestinal cancers.
Collapse
Affiliation(s)
- Gen Liu
- Department of CardiologyRenmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of CardiologyWuhanChina
| | - Bo‐fang Zhang
- Department of CardiologyRenmin Hospital of Wuhan University; Cardiovascular Research Institute, Wuhan University; Hubei Key Laboratory of CardiologyWuhanChina
| |
Collapse
|
11
|
Nezhad Nezhad MT, Rajabi M, Nekooeizadeh P, Sanjari S, Pourvirdi B, Heidari MM, Veradi Esfahani P, Abdoli A, Bagheri S, Tobeiha M. Systemic lupus erythematosus: From non-coding RNAs to exosomal non-coding RNAs. Pathol Res Pract 2023; 247:154508. [PMID: 37224659 DOI: 10.1016/j.prp.2023.154508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Systemic lupus erythematosus (SLE), as an immunological illness, frequently impacts young females. Both vulnerabilities to SLE and the course of the illness's clinical symptoms have been demonstrated to be affected by individual differences in non-coding RNA expression. Many non-coding RNAs (ncRNAs) are out of whack in patients with SLE. Because of the dysregulation of several ncRNAs in peripheral blood of patients suffering from SLE, these ncRNAs to be showed valuable as biomarkers for medication response, diagnosis, and activity. NcRNAs have also been demonstrated to influence immune cell activity and apoptosis. Altogether, these facts highlight the need of investigating the roles of both families of ncRNAs in the progress of SLE. Being aware of the significance of these transcripts perhaps elucidates the molecular pathogenesis of SLE and could open up promising avenues to create tailored treatments during this condition. In this review we summarized various non-coding RNAs and Exosomal non-coding RNAs in SLE.
Collapse
Affiliation(s)
| | - Mohammadreza Rajabi
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pegah Nekooeizadeh
- Student Research Committee، Shiraz University of Medical Sciences, Shiraz, Iran
| | - Siavash Sanjari
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Bita Pourvirdi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Mehdi Heidari
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Pegah Veradi Esfahani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Abdoli
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Bagheri
- Diabetes Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Tobeiha
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Department of Pediatric, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
12
|
Gupta J, Abdulsahib WK, Turki Jalil A, Saadi Kareem D, Aminov Z, Alsaikhan F, Ramírez-Coronel AA, Ramaiah P, Farhood B. Prostate Cancer and microRNAs: New insights into Apoptosis. Pathol Res Pract 2023; 245:154436. [PMID: 37062208 DOI: 10.1016/j.prp.2023.154436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
Prostate cancer (PCa) is known as one of the most prevalent malignancies globally and is not yet curable owing to its progressive nature. It has been well documented that Genetic and epigenetic alterations maintain mandatory roles in PCa development. Apoptosis, a form of programmed cell death, has been shown to be involved in a number of physiological processes. Apoptosis disruption is considered as one of the main mechanism involved in lots of pathological conditions, especially malignancy. There is ample of evidence in support of the fact that microRNAs (miRNAs) have crucial roles in several cellular biological processes, including apoptosis. Escaping from apoptosis is a common event in malignancy progression. Emerging evidence revealed miRNAs capabilities to act as apoptotic or anti-apoptotic factors by altering the expression levels of tumor inhibitor or oncogene genes. In the present narrative review, we described in detail how apoptosis dysfunction could be involved in PCa processes and additionally, the mechanisms behind miRNAs affect the apoptosis pathways in PCa. Identifying the mechanisms behind the effects of miRNAs and their targets on apoptosis can provide scientists new targets for PCa treatment.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, U. P., India
| | - Waleed K Abdulsahib
- Department of Pharmacology and Toxicology, College of Pharmacy, Al Farahidi University, Baghdad, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | | | - Zafar Aminov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan; Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | | | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Liu Y, Xiao X, Wang J, Wang Y, Yu Y. Silencing CircEIF3I/miR-526b-5p Axis Epigenetically Targets HGF/c-Met Signal to Hinder the Malignant Growth, Metastasis and Angiogenesis of Hepatocellular Carcinoma. Biochem Genet 2023; 61:48-68. [PMID: 35723810 DOI: 10.1007/s10528-022-10239-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/25/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Hepatocyte growth factor (HGF)/c-mesenchymal-epithelial transition factor (c-Met) is important for the diagnosis and prognosis of hepatocellular carcinoma (HCC). Circular RNAs (circRNAs) are key regulators of HCC progression, and this study focused on circRNA eukaryotic translation initiation factor 3 subunit I (circEIF3I) with HGF/c-Met in HCC. METHODS Levels of circEIF3I, microRNA (miR)-526b-5p, HGF, E-cadherin, N-cadherin, and Vimentin were detected by Gene Expression Omnibus database, quantitative PCR and western blotting. Cell functions were measured by detecting cell growth (cell proliferation assay with WST-1 and EdU, colony formation assay, flow cytometry, caspase 3 activity assay, and nude mouse tumorigenicity assay), metastasis (transwell assay and western blotting), angiogenesis (endothelial tube formation assay). Molecular interaction was determined dual-luciferase reporter assay, RNA immunoprecipitation, and Pearson correlation analysis. RESULTS Expression of circEIF3I was upregulated in HCC tissues. Knockdown of circEIF3I suppressed cell proliferation epithelial-mesenchymal transition, migration, invasion and tube formation ability but promoted apoptosis of HCC cells. CircEIF3I could sponge miR-526b-5pto regulate downstream HGF. Functionally, circEIF3I regulation in HCC cell progression was associated with miR-526b-5p sponging function and HGF upregulation could attenuate tumor-inhibiting roles of miR-526b-5p. HCC tumor growth was delayed by interfering circEIF3I. CONCLUSION CircEIF3I was an oncogenic circRNA in HCC-, and interfering circEIF3I exhibited anti-HCC activity via circEIF3I-miR-526b-5p-HGF/c-Met pathway.
Collapse
Affiliation(s)
- Yang Liu
- Department of Radiological, The Second Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Xia Xiao
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130001, Jilin Province, China
| | - Jingying Wang
- Department of Laboratory, China-Japan Union Hospital of Jilin University, Changchun City, Jilin Province, China
| | - Yitong Wang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130001, Jilin Province, China
| | - Yanhui Yu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130001, Jilin Province, China.
| |
Collapse
|
14
|
Lv Y, Yin W, Zhang Z. Non-coding RNAs as potential biomarkers of gallbladder cancer. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1489-1511. [PMID: 36576705 DOI: 10.1007/s12094-022-03056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Gallbladder cancer (GBC) performs strongly invasive and poor prognosis, and adenocarcinoma is the most common histological type in it. Statistically, the 5-year survival rate of patients with advanced GBC is less than 5%. Such dismal outcome might be caused by chemotherapy resistance and native biology of tumor cells, regardless of emerging therapeutic strategies. Early diagnosis, depending on biomarkers, receptors and secretive proteins, is more important than clinical therapy, guiding the pathologic stage of cancer and the choice of medication. Therefore, it is in urgent need to understand the specific pathogenesis of GBC and strive to find promising novel biomarkers for early screening in GBC. Non-coding RNAs (ncRNAs), especially microRNAs (miRNAs, miRs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are confirmed to participate in and regulate the occurrence and development of GBC. Exceptionally, lncRNAs and circRNAs could act as competing endogenous RNAs (ceRNAs) containing binding sites for miRNAs and crosstalk with miRNAs to target regulatory downstream protein-coding messenger RNAs (mRNAs), thus affecting the expression levels of specific proteins to participate in and regulate the development and progression of GBC. It follows that ncRNAs may become promising biomarkers and potential therapeutic targets for GBC. In this review, we mainly summarize the recent research progress of miRNAs and lncRNAs in regulating the development and progression of GBC, chemoresistance, and predicting the prognosis of patients, and highlight the potential applications of the lncRNA/circRNA-miRNA-mRNA cross-regulatory networks in early diagnosis, chemoresistance, and prognostic evaluation, aiming to better understand the pathogenesis of GBC and develop new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yan Lv
- The Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.
- College of Basic Medical Science, China Three Gorges University, Life Science Building, No.8 Daxue Road, Yichang, 443002, China.
| | - Wanyue Yin
- College of Basic Medical Science, China Three Gorges University, Life Science Building, No.8 Daxue Road, Yichang, 443002, China
| | - Zhikai Zhang
- The Third-Grade Pharmacological Laboratory On Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
15
|
Zhang F, Li L, Fan Z. circRNAs and their relationship with breast cancer: a review. World J Surg Oncol 2022; 20:373. [PMID: 36443878 PMCID: PMC9703749 DOI: 10.1186/s12957-022-02842-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Recently, an increasing number of studies have been conducted on circular RNAs (circRNAs) that have demonstrated their different roles in a variety of biological processes. Moreover, a large number of circRNAs have been shown to be involved in the occurrence and development of breast cancer (BC). MAIN BODY Both functional and mechanistic experiments have shown that circular RNAs (circRNAs) can act as competing endogenous RNAs by sponging miRNAs, encoding proteins, and regulating parental genes. In doing so, circRNAs modulate the proliferation, migration, apoptosis, and invasion of BC cells in vitro as well as tumor growth and metastasis in vivo. Moreover, scores of circRNAs have been demonstrated to be related to clinicopathological features, prognosis, and treatment sensitivity in patients with BC; many circRNAs have shown potential as biomarkers for diagnosis, drug sensitivity, and prognosis prediction. Furthermore, researchers have focused on circRNAs as potential therapeutic targets. CONCLUSION In this review, we briefly summarize the functions and categories of circRNAs, their different roles in BC, and recent research and therapeutic progress related to circRNAs.
Collapse
Affiliation(s)
- Fan Zhang
- grid.430605.40000 0004 1758 4110Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021 China
| | - Liying Li
- grid.430605.40000 0004 1758 4110Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021 China
| | - Zhimin Fan
- grid.430605.40000 0004 1758 4110Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130021 China
| |
Collapse
|
16
|
Liu J, Chen S, Li Z, Teng W, Ye X. Hsa_circ_0040809 and hsa_circ_0000467 promote colorectal cancer cells progression and construction of a circRNA-miRNA-mRNA network. Front Genet 2022; 13:993727. [PMID: 36339002 PMCID: PMC9631208 DOI: 10.3389/fgene.2022.993727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Objective: Circular RNAs (circRNAs) have been demonstrated to be closely involved in colorectal cancer (CRC) pathogenesis and metastasis. More potential biomarkers are needed to be searched for colorectal cancer (CRC) diagnosis and treatment. The objective of this study is to seek differentially expressed circRNAs (DEcircRNAs), test their roles in CRC and construct a potential competing endogenous RNA (ceRNA) network. Methods: CircRNA microarrays were obtained from Gene Expression Omnibus, and differential expression was analyzed by R software. The relative expressions of DEcircRNAs were confirmed in CRC tissues and cell lines by qRT-PCR. MTs and Transwell experiments were performed for detecting the roles of circRNAs on CRC cell proliferation and migration, respectively. Targeted miRNAs of circRNAs and targeted mRNAs of miRNAs were predicted and screened by bioinformatics methods. A ceRNA network of DEcircRNAs was constructed by Cytoscape. To further verify the potential ceRNA network, the expressions of miRNAs and mRNAs in knockdown of DEcircRNAs CRC cells were detected by qRT-PCR. Results: Two DEcircRNAs (hsa_circ_0040809 and hsa_circ_0000467) were identified and validated in CRC tissues and cell lines. The results of MTs and Transwell experiments showed that hsa_circ_0040809 and hsa_circ_0000467 promoted CRC proliferation and migration. Bioinformatics analysis screened 3 miRNAs (miR-326, miR-330-5p, and miR-330-3p) and 2 mRNAs (FADS1 and RUNX1), and a ceRNA network was constructed. In knockdown of hsa_circ_0040809 HCT-116 cells, the expression of miR-330-3p was significantly upregulated, while RUNX1 was significantly downregulated. In knockdown of hsa_circ_0000467 HCT-116 cells, the expressions of miR-326 and miR-330-3p were upregulated, while FADS1was downregulated. Conclusion: We found that hsa_circ_0040809 and hsa_circ_0000467 were upregulated in CRC tissues and cell lines, and promoted CRC cell progression. A circRNA-miRNA-mRNA network based on hsa_circ_0040809 and hsa_circ_0000467 was constructed.
Collapse
Affiliation(s)
- Jingfu Liu
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Shan Chen
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Zhen Li
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Wenhao Teng
- Department of Gastrointestinal Surgery, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xianren Ye
- Department of Blood Transfusion, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, China
- *Correspondence: Xianren Ye,
| |
Collapse
|
17
|
Zeng X, Xiao J, Bai X, Liu Y, Zhang M, Liu J, Lin Z, Zhang Z. Research progress on the circRNA/lncRNA-miRNA-mRNA axis in gastric cancer. Pathol Res Pract 2022; 238:154030. [PMID: 36116329 DOI: 10.1016/j.prp.2022.154030] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 01/19/2023]
Abstract
Gastric cancer is one of the most common malignant tumours worldwide. Genetic and epigenetic alterations are key factors in gastric carcinogenesis and drug resistance to chemotherapy. Competing endogenous RNA (ceRNA) regulation models have defined circRNA/lncRNA as miRNA sponges that indirectly regulate miRNA downstream target genes. The ceRNA regulatory network is related to the malignant biological behaviour of gastric cancer. The circRNA/lncRNA-miRNA-mRNA axis may be a marker for the early diagnosis and prognosis of gastric cancer and a potential therapeutic target for gastric cancer. Exosomal ncRNAs play an important role in gastric cancer and are expected to be ideal biomarkers for the diagnosis, prognosis, and treatment of gastric cancer. This review summarizes the specific ceRNA regulatory network (circRNA/lncRNA-miRNA-mRNA) discovered in gastric cancer in recent years, which may provide new ideas or strategies for early clinical diagnosis, further development, and application.
Collapse
Affiliation(s)
- Xuemei Zeng
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Juan Xiao
- Department of Otorhinolaryngology, The Second Affiliated Hospital, Hengyang Medical School,University of South China, Hengyang 421001, China
| | - Xue Bai
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Yiwen Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Meilan Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Jiangrong Liu
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China
| | - Zixuan Lin
- Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical School, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang, Hunan 421001, China.
| |
Collapse
|
18
|
Erfanparast L, Taghizadieh M, Shekarchi AA. Non-Coding RNAs and Oral Cancer: Small Molecules With Big Functions. Front Oncol 2022; 12:914593. [PMID: 35898889 PMCID: PMC9309727 DOI: 10.3389/fonc.2022.914593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/16/2022] [Indexed: 12/24/2022] Open
Abstract
Oral cancer remains a major public concern with considerable socioeconomic impact in the world. Despite substantial advancements have been made in treating oral cancer, the five-year survival rate for oral cancer remained undesirable, and the molecular mechanisms underlying OSCC carcinogenesis have not been fully understood. Noncoding RNAs (ncRNAs) include transfer RNAs (tRNAs), as well as small RNAs such as microRNAs, and the long ncRNAs such as HOTAIR are a large segment of the transcriptome that do not have apparent protein-coding roles, but they have been verified to play important roles in diverse biological processes, including cancer cell development. Cell death, such as apoptosis, necrosis, and autophagy, plays a vital role in the progression of cancer. A better understanding of the regulatory relationships between ncRNAs and these various types of cancer cell death is therefore urgently required. The occurrence and development of oral cancer can be controlled by increasing or decreasing the expression of ncRNAs, a method which confers broad prospects for oral cancer treatment. Therefore, it is urgent for us to understand the influence of ncRNAs on the development of different modes of oral tumor death, and to evaluate whether ncRNAs have the potential to be used as biological targets for inducing cell death and recurrence of chemotherapy. The purpose of this review is to describe the impact of ncRNAs on cell apoptosis and autophagy in oral cancer in order to explore potential targets for oral cancer therapy.
Collapse
Affiliation(s)
- Leila Erfanparast
- Department of Pediatric Dentistry, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- *Correspondence: Mohammad Taghizadieh,
| | - Ali Akbar Shekarchi
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Emerging roles of circular RNAs in cancer: a narrative review. JOURNAL OF PANCREATOLOGY 2022. [DOI: 10.1097/jp9.0000000000000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Chen M, Li F, Jiang Q, Zhang W, Li Z, Tang W. Role of miR-181b/Notch1 Axis in circ_TNPO1 Promotion of Proliferation and Migration of Atherosclerotic Vascular Smooth Muscle Cells. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4086935. [PMID: 35388333 PMCID: PMC8977319 DOI: 10.1155/2022/4086935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 11/17/2022]
Abstract
Background The role and expression level change in circ_TNPO1 (hsa_circ_0072951) in atherosclerosis (AS) and VSMC dysfunction remain unknown. In this study, we try to explore the effects of circ_TNPO1 on oxidized low-density lipoprotein (ox-LDL)-induced human vascular smooth muscle cell (VSMC) excessive proliferation and migration, and the potential molecular mechanism. Methods Quantitative real-time polymerase chain reaction (RT-qPCR) and western blot experiment were used to detect the serum samples from AS patients and healthy controls. CCK-8, Transwell, and the dual-luciferase reporter gene assay were used to detect the cell biology. Results In human AS serum and ox-LDL-induced VSMCs, circ_TNPO1 was increased, whereas miR-181b was decreased. Silencing circ_TNPO1 inhibited proliferation and migration activity and reduced protein expression of PCNA, Ki-67, MMP2, and E-cadherin and promoted N-cadherin protein expression in ox-LDL induced VSMCs. Remarkably, miR-181b knockdown or Notch1 overexpression could efficiently offset the proliferation and migration inhibiting effect of circ_TNPO1 knockdown in ox-LDL-induced VSMCs. Furthermore, a molecular mechanism study pointed out that circ_TNPO1 and Notch1 are direct-acting targets of miR-181b. Conclusions In conclusion, our study indicated that circ_TNPO1 promotes the proliferation and migration progression of VSMCs in atherosclerosis through the miR-181b/Notch1 axis.
Collapse
Affiliation(s)
- Mingxiang Chen
- Department of Cardiovascular Surgery, The Third Affiliated Hospital Of Chongqing Medical University, Chongqing, China
| | - Fuping Li
- Department of Cardiovascular Surgery, The Third Affiliated Hospital Of Chongqing Medical University, Chongqing, China
| | - Qilong Jiang
- Department of Cardiovascular Surgery, The Third Affiliated Hospital Of Chongqing Medical University, Chongqing, China
| | - WeiMin Zhang
- Department of Cardiovascular Surgery, The Third Affiliated Hospital Of Chongqing Medical University, Chongqing, China
| | - Zhiping Li
- Department of Cardiovascular Surgery, The Third Affiliated Hospital Of Chongqing Medical University, Chongqing, China
| | - Wenshuai Tang
- Department of Cardiovascular Surgery, The Third Affiliated Hospital Of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Li D, Wang R, Wu N, Yu Y. LncRNA HULC as a potential predictor of prognosis and clinicopathological features in patients with digestive system tumors: a meta-analysis. Aging (Albany NY) 2022; 14:1797-1811. [PMID: 35183058 PMCID: PMC8908940 DOI: 10.18632/aging.203903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/02/2022] [Indexed: 11/25/2022]
Abstract
Objective: This meta-analysis aimed to evaluate the correlation between lncRNA HULC, prognosis and clinicopathological characteristics in patients with digestive system tumors. Methods: The relevant literatures were collected through PubMed, Web of Science and Embase up to February 2021. Hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to assess the prognostic value of HULC in patients with digestive system tumors. The clinicopathological characteristics of HULC in patients were estimated by odds ratios (ORs). Results: A total of 14 studies involving 1312 patients were included. The up-regulated expression level of HULC was associated with poorer overall survival (OS) in patients with digestive system tumors (HR = 1.83, 95% CI: 1.05-3.19, P = 0.033). Subgroup analysis showed that cancer type (pancreatic cancer or gastric cancer), residence region (China, Japan or Korea), and specimen (serum) significantly associated between HULC and OS. In addition, high HULC expression significantly increased the risk of high TNM stage (OR = 2.51, 95%CI: 1.36-4.62, P < 0.05), poor differentiation (OR = 1.38, 95%CI: 1.02-1.87, P < 0.05) and lymphatic node metastasis (LNM, OR = 4.93, 95% CI: 3.47-6.99, P < 0.05). Conclusions: High expression level of HULC is related to OS, TNM stage, differentiation and LNM. Therefore, HULC can be used as a new potential predictor for prognosis and clinicopathological features of patients with digestive system tumors.
Collapse
Affiliation(s)
- Duo Li
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Rui Wang
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Na Wu
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| | - Yongqiang Yu
- Department of Gastroenterology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei, China
| |
Collapse
|
22
|
Jorgensen BG, Ro S. MicroRNAs and 'Sponging' Competitive Endogenous RNAs Dysregulated in Colorectal Cancer: Potential as Noninvasive Biomarkers and Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23042166. [PMID: 35216281 PMCID: PMC8876324 DOI: 10.3390/ijms23042166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
The gastrointestinal (GI) tract in mammals is comprised of dozens of cell types with varied functions, structures, and histological locations that respond in a myriad of ways to epigenetic and genetic factors, environmental cues, diet, and microbiota. The homeostatic functioning of these cells contained within this complex organ system has been shown to be highly regulated by the effect of microRNAs (miRNA). Multiple efforts have uncovered that these miRNAs are often tightly influential in either the suppression or overexpression of inflammatory, apoptotic, and differentiation-related genes and proteins in a variety of cell types in colorectal cancer (CRC). The early detection of CRC and other GI cancers can be difficult, attributable to the invasive nature of prophylactic colonoscopies. Additionally, the levels of miRNAs associated with CRC in biofluids can be contradictory and, therefore, must be considered in the context of other inhibiting competitive endogenous RNAs (ceRNA) such as lncRNAs and circRNAs. There is now a high demand for disease treatments and noninvasive screenings such as testing for bloodborne or fecal miRNAs and their inhibitors/targets. The breadth of this review encompasses current literature on well-established CRC-related miRNAs and the possibilities for their use as biomarkers in the diagnoses of this potentially fatal GI cancer.
Collapse
|
23
|
Taghvimi S, Vakili O, Soltani Fard E, Khatami SH, Karami N, Taheri‐Anganeh M, Salehi M, Negahdari B, Ghasemi H, Movahedpour A. Exosomal microRNAs and long noncoding RNAs: Novel mediators of drug resistance in lung cancer. J Cell Physiol 2022; 237:2095-2106. [DOI: 10.1002/jcp.30697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Sina Taghvimi
- Department of Biology, Faculty of Sciences Shahid Chamran University of Ahvaz Ahvaz Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences Isfahan University of Medical Sciences Isfahan Iran
| | - Elahe Soltani Fard
- Department of Molecular Medicine, School of Advanced Technologies Shahrekord University of Medical Sciences Shahrekord Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Neda Karami
- Epilepsy Research Center Shiraz University of Medical Sciences Shiraz Iran
| | - Mortaza Taheri‐Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute Urmia University of Medical Sciences Urmia Iran
| | - Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine Tehran University of Medical Sciences Tehran Iran
| | | | | |
Collapse
|
24
|
Sun K, Wang H, Zhang D, Li Y, Ren L. Depleting circ_0088364 restrained cell growth and motility of human hepatocellular carcinoma via circ_0088364-miR-1270-COL4A1 ceRNA pathway. Cell Cycle 2022; 21:261-275. [PMID: 34951563 PMCID: PMC8855875 DOI: 10.1080/15384101.2021.2016196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Circular RNA hsa_circ_0088364 (circ_0088364) is a contributory factor in the malignancy of hepatocellular carcinoma (HCC). We aimed to elaborate its role and competing endogenous RNA (ceRNA) mechanism in HCC cell growth and motility. Expression of circ_0088364, microRNA (miR)-1270 and Collagen type IV alpha 1 chain (COL4A1) was measured by real-time quantitative PCR and Western blotting, and their relationships were determined by dual-luciferase reporter assay, RNA immunoprecipitation, biotinylated RNA pull-down, and Spearman's rank correlation analysis. Cellular programs were measured by cell counting kit-8 assay, flow cytometry and transwell assays, Western blotting, and xenograft experiment. Expression of circ_0088364 and COL4A1 was upregulated, and miR-1270 was downregulated in HCC patients' tumors; moreover, there were linear correlations among circ_0088364, miR-1270, and COL4A1 expression. Essentially, circ_0088364 and COL4A1 were ceRNAs for miR-1270 via target binding. In function, silencing circ_0088364 or upregulating miR-1270 could suppress cell proliferation, cell cycle entrance, transwell migration and invasion in Huh7 and HCCLM3 cells, as well as promote apoptosis rate. Moreover, above-mentioned effects were accompanied with reduced B-cell lymphoma (Bcl)-2, N-cadherin and Vimentin levels, and elevated Bcl-2-associated X protein (Bax) and E-cadherin levels. Contrarily, exhausting miR-1270 and restoring COL4A1 could severally abrogate the tumor-suppressive roles of circ_0088364 knockdown and miR-1270 overexpression in HCC cells in vitro. In vivo, silencing circ_0088364 retarded xenograft tumor growth in nude mice induced by Huh7 cells by upregulating miR-1270 and downregulating COL4A1. Blocking circ_0088364 suppressed HCC by inhibiting cell growth and motility via targeting miR-1270-COL4A1 axis.
Collapse
Affiliation(s)
- Kai Sun
- Department of Hepatobiliary Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Haochen Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Dongyuan Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Yupeng Li
- Department of Hepatobiliary Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China
| | - Lei Ren
- Department of Hepatobiliary Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, Shandong, China,CONTACT Lei Ren Department of Hepatobiliary Surgery, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766, Jingshi Road, Lixia District, Jinan City, Shandong Province, China
| |
Collapse
|
25
|
Yue M, Liu Y, Zuo T, Jiang Y, Pan J, Zhang S, Shen X. Circ_0006948 Contributes to Cell Growth, Migration, Invasion and Epithelial-Mesenchymal Transition in Esophageal Carcinoma. Dig Dis Sci 2022; 67:492-503. [PMID: 33630215 DOI: 10.1007/s10620-021-06894-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) can act as promoters or inhibitors in cancer progression. Has_circ_0006948 (circ_0006948) was reported to aggravate the malignant behaviors of esophageal carcinoma (EC). AIMS This study focused on investigating the molecular mechanism of circ_0006948 in EC progression. METHODS The quantitative real-time polymerase chain reaction was performed to detect the expression of circ_0006948, microRNA-4262 (miR-4262) and fibronectin type III domain containing 3B (FNDC3B). Cell growth analysis was conducted by Cell Counting Kit-8 and colony formation assays. Cell migration and invasion were assessed by transwell assay. Epithelial-mesenchymal transition (EMT)-associated proteins and FNDC3B protein expression were assayed using western blot. Dual-luciferase reporter and RNA pull-down assays were performed to validate the target combination. Xenograft tumor assay was used for investigating the role of circ_0006948 in vivo. RESULTS Circ_0006948 was upregulated in EC tissues and cells. Downregulating the expression of circ_0006948 or FNDC3B repressed cell growth, migration, invasion and EMT in EC cells. Target analysis indicated that miR-4262 was a target for circ_0006948 and FNDC3B was a downstream gene for miR-4262. Moreover, circ_0006948 could affect the expression of FNDC3B via sponging miR-4262. The effects of si-circ_0006948#1 on EC cells were partly restored by miR-4262 inhibition or FNDC3B overexpression. In addition, circ_0006948 also facilitated EC tumorigenesis in vivo by targeting the miR-4262/FNDC3B axis. CONCLUSION Taken together, circ_0006948 functioned as an oncogenic factor in EC by the miR-4262-mediated FNDC3B expression regulation.
Collapse
Affiliation(s)
- Meng Yue
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China.
| | - Yanxia Liu
- Department of Oncology, Shengli Oil Central Hospital, Dongying City, Shandong Province, China
| | - Taiyang Zuo
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Yakun Jiang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China
| | - Jianmei Pan
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China
| | - Shuhong Zhang
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China
| | - Xingjie Shen
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong First Medical University, No.105 Jiefang Road, Lixia District, Jinan, 250013, Shandong Province, China
| |
Collapse
|
26
|
Zhang W, Wang B, Lin Y, Yang Y, Zhang Z, Wang Q, Zhang H, Jiang K, Ye Y, Wang S, Shen Z. hsa_circ_0000231 Promotes colorectal cancer cell growth through upregulation of CCND2 by IGF2BP3/miR-375 dual pathway. Cancer Cell Int 2022; 22:27. [PMID: 35033075 PMCID: PMC8760675 DOI: 10.1186/s12935-022-02455-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Background Circular RNAs (circRNAs) have emerged as vital regulators of the initiation and progression of diverse kinds of human cancers. In this study, we explored the role of hsa_circ_0000231 and its downstream pathway in CRC. Methods The expression profile of circRNAs in 5 pairs of CRC tissues and adjacent normal tissues were analyzed by Microarray. Quantitative real-time PCR and in situ hybridization and Base Scope Assay were used to determine the level and prognostic values of hsa_circ_0000231. Then, functional experiments in vitro and in vivo were performed to investigate the effects of hsa_circ_0000231 on cell proliferation. Mechanistically, fluorescent in situ hybridization, dual luciferase reporter assay, RNA pull-down and RNA immunoprecipitation experiments were performed to confirm the interaction between hsa_circ_0000231 and IGF2BP3 or has_miR-375. Results We acquired data through circRNA microarray profiles, showing that the expression of hsa_circ_0000231 was upregulated in CRC primary tissues compared to adjacent normal tissues, which was indicated poor prognosis of patients with CRC. Functional analysis indicated that inhibition of hsa_circ_0000231 in CRC cell lines could suppress CRC cell proliferation as well as tumorigenesis in vitro and in vivo. The mechanistic analysis showed that hsa_circ_0000231 might, on the one hand, act as a competing endogenous RNA of miR-375 to promote cyclin D2 (CCND2) and, on the other hand, bind to the IGF2BP3 protein to prevent CCND2 degradation. Conclusions The findings suggested that hsa_circ_0000231 facilitated CRC progression by sponging miR-375 or binding to IGF2BP3 to modulate CCND2, implying that hsa_circ_0000231 might be a potential new diagnostic and therapeutic biomarker of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02455-8.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Bo Wang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yilin Lin
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Yang Yang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Zhen Zhang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Quan Wang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Haoran Zhang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China
| | - Shan Wang
- Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China.,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Laboratory of Surgical Oncology, Peking University People's Hospital, Beijing, 100044, People's Republic of China. .,Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Xizhimen South Street, Xicheng, Beijing, 100044, People's Republic of China.
| |
Collapse
|
27
|
Zahra MH, Nawara HM, Hassan G, Afify SM, Seno A, Seno M. Cancer Stem Cells Contribute to Drug Resistance in Multiple Different Ways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:125-139. [PMID: 36587305 DOI: 10.1007/978-3-031-12974-2_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Many tumors are resistant to conventional cancer therapies because a tumor is composed of heterogeneous cell population. Especially, subpopulation of cancer stem cells, which have self-renewal and differentiation properties and responsible for the tumor initiation, is generally considered resistant to chemo-, radio-, and immune therapy. Understanding the mechanism of drug resistance in cancer stem cells should lead to establish more effective therapeutic strategies. Actually, different molecular mechanisms are conceivable for cancer stem cells acquiring drug resistance. These mechanisms include not only cytoplasmic signaling pathways but also the intercellular communications in the tumor microenvironment. Recently, a great deal of successful reports challenged to elucidate the mechanisms of drug resistance and to develop novel treatments targeting cancer stem cells.
Collapse
Affiliation(s)
- Maram H Zahra
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Hend M Nawara
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
| | - Ghmkin Hassan
- Department of Genomic Oncology and Oral Medicine, Graduate School of Biomedical and Health Science, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Said M Afify
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koum-Menoufia, Shebeen El-Kom, 32511, Egypt
| | - Akimasa Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan
| | - Masaharu Seno
- Laboratory of Natural Food & Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
28
|
Xu P, Xu X, Wu X, Zhang L, Meng L, Chen Z, Han W, Yao J, Xu AM. CircTMC5 promotes gastric cancer progression and metastasis by targeting miR-361-3p/RABL6. Gastric Cancer 2022; 25:64-82. [PMID: 34296378 DOI: 10.1007/s10120-021-01220-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gastric cancer (GC) is common in East Asia, yet its molecular and pathogenic mechanisms remain unclear. Circular RNAs (circRNAs) are differentially expressed in GC and may be promising biomarkers. Here, we investigated the role and regulatory mechanism of circTMC5 in GC. METHODS CircTMC5 expression was detected in human GC and adjacent tissues using microarray assays and qRT-PCR, while the clinicopathological characteristics of patients with GC were used to assess its diagnostic and prognostic value. The circTMC5/miR-361-3p/RABL6 axis was examined in vitro and vivo, and the immune roles of RABL6 were evaluated using bioinformatics analyses and immunohistochemistry (IHC). RESULTS CircTMC5 was highly expressed in GC tissues, plasma, and cell lines, and was closely related to histological grade, pathological stage, and T classification in patients with GC. CircTMC5 expression was also an independent prognostic factor for GC and its combined detection with carcinoembryonic antigen may improve GC diagnosis. Low circTMC5 expression correlated with good prognosis, inhibited GC cell proliferation, and promoted apoptosis. Mechanistically, circTMC5 overexpression promoted GC cell proliferation, invasion, and metastasis but inhibited apoptosis by sponging miR-361-3p and up-regulating RABL6 in vitro and vivo, whereas miR-361-3p up-regulation had the opposite effects. RABL6 was highly expressed in GC and was involved in immune regulation and infiltration in GC. CONCLUSIONS CircTMC5 promotes GC and sponges miR-361-3p to up-regulate RABL6 expression, thus may have diagnostic and prognostic value in GC. RABL6 also displays therapeutic promise due to its role in the immune regulation of GC.
Collapse
Affiliation(s)
- Peng Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Avenue, Xinzhan District, Hefei City, 230000, Anhui Province, China.,Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Yangzhou City, 225001, Jiangsu Province, China
| | - XiaoLan Xu
- Department of Critical Care Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Xiao Wu
- Department of Pathophysiology, Basic Medical College of Anhui Medical University, Anhui Provincial Key Laboratory of Pathophysiology, Hefei, 230022, China
| | - LiXiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - Lei Meng
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - ZhangMing Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - WenXiu Han
- Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China
| | - Jie Yao
- Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Nantong West Road, Yangzhou City, 225001, Jiangsu Province, China.
| | - AMan Xu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, No. 100 Huaihai Avenue, Xinzhan District, Hefei City, 230000, Anhui Province, China. .,Department of General Surgery, The First Affiliated Hospital of Anhui, Medical University, Hefei, 230022, China.
| |
Collapse
|
29
|
Liu J, Dong Y, Ji Q, Wen Y, Ke G, Shi L, Guan W, Xu W. Circ-MKLN1/miR-377-3p/CTGF Axis Regulates the TGF-β2-induced Posterior Capsular Opacification in SRA01/04 Cells. Curr Eye Res 2021; 47:372-381. [PMID: 34961410 DOI: 10.1080/02713683.2021.1988983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Posterior capsular opacification (PCO) is a common postoperative ocular complication after cataract surgery. Little research focused on the regulation of circular RNAs (circRNAs) in PCO. This study was designed to investigate the function of circRNA-muskelin (circ-MKLN1) in PCO. METHODS SRA01/04 cells were treated with transforming growth factor (TGF)-β2. Cell viability was analyzed by Cell Counting Kit-8 (CCK-8) assay. Transwell assay was used for cell migration and invasion detection. Cell migration was also measured by wound healing assay. Epithelial-mesenchymal transition (EMT)-related proteins and connective tissue growth factor (CTGF) were quantified using western blot. RESULTS Cell viability, migration, invasion and EMT process in SRA01/04 cells were facilitated by TGF-β2. Circ-MKLN1 expression was enhanced in 17 PCO lens samples relative to 19 normal lens samples and TGF-β2-treated SRA01/04 cells contrasted to control cells. Downregulation of circ-MKLN1 inhibited the effects of TGF-β2 on SRA01/04 cells. Circ-MKLN1 targeted miR-377-3p and the regulation of si-circ-MKLN1 for the TGF-β2-induced influences was related to the upregulation of miR-377-3p. CTGF was the target gene for miR-377-3p. CTGF knockdown also abolished the TGF-β2-mediated cell growth, migration and invasion of SRA01/04 cells. The function of miR-377-3p was achieved by reducing the CTGF level. TGF-β2-induced CTGF expression promotion was alleviated by si-circ-MKLN1 through upregulating the expression of miR-377-3p. CONCLUSION These results showed that circ-MKLN1 contributed to the progression of PCO in vitro by increasing the CTGF expression via sponging miR-377-3p. Circ-MKLN1 might be important for improving the molecular target therapy in PCO.
Collapse
Affiliation(s)
- Jiajia Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, Anhui, 230001, China.,Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Gerontology Institute of Anhui Province, Hefei, Anhui, China
| | - Yiran Dong
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Qingshan Ji
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, Anhui, 230001, China.,Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China
| | - Yuechun Wen
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Genjie Ke
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Lei Shi
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Wei Guan
- Department of Ophthalmology, The First Affiliated Hospital of USTC, Hefei, Anhui, China
| | - Weiping Xu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, Anhui, 230001, China.,Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, China.,Gerontology Institute of Anhui Province, Hefei, Anhui, China
| |
Collapse
|
30
|
Tang J, Zhang C, Wang S, Chen J. A novel circRNA-miRNA-mRNA network reveals hsa-circ-0040039 as a biomarker for intervertebral disc degeneration. J Int Med Res 2021; 49:300060520960983. [PMID: 34939437 PMCID: PMC8733709 DOI: 10.1177/0300060520960983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective Alterations in the structure and function of intervertebral discs by
multifaceted chronic processes can result in intervertebral disc
degeneration (IDD). The mechanisms involved in IDD are still unknown. Methods We investigated the possible mechanisms underlying IDD using a bioinformatics
analysis of publicly available microarray expression datasets and built a
circular RNA–microRNA–mRNA (circRNA–miRNA–mRNA) network based on the
results. Datasets GSE67566 and GSE116726 were downloaded from the Gene
Expression Omnibus (GEO) and analyzed using the limma package in R. The
CircInteractome database was used to detect miRNAs related to circRNA, and
TargetScan, miRDB, and miRTarBase were used to predict target mRNAs. Key
target genes were annotated using Gene Ontology terms. Results The circRNA hsa-circ-0040039 was found to have the top log fold-change score.
Analysis using Metascape showed that the associated genes were enriched
mainly in the cell cycle. The Cytoscape plugin MCODE predicted that two
members of the RAS oncogene family—RAB1A and RAB1B—and multiple coagulation
factor deficiency (MCFD2) may play key roles in IDD. Conclusion Our results suggested that hsa-circ-0040039 and the related network may be
potential biomarkers for IDD.
Collapse
Affiliation(s)
- Jianhua Tang
- Department of Spine, Nanjing University of Chinese
Medicine, Wuxi Hospital Affiliated to Nanjing University of Chinese
Medicine, Wuxi, P.R. China
| | - Chenlin Zhang
- Department of Spine, Nanjing University of Chinese
Medicine, Wuxi Hospital Affiliated to Nanjing University of Chinese
Medicine, Wuxi, P.R. China
| | - Shengru Wang
- Department of Spine, Nanjing University of Chinese
Medicine, Wuxi Hospital Affiliated to Nanjing University of Chinese
Medicine, Wuxi, P.R. China
| | - Jianfeng Chen
- Department of Spine, Nanjing University of Chinese
Medicine, Wuxi Hospital Affiliated to Nanjing University of Chinese
Medicine, Wuxi, P.R. China
- Jianfeng Chen, Department of Spine, Wuxi
Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi 214000, P.R.
China.
| |
Collapse
|
31
|
Cao X, Meng X, Fu P, Wu L, Yang Z, Chen H. circATP2A2 promotes osteosarcoma progression by upregulating MYH9. Open Med (Wars) 2021; 16:1749-1761. [PMID: 34901459 PMCID: PMC8630393 DOI: 10.1515/med-2021-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/06/2021] [Accepted: 09/13/2021] [Indexed: 01/16/2023] Open
Abstract
Osteosarcoma (OS) is a highly metastatic primary malignant tumor. CircRNA hsa_circ_0028173 (circATP2A2) has been uncovered to be related to the advancement of OS. However, the biological role of circATP2A2 in OS has not been validated. circATP2A2 and MYH9 were upregulated while miR-335-5p was downregulated in OS. OS patients with high circATP2A2 expression displayed a shorter overall survival and the area under curve of circATP2A2 was 0.77, manifesting that circATP2A2 might be a diagnostic and prognostic biomarker. circATP2A2 silencing repressed OS cell proliferation and glycolysis in vivo and constrained OS cell proliferation, glycolysis, migration, and invasion in vitro. circATP2A2 regulated MYH9 expression through sponging miR-335-5p. MiR-335-5p inhibitor reversed the repressive effect of circATP2A2 knockdown on OS cell malignancy and glycolysis. MYH9 overexpression overturned miR-335-5p upregulation-mediated OS cell malignancy and glycolysis. circATP2A2 accelerated OS cell malignancy and glycolysis through upregulating MYH9 via sponging miR-335-5p, offering a promising target for OS treatment.
Collapse
Affiliation(s)
- Xin Cao
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Xianfeng Meng
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Peng Fu
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Lin Wu
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Zhen Yang
- Department of Trauma and Orthopaedics, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Huijin Chen
- Department of Clinical Laboratory, Shengli Oilfield Central Hospital, No. 31, Jinan Road, Dongying, 257000, Shandong, China
| |
Collapse
|
32
|
New Circulating Circular RNAs with Diagnostic and Prognostic Potential in Advanced Colorectal Cancer. Int J Mol Sci 2021; 22:ijms222413283. [PMID: 34948079 PMCID: PMC8706615 DOI: 10.3390/ijms222413283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are a group of special endogenous long non-coding RNAs which are highly stable in the circulation, and, thus, more suitable as new biomarkers of colorectal cancer (CRC). The aim of our study was to explore the plasma expression levels of four circRNAs: has_circ_0001445, hsa_circ_0003028, hsa_circ_0007915 and hsa_circ_0008717 in patients with CRC and to evaluate their associations with clinicopathological characteristics and the clinical outcome of the patients. CircRNAs were extracted from patients’ plasma obtained prior to chemotherapy. Their expression levels were measured by qPCR and calculated applying the 2−ΔΔCt method. The levels of all four circRNAs were significantly increased in the plasma of CRC patients. At the optimal cut-off values hsa_circ_0001445 and hsa_circ_0007915 in plasma could significantly distinguish between patients with or without metastatic CRC with 92.56% sensitivity and 42.86% specificity, and with 86.07% sensitivity and 57.14% specificity, respectively. The mean overall survival (OS) of patients with high/intermediate expression of hsa_circ_0001445 was 30 months, significantly higher in comparison with the mean OS of the patients with low expression—20 months (log-rank test, p = 0.034). In multivariate Cox regression analysis, the low levels of hsa_circ_0001445 were also associated with shorter survival (HR = 1.59, 95% CI: 1.02–2.47, p = 0.040). A prognostic significance of hsa_circ_0001445 for patients with metastatic CRC was established.
Collapse
|
33
|
Xi SJ, Cai WQ, Wang QQ, Peng XC. Role of circular RNAs in gastrointestinal tumors and drug resistance. World J Clin Cases 2021; 9:10400-10417. [PMID: 35004973 PMCID: PMC8686142 DOI: 10.12998/wjcc.v9.i34.10400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/26/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The incidence of gastrointestinal cancers has increased significantly over the past decade and gastrointestinal malignancies now rank among the leading causes of mortality globally. Although newer therapeutic strategies such as targeted therapies have greatly improved patient outcomes, their clinical success is limited by drug resistance, treatment failure and recurrence of metastatic disease. Therefore, there is an urgent need for further research identifying accurate and reliable biomarkers for precise treatment strategies. Circular RNAs (circRNAs) exhibit a covalently closed structure, high stability and biological conservation, and their expression is associated with the occurrence and development of gastrointestinal tumors. Moreover, circRNAs may significantly influence drug resistance of gastrointestinal cancers. In this article, we review the role of circRNAs in the occurrence and development of gastrointestinal cancer, their association with drug resistance, and potential application for early diagnosis, treatment and prognosis in gastrointestinal malignancies. Furthermore, we summarize characteristics of circRNA, including mechanism of formation and biological effects via mRNA sponging, chromatin replication, gene regulation, translational modification, signal transduction, and damage repair. Finally, we discuss whether circRNA-related noninvasive testing may be clinically provided in the future. This review provides new insights for the future development of diagnostics and therapeutics based on circRNAs in gastrointestinal tumors.
Collapse
Affiliation(s)
- Shi-Jun Xi
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wen-Qi Cai
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Qin-Qi Wang
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xiao-Chun Peng
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
34
|
Wang H, Wang N, Zheng X, Wu L, Fan C, Li X, Ye K, Han S. Circular RNA hsa_circ_0009172 suppresses gastric cancer by regulation of microRNA-485-3p-mediated NTRK3. Cancer Gene Ther 2021; 28:1312-1324. [PMID: 33531648 DOI: 10.1038/s41417-020-00280-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 01/19/2023]
Abstract
Gastric cancer is the third leading cause of cancer-related death worldwide, with relapse and metastasis being major contributors to the mortality. Circular RNAs (circRNAs) have been at the center of several researches and some circRNAs have been indicated to be involved in gastric cancer as sponges. Nevertheless, the mechanism underlying the function of circRNA remains largely unclear. Therefore, this study was conducted with the main objective of screening the associated circRNA in gastric cancer and exploring its mechanism. Expression of hsa_circRNA_0009172 was validated in gastric cancer tissues and cell lines after the correlation between hsa_circRNA_0009172 and prognosis was determined. Moreover, the binding site between miR-485-3p and hsa_circRNA_0009172 or NTRK3 was verified using dual luciferase assay and RNA pull down. Function-gain and -loss experiments were performed for the purpose of detecting the effect of hsa_circRNA_0009172 in vivo and in vitro as well as its mechanism with microRNA (miRNA)-485-3p and NTRK3 in gastric cancer. The hsa_circRNA_0009172 expression was downregulated in gastric cancer tissues and cell lines, indicating a positive association with patient prognosis. Functionally, hsa_circ_0009172 overexpression inhibited proliferative, invasive and migrative potential of gastric cancer cells as well as epithelial-mesenchymal transition (EMT)-related proteins by sponging miR-485-3p to inhibit NTRK3, while miR-485-3p overexpression could reverse the inhibitory effect of hsa_circ_0009172 on gastric cancer. Furthermore, either up-regulation of hsa_circ_0009172 or down-regulation of miR-485-3p led to the suppression of xenograft tumor growth in nude mice. In conclusion, hsa_circ_0009172 serves as a tumor suppressor in gastric cancer by targeting miR-485-3p/NTRK3 axis.
Collapse
Affiliation(s)
- Hao Wang
- Department of Oncology, The First Affiliated Hospital, College of Medicine Xi'an Jiaotong University, Xi'an, 710061, PR China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Nan Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Lei Wu
- Centers of Radiotherapy Oncology, Shaanxi Provincial Tumor Hospital, Xi'an, 710068, PR China
| | - Chengcheng Fan
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Xue Li
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Ke Ye
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450000, PR China
| | - Suxia Han
- Department of Oncology, The First Affiliated Hospital, College of Medicine Xi'an Jiaotong University, Xi'an, 710061, PR China.
| |
Collapse
|
35
|
Yang C, Han S. The circular RNA circ0005654 interacts with specificity protein 1 via microRNA-363 sequestration to promote gastric cancer progression. Bioengineered 2021; 12:6305-6317. [PMID: 34499009 PMCID: PMC8806801 DOI: 10.1080/21655979.2021.1971031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs), a group of unique long noncoding RNAs, are involved in gastric carcinogenesis through multiple mechanisms, including interacting with microRNAs (miRNAs). Here, circ0005654, significantly upregulated in gastric cancer (GC), was chosen for further examination. circ0005654 was analyzed by RT-qPCR. The function of circ0005654 in GC cells was substantiated by loss-of-function assays. The mechanism of circ0005654 on miR-363/specificity protein 1 (sp1) axis was evaluated in GC cells by bioinformatics analysis, luciferase reporter, FISH, and ChIP assays. We observed that circ0005654 was enhanced in GC tissues and cells. Overexpression of circ0005654 was correlated with a poor long-term prognosis in patients with GC. Functionally, silencing of circ0005654 remarkably suppressed GC cell proliferation, migration and invasiveness in vitro and tumorigenesis and metastases in vivo. It was also established that circ0005654 served as a miR-363 sponge and enhanced sp1 expression. Furthermore, sp1 promoted GC carcinogenesis by regulating myc transcription to potentiate the Wnt/β-catenin pathway. In conclusion, circ0005654 expedites the GC development via miR-363/sp1/myc/Wnt/β-catenin axis and is a new biomarker for GC treatment regimen.
Collapse
Affiliation(s)
- Cui Yang
- Department of Clinical Medicine, Wanxi Health Vocational College, Lu’an, Anhui, P.R. China
| | - Shengjin Han
- Department of Emergency Surgery, Lu’an People's Hospital, Lu’an, Anhui, P.R. China
| |
Collapse
|
36
|
Shafabakhsh R, Arianfar F, Vosough M, Mirzaei HR, Mahjoubin-Tehran M, Khanbabaei H, Kowsari H, Shojaie L, Azar MEF, Hamblin MR, Mirzaei H. Autophagy and gastrointestinal cancers: the behind the scenes role of long non-coding RNAs in initiation, progression, and treatment resistance. Cancer Gene Ther 2021; 28:1229-1255. [PMID: 33432087 DOI: 10.1038/s41417-020-00272-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/06/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Gastrointestinal (GI) cancers comprise a heterogeneous group of complex disorders that affect different organs, including esophagus, stomach, gallbladder, liver, biliary tract, pancreas, small intestine, colon, rectum, and anus. Recently, an explosion in nucleic acid-based technologies has led to the discovery of long non-coding RNAs (lncRNAs) that have been found to possess unique regulatory functions. This class of RNAs is >200 nucleotides in length, and is characterized by their lack of protein coding. LncRNAs exert regulatory effects in GI cancer development by affecting different functions such as the proliferation and metastasis of cancer cells, apoptosis, glycolysis and angiogenesis. Over the past few decades, considerable evidence has revealed the important role of autophagy in both GI cancer progression and suppression. In addition, recent studies have confirmed a significant correlation between lncRNAs and the regulation of autophagy. In this review, we summarize how lncRNAs play a behind the scenes role in the pathogenesis of GI cancers through regulation of autophagy.
Collapse
Affiliation(s)
- Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Arianfar
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Massoud Vosough
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
| | - Hamid Reza Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hashem Khanbabaei
- Medical Physics Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Kowsari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
37
|
Gastrointestinal cancer drug resistance: the role of exosomal miRNAs. Mol Biol Rep 2021; 49:2421-2432. [PMID: 34850336 DOI: 10.1007/s11033-021-07007-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022]
Abstract
Resistance of gastrointestinal (GI) cancer cells to therapeutic agents are one of the major problems in treating this type of cancer. Although the exact mechanism of drug resistance has not yet been fully elucidated, various factors have been identified as contributing factors involved in this process. Several studies have revealed the role of exosomes, especially exosomal microRNAs (miRNAs), in GI tumorigenesis, invasion, angiogenesis, and drug resistance. Exosomes, a type of small extracellular vesicles (EVs), are originated from endosomes and are released into the extracellular environment and body fluids by different cell types. Exosomes mediate cell-cell communication by transferring different cargos, including miRNAs, between parent and recipient cells. Therefore, identifying these exosomal miRNAs and their functions in GI cancers might provide new clues to further explore the secret of this process and thus help in drug-resistance management. This review article will discuss the roles of exosomal miRNAs and their mechanisms of action in drug resistance of different types of GI cancer cells (e.g., stomach, esophagus, liver, pancreas, and colon) to therapeutic agents.
Collapse
|
38
|
Li B, Zhang L. CircSETDB1 knockdown inhibits the malignant progression of serous ovarian cancer through miR-129-3p-dependent regulation of MAP3K3. J Ovarian Res 2021; 14:160. [PMID: 34789310 PMCID: PMC8597278 DOI: 10.1186/s13048-021-00875-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/03/2021] [Indexed: 12/14/2022] Open
Abstract
Background Circular RNA (circRNA) is recently found to participate in the regulation of tumor progression, including ovarian cancer. However, the application of circRNA SET domain bifurcated histone lysine methyltransferase 1 (circSETDB1) as a therapeutic target in serous ovarian cancer (SOC) remains to be elucidated. Herein, circSETDB1 role in SOC malignant progression and underlying mechanism are revealed. Methods The expression of circSETDB1, microRNA-129-3p (miR-129-3p) and mitogen-activated protein kinase kinase kinase 3 (MAP3K3) messenger RNA (mRNA) was detected by quantitative real-time polymerase chain reaction. Protein abundance was determined by western blot analysis. Cell proliferation, apoptosis, invasion and migration were demonstrated by cell counting kit-8 and 5-Ethynyl-29-deoxyuridine assays, flow cytometry analysis, transwell invasion assay and wound-healing assay, respectively. The interaction between miR-129-3p and circSETDB1 or MAP3K3 was predicted by online database, and identified by mechanism assays. The effect of circSETDB1 knockdown on tumor formation in vivo was unveiled by mouse model experiment. Results CircSETDB1 and MAP3K3 expression were apparently upregulated, whereas miR-129-3p expression was downregulated in SOC tissues and cells in comparison with normal fallopian tube tissues or normal ovarian epithelial cells. CircSETDB1 knockdown inhibited cell proliferation, invasion and migration, but induced cell apoptosis in SOC cells. Additionally, miR-129-3p inhibitor impaired circSETDB1 silencing-mediated SOC malignant progression. MiR-129-3p repressed SOC cell processes via binding to MAP3K3. Furthermore, circSETDB1 knockdown suppressed tumor growth in vivo. Conclusion CircSETDB1 silencing repressed SOC malignant progression through miR-129-3p/MAP3K3 pathway. This study supports circSETDB1 as a new therapeutic target for SOC. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00875-0. 1. CircSETDB1 expression was increased in SOC tissues and cells. 2. CircSETDB1 silencing repressed the malignancy of SOC cells. 3. CircSETDB1 mediated SOC malignant progression by interacting with miR-129-3p. 4. MAP3K3 served as a target gene of miR-129-3p. 5. CircSETDB1 knockdown inhibited tumor formation in vivo.
Collapse
Affiliation(s)
- Bo Li
- Department of Gynaecology, Yantaishan Hospital, No.91 Jiefang Road, Zhifu DistrictShandong Province, Yantai, 264001, China.
| | - Lu Zhang
- Department of Gynaecology, Yantaishan Hospital, No.91 Jiefang Road, Zhifu DistrictShandong Province, Yantai, 264001, China
| |
Collapse
|
39
|
Fan HN, Zhao XY, Liang R, Chen XY, Zhang J, Chen NW, Zhu JS. CircPTK2 inhibits the tumorigenesis and metastasis of gastric cancer by sponging miR-134-5p and activating CELF2/PTEN signaling. Pathol Res Pract 2021; 227:153615. [PMID: 34562827 DOI: 10.1016/j.prp.2021.153615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND CircRNAs are a new subset of noncoding RNAs formed by covalent closed loops and play crucial roles in the regulation of cancer gene expression. However, the roles and underlying mechanisms of circRNAs in gastric cancer (GC) remain indistinct. This study aimed to explore the role and mechanism of hsa_circ_0006421 (circPTK2) in GC. METHODS The differential expression of circRNAs between GC tissues and adjacent normal tissues were identified by a circRNA expression profiling. Associations of circPTK2 or miR-134-5p expression with clinicopathological characteristics and prognosis of GC patients were analyzed by chi-square of Fisher's exact tests and Kaplan-Meier analysis. CCK8, colony formation, EdU assays and animal models were performed to assess the effects of circPTK2 on proliferation and invasion of GC cells. CircPTK2-specific probes were used to purify the RNA pulled down from the circPTK2, and enrichment of circPTK2 and miR-134-5p was detected by qRT-PCR. The effects of circPTK2 on miR-134-5p expression and CELF2/PTEN signaling were examined by qRT-PCR and Western blotting analysis. RESULTS Low expression of circPTK2 and high expression of miR-134-5p were related to the poor survival, and high expression of miR-134-5p was related to the tumor recurrence in GC patients. Overexpressing circPTK2 suppressed the proliferation, colony formation, DNA synthesis and cell invasion as well as xenograft tumor growth and lung metastasis in vitro and in vivo, whereas silencing circPTK2 had the opposite effects. Moreover, circPTK2 was negatively correlated and co-localized with miR-134-5p in the cytoplasm of GC tissue cells. circPTK2 bound to and sponged miR-134-5p in GC cells, and miR-134-5p facilitated cell growth and invasion but attenuated circPTK2 induced tumor suppressive effects and CELF2/PTEN signaling activation in GC cells. CONCLUSIONS circPTK2 functions as a tumor suppressor in GC by sponging miR-134-5p and activating the CELF2/PTEN axis.
Collapse
Affiliation(s)
- Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Xiang-Yun Zhao
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Rui Liang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Xiao-Yu Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Ni-Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth people's Hospital, Shanghai 200233, PR China.
| |
Collapse
|
40
|
Bian W, Liu Z, Chu Y, Xing X. Silencing of circ_0078607 prevents development of gastric cancer and inactivates the ERK1/2/AKT pathway through the miR-188-3p/RAP1B axis. Anticancer Drugs 2021; 32:909-918. [PMID: 33929989 DOI: 10.1097/cad.0000000000001083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study is to explore the expression and mechanism of circ_0078607 on proliferation and apoptosis of gastric cancer. Real time PCR (RT-PCR) was performed to detect the expression of circ_0078607 in gastric cancer tumor tissues, plasma and cell lines. Cell viability was detected by cell counting Kit-8. Cell proliferation ability was assessed by cell cycle assay. The samples were analyzed by flow cytometry for the detection of apoptosis. Luciferase assay and RNA immunoprecipitation (RIP) were carried out to verify the relationship between circ_0078607 and miR-188-3p, miR-188-3p, and RAP1B. Western blot was employed to detect the protein level of RAP1B, ERK1/2 and AKT. In vivo, the effect of circ_0078607 on gastric cancer tumor growth was detected by lentivirus vector injection. Here, we found the increased level of circ_0078607 in gastric cancer tissues, gastric cancer patients plasma and cell lines. Knockdown of circ_0078607 could prevent proliferation and induce cell apoptosis in MKN-28 cells. Then we verified that circ_0078607 could interact with miR-188-3p by performed luciferase assay and RIP. Furthermore, we observed that RAP1B was a potential target of miR-188-3p. Next, we found that miR-188-3p inhibitor or overexpression of RAP1B could prevent the anti-tumor function of sh-circ_0078607. Silencing of circ_0078607 inhibited ERK1/2/AKT signal pathways via regulating miR-188-3p/RAP1B. In vivo, knockdown of circ_0078607 inhibited tumor growth. Knockdown of circ_0078607 inhibits the proliferation and induces apoptosis of gastric cancer via miR-188-3p/RAP1B signal pathway.
Collapse
Affiliation(s)
- Weixin Bian
- Department of Oncology, Heilongjiang Province Hospital
| | - Zhiqiang Liu
- Department of Hematology, Harbin Medical University Cancer Hospital
| | - Yanjie Chu
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiaofang Xing
- Department of Oncology, Heilongjiang Province Hospital
| |
Collapse
|
41
|
Deng L, Zhang X, Xiang X, Xiong R, Xiao D, Chen Z, Liu K, Feng G. NANOG Promotes Cell Proliferation, Invasion, and Stemness via IL-6/STAT3 Signaling in Esophageal Squamous Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211038492. [PMID: 34520294 PMCID: PMC8723181 DOI: 10.1177/15330338211038492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background: Cancer cells have properties similar to those of stem cells, including high proliferation and self-renewal ability. NANOG is the key regulatory gene that maintains the self-renewal and pluripotency characteristics of embryonic stem cells. We previously reported that knockdown of the pluripotent stem cell factor NANOG obviously reduced the proliferation and drug-resistance capabilities of esophageal squamous cell carcinoma (ESCC). In this study, we gained insights into the potential regulatory mechanism of NANOG, particularly in ESCC. Methods: NANOG was ectopically expressed in the Eca-109 cell line via pcDNA3.1 vector transfection. The mRNA expression of different genes was detected using quantitative real-time polymerase chain reaction, and protein quantification was performed by western blotting. The enzyme-linked immunosorbent assay was used to detect the expression of interleukin 6 (IL-6). The capabilities of proliferation, migration, and invasion were investigated using cell count and Transwell assays. The tumor sphere-forming assay was used to investigate the sphere formation capacity of cancer stem cells. Results: The expression of NANOG promoted the cell proliferation and sphere formation capacity of cancer stem cells in a dose-dependent manner. IL-6-mediated activation of signal transducer and activator of transcription 3 (STAT3) was closely related to the expression of NANOG in ESCC. Consistently, the target genes of STAT3, including CCL5, VEGFA, CCND1, and Bcl-xL, were upregulated upon the overexpression of NANOG. Conclusion: These results revealed that the expression of NANOG promotes cell proliferation, invasion, and stemness via IL-6/STAT3 signaling in ESCC.
Collapse
Affiliation(s)
- Li Deng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China.,School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Xinping Zhang
- Department of Oncology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaocong Xiang
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Rong Xiong
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Dongqin Xiao
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Zhu Chen
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Kang Liu
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Gang Feng
- Institute of Tissue Engineering and Stem Cells, Nanchong Central Hospital, 74655The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| |
Collapse
|
42
|
Fang G, Chen T, Mao R, Huang X, Ji L. Circular RNA circ_0089153 acts as a competing endogenous RNA to regulate colorectal cancer development by the miR-198/SUMO-specific peptidase 1 (SENP1) axis. Bioengineered 2021; 12:5664-5678. [PMID: 34516314 PMCID: PMC8806507 DOI: 10.1080/21655979.2021.1967076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence has indicated the implications of circular RNAs (circRNAs) in the development of colorectal cancer (CRC). In this study, we investigated the functional role and mechanism of circ_0089153 in CRC pathogenesis. The expression levels of circ_0089153, microRNA (miR)-198, and SUMO-specific peptidase 1 (SENP1) were gauged by quantitative real-time PCR (qRT-PCR) or western blot. Cell proliferation, sphere formation, tube formation, and apoptosis abilities were detected by 5-Ethynyl-2ʹ-Deoxyuridine (EdU), sphere formation, tube formation, and flow cytometry assays, respectively. The direct relationship between miR-198 and circ_0089153 or SENP1 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. The mouse xenograft assays were performed to evaluate the role of circ_0089153 in vivo. Our data showed that circ_0089153 was overexpressed in CRC tissues and cells. Depletion of circ_0089153 repressed cell proliferation, sphere formation ability, and enhanced cell apoptosis, as well as inhibited tube formation in vitro. Moreover, circ_0089153 depletion diminished tumor growth in vivo. Mechanistically, circ_0089153 targeted miR-198, and the effects of circ_0089153 were mediated by miR-198. SENP1 was identified as a direct and functional target of miR-198. Circ_0089153 worked as a competing endogenous RNA (ceRNA) to post-transcriptionally regulate SENP1 expression by miR-198. Our findings identify circ_0089153 as a novel regulator of CRC development through the regulation of the miR-198/SENP1 axis and establish a strong rationale for developing circ_0089153 as a promising therapeutic against CRC.
Collapse
Affiliation(s)
- Guan Fang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tingting Chen
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ruibo Mao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaming Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Ji
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
43
|
Tan L, Cheng D, Wen J, Huang K, Zhang Q. Identification of prognostic hypoxia-related genes signature on the tumor microenvironment in esophageal cancer. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:7743-7758. [PMID: 34814273 DOI: 10.3934/mbe.2021384] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Hypoxia is a crucial factor in the development of esophageal cancer. The relationship between hypoxia and immune status in the esophageal cancer microenvironment is becoming increasingly important in clinical practice. This study aims to clarify and investigate the possible connection between immunotherapy and hypoxia in esophageal cancer. METHODS The Cancer Genome Atlas databases are used to find two types of esophageal cancer cases. Cox regressions analyses are used to screen genes for hypoxia-related traits. After that, the genetic signature is validated by survival analysis and the construction of ROC curves. GSEA is used to compare differences in enrichment in the two groups and is followed by the CIBERSORT tool to investigate a potentially relevant correlation between immune cells and gene signatures. RESULTS We found that the esophageal adenocarcinoma hypoxia model contains 3 genes (PGK1, PGM1, SLC2A3), and the esophageal squamous cell carcinoma hypoxia model contains 2 genes (EGFR, ATF3). The findings demonstrated that the survival rate of patients in the high-risk group is lower than in the lower-risk group. Furthermore, we find that three kinds of immune cells (memory activated CD4+ T cells, activated mast cells, and M2 macrophages) have a marked infiltration in the tissues of patients in the high-risk group. Moreover, we find that PD-L1 and CD244 are highly expressed in high-risk groups. CONCLUSIONS Our data demonstrate that oxygen deprivation is correlated with prognosis and the incidence of immune cell infiltration in patients with both types of esophageal cancer, which provides an immunological perspective for the development of personalized therapy.
Collapse
Affiliation(s)
- Linlin Tan
- The Affiliated People's Hospital of Ningbo University, Cardiothoracic Surgery Department, Ningbo, Zhejiang, China
| | - Dingzhuo Cheng
- Ningbo NO6. Hospital, Neurosurgery Department, Ningbo, Zhejiang, China
| | - Jianbo Wen
- The Affiliated People's Hospital of Ningbo University, Cardiothoracic Surgery Department, Ningbo, Zhejiang, China
| | - Kefeng Huang
- The Affiliated People's Hospital of Ningbo University, Cardiothoracic Surgery Department, Ningbo, Zhejiang, China
| | - Qin Zhang
- The Affiliated People's Hospital of Ningbo University, Cardiothoracic Surgery Department, Ningbo, Zhejiang, China
| |
Collapse
|
44
|
Recent advances of m 6A methylation modification in esophageal squamous cell carcinoma. Cancer Cell Int 2021; 21:421. [PMID: 34376206 PMCID: PMC8353866 DOI: 10.1186/s12935-021-02132-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
In recent years, with the development of RNA sequencing technology and bioinformatics methods, the epigenetic modification of RNA based on N6-methyladenosine (m6A) has gradually become a research hotspot in the field of bioscience. m6A is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs). m6A methylation modification can dynamically and reversibly regulate RNA transport, localization, translation and degradation through the interaction of methyltransferase, demethylase and reading protein. m6A methylation can regulate the expression of proto-oncogenes and tumor suppressor genes at the epigenetic modification level to affect tumor occurrence and metastasis. The morbidity and mortality of esophageal cancer (EC) are still high worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common tissue subtype of EC. This article reviews the related concepts, biological functions and recent advances of m6A methylation in ESCC, and looks forward to the prospect of m6A methylation as a new diagnostic biomarker and potential therapeutic target for ESCC.
Collapse
|
45
|
Zhang H, Yang M, Wu X, Li Q, Li X, Zhao Y, Du F, Chen Y, Wu Z, Xiao Z, Shen J, Wen Q, Hu W, Cho CH, Chen M, Zhou Y, Li M. The distinct roles of exosomes in tumor-stroma crosstalk within gastric tumor microenvironment. Pharmacol Res 2021; 171:105785. [PMID: 34311072 DOI: 10.1016/j.phrs.2021.105785] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) development is a complex process displaying polytropic cell and molecular landscape within gastric tumor microenvironment (TME). Stromal cells in TME, including fibroblasts, endothelial cells, mesenchymal stem cells, and various immune cells, support tumor growth, metastasis, and recurrence, functioning as the soil for gastric tumorigenesis. Importantly, exosomes secreted by either stromal cells or tumor cells during tumor-stroma crosstalk perform as crucial transporter of agents including RNAs and proteins for cell-cell communication in GC pathogenesis. Therefore, given the distinct roles of exosomes secreted by various cell types in GC TME, increasing evidence has indicated that exosomes present as new biomarkers for GC diagnosis and prognosis and shed light on novel approaches for GC treatment.
Collapse
Affiliation(s)
- Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Min Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Xin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen 518000, Guangzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Meijuan Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yejiang Zhou
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China; South Sichuan Institute of Translational Medicine, Luzhou 646000, Sichuan, China.
| |
Collapse
|
46
|
Sun X, Deng K, Zang Y, Zhang Z, Zhao B, Fan J, Huang L. Exploring the regulatory roles of circular RNAs in the pathogenesis of atherosclerosis. Vascul Pharmacol 2021; 141:106898. [PMID: 34302990 DOI: 10.1016/j.vph.2021.106898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/04/2021] [Accepted: 07/19/2021] [Indexed: 01/19/2023]
Abstract
Circular RNAs (circRNAs) are a class of noncoding RNAs with a covalently closed loop structure. Recent evidence has shown that circRNAs can regulate gene transcription, alternative splicing, microRNA (miRNA) "molecular sponges", RNA-binding proteins and protein translation. Atherosclerosis is one of the leading causes of death worldwide, and more studies have indicated that circRNAs are related to atherosclerosis pathogenesis, including vascular endothelial cells, vascular smooth muscle cells, inflammation and lipid metabolism. In this review, we systematically summarize the biogenesis, characteristics and functions of circRNAs with a focus on their roles in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Xueyuan Sun
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Kaiyuan Deng
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Yunhui Zang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Boxin Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Jingyao Fan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China
| | - Lijuan Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, People's Republic of China.
| |
Collapse
|
47
|
Xu K, Qiu Z, Xu L, Qiu X, Hong L, Wang J. Increased levels of circulating circular RNA (hsa_circ_0013587) may serve as a novel biomarker for pancreatic cancer. Biomark Med 2021; 15:977-985. [PMID: 34289738 DOI: 10.2217/bmm-2020-0750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: Circular RNA can serve as a biomarker for early diagnosis of pancreatic cancer. Materials & methods: Analyzed the expression of various differentially expressed circular RNAs in the pancreatic cancer tissues by gene chip and identified the expression of hsa_circ_0013587 in pancreatic cancer cells, tissues and plasma by quantitative reverse transcription PCR (qRT-PCR). Results: Hsa_circ_0013587 was highly expressed in the pancreatic cancer tissues, cell lines and plasma samples from patients with pancreatic cancer. Notably, hsa_circ_0013587 was upregulated in pancreatic cancer patients with later clinical stages III-IV as compared with those detected in early clinical stages I-II. Conclusion: A high expression of hsa_circ_0013587 may serve as a novel diagnostic and therapeutic biomarker for pancreatic cancer.
Collapse
Affiliation(s)
- Kaiwei Xu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
| | - Zhoujian Qiu
- Department of Radiology, Second Yinzhou District Hospital, Ningbo, Zhejiang Province, China
| | - Liu Xu
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
| | - Xuedan Qiu
- Clinical laboratory, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, Zhejiang Province, China
| | - Lu Hong
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
| | - Jianhua Wang
- Department of Radiology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo University School of Medicine, Ningbo, Zhejiang Province, China
| |
Collapse
|
48
|
Xu J, Chen X, Sun Y, Shi Y, Teng F, Lv M, Liu C, Jia X. The Regulation Network and Clinical Significance of Circular RNAs in Breast Cancer. Front Oncol 2021; 11:691317. [PMID: 34307155 PMCID: PMC8299466 DOI: 10.3389/fonc.2021.691317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors in women worldwide. Circular RNA (circRNA) is a class of structurally stable non-coding RNA with a covalently closed circular structure. In recent years, with the development of high-throughput RNA sequencing, many circRNAs have been discovered and have proven to be clinically significant in the development and progression of breast cancer. Importantly, several regulators of circRNA biogenesis have been discovered. Here, we systematically summarize recent progress regarding the network of regulation governing the biogenesis, degradation, and distribution of circRNAs, and we comprehensively analyze the functions, mechanisms, and clinical significance of circRNA in breast cancer.
Collapse
Affiliation(s)
- Juan Xu
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyi Chen
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Sun
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Yaqian Shi
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Teng
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Liu
- Department of Medical Genetics, Nanjing Medical University, Nanjing, China
| | - Xuemei Jia
- Deparment of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Radanova M, Mihaylova G, Nazifova-Tasinova N, Levkova M, Tasinov O, Ivanova D, Mihaylova Z, Donev I. Oncogenic Functions and Clinical Significance of Circular RNAs in Colorectal Cancer. Cancers (Basel) 2021; 13:3395. [PMID: 34298612 PMCID: PMC8303601 DOI: 10.3390/cancers13143395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/13/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is ranked as the second most commonly diagnosed disease in females and the third in males worldwide. Therefore, the finding of new more reliable biomarkers for early diagnosis, for prediction of metastasis, and resistance to conventional therapies is an important challenge in overcoming the disease. The current review presents circular RNAs (circRNAs) with their unique features as potential prognostic and diagnostic biomarkers in CRC. The review highlights the mechanism of action and the role of circRNAs with oncogenic functions in the CRC as well as the association between their expression and clinicopathological characteristics of CRC patients. The comprehension of the role of oncogenic circRNAs in CRC pathogenesis is growing rapidly and the next step is using them as suitable new drug targets in the personalized treatment of CRC patients.
Collapse
Affiliation(s)
- Maria Radanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
- Laboratory of Molecular Pathology, University Hospital “St. Marina”, 9000 Varna, Bulgaria
| | - Galya Mihaylova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Neshe Nazifova-Tasinova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Mariya Levkova
- Department of Medical Genetics, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria;
| | - Oskan Tasinov
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Desislava Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Medical University of Varna, 9000 Varna, Bulgaria; (M.R.); (G.M.); (N.N.-T.); (O.T.); (D.I.)
| | - Zhasmina Mihaylova
- Clinic of Medical Oncology, Military Medical Academy, 1000 Sofia, Bulgaria;
| | - Ivan Donev
- Clinic of Medical Oncology, Hospital Nadezhda, 1000 Sofia, Bulgaria
| |
Collapse
|
50
|
Wang JH, Shi CW, Lu YY, Zeng Y, Cheng MY, Wang RY, Sun Y, Jiang YL, Yang WT, Zhao DD, Huang HB, Ye LP, Cao X, Yang GL, Wang CF. MicroRNA and circRNA Expression Analysis in a Zbtb1 Gene Knockout Monoclonal EL4 Cell Line. Front Cell Infect Microbiol 2021; 11:706919. [PMID: 34290994 PMCID: PMC8287301 DOI: 10.3389/fcimb.2021.706919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Zinc finger and BTB domain containing 1(Zbtb1) is a transcriptional suppressor protein, and a member of the mammalian Zbtb gene family. Previous studies have shown that Zbtb1 is essential for T-cell development. However, the role of Zbtb1 in T-cell lymphoma is undetermined. In this study, an EL4 cell line with Zbtb1 deletion was constructed using the CRISPR-Cas9 technique. The expression profiles of microRNA and circRNA produced by the control and gene deletion groups were determined by RNA-seq. In general, 24 differentially expressed microRNA and 16 differentially expressed circRNA were found between normal group and gene deletion group. Through further analysis of differentially expressed genes, GO term histogram and KEGG scatter plot were drawn, and three pairs of miRNA and circRNA regulatory relationships were found. This study describes the differentially expressed microRNA and circRNA in normal and Zbtb1-deficient EL4 cell lines, thus providing potential targets for drug development and clinical treatment of T-cell lymphoma.
Collapse
Affiliation(s)
- Jun-Hong Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yi-Yuan Lu
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan Zeng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ming-Yang Cheng
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Ru-Yu Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yu Sun
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Dan-Dan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Xin Cao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.,Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China.,Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| |
Collapse
|