1
|
Wei L, Aitchison JD, Kaushansky A, Mast FD. Systems-level reconstruction of kinase phosphosignaling networks regulating endothelial barrier integrity using temporal data. NPJ Syst Biol Appl 2024; 10:134. [PMID: 39548089 PMCID: PMC11568298 DOI: 10.1038/s41540-024-00468-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Phosphosignaling networks control cellular processes. We built kinase-mediated regulatory networks elicited by thrombin stimulation of brain endothelial cells using two computational strategies: Temporal Pathway Synthesizer (TPS), which uses phosphoproteomics data as input, and Temporally REsolved KInase Network Generation (TREKING), which uses kinase inhibitor screens. TPS and TREKING predicted overlapping barrier-regulatory kinases connected with unique network topology. Each strategy effectively describes regulatory signaling networks and is broadly applicable across biological systems.
Collapse
Affiliation(s)
- Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA.
| | - John D Aitchison
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98105, USA
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA
- Department of Global Health, University of Washington, Seattle, WA, 98105, USA
| | - Fred D Mast
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, 98109, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98105, USA.
| |
Collapse
|
2
|
Wei L, Aitchison JD, Kaushansky A, Mast FD. Systems-level reconstruction of kinase phosphosignaling networks regulating endothelial barrier integrity using temporal data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606198. [PMID: 39149238 PMCID: PMC11326140 DOI: 10.1101/2024.08.01.606198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Phosphosignaling networks control cellular processes. We built kinase-mediated regulatory networks elicited by thrombin stimulation of brain endothelial cells using two computational strategies: Temporal Pathway Synthesizer (TPS), which uses phosphoproetiomics data as input, and Temporally REsolved KInase Network Generation (TREKING), which uses kinase inhibitor screens. TPS and TREKING predicted overlapping barrier-regulatory kinases connected with unique network topology. Each strategy effectively describes regulatory signaling networks and is broadly applicable across biological systems.
Collapse
|
3
|
Wei L, Dankwa S, Vijayan K, Smith JD, Kaushansky A. Interrogating endothelial barrier regulation by temporally resolved kinase network generation. Life Sci Alliance 2024; 7:e202302522. [PMID: 38467420 PMCID: PMC10927359 DOI: 10.26508/lsa.202302522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Kinases are key players in endothelial barrier regulation, yet their temporal function and regulatory phosphosignaling networks are incompletely understood. We developed a novel methodology, Temporally REsolved KInase Network Generation (TREKING), which combines a 28-kinase inhibitor screen with machine learning and network reconstruction to build time-resolved, functional phosphosignaling networks. We demonstrated the utility of TREKING for identifying pathways mediating barrier integrity after activation by thrombin with or without TNF preconditioning in brain endothelial cells. TREKING predicted over 100 kinases involved in barrier regulation and discerned complex condition-specific pathways. For instance, the MAPK-activated protein kinase 2 (MAPKAPK2/MK2) had early barrier-weakening activity in both inflammatory conditions but late barrier-strengthening activity exclusively with thrombin alone. Using temporal Western blotting, we confirmed that MAPKAPK2/MK2 was differentially phosphorylated under the two inflammatory conditions. We further showed with lentivirus-mediated knockdown of MAPK14/p38α and drug targeting the MAPK14/p38α-MAPKAPK2/MK2 complex that a MAP3K20/ZAK-MAPK14/p38α axis controlled the late activation of MAPKAPK2/MK2 in the thrombin-alone condition. Beyond the MAPKAPK2/MK2 switch, TREKING predicts extensive interconnected networks that control endothelial barrier dynamics.
Collapse
Affiliation(s)
- Ling Wei
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Selasi Dankwa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kamalakannan Vijayan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Joseph D Smith
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Alexis Kaushansky
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
4
|
Chan M, Kang Y, Osborne S, Zager M, Gujral TS. A kinase to cytokine explorer to identify molecular regulators and potential therapeutic opportunities. eLife 2024; 12:RP91472. [PMID: 38305363 PMCID: PMC10945549 DOI: 10.7554/elife.91472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Cytokines and chemokines are secreted proteins that regulate various biological processes, such as inflammation, immune response, and cell differentiation. Therefore, disruption of signaling pathways involving these proteins has been linked to a range of diseases, including cancer. However, targeting individual cytokines, chemokines, or their receptors is challenging due to their regulatory redundancy and incomplete understanding of their signaling networks. To transform these difficult-to-drug targets into a pharmacologically manageable class, we developed a web-based platform called KinCytE. This platform was designed to link the effects of kinase inhibitors, a well-established class of drugs, with cytokine and chemokine release and signaling networks. The resulting KinCytE platform enables users to investigate protein kinases that regulate specific cytokines or chemokines, generate a ranked list of FDA-approved kinase inhibitors that affect cytokine/chemokine activity, and explore and visualize cytokine signaling network thus facilitating drugging this challenging target class. KinCytE is freely accessible via https://atlas.fredhutch.org/kincyte.
Collapse
Affiliation(s)
- Marina Chan
- Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Yuqi Kang
- Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Shannon Osborne
- Data Visualization Core, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Michael Zager
- Data Visualization Core, Fred Hutchinson Cancer CenterSeattleUnited States
| | - Taranjit S Gujral
- Human Biology Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Pharmacology, University of WashingtonSeattleUnited States
| |
Collapse
|
5
|
Stephenson EH, Higgins JMG. Pharmacological approaches to understanding protein kinase signaling networks. Front Pharmacol 2023; 14:1310135. [PMID: 38164473 PMCID: PMC10757940 DOI: 10.3389/fphar.2023.1310135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Protein kinases play vital roles in controlling cell behavior, and an array of kinase inhibitors are used successfully for treatment of disease. Typical drug development pipelines involve biological studies to validate a protein kinase target, followed by the identification of small molecules that effectively inhibit this target in cells, animal models, and patients. However, it is clear that protein kinases operate within complex signaling networks. These networks increase the resilience of signaling pathways, which can render cells relatively insensitive to inhibition of a single kinase, and provide the potential for pathway rewiring, which can result in resistance to therapy. It is therefore vital to understand the properties of kinase signaling networks in health and disease so that we can design effective multi-targeted drugs or combinations of drugs. Here, we outline how pharmacological and chemo-genetic approaches can contribute to such knowledge, despite the known low selectivity of many kinase inhibitors. We discuss how detailed profiling of target engagement by kinase inhibitors can underpin these studies; how chemical probes can be used to uncover kinase-substrate relationships, and how these tools can be used to gain insight into the configuration and function of kinase signaling networks.
Collapse
Affiliation(s)
| | - Jonathan M. G. Higgins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle uponTyne, United Kingdom
| |
Collapse
|
6
|
Golkowski M, Lius A, Sapre T, Lau HT, Moreno T, Maly DJ, Ong SE. Multiplexed kinase interactome profiling quantifies cellular network activity and plasticity. Mol Cell 2023; 83:803-818.e8. [PMID: 36736316 PMCID: PMC10072906 DOI: 10.1016/j.molcel.2023.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 12/07/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Dynamic changes in protein-protein interaction (PPI) networks underlie all physiological cellular functions and drive devastating human diseases. Profiling PPI networks can, therefore, provide critical insight into disease mechanisms and identify new drug targets. Kinases are regulatory nodes in many PPI networks; yet, facile methods to systematically study kinase interactome dynamics are lacking. We describe kinobead competition and correlation analysis (kiCCA), a quantitative mass spectrometry-based chemoproteomic method for rapid and highly multiplexed profiling of endogenous kinase interactomes. Using kiCCA, we identified 1,154 PPIs of 238 kinases across 18 diverse cancer lines, quantifying context-dependent kinase interactome changes linked to cancer type, plasticity, and signaling states, thereby assembling an extensive knowledgebase for cell signaling research. We discovered drug target candidates, including an endocytic adapter-associated kinase (AAK1) complex that promotes cancer cell epithelial-mesenchymal plasticity and drug resistance. Our data demonstrate the importance of kinase interactome dynamics for cellular signaling in health and disease.
Collapse
Affiliation(s)
- Martin Golkowski
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| | - Andrea Lius
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Tanmay Sapre
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Taylor Moreno
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Olson AT, Kang Y, Ladha AM, Lim CB, Lagunoff M, Gujral TS, Geballe AP. Polypharmacology-based kinome screen identifies new regulators of KSHV reactivation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526589. [PMID: 36778430 PMCID: PMC9915688 DOI: 10.1101/2023.02.01.526589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis. Several cellular protein kinases have been reported to promote or restrict KSHV reactivation, but our knowledge of these signaling mediators and pathways is incomplete. We employed a polypharmacology-based kinome screen to identifiy specific kinases that regulate KSHV reactivation. Those identified by the screen and validated by knockdown experiments included several kinases that enhance lytic reactivation: ERBB2 (HER2 or neu ), ERBB3 (HER3), ERBB4 (HER4), MKNK2 (MNK2), ITK, TEC, and DSTYK (RIPK5). Conversely, ERBB1 (EGFR1 or HER1), MKNK1 (MNK1) and FRK (PTK5) were found to promote the maintenance of latency. Mechanistic characterization of ERBB2 pro-lytic functions revealed a signaling connection between ERBB2 and the activation of CREB1, a transcription factor that drives KSHV lytic gene expression. These studies provided a proof-of-principle application of a polypharmacology-based kinome screen for the study of KSHV reactivation and enabled the discovery of both kinase inhibitors and specific kinases that regulate the KSHV latent-to-lytic replication switch. Author Summary Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, a cancer particularly prevalent in Africa. In cancer cells, the virus persists in a quiescent form called latency, in which only a few viral genes are made. Periodically, the virus switches into an active replicative cycle in which most of the viral genes are made and new virus is produced. What controls the switch from latency to active replication is not well understood, but cellular kinases, enzymes that control many cellular processes, have been implicated. Using a cell culture model of KSHV reactivation along with an innovative screening method that probes the effects of many cellular kinases simultaneously, we identified drugs that significantly limit KSHV reactivation, as well as specific kinases that either enhance or restrict KSHV replicative cycle. Among these were the ERBB kinases which are known to regulate growth of cancer cells. Understanding how these and other kinases contribute to the switch leading to production of more infectious virus helps us understand the mediators and mechanisms of KSHV diseases. Additionally, because kinase inhibitors are proving to be effective for treating other diseases including some cancers, identifying ones that restrict KSHV replicative cycle may lead to new approaches to treating KSHV-related diseases.
Collapse
Affiliation(s)
- Annabel T. Olson
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Yuqi Kang
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Anushka M. Ladha
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Chuan Bian Lim
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Michael Lagunoff
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Taran S. Gujral
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Adam P. Geballe
- Division of Human Biology, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
- Division of Clinical Research, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
- Department of Microbiology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|