1
|
Goossens E, Deblock L, Caboor L, Eynden DVD, Josipovic I, Isaacura PR, Maksimova E, Van Impe M, Bonnin A, Segers P, Cornillie P, Boone MN, Van Driessche I, De Spiegelaere W, De Roo J, Sips P, De Buysser K. From Corrosion Casting to Virtual Dissection: Contrast-Enhanced Vascular Imaging using Hafnium Oxide Nanocrystals. SMALL METHODS 2024; 8:e2301499. [PMID: 38200600 DOI: 10.1002/smtd.202301499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Indexed: 01/12/2024]
Abstract
Vascular corrosion casting is a method used to visualize the three dimensional (3D) anatomy and branching pattern of blood vessels. A polymer resin is injected in the vascular system and, after curing, the surrounding tissue is removed. The latter often deforms or even fractures the fragile cast. Here, a method is proposed that does not require corrosion, and is based on in situ micro computed tomography (micro-CT) scans. To overcome the lack of CT contrast between the polymer cast and the animals' surrounding soft tissue, hafnium oxide nanocrystals (HfO2 NCs) are introduced as CT contrast agents into the resin. The NCs dramatically improve the overall CT contrast of the cast and allow for straightforward segmentation in the CT scans. Careful design of the NC surface chemistry ensures the colloidal stability of the NCs in the casting resin. Using only 5 m% of HfO2 NCs, high-quality cardiovascular casts of both zebrafish and mice can be automatically segmented using CT imaging software. This allows to differentiate even μ $\umu$ m-scale details without having to alter the current resin injection methods. This new method of virtual dissection by visualizing casts in situ using contrast-enhanced CT imaging greatly expands the application potential of the technique.
Collapse
Affiliation(s)
- Eline Goossens
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Loren Deblock
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
| | - Lisa Caboor
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Dietger Van den Eynden
- Department of Chemistry, Ghent University, Ghent, 9000, Belgium
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Iván Josipovic
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | - Pablo Reyes Isaacura
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
- Centre for Polymer Material Technologies, Ghent University, Ghent, 9052, Belgium
- Laboratory for Chemical Technology, Ghent University, Ghent, 9052, Belgium
| | - Elizaveta Maksimova
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, 4056, Switzerland
| | - Matthias Van Impe
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Anne Bonnin
- Swiss Light Source, Paul Scherrer Institut, Villigen PSI, 5232, Switzerland
| | - Patrick Segers
- Institute of Biomedical Engineering and Technology, Ghent University, Ghent, 9000, Belgium
| | - Pieter Cornillie
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Matthieu N Boone
- Center for X-ray Tomography, Ghent University, Ghent, 9000, Belgium
| | | | - Ward De Spiegelaere
- Laboratory of Veterinary Morphology, Ghent University, Merelbeke, 9820, Belgium
| | - Jonathan De Roo
- Department of Chemistry, University of Basel, Basel, 4058, Switzerland
| | - Patrick Sips
- Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | | |
Collapse
|
2
|
Fitzpatrick Z, Ghabdan Zanluqui N, Rosenblum JS, Tuong ZK, Lee CYC, Chandrashekhar V, Negro-Demontel ML, Stewart AP, Posner DA, Buckley M, Allinson KSJ, Mastorakos P, Chittiboina P, Maric D, Donahue D, Helmy A, Tajsic T, Ferdinand JR, Portet A, Peñalver A, Gillman E, Zhuang Z, Clatworthy MR, McGavern DB. Venous-plexus-associated lymphoid hubs support meningeal humoral immunity. Nature 2024; 628:612-619. [PMID: 38509366 PMCID: PMC11482273 DOI: 10.1038/s41586-024-07202-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
There is increasing interest in how immune cells in the meninges-the membranes that surround the brain and spinal cord-contribute to homeostasis and disease in the central nervous system1,2. The outer layer of the meninges, the dura mater, has recently been described to contain both innate and adaptive immune cells, and functions as a site for B cell development3-6. Here we identify organized lymphoid structures that protect fenestrated vasculature in the dura mater. The most elaborate of these dural-associated lymphoid tissues (DALT) surrounded the rostral-rhinal confluence of the sinuses and included lymphatic vessels. We termed this structure, which interfaces with the skull bone marrow and a comparable venous plexus at the skull base, the rostral-rhinal venolymphatic hub. Immune aggregates were present in DALT during homeostasis and expanded with age or after challenge with systemic or nasal antigens. DALT contain germinal centre B cells and support the generation of somatically mutated, antibody-producing cells in response to a nasal pathogen challenge. Inhibition of lymphocyte entry into the rostral-rhinal hub at the time of nasal viral challenge abrogated the generation of germinal centre B cells and class-switched plasma cells, as did perturbation of B-T cell interactions. These data demonstrate a lymphoid structure around vasculature in the dura mater that can sample antigens and rapidly support humoral immune responses after local pathogen challenge.
Collapse
Affiliation(s)
- Zachary Fitzpatrick
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Nagela Ghabdan Zanluqui
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | | | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Colin Y C Lee
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | | | - Maria Luciana Negro-Demontel
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | - Andrew P Stewart
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - David A Posner
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | - Monica Buckley
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
| | - Kieren S J Allinson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Panagiotis Mastorakos
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA
- Department of Surgical Neurology, NINDS, NIH, Bethesda, MD, USA
| | | | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, NINDS, NIH, Bethesda, MD, USA
| | | | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tamara Tajsic
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - John R Ferdinand
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Anais Portet
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ana Peñalver
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Eleanor Gillman
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Menna R Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Aboughaly M, Babaei-Ghazvini A, Dhar P, Patel R, Acharya B. Enhancing the Potential of Polymer Composites Using Biochar as a Filler: A Review. Polymers (Basel) 2023; 15:3981. [PMID: 37836030 PMCID: PMC10575138 DOI: 10.3390/polym15193981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
This article discusses the scope biochar's uses; biochar is a sustainable organic material, rich in carbon, that can be synthesized from various types of biomass feedstock using thermochemical reactions such as pyrolysis or carbonization. Biochar is an eco-friendly filler material that can enhance polymer composites' mechanical, thermal, and electrical performances. In comparison to three inorganic fillers, namely carbon black, carbon nanotubes (CNT), and carbon filaments, this paper explores the optimal operating conditions for regulating biochar's physical characteristics, including pore size, macro- and microporosity, and mechanical, thermal, and electrical properties. Additionally, this article presents a comparative analysis of biochar yield from various thermochemical processes. Moreover, the review examines how the surface functionality, surface area, and particle size of biochar can influence its mechanical and electrical performance as a filler material in polymer composites at different biochar loads. The study showcases the outstanding properties of biochar and recommends optimal loads that can improve the mechanical, thermal, and electrical properties of polymer composites.
Collapse
Affiliation(s)
| | | | | | | | - Bishnu Acharya
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada; (M.A.); (A.B.-G.); (P.D.); (R.P.)
| |
Collapse
|
4
|
Dang DD, Chandrashekhar V, Chandrashekhar V, Ghabdanzanluqui N, Knutsen RH, Nazari MA, Nimmagadda L, Donahue DR, McGavern DB, Kozel BA, Heiss JD, Pacak K, Zhuang Z, Rosenblum JS. A protocol for visualization of murine in situ neurovascular interfaces. STAR Protoc 2023; 4:102367. [PMID: 37339049 PMCID: PMC10511866 DOI: 10.1016/j.xpro.2023.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/04/2023] [Accepted: 05/18/2023] [Indexed: 06/22/2023] Open
Abstract
Mapping cranial vasculature and adjacent neurovascular interfaces in their entirety will enhance our understanding of central nervous system function in any physiologic state. We present a workflow to visualize in situ murine vasculature and surrounding cranial structures using terminal polymer casting of vessels, iterative sample processing and image acquisition, and automated image registration and processing. While this method does not obtain dynamic imaging due to mouse sacrifice, these studies can be performed before sacrifice and processed with other acquired images. For complete details on the use and execution of this protocol, please refer to Rosenblum et al.1.
Collapse
Affiliation(s)
- Danielle D Dang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Nagela Ghabdanzanluqui
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Russell H Knutsen
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew A Nazari
- Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD 20892, USA
| | - Likitha Nimmagadda
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beth A Kozel
- Laboratory of Vascular and Matrix Genetics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John D Heiss
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD 20892, USA
| | - Zhengping Zhuang
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
5
|
Scherberich J, Windfelder AG, Krombach GA. Analysis of fixation materials in micro-CT: It doesn't always have to be styrofoam. PLoS One 2023; 18:e0286039. [PMID: 37315002 DOI: 10.1371/journal.pone.0286039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 06/16/2023] Open
Abstract
Good fixation of filigree specimens for micro-CT examinations is often a challenge. Movement artefacts, over-radiation or even crushing of the specimen can easily occur. Since different specimens have different requirements, we scanned, analysed and compared 19 possible fixation materials under the same conditions in the micro-CT. We focused on radiodensity, porosity and reversibility of these fixation materials. Furthermore, we have made sure that all materials are cheap and easily available. The scans were performed with a SkyScan 1173 micro-CT. All dry fixation materials tested were punched into 5 mm diameter cylinders and clamped into 0.2 ml reaction vessels. A voxel size of 5.33 μm was achieved in a 180° scan in 0.3° steps. Ideally, fixation materials should not be visible in the reconstructed image, i.e., barely binarised. Besides common micro-CT fixation materials such as styrofoam (-935 Hounsfield Units) or Basotect foam (-943 Hounsfield Units), polyethylene air cushions (-944 Hounsfield Units), Micropor foam (-926 Hounsfield Units) and polyurethane foam, (-960 Hounsfield Units to -470 Hounsfield Units) have proved to be attractive alternatives. Furthermore, more radiopaque materials such as paraffin wax granulate (-640 Hounsfield Units) and epoxy resin (-190 Hounsfield Units) are also suitable as fixation materials. These materials often can be removed in the reconstructed image by segmentation. Sample fixations in the studies of recent years are almost all limited to fixation in Parafilm, Styrofoam, or Basotect foam if the fixation type is mentioned at all. However, these are not always useful, as styrofoam, for example, dissolves in some common media such as methylsalicylate. We show that micro-CT laboratories should be equipped with various fixation materials to achieve high-level image quality.
Collapse
Affiliation(s)
- Jan Scherberich
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, Giessen, Hesse, Germany
| | - Anton G Windfelder
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, Giessen, Hesse, Germany
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Giessen, Hesse, Germany
| | - Gabriele A Krombach
- Department of Diagnostic and Interventional Radiology (Experimental Radiology), University Hospital Giessen, Giessen, Hesse, Germany
| |
Collapse
|