1
|
Pietsch K, Storm‐Johannsen L, Schmidt‐Thomée A, Pompe T. Correlation between Fibrin Fibrillation Kinetics and the Resulting Fibrin Network Microstructure. Adv Healthc Mater 2023; 12:e2202231. [PMID: 36494086 PMCID: PMC11468976 DOI: 10.1002/adhm.202202231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/27/2022] [Indexed: 12/14/2022]
Abstract
Fibrin, the prominent extracellular matrix in early wound tissue, is discussed to influence immune cells and healing. The nature of fibrinogen/fibrin to form fibrillary networks is frequently exploited to engineer microenvironments for cellular analysis. This study focuses on revealing the correlation of fibril formation kinetic and the resulting network microstructure of engineered 3D fibrin networks. Different concentrations of fibrinogen (1-3 mg mL-1 ), thrombin (0.01-0.15 U mL-1 ), sodium chloride (40-120 mm), and calcium chloride (1-10 mm) are applied to assess the impact on the fibril growth kinetics by turbidity analysis and on the resulting fibril and pore diameter by laser scanning microscopy. The results highlight a direct influence of the sodium chloride concentration on fibrillation kinetics and reveal a strong correlation between fibrillation kinetics and network microstructure. With the assumption of a first-order growth kinetic, an increase of the growth constant k (0.015-0.04 min-1 ) is found to correlate to a decrease in fibril diameter (1-0.65 µm) and pore diameter (11-5 µm). The new findings enable an easy prediction of 3D fibrin network microstructure by the fibril formation kinetic and contribute to an improved engineering of defined scaffolds for tissue engineering and cell culture applications.
Collapse
Affiliation(s)
- Katja Pietsch
- Institute of BiochemistryLeipzig UniversityJohannisallee 21‐2304103LeipzigGermany
| | - Lisa Storm‐Johannsen
- Institute of BiochemistryLeipzig UniversityJohannisallee 21‐2304103LeipzigGermany
| | | | - Tilo Pompe
- Institute of BiochemistryLeipzig UniversityJohannisallee 21‐2304103LeipzigGermany
| |
Collapse
|
2
|
Kosinski R, Perez JM, Schöneweiß EC, Ruiz-Blanco YB, Ponzo I, Bravo-Rodriguez K, Erkelenz M, Schlücker S, Uhlenbrock G, Sanchez-Garcia E, Saccà B. The role of DNA nanostructures in the catalytic properties of an allosterically regulated protease. SCIENCE ADVANCES 2022; 8:eabk0425. [PMID: 34985948 PMCID: PMC8730604 DOI: 10.1126/sciadv.abk0425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/10/2021] [Indexed: 06/04/2023]
Abstract
DNA-scaffolded enzymes typically show altered kinetic properties; however, the mechanism behind this phenomenon is still poorly understood. We address this question using thrombin, a model of allosterically regulated serine proteases, encaged into DNA origami cavities with distinct structural and electrostatic features. We compare the hydrolysis of substrates that differ only in their net charge due to a terminal residue far from the cleavage site and presumably involved in the allosteric activation of thrombin. Our data show that the reaction rate is affected by DNA/substrate electrostatic interactions, proportionally to the degree of DNA/enzyme tethering. For substrates of opposite net charge, this leads to an inversion of the catalytic response of the DNA-scaffolded thrombin when compared to its freely diffusing counterpart. Hence, by altering the electrostatic environment nearby the encaged enzyme, DNA nanostructures interfere with charge-dependent mechanisms of enzyme-substrate recognition and may offer an alternative tool to regulate allosteric processes through spatial confinement.
Collapse
Affiliation(s)
- Richard Kosinski
- Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | - Joel Mieres Perez
- Computational Biochemistry, ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | - Elisa-C. Schöneweiß
- Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | | | - Irene Ponzo
- Dynamic Biosensors GmbH, 82152 Martinsried, Germany
| | | | - Michael Erkelenz
- Physical Chemistry, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | - Sebastian Schlücker
- Physical Chemistry, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | | | - Elsa Sanchez-Garcia
- Computational Biochemistry, ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| | - Barbara Saccà
- Bionanotechnology, CENIDE and ZMB, University of Duisburg-Essen, 45117 Essen, Germany
| |
Collapse
|
3
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
4
|
MacPherson DJ, Mills CL, Ondrechen MJ, Hardy JA. Tri-arginine exosite patch of caspase-6 recruits substrates for hydrolysis. J Biol Chem 2018; 294:71-88. [PMID: 30420425 DOI: 10.1074/jbc.ra118.005914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/07/2018] [Indexed: 12/15/2022] Open
Abstract
Caspases are cysteine-aspartic proteases involved in the regulation of programmed cell death (apoptosis) and a number of other biological processes. Despite overall similarities in structure and active-site composition, caspases show striking selectivity for particular protein substrates. Exosites are emerging as one of the mechanisms by which caspases can recruit, engage, and orient these substrates for proper hydrolysis. Following computational analyses and database searches for candidate exosites, we utilized site-directed mutagenesis to identify a new exosite in caspase-6 at the hinge between the disordered N-terminal domain (NTD), residues 23-45, and core of the caspase-6 structure. We observed that substitutions of the tri-arginine patch Arg-42-Arg-44 or the R44K cancer-associated mutation in caspase-6 markedly alter its rates of protein substrate hydrolysis. Notably, turnover of protein substrates but not of short peptide substrates was affected by these exosite alterations, underscoring the importance of this region for protein substrate recruitment. Hydrogen-deuterium exchange MS-mediated interrogation of the intrinsic dynamics of these enzymes suggested the presence of a substrate-binding platform encompassed by the NTD and the 240's region (containing residues 236-246), which serves as a general exosite for caspase-6-specific substrate recruitment. In summary, we have identified an exosite on caspase-6 that is critical for protein substrate recognition and turnover and therefore highly relevant for diseases such as cancer in which caspase-6-mediated apoptosis is often disrupted, and in neurodegeneration in which caspase-6 plays a central role.
Collapse
Affiliation(s)
- Derek J MacPherson
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003
| | - Caitlyn L Mills
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Mary Jo Ondrechen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115
| | - Jeanne A Hardy
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003.
| |
Collapse
|
5
|
|
6
|
Kurisaki I, Takayanagi M, Nagaoka M. Toward understanding allosteric activation of thrombin: a conjecture for important roles of unbound Na(+) molecules around thrombin. J Phys Chem B 2015; 119:3635-42. [PMID: 25654267 DOI: 10.1021/jp510657n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We shed light on important roles of unbound Na(+) molecules in enzymatic activation of thrombin. Molecular mechanism of Na(+)-activation of thrombin has been discussed in the context of allostery. However, the recent challenge to redesign K(+)-activated thrombin revealed that the allosteric interaction is insufficient to explain the mechanism. Under these circumstances, we have examined the roles of unbound Na(+) molecule in maximization of thrombin-substrate association reaction rate. We performed all-atomic molecular dynamics (MD) simulations of thrombin in the presence of three different cations; Li(+), Na(+), and Cs(+). Although these cations are commonly observed in the vicinity of the S1-pocket of thrombin, smaller cations are distributed more densely and extensively than larger ones. This suggests the two observation rules: (i) thrombin surrounded by Na(+) is at an advantage in the initial step of association reaction, namely, the formation of an encounter complex ensemble, and (ii) the presence of Na(+) molecules does not necessarily have an advantage in the final step of association reaction, namely, the formation of the stereospecific complex. In conclusion, we propose a conjecture that unbound Na(+) molecules also affect the maximization of rate constant of thrombin-substrate association reaction through optimally forming an encounter complex ensemble.
Collapse
Affiliation(s)
- Ikuo Kurisaki
- Graduate School of Information Science, Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
7
|
Dahms SO, Hardes K, Becker GL, Steinmetzer T, Brandstetter H, Than ME. X-ray structures of human furin in complex with competitive inhibitors. ACS Chem Biol 2014; 9:1113-8. [PMID: 24666235 PMCID: PMC4026159 DOI: 10.1021/cb500087x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Furin inhibitors are promising therapeutics
for the treatment of
cancer and numerous infections caused by bacteria and viruses, including
the highly lethal Bacillus anthracis or the pandemic
influenza virus. Development and improvement of inhibitors for pharmacological
use require a detailed knowledge of the protease’s substrate
and inhibitor binding properties. Here we present a novel preparation
of human furin and the first crystal structures of this enzyme in
complex with noncovalent inhibitors. We show the inhibitor exchange
by soaking, allowing the investigation of additional inhibitors and
substrate analogues. Thus, our work provides a basis for the rational
design of furin inhibitors.
Collapse
Affiliation(s)
- Sven O. Dahms
- Protein
Crystallography Group, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Kornelia Hardes
- Department
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Gero L. Becker
- Department
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Torsten Steinmetzer
- Department
of Pharmaceutical Chemistry, Philipps University Marburg, Marbacher Weg
6, D-35032 Marburg, Germany
| | - Hans Brandstetter
- Department
of Molecular Biology, University of Salzburg, Billrothstrasse 11, A-5020 Salzburg, Austria
| | - Manuel E. Than
- Protein
Crystallography Group, Leibniz Institute for Age Research-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| |
Collapse
|
8
|
Pokorná J, Heyda J, Konvalinka J. Ion specific effects of alkali cations on the catalytic activity of HIV-1 protease. Faraday Discuss 2013; 160:359-70; discussion 389-403. [PMID: 23795510 DOI: 10.1039/c2fd20094e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Human immunodeficiency virus 1 protease (HIV-1 PR), an important therapeutic target for the treatment of AIDS, is one of the most well-studied enzymes. However, there is still much to learn about the regulation of the activity and inhibition of this key viral enzyme. Specifically, the mechanism of activation of HIV-1 PR from the viral polyprotein upon HIV maturation is still not understood. It has been suggested that external factors like pH or salt concentration might contribute to regulation of this crucial step in the viral life cycle. Recently, we analyzed the activity of HIV-1 PR in aqueous solutions of sodium and potassium chloride by experimental determination of enzyme kinetics and molecular dynamics simulations. We showed that the effect of salt concentration is cation-specific [Heyda et al., Phys. Chem. Chem. Phys., 2009 (11), 7599]. In this study, we extended this analysis for other alkali cations and found that the dependence of the initial velocity of peptide substrate hydrolysis on the nature of the cation follows the Hofmeister series, with the exception of caesium. Significantly higher catalytic efficiencies both in terms of substrate binding (K(M)) and turnover number (kcat) are observed in the presence of K+ compared to Na+ or Li+ at corresponding salt concentrations. Molecular dynamics simulations suggest that both lithium and sodium are attracted more strongly than potassium and caesium to the protein surface, mostly due to stronger interactions with carboxylate side chain groups of aspartates and glutamates. Furthermore, we observed a surprising decrease in the K(M) value for a specific substrate at very low salt concentration. The molecular mechanism of this phenomenon will be further analyzed.
Collapse
Affiliation(s)
- Jana Pokorná
- Gilead and IOCB Research Center Prague, Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
9
|
Abdel Aziz MH, Sidhu PS, Liang A, Kim JY, Mosier PD, Zhou Q, Farrell DH, Desai UR. Designing allosteric regulators of thrombin. Monosulfated benzofuran dimers selectively interact with Arg173 of exosite 2 to induce inhibition. J Med Chem 2012; 55:6888-97. [PMID: 22788964 DOI: 10.1021/jm300670q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Earlier, we reported on the design of sulfated benzofuran dimers (SBDs) as allosteric inhibitors of thrombin (Sidhu et al. J. Med. Chem.201154 5522-5531). To identify the site of binding of SBDs, we studied thrombin inhibition in the presence of exosite 1 and 2 ligands. Whereas hirudin peptide and heparin octasaccharide did not affect the IC(50) of thrombin inhibition by a high affinity SBD, the presence of full-length heparin reduced inhibition potency by 4-fold. The presence of γ' fibrinogen peptide, which recognizes Arg93, Arg97, Arg173, Arg175, and other residues, resulted in a loss of affinity that correlated with the ideal Dixon-Webb competitive profile. Replacement of several arginines and lysines of exosite 2 with alanine did not affect thrombin inhibition potency, except for Arg173, which displayed a 22-fold reduction in IC(50). Docking studies suggested a hydrophobic patch around Arg173 as a plausible site of SBD binding to thrombin. The absence of the Arg173-like residue in factor Xa supported the observed selectivity of inhibition by SBDs. Cellular toxicity studies indicated that SBDs are essentially nontoxic to cells at concentrations as high as 250 mg/kg. Overall, the work presents the localization of the SBD binding site, which could lead to allosteric modulators of thrombin that are completely different from all clinically used anticoagulants.
Collapse
Affiliation(s)
- May H Abdel Aziz
- Department of Medicinal Chemistry and ‡Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University , Richmond, Virginia 23219, United States
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Du QS, Wang CH, Liao SM, Huang RB. Correlation analysis for protein evolutionary family based on amino acid position mutations and application in PDZ domain. PLoS One 2010; 5:e13207. [PMID: 20949088 PMCID: PMC2950854 DOI: 10.1371/journal.pone.0013207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/10/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND It has been widely recognized that the mutations at specific directions are caused by the functional constraints in protein family and the directional mutations at certain positions control the evolutionary direction of the protein family. The mutations at different positions, even distantly separated, are mutually coupled and form an evolutionary network. Finding the controlling mutative positions and the mutative network among residues are firstly important for protein rational design and enzyme engineering. METHODOLOGY A computational approach, namely amino acid position conservation-mutation correlation analysis (CMCA), is developed to predict mutually mutative positions and find the evolutionary network in protein family. The amino acid position mutative function, which is the foundational equation of CMCA measuring the mutation of a residue at a position, is derived from the MSA (multiple structure alignment) database of protein evolutionary family. Then the position conservation correlation matrix and position mutation correlation matrix is constructed from the amino acid position mutative equation. Unlike traditional SCA (statistical coupling analysis) approach, which is based on the statistical analysis of position conservations, the CMCA focuses on the correlation analysis of position mutations. CONCLUSIONS As an example the CMCA approach is used to study the PDZ domain of protein family, and the results well illustrate the distantly allosteric mechanism in PDZ protein family, and find the functional mutative network among residues. We expect that the CMCA approach may find applications in protein engineering study, and suggest new strategy to improve bioactivities and physicochemical properties of enzymes.
Collapse
Affiliation(s)
- Qi-Shi Du
- State Key Laboratory of Bioenergy Enzyme Technology, National Engineering Research Center for Non-food Biorefinery, Guangxi Academy of Sciences, Nanning, Guangxi, China.
| | | | | | | |
Collapse
|
12
|
Munteanu CR, Vázquez JM, Dorado J, Sierra AP, Sánchez-González Á, Prado-Prado FJ, González-Díaz H. Complex Network Spectral Moments for ATCUN Motif DNA Cleavage: First Predictive Study on Proteins of Human Pathogen Parasites. J Proteome Res 2009; 8:5219-28. [DOI: 10.1021/pr900556g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cristian R. Munteanu
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - José M. Vázquez
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Julián Dorado
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Alejandro Pazos Sierra
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Ángeles Sánchez-González
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Francisco J. Prado-Prado
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| | - Humberto González-Díaz
- Department of Information and Communication Technologies, Computer Science Faculty, University of A Coruña, Campus de Elviña, s/n 15071 A Coruña, Spain, Department of Inorganic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782 Santiago de Compostela, Spain, and Department of Microbiology & Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, Praza Seminario de Estudos Galegos, s/n. Campus sur, 15782
| |
Collapse
|
13
|
Computation of conformational coupling in allosteric proteins. PLoS Comput Biol 2009; 5:e1000484. [PMID: 19714199 PMCID: PMC2720451 DOI: 10.1371/journal.pcbi.1000484] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 07/23/2009] [Indexed: 11/19/2022] Open
Abstract
In allosteric regulation, an effector molecule binding a protein at one site induces conformational changes, which alter structure and function at a distant active site. Two key challenges in the computational modeling of allostery are the prediction of the structure of one allosteric state starting from the structure of the other, and elucidating the mechanisms underlying the conformational coupling of the effector and active sites. Here we approach these two challenges using the Rosetta high-resolution structure prediction methodology. We find that the method can recapitulate the relaxation of effector-bound forms of single domain allosteric proteins into the corresponding ligand-free states, particularly when sampling is focused on regions known to change conformation most significantly. Analysis of the coupling between contacting pairs of residues in large ensembles of conformations spread throughout the landscape between and around the two allosteric states suggests that the transitions are built up from blocks of tightly coupled interacting sets of residues that are more loosely coupled to one another.
Collapse
|
14
|
Abstract
The topological control hypothesis presented by Bostick and Brooks [Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9260] has sought to explain binding selectivity in potassium channels based on the premise that a universal measure of ion solvation in different environments is provided by its average coordination structure in bulk water. This leads to the view that ion selectivity is predominantly controlled by the number of ligands coordinating the ion and that the chemical type of those ligands plays a minor role. The significance of the topological control hypothesis and its ability to predict ion selectivity in protein binding sites are examined. It is shown that the framework encounters increasing difficulties when different protein binding sites with similar coordination numbers are considered.
Collapse
Affiliation(s)
- Haibo Yu
- Department of Biochemistry and Molecular Biology, University of Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
15
|
Boda D, Valiskó M, Henderson D, Gillespie D, Eisenberg B, Gilson MK. Ions and inhibitors in the binding site of HIV protease: comparison of Monte Carlo simulations and the linearized Poisson-Boltzmann theory. Biophys J 2009; 96:1293-306. [PMID: 19217848 DOI: 10.1016/j.bpj.2008.10.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 10/31/2008] [Indexed: 11/15/2022] Open
Abstract
Proteins can be influenced strongly by the electrolyte in which they are dissolved, and we wish to model, understand, and ultimately control such ionic effects. Relatively detailed Monte Carlo (MC) ion simulations are needed to capture biologically important properties of ion channels, but a simpler treatment of ions, the linearized Poisson-Boltzmann (LPB) theory, is often used to model processes such as binding and folding, even in settings where the LPB theory is expected to be inaccurate. This study uses MC simulations to assess the reliability of the LPB theory for such a system, the constrained, anionic active site of HIV protease. We study the distributions of ions in and around the active site, as well as the energetics of displacing ions when a protease inhibitor is inserted into the active site. The LPB theory substantially underestimates the density of counterions in the active site when divalent cations are present. It also underestimates the energy cost of displacing these counterions, but the error is not consequential because the energy cost is less than kBT, according to the MC calculations. Thus, the LPB approach will often be suitable for studying energetics, but the more detailed MC approach is critical when ionic distributions and fluxes are at issue.
Collapse
Affiliation(s)
- Dezso Boda
- Department of Physical Chemistry, University of Pannonia, Veszprém, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Structure of granzyme C reveals an unusual mechanism of protease autoinhibition. Proc Natl Acad Sci U S A 2009; 106:5587-92. [PMID: 19299505 DOI: 10.1073/pnas.0811968106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Proteases act in important homeostatic pathways and are tightly regulated. Here, we report an unusual structural mechanism of regulation observed by the 2.5-A X-ray crystal structure of the serine protease, granzyme C. Although the active-site triad residues adopt canonical conformations, the oxyanion hole is improperly formed, and access to the primary specificity (S1) pocket is blocked through a reversible rearrangement involving Phe-191. Specifically, a register shift in the 190-strand preceding the active-site serine leads to Phe-191 filling the S1 pocket. Mutation of a unique Glu-Glu motif at positions 192-193 unlocks the enzyme, which displays chymase activity, and proteomic analysis confirms that activity of the wild-type protease can be released through interactions with an appropriate substrate. The 2.5-A structure of the unlocked enzyme reveals unprecedented flexibility in the 190-strand preceding the active-site serine that results in Phe-191 vacating the S1 pocket. Overall, these observations describe a broadly applicable mechanism of protease regulation that cannot be predicted by template-based modeling or bioinformatic approaches alone.
Collapse
|
17
|
Abstract
The specificity of blood coagulation proteinases for substrate, inhibitor, and effector recognition is mediated by exosites on the surfaces of the catalytic domains, physically separated from the catalytic site. Some thrombin ligands bind specifically to either exosite I or II, while others engage both exosites. The involvement of different, overlapping constellations of exosite residues enables binding of structurally diverse ligands. The flexibility of the thrombin structure is central to the mechanism of complex formation and the specificity of exosite interactions. Encounter complex formation is driven by electrostatic ligand-exosite interactions, followed by conformational rearrangement to a stable complex. Exosites on some zymogens are in low affinity proexosite states and are expressed concomitant with catalytic site activation. The requirement for exosite expression controls the specificity of assembly of catalytic complexes on the coagulation pathway, such as the membrane-bound factor Xa*factor Va (prothrombinase) complex, and prevents premature assembly. Substrate recognition by prothrombinase involves a two-step mechanism with initial docking of prothrombin to exosites, followed by a conformational change to engage the FXa catalytic site. Prothrombin and its activation intermediates bind prothrombinase in two alternative conformations determined by the zymogen to proteinase transition that are hypothesized to involve prothrombin (pro)exosite I interactions with FVa, which underpin the sequential activation pathway. The role of exosites as the major source of substrate specificity has stimulated development of exosite-targeted anticoagulants for treatment of thrombosis.
Collapse
Affiliation(s)
- P E Bock
- Department of Pathology, Vanderbilt University, Nashville, TN 37232-2561, USA.
| | | | | |
Collapse
|
18
|
Kroh HK, Tans G, Nicolaes GAF, Rosing J, Bock PE. Expression of allosteric linkage between the sodium ion binding site and exosite I of thrombin during prothrombin activation. J Biol Chem 2007; 282:16095-104. [PMID: 17430903 PMCID: PMC2292469 DOI: 10.1074/jbc.m610577200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The specificity of thrombin for procoagulant and anticoagulant substrates is regulated allosterically by Na+. Ordered cleavage of prothrombin (ProT) at Arg320 by the prothrombinase complex generates proteolytically active, meizothrombin (MzT), followed by cleavage at Arg271 to produce thrombin and fragment 1.2. The alternative pathway of initial cleavage at Arg271 produces the inactive zymogen form, the prethrombin 2 (Pre 2).fragment 1.2 complex, which is cleaved subsequently at Arg320. Cleavage at Arg320 of ProT or prethrombin 1 (Pre 1) activates the catalytic site and the precursor form of exosite I (proexosite I). To determine the pathway of expression of Na+-(pro)exosite I linkage during ProT activation, the effects of Na+ on the affinity of fluorescein-labeled hirudin-(54-65) ([5F]Hir-(54-65)(SO-3)) for the zymogens, ProT, Pre 1, and Pre 2, and for the proteinases, MzT and MzT-desfragment 1 (MzT(-F1)) were quantitated. The zymogens showed no significant linkage between proexosite I and Na+, whereas cleavage at Arg320 caused the affinities of MzT and MzT(-F1) for [5F]Hir-(54-65)(SO-3) to be enhanced by Na+ 8- to 10-fold and 5- to 6-fold, respectively. MzT and MzT(-F1) showed kinetically different mechanisms of Na+ enhancement of chromogenic substrate hydrolysis. The results demonstrate for the first time that MzT is regulated allosterically by Na+. The results suggest that the distinctive procoagulant substrate specificity of MzT, in activating factor V and factor VIII on membranes, and the anticoagulant, membrane-modulated activation of protein C by MzT bound to thrombomodulin are regulated by Na+-induced allosteric transition. Further, the Na+ enhancement in MzT activity and exosite I affinity may function in directing the sequential ProT activation pathway by accelerating thrombin formation from the MzT fast form.
Collapse
Affiliation(s)
- Heather K. Kroh
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232
| | - Guido Tans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht 6200MD, The Netherlands
| | - Gerry A. F. Nicolaes
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht 6200MD, The Netherlands
| | - Jan Rosing
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, University Maastricht, Maastricht 6200MD, The Netherlands
| | - Paul E. Bock
- Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232
- To whom correspondence should be addressed: Dept. of Pathology, Vanderbilt University School of Medicine, C3321A Medical Center North, Nashville, TN 37232-2561. Tel.: 615-343-9863; Fax: 615-322-1855; E-mail:
| |
Collapse
|
19
|
Gianni S, Walma T, Arcovito A, Calosci N, Bellelli A, Engström A, Travaglini-Allocatelli C, Brunori M, Jemth P, Vuister GW. Demonstration of Long-Range Interactions in a PDZ Domain by NMR, Kinetics, and Protein Engineering. Structure 2006; 14:1801-9. [PMID: 17161370 DOI: 10.1016/j.str.2006.10.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/17/2006] [Accepted: 10/19/2006] [Indexed: 10/23/2022]
Abstract
Understanding the basis of communication within protein domains is a major challenge in structural biology. We present structural and dynamical evidence for allosteric effects in a PDZ domain, PDZ2 from the tyrosine phosphatase PTP-BL, upon binding to a target peptide. The NMR structures of its free and peptide-bound states differ in the orientation of helix alpha2 with respect to the remainder of the molecule, concomitant with a readjustment of the hydrophobic core. Using an ultrafast mixing instrument, we detected a deviation from simple bimolecular kinetics for the association with peptide that is consistent with a rate-limiting conformational change in the protein (k(obs) approximately 7 x 10(3) s(-1)) and an induced-fit model. Furthermore, the binding kinetics of 15 mutants revealed that binding is regulated by long-range interactions, which can be correlated with the structural rearrangements resulting from peptide binding. The homologous protein PSD-95 PDZ3 did not display a similar ligand-induced conformational change.
Collapse
Affiliation(s)
- Stefano Gianni
- Istituto di Biologia e Patologia Molecolari del CNR, Dipartimento di Scienze Biochimiche A. Rossi Fanelli, Università di Roma La Sapienza, Piazzale A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wolfs JL, Wielders SJ, Comfurius P, Lindhout T, Giddings JC, Zwaal RF, Bevers EM. Reversible inhibition of the platelet procoagulant response through manipulation of the Gardos channel. Blood 2006; 108:2223-8. [PMID: 16741254 DOI: 10.1182/blood-2006-01-009613] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AbstractThe platelet procoagulant response requires a sustained elevation of the intracellular Ca2+ concentration, [Ca2+]i, causing exposure of phosphatidylserine (PS) at the outer surface of the plasma membrane. An increased [Ca2+]i also activates Ca2+-dependent K+ channels. Here, we investigated the contribution of the efflux of K+ ions on the platelet procoagulant response in collagen-thrombin–activated platelets using selective K+ channel blockers. The Gardos channel blockers clotrimazol, charybdotoxin, and quinine caused a similar decrease in prothrombinase activity as well as in the number of PS-exposing platelets detected by fluorescence-conjugated annexin A5. Apamin and iberiotoxin, inhibitors of other K+ channels, were without effect. Only clotrimazol showed a significant inhibition of the collagen-plus-thrombin–induced intracellular calcium response. Clotrimazol and charybdotoxin did not inhibit aggregation and release under the conditions used. Inhibition by Gardos channel blockers was reversed by valinomycin, a selective K+ ionophore. The impaired procoagulant response of platelets from a patient with Scott syndrome was partially restored by pretreatment with valinomycin, suggesting a possible defect of the Gardos channel in this syndrome. Collectively, these results provide evidence for the involvement of efflux of K+ ions through Ca2+-activated K+ channels in the procoagulant response of platelets, opening potential strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Jef L Wolfs
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
21
|
Oria-Hernández J, Riveros-Rosas H, Ramírez-Sílva L. Dichotomic Phylogenetic Tree of the Pyruvate Kinase Family. J Biol Chem 2006; 281:30717-24. [PMID: 16905543 DOI: 10.1074/jbc.m605310200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
K+ dependence was assumed to be a feature of all pyruvate kinases until it was discovered that some enzymes express K+ -independent activity. Almost all the K+ -independent pyruvate kinases have Lys at position 117, instead of the Glu present in the K+ -dependent muscle enzyme. Mutagenesis studies show that the internal positive charge substitutes for the K+ requirement (Laughlin, L. T. & Reed, G. H. (1997) Arch. Biochem. Biophys. 348, 262-267). In this work a phylogenetic analysis of pyruvate kinase was performed to ascertain the abundance of K+ -independent activities and to explore whether the K+ activating effect is related to the evolutionary history of the enzyme. Of the 230 studied sequences, 46% have Lys at position 117, and the rest have Glu. Pyruvate kinases with Lys117 and Glu117 are separated in two clusters. All of the enzymes of the Glu117 cluster that have been characterized are K+ -dependent, whereas those of the Lys117 cluster are K+ -independent. Thus, there is a strict correlation between the dichotomy of the tree and the dependence of activity on K+. 77% of the pyruvate kinases that possess Lys117 have Lys113/Gln114; they also have Ile, Val, or Leu at position 120. These residues are replaced by Glu117 and Thr113/Lys114/Thr120 in 80% of K+ -dependent pyruvate kinases. Structural analysis indicates that these residues are in a hinge region involved in the acquisition of the catalytic conformation of the enzyme. The route of conversion from K+ -independent to K+ -dependent pyruvate kinases is described. A plausible explanation of how enzymes developed K+ dependence is put forth.
Collapse
Affiliation(s)
- Jesús Oria-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510 México, D. F., México
| | | | | |
Collapse
|
22
|
Bucki R, Pastore JJ, Giraud F, Janmey PA, Sulpice JC. Involvement of the Na+/H+ exchanger in membrane phosphatidylserine exposure during human platelet activation. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:195-204. [PMID: 16459134 PMCID: PMC3118474 DOI: 10.1016/j.bbalip.2005.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 11/29/2005] [Accepted: 12/20/2005] [Indexed: 11/29/2022]
Abstract
Platelet membrane phosphatidylserine (PS) exposure that regulates the production of thrombin represents an important link between platelet activation and the coagulation cascade. Here, we have evaluated the involvement of the Na+/H+ exchanger (NHE) in this process in human platelets. PS exposure induced in human platelets by thrombin, TRAP, collagen or TRAP+ collagen was abolished in a Na+ -free medium. Inhibition of the Na+/H+ exchanger (NHE) by 5-(N-Ethyl-N-Isopropyl) Amiloride (EIPA) reduced significantly PS exposure, whereas monensin or nigericin, which mimic or cause activation of NHE, respectively, reproduced the agonist effect. These data suggest a role for Na+ influx through NHE activation in the mechanism of PS exposure. This newly identified pathway does not discount a role for Ca2+, whose cytosolic concentration varies together with that of Na+ after agonist stimulation. Ca2+ deprivation from the incubation medium only attenuated PS exposure induced by thrombin, measured from the uptake of FM1-43 (a marker of phospholipid scrambling independent of external Ca2+). Surprisingly, removal of external Ca2+ partially reduced FM1-43 uptake induced by A23187, known as a Ca2+ ionophore. The residual effect can be attributed to an increase in [Na+]i mediated by the ionophore due to a lack of its specificity. Finally, phosphatidylinositol 4,5-bisphosphate (PIP2), previously reported as a target for Ca2+ in the induction of phospholipid scrambling, was involved in PS exposure through a regulation of NHE activity. All these results would indicate that the mechanism that results in PS exposure uses redundant pathways inextricably linked to the physio-pathological requirements of this process.
Collapse
Affiliation(s)
- Robert Bucki
- University of Pennsylvania, Department of Physiology, Institute for Medicine and Engineering, 1010 Vagelos Research Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
23
|
Silva FP, Antunes OAC, de Alencastro RB, De Simone SG. The Na+ binding channel of human coagulation proteases: novel insights on the structure and allosteric modulation revealed by molecular surface analysis. Biophys Chem 2005; 119:282-94. [PMID: 16288954 DOI: 10.1016/j.bpc.2005.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/30/2005] [Accepted: 10/01/2005] [Indexed: 11/17/2022]
Abstract
Thrombovascular diseases result from imbalanced haemostasis and comprise important health problems in the aging population worldwide. The activity of enzymes pertaining to the coagulation cascade of mammalians exhibit several control mechanisms in order to maintain a proper balance between bleeding and thrombosis. For instance, human coagulation serine proteases carrying a F225 or Y225 are allosteric modulated by the binding of Na+ in a water-filled channel connected to the primary specificity pocket (S1 subsite) of these enzymes. We have characterized the structure, topography and lipophilicity of this channel in the ligand-free fast (sodium-bound) and slow (sodium-free) forms of thrombin, in the sole available structure of activated protein C and in several structures of the coagulation factors VIIa, IXa and Xa, differing in the nature of the bound inhibitor and in the occupancy of exosite-I as well as the Ca2+ and Na+ binding sites. Opposite to thrombin, the aqueous channels in all other coagulation enzymes sheltering a Na+ binding site do not have an aperture on the enzyme surface opposite to the S1 subsite entrance. In these enzymes, the lack of the three-residue insertion in loop 1 (183-189) as found in thrombin allied to compensatory mutations in the positions 187-185 and 222 effects a constriction in the water-filled channel that ends up by segregating the ion binding site from the S1 subsite. We also disclosed major topographical changes on the thrombin's surface upon sodium release and transition to the slow form that culminate in the narrowing of the S1 subsite entrance and, strikingly, in the loss of communication between the primary specificity pocket and the exosite-I. Such observation is in accordance with existing experimental data demonstrating thermodynamic linkage between these distant regions on the thrombin surface. Conformational changes in F34, L40, R73 and T74 were the main responsible for this effect. A path by which these changes in the vicinity of exosite-I could be transmitted to the S1 subsite and, consequently, to the sodium binding site is proposed.
Collapse
Affiliation(s)
- Floriano P Silva
- Laboratório de Bioquímica de Proteínas e Peptídeos, Departamento de Bioquímica e Biologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21045-900, Rio de Janeiro, RJ, Brazil.
| | | | | | | |
Collapse
|
24
|
Abstract
Proteases play diverse roles in a variety of essential biological processes, both as non-specific catalysts of protein degradation and as highly specific agents that control physiologic events. Here, we review the mechanisms of substrate specificity employed by serine proteases and focus our discussion on coagulation proteases. We dissect the interplay between active site and exosite specificity and how substrate recognition is regulated allosterically by Na+ binding. We also draw attention to a functional polarity that exists in the serine protease fold, which sheds light on the structural linkages between the active site and exosites.
Collapse
Affiliation(s)
- M J Page
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
25
|
Oria-Hernández J, Cabrera N, Pérez-Montfort R, Ramírez-Silva L. Pyruvate kinase revisited: the activating effect of K+. J Biol Chem 2005; 280:37924-9. [PMID: 16147999 DOI: 10.1074/jbc.m508490200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For more than 50 years, it has been known that K(+) is an essential activator of pyruvate kinase (Kachmar, J. F., and Boyer, P. D. (1953) J. Biol. Chem. 200, 669-683). However, the role of K(+) in the catalysis by pyruvate kinase has not been totally understood. Previous studies without K(+) showed that the affinity of ADP-Mg(2+) depends on the concentration of phosphoenolpyruvate, although the kinetics of the enzyme at saturating K(+) concentrations show independence in the binding of substrates (Reynard, A. M., Hass, L. F., Jacobsen, D. D. & Boyer, P. D. (1961) J. Biol. Chem. 236, 2277-2283). Here, we explored the kinetics of the enzyme with and without K(+). The results show that without K(+), the kinetic mechanism of pyruvate kinase changes from random to ordered with phosphoenol-pyruvate as first substrate. V(max) with K(+) was about 400 higher than without K(+). In the presence of K(+), the affinities for phosphoenol-pyruvate, ADP-Mg(2+), oxalate, and ADP-Cr(2+) were 2-6-fold higher than in the absence of K(+). This as well as fluorescence data also indicate that K(+) is involved in the acquisition of the active conformation of the enzyme, allowing either phosphoenolpyruvate or ADP to bind independently (random mechanism). In the absence of K(+), ADP cannot bind to the enzyme until phosphoenolpyruvate forms a competent active site (ordered mechanism). We propose that K(+) induces the closure of the active site and the arrangement of the residues involved in the binding of the nucleotide.
Collapse
Affiliation(s)
- Jesús Oria-Hernández
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México
| | | | | | | |
Collapse
|
26
|
Papaconstantinou ME, Carrell CJ, Pineda AO, Bobofchak KM, Mathews FS, Flordellis CS, Maragoudakis ME, Tsopanoglou NE, Di Cera E. Thrombin functions through its RGD sequence in a non-canonical conformation. J Biol Chem 2005; 280:29393-6. [PMID: 15998637 DOI: 10.1074/jbc.c500248200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have suggested that thrombin interacts with integrins in endothelial cells through its RGD (Arg-187, Gly-188, Asp-189) sequence. All existing crystal structures of thrombin show that most of this sequence is buried under the 220-loop and therefore interaction via RGD implies either partial unfolding of the enzyme or its proteolytic digestion. Here, we demonstrate that surface-absorbed thrombin promotes attachment and migration of endothelial cells through interaction with alpha(v)beta(3) and alpha(5)beta(1) integrins. Using site-directed mutants of thrombin we prove that this effect is mediated by the RGD sequence and does not require catalytic activity. The effect is abrogated when residues of the RGD sequence are mutated to Ala and is not observed with proteases like trypsin and tissue-type plasminogen activator, unless the RGD sequence is introduced at position 187-189. The potent inhibitor hirudin does not abrogate the effect, suggesting that thrombin functions through its RGD sequence in a non-canonical conformation. A 1.9-Angstroms resolution crystal structure of free thrombin grown in the presence of high salt (400 mm KCl) shows two molecules in the asymmetric unit, one of which assumes an unprecedented conformation with the autolysis loop shifted 20 Angstroms away from its canonical position, the 220-loop entirely disordered, and the RGD sequence exposed to the solvent.
Collapse
Affiliation(s)
- Matthew E Papaconstantinou
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Mengwasser KE, Bush LA, Shih P, Cantwell AM, Di Cera E. Hirudin Binding Reveals Key Determinants of Thrombin Allostery. J Biol Chem 2005; 280:26997-7003. [PMID: 15923186 DOI: 10.1074/jbc.m502678200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thrombin exists in two allosteric forms, slow (S) and fast (F), that recognize natural substrates and inhibitors with significantly different affinities. Because under physiologic conditions the two forms are almost equally populated, investigation of thrombin function must address the contribution from the S and F forms and the molecular origin of their differential recognition of ligands. Using a panel of 79 Ala mutants, we have mapped for the first time the epitopes of thrombin recognizing a macromolecular ligand, hirudin, in the S and F forms. Hirudin binding is a relevant model for the interaction of thrombin with fibrinogen and PAR1 and is likewise influenced by the allosteric S-->F transition. The epitopes are nearly identical and encompass two hot spots, one in exosite I and the other in the Na+ site at the opposite end of the protein. The higher affinity of the F form is due to the preferential interaction of hirudin with Lys-36, Leu-65, Thr-74, and Arg-75 in exosite I; Gly-193 in the oxyanion hole; and Asp-221 and Asp-222 in the Na+ site. Remarkably, no correlation is found between the energetic and structural involvements of thrombin residues in hirudin recognition, which invites caution in the analysis of protein-protein interactions in general.
Collapse
Affiliation(s)
- Kristen E Mengwasser
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
28
|
Ascenzi P, Bocedi A, Bolli A, Fasano M, Notari S, Polticelli F. Allosteric modulation of monomeric proteins*. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 33:169-176. [PMID: 21638571 DOI: 10.1002/bmb.2005.494033032470] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Multimeric proteins (e.g. hemoglobin) are considered to be the prototypes of allosteric enzymes, whereas monomeric proteins (e.g. myoglobin) usually are assumed to be nonallosteric. However, the modulation of the functional properties of monomeric proteins by heterotropic allosteric effectors casts doubts on this assumption. Here, the allosteric properties of sperm whale myoglobin, human serum albumin, and human α-thrombin, generally considered as molecular models of monomeric proteins, are summarized.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Dipartimento di Biologia and Laboratorio Interdipartimentale di Microscopia Elettronica, Università "Roma Tre," Viale Guglielmo Marconi 446, I-00146 Roma, Italy; Istituto Nazionale per le Malattie Infettive I.R.C.C.S. "Lazzaro Spallanzani," Via Portuense 292, I-00149 Roma, Italy.
| | | | | | | | | | | |
Collapse
|