1
|
Singhal C, Singh A, Sharma AK, Khurana P. Identification of CKX gene family in Morus indica cv K2 and functional characterization of MiCKX4 during abiotic stress. STRESS BIOLOGY 2024; 4:35. [PMID: 39136853 PMCID: PMC11322459 DOI: 10.1007/s44154-024-00173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/06/2024] [Indexed: 08/16/2024]
Abstract
Cytokinin oxidase/dehydrogenase (CKX) is the key enzyme that has been observed to catalyze irreversible inactivation of cytokinins and thus modulate cytokinin levels in plants. CKX gene family is known to have few members which are, expanded in the genome mainly due to duplication events. A total of nine MiCKXs were identified in Morus indica cv K2 with almost similar gene structures and conserved motifs and domains. The cis-elements along with expression analysis of these MiCKXs revealed their contrasting and specific role in plant development across different developmental stages. The localization of these enzymes in ER and Golgi bodies signifies their functional specification and property of getting modified post-translationally to carry out their activities. The overexpression of MiCKX4, an ortholog of AtCKX4, displayed longer primary root and higher number of lateral roots. Under ABA stress also the transgenic lines showed higher number of lateral roots and tolerance against drought stress as compared to wild-type plants. In this study, the CKX gene family members were analyzed bioinformatically for their roles under abiotic stresses.
Collapse
Affiliation(s)
- Chanchal Singhal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Arunima Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Paramjit Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
2
|
|
3
|
The Role of Ancestral Duplicated Genes in Adaptation to Growth on Lactate, a Non-Fermentable Carbon Source for the Yeast Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222212293. [PMID: 34830177 PMCID: PMC8622941 DOI: 10.3390/ijms222212293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/26/2022] Open
Abstract
The cell central metabolism has been shaped throughout evolutionary times when facing challenges from the availability of resources. In the budding yeast, Saccharomyces cerevisiae, a set of duplicated genes originating from an ancestral whole-genome and several coetaneous small-scale duplication events drive energy transfer through glucose metabolism as the main carbon source either by fermentation or respiration. These duplicates (~a third of the genome) have been dated back to approximately 100 MY, allowing for enough evolutionary time to diverge in both sequence and function. Gene duplication has been proposed as a molecular mechanism of biological innovation, maintaining balance between mutational robustness and evolvability of the system. However, some questions concerning the molecular mechanisms behind duplicated genes transcriptional plasticity and functional divergence remain unresolved. In this work we challenged S. cerevisiae to the use of lactic acid/lactate as the sole carbon source and performed a small adaptive laboratory evolution to this non-fermentative carbon source, determining phenotypic and transcriptomic changes. We observed growth adaptation to acidic stress, by reduction of growth rate and increase in biomass production, while the transcriptomic response was mainly driven by repression of the whole-genome duplicates, those implied in glycolysis and overexpression of ROS response. The contribution of several duplicated pairs to this carbon source switch and acidic stress is also discussed.
Collapse
|
4
|
Mou CY, Li S, Lu LF, Wang Y, Yu P, Li Z, Tong JF, Zhang QY, Wang ZW, Zhang XJ, Wang GX, Zhou L, Gui JF. Divergent Antiviral Mechanisms of Two Viperin Homeologs in a Recurrent Polyploid Fish. Front Immunol 2021; 12:702971. [PMID: 34531856 PMCID: PMC8438203 DOI: 10.3389/fimmu.2021.702971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/03/2022] Open
Abstract
Polyploidy and subsequent diploidization provide genomic opportunities for evolutionary innovations and adaptation. The researches on duplicated gene evolutionary fates in recurrent polyploids have seriously lagged behind that in paleopolyploids with diploidized genomes. Moreover, the antiviral mechanisms of Viperin remain largely unclear in fish. Here, we elaborate the distinct antiviral mechanisms of two viperin homeologs (Cgviperin-A and Cgviperin-B) in auto-allo-hexaploid gibel carp (Carassius gibelio). First, Cgviperin-A and Cgviperin-B showed differential and biased expression patterns in gibel carp adult tissues. Subsequently, using co-immunoprecipitation (Co-IP) screening analysis, both CgViperin-A and CgViperin-B were found to interact with crucian carp (C. auratus) herpesvirus (CaHV) open reading frame 46 right (ORF46R) protein, a negative herpesvirus regulator of host interferon (IFN) production, and to promote the proteasomal degradation of ORF46R via decreasing K63-linked ubiquitination. Additionally, CgViperin-B also mediated ORF46R degradation through autophagosome pathway, which was absent in CgViperin-A. Moreover, we found that the N-terminal α-helix domain was necessary for the localization of CgViperin-A and CgViperin-B at the endoplasmic reticulum (ER), and the C-terminal domain of CgViperin-A and CgViperin-B was indispensable for the interaction with degradation of ORF46R. Therefore, the current findings clarify the divergent antiviral mechanisms of the duplicated viperin homeologs in a recurrent polyploid fish, which will shed light on the evolution of teleost duplicated genes.
Collapse
Affiliation(s)
- Cheng-Yan Mou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Long-Feng Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jin-Feng Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qi-Ya Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Xin Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Hubei Hongshan Laboratory, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
5
|
Correa M, Lerat E, Birmelé E, Samson F, Bouillon B, Normand K, Rizzon C. The Transposable Element Environment of Human Genes Differs According to Their Duplication Status and Essentiality. Genome Biol Evol 2021; 13:6273345. [PMID: 33973013 PMCID: PMC8155550 DOI: 10.1093/gbe/evab062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Transposable elements (TEs) are major components of eukaryotic genomes and represent approximately 45% of the human genome. TEs can be important sources of novelty in genomes and there is increasing evidence that TEs contribute to the evolution of gene regulation in mammals. Gene duplication is an evolutionary mechanism that also provides new genetic material and opportunities to acquire new functions. To investigate how duplicated genes are maintained in genomes, here, we explored the TE environment of duplicated and singleton genes. We found that singleton genes have more short-interspersed nuclear elements and DNA transposons in their vicinity than duplicated genes, whereas long-interspersed nuclear elements and long-terminal repeat retrotransposons have accumulated more near duplicated genes. We also discovered that this result is highly associated with the degree of essentiality of the genes with an unexpected accumulation of short-interspersed nuclear elements and DNA transposons around the more-essential genes. Our results underline the importance of taking into account the TE environment of genes to better understand how duplicated genes are maintained in genomes.
Collapse
Affiliation(s)
- Margot Correa
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie Evolutive, UMR 5558, Université de Lyon, Université Lyon 1, CNRS, Villeurbanne, France
| | - Etienne Birmelé
- Laboratoire MAP5 UMR 8145, Université de Paris, Paris, France
| | - Franck Samson
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Bérengère Bouillon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Kévin Normand
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| | - Carène Rizzon
- Laboratoire de Mathématiques et Modélisation d'Evry (LaMME), UMR CNRS 8071, ENSIIE, USC INRA, Université d'Evry Val d'Essonne, Evry, France
| |
Collapse
|
6
|
Nong W, Qu Z, Li Y, Barton-Owen T, Wong AYP, Yip HY, Lee HT, Narayana S, Baril T, Swale T, Cao J, Chan TF, Kwan HS, Ngai SM, Panagiotou G, Qian PY, Qiu JW, Yip KY, Ismail N, Pati S, John A, Tobe SS, Bendena WG, Cheung SG, Hayward A, Hui JHL. Horseshoe crab genomes reveal the evolution of genes and microRNAs after three rounds of whole genome duplication. Commun Biol 2021; 4:83. [PMID: 33469163 PMCID: PMC7815833 DOI: 10.1038/s42003-020-01637-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/21/2020] [Indexed: 11/08/2022] Open
Abstract
Whole genome duplication (WGD) has occurred in relatively few sexually reproducing invertebrates. Consequently, the WGD that occurred in the common ancestor of horseshoe crabs ~135 million years ago provides a rare opportunity to decipher the evolutionary consequences of a duplicated invertebrate genome. Here, we present a high-quality genome assembly for the mangrove horseshoe crab Carcinoscorpius rotundicauda (1.7 Gb, N50 = 90.2 Mb, with 89.8% sequences anchored to 16 pseudomolecules, 2n = 32), and a resequenced genome of the tri-spine horseshoe crab Tachypleus tridentatus (1.7 Gb, N50 = 109.7 Mb). Analyses of gene families, microRNAs, and synteny show that horseshoe crabs have undergone three rounds (3R) of WGD. Comparison of C. rotundicauda and T. tridentatus genomes from populations from several geographic locations further elucidates the diverse fates of both coding and noncoding genes. Together, the present study represents a cornerstone for improving our understanding of invertebrate WGD events on the evolutionary fates of genes and microRNAs, at both the individual and population level. We also provide improved genomic resources for horseshoe crabs, of applied value for breeding programs and conservation of this fascinating and unusual invertebrate lineage.
Collapse
Affiliation(s)
- Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tom Barton-Owen
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Annette Y P Wong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Ting Lee
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Satya Narayana
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Tobias Baril
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | | | - Jianquan Cao
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Fung Chan
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Gianni Panagiotou
- School of Biological Sciences, The University of Hong Kong, Hong Kong, China
- Leibniz Institute of Natural Product Research and Infection Biology - Hans Knöll Institute, Jena, Germany
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kevin Y Yip
- Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Noraznawati Ismail
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | - Siddhartha Pati
- Department of Bioscience and Biotechnology, Fakir Mohan University, Balasore, India
- Institute of Tropical Biodiversity and Sustainable Development, University Malaysia Terengganu, 20130, Kuala Nerus, Terengganu, Malaysia
- Research Division, Association for Biodiversity Conservation and Research (ABC), Odisha, 756003, India
| | - Akbar John
- Institute of Oceanography and Maritime Studies (INOCEM), Kulliyyah of Science, International Islamic University, Kuantan, Malaysia
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Siu Gin Cheung
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Alexander Hayward
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Scossa F, Fernie AR. The evolution of metabolism: How to test evolutionary hypotheses at the genomic level. Comput Struct Biotechnol J 2020; 18:482-500. [PMID: 32180906 PMCID: PMC7063335 DOI: 10.1016/j.csbj.2020.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023] Open
Abstract
The origin of primordial metabolism and its expansion to form the metabolic networks extant today represent excellent systems to study the impact of natural selection and the potential adaptive role of novel compounds. Here we present the current hypotheses made on the origin of life and ancestral metabolism and present the theories and mechanisms by which the large chemical diversity of plants might have emerged along evolution. In particular, we provide a survey of statistical methods that can be used to detect signatures of selection at the gene and population level, and discuss potential and limits of these methods for investigating patterns of molecular adaptation in plant metabolism.
Collapse
Affiliation(s)
- Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics (CREA-GB), Via Ardeatina 546, 00178 Rome, Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology (CPSBB), Plovdiv, Bulgaria
| |
Collapse
|
8
|
Naa15 knockdown enhances c2c12 myoblast fusion and induces defects in zebrafish myotome morphogenesis. Comp Biochem Physiol B Biochem Mol Biol 2018; 228:61-67. [PMID: 30502388 DOI: 10.1016/j.cbpb.2018.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022]
Abstract
The understanding of muscle tissue formation and regeneration is essential for the development of therapeutic approaches to treat muscle diseases or loss of muscle mass and strength during ageing or cancer. One of the critical steps in muscle formation is the fusion of muscle cells to form or regenerate muscle fibres. To identify new genes controlling myoblast fusion, we performed a siRNA screen in c2c12 myoblasts. The genes identified during this screen were then studied in vivo by knockdown in zebrafish using morpholino. We found that N-alpha-acetyltransferase 15 (Naa15) knockdown enhanced c2c12 myoblast fusion, suggesting that Naa15 negatively regulates myogenic cell fusion. We identified two Naa15 orthologous genes in the zebrafish genome: Naa15a and Naa15b. These two orthologs were expressed in the myogenic domain of the somite. Knockdown of zebrafish Naa15a and Naa15b genes induced a "U"-shaped segmentation of the myotome and alteration of myotome boundaries, resulting in the formation of abnormally long myofibres spanning adjacent somites. Taken together, these results show that Naa15 regulates myotome formation and myogenesis in fish.
Collapse
|
9
|
Shao GM, Li XY, Wang Y, Wang ZW, Li Z, Zhang XJ, Zhou L, Gui JF. Whole Genome Incorporation and Epigenetic Stability in a Newly Synthetic Allopolyploid of Gynogenetic Gibel Carp. Genome Biol Evol 2018; 10:2394-2407. [PMID: 30085110 PMCID: PMC6143163 DOI: 10.1093/gbe/evy165] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2018] [Indexed: 12/23/2022] Open
Abstract
Allopolyploidization plays an important role in speciation, and some natural or synthetic allopolyploid fishes have been extensively applied to aquaculture. Although genetic and epigenetic inheritance and variation associated with plant allopolyploids have been well documented, the relative research in allopolyploid animals is scarce. In this study, the genome constitution and DNA methylation inheritance in a newly synthetic allopolyploid of gynogenetic gibel carp were analyzed. The incorporation of a whole genome of paternal common carp sperm in the allopolyploid was confirmed by genomic in situ hybridization, chromosome localization of 45S rDNAs, and sequence comparison. Pooled sample-based methylation sensitive amplified polymorphism (MSAP) revealed that an overwhelming majority (98.82%) of cytosine methylation patterns in the allopolyploid were inherited from its parents of hexaploid gibel carp clone D and common carp. Compared to its parents, 11 DNA fragments in the allopolyploid were proved to be caused by interindividual variation, recombination, deletion, and mutation through individual sample-based MSAP and sequencing. Contrast to the rapid and remarkable epigenetic changes in most of analyzed neopolyploids, no cytosine methylation variation was detected in the gynogenetic allopolyploid. Therefore, the newly synthetic allopolyploid of gynogenetic gibel carp combined genomes from its parents and maintained genetic and epigenetic stability after its formation and subsequently seven successive gynogenetic generations. Our current results provide a paradigm for recurrent polyploidy consequences in the gynogenetic allopolyploid animals.
Collapse
Affiliation(s)
- Guang-Ming Shao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Yin Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-Wei Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Juan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Rodriguez F, Arkhipova IR. Transposable elements and polyploid evolution in animals. Curr Opin Genet Dev 2018; 49:115-123. [PMID: 29715568 DOI: 10.1016/j.gde.2018.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/08/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023]
Abstract
Polyploidy in animals is much less common than in plants, where it is thought to be pervasive in all higher plant lineages. Recent studies have highlighted the impact of polyploidization and the associated process of diploidy restoration on the evolution and speciation of selected taxonomic groups in the animal kingdom: from vertebrates represented by salmonid fishes and African clawed frogs to invertebrates represented by parasitic root-knot nematodes and bdelloid rotifers. In this review, we focus on the unique and diverse roles that transposable elements may play in these processes, from marking and diversifying subgenome-specific chromosome sets before hybridization, to influencing genome restructuring during rediploidization, to affecting subgenome-specific regulatory evolution, and occasionally providing opportunities for domestication and gene amplification to restore and improve functionality. There is still much to be learned from the future comparative genomic studies of chromosome-sized and haplotype-aware assemblies, and from postgenomic studies elucidating genetic and epigenetic regulatory phenomena across short and long evolutionary distances in the metazoan tree of life.
Collapse
Affiliation(s)
- Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
11
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Holzer G, Laudet V. New Insights into Vertebrate Thyroid Hormone Receptor Evolution. NUCLEAR RECEPTOR RESEARCH 2017. [DOI: 10.11131/2017/101287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guillaume Holzer
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Vincent Laudet
- Observatoire Océanologique de Banyuls-sur-Mer, UMR CNRS 7232, Université Pierre et Marie Curie Paris, 1 avenue Pierre Fabre, 66650 Banyuls-sur-Mer, France
| |
Collapse
|
13
|
Chen Z, Chen D, Chu W, Zhu D, Yan H, Xiang Y. Retention and Molecular Evolution of Lipoxygenase Genes in Modern Rosid Plants. Front Genet 2016; 7:176. [PMID: 27746812 PMCID: PMC5043136 DOI: 10.3389/fgene.2016.00176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/16/2016] [Indexed: 11/13/2022] Open
Abstract
Whole-genome duplication events have occurred more than once in the genomes of some rosids and played a significant role over evolutionary time. Lipoxygenases (LOXs) are involved in many developmental and resistance processes in plants. Our study concerns the subject of the LOX gene family; we tracked the evolutionary process of ancestral LOX genes in four modern rosids. Here we show that some members of the LOX gene family in the Arabidopsis genome are likely to be lost during evolution, leading to a smaller size than that in Populus, Vitis, and Carica. Strong purifying selection acted as a critical role in almost all of the paralogous and orthologous genes. The structure of LOX genes in Carica and Populus are relatively stable, whereas Vitis and Arabidopsis have a difference. By searching conserved motifs of LOX genes, we found that each sub-family shared similar components. Research on intraspecies gene collinearity show that recent duplication holds an important position in Populus and Arabidopsis. Gene collinearity analysis within and between these four rosid plants revealed that all LOX genes in each modern rosid were the offspring from different ancestral genes. This study traces the evolution of LOX genes which have been differentially retained and expanded in rosid plants. Our results presented here may aid in the selection of special genes retained in the rosid plants for further analysis of biological function.
Collapse
Affiliation(s)
- Zhu Chen
- Laboratory of Modern Biotechnology, Anhui Agricultural University Hefei, China
| | - Danmei Chen
- Laboratory of Modern Biotechnology, Anhui Agricultural University Hefei, China
| | - Wenyuan Chu
- Laboratory of Modern Biotechnology, Anhui Agricultural University Hefei, China
| | - Dongyue Zhu
- Laboratory of Modern Biotechnology, Anhui Agricultural University Hefei, China
| | - Hanwei Yan
- Laboratory of Modern Biotechnology, Anhui Agricultural UniversityHefei, China; Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture UniversityHefei, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, Anhui Agricultural UniversityHefei, China; Key Laboratory of Biomass Improvement and Conversion, Anhui Agriculture UniversityHefei, China
| |
Collapse
|
14
|
Sriswasdi S, Takashima M, Manabe RI, Ohkuma M, Sugita T, Iwasaki W. Global deceleration of gene evolution following recent genome hybridizations in fungi. Genome Res 2016; 26:1081-90. [PMID: 27440871 PMCID: PMC4971771 DOI: 10.1101/gr.205948.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 06/17/2016] [Indexed: 11/27/2022]
Abstract
Polyploidization events such as whole-genome duplication and inter-species hybridization are major evolutionary forces that shape genomes. Although long-term effects of polyploidization have been well-characterized, early molecular evolutionary consequences of polyploidization remain largely unexplored. Here, we report the discovery of two recent and independent genome hybridizations within a single clade of a fungal genus, Trichosporon. Comparative genomic analyses revealed that redundant genes are experiencing decelerations, not accelerations, of evolutionary rates. We identified a relationship between gene conversion and decelerated evolution suggesting that gene conversion may improve the genome stability of young hybrids by restricting gene functional divergences. Furthermore, we detected large-scale gene losses from transcriptional and translational machineries that indicate a global compensatory mechanism against increased gene dosages. Overall, our findings illustrate counteracting mechanisms during an early phase of post-genome hybridization and fill a critical gap in existing theories on genome evolution.
Collapse
Affiliation(s)
- Sira Sriswasdi
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Masako Takashima
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ri-Ichiroh Manabe
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa 230-0045, Japan
| | - Moriya Ohkuma
- Japan Collection of Microorganisms, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Takashi Sugita
- Department of Microbiology, Meiji Pharmaceutical University, Kiyose, Tokyo 204-8588, Japan
| | - Wataru Iwasaki
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8568, Japan; Atmosphere and Ocean Research Institute, University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| |
Collapse
|
15
|
Brunet FG, Volff JN, Schartl M. Whole Genome Duplications Shaped the Receptor Tyrosine Kinase Repertoire of Jawed Vertebrates. Genome Biol Evol 2016; 8:1600-13. [PMID: 27260203 PMCID: PMC4898815 DOI: 10.1093/gbe/evw103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The receptor tyrosine kinase (RTK) gene family, involved primarily in cell growth and differentiation, comprises proteins with a common enzymatic tyrosine kinase intracellular domain adjacent to a transmembrane region. The amino-terminal portion of RTKs is extracellular and made of different domains, the combination of which characterizes each of the 20 RTK subfamilies among mammals. We analyzed a total of 7,376 RTK sequences among 143 vertebrate species to provide here the first comprehensive census of the jawed vertebrate repertoire. We ascertained the 58 genes previously described in the human and mouse genomes and established their phylogenetic relationships. We also identified five additional RTKs amounting to a total of 63 genes in jawed vertebrates. We found that the vertebrate RTK gene family has been shaped by the two successive rounds of whole genome duplications (WGD) called 1R and 2R (1R/2R) that occurred at the base of the vertebrates. In addition, the Vegfr and Ephrin receptor subfamilies were expanded by single gene duplications. In teleost fish, 23 additional RTK genes have been retained after another expansion through the fish-specific third round (3R) of WGD. Several lineage-specific gene losses were observed. For instance, birds have lost three RTKs, and different genes are missing in several fish sublineages. The RTK gene family presents an unusual high gene retention rate from the vertebrate WGDs (58.75% after 1R/2R, 64.4% after 3R), resulting in an expansion that might be correlated with the evolution of complexity of vertebrate cellular communication and intracellular signaling.
Collapse
Affiliation(s)
- Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard Lyon I, Lyon, France
| | - Manfred Schartl
- Physiologische Chemie, Biozentrum, University of Würzburg, Am Hubland, and Comprehensive Cancer Center, University Clinic Würzburg, Würzburg, Germany Texas Institute for Advanced Study and Department of Biology, Texas A&M University, College Station, USA
| |
Collapse
|
16
|
HUANG XING, BAO YANING, WANG BO, LIU LIJUN, CHEN JIE, DAI LUNJIN, BALOCH SANAULLAH, PENG DINGXIANG. Identification of small auxin-up RNA (SAUR) genes in Urticales plants: mulberry (Morus notabilis), hemp (Cannabis sativa) and ramie (Boehmeria nivea). J Genet 2016; 95:119-29. [DOI: 10.1007/s12041-016-0622-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
17
|
Gutierrez-Mazariegos J, Nadendla EK, Studer RA, Alvarez S, de Lera AR, Kuraku S, Bourguet W, Schubert M, Laudet V. Evolutionary diversification of retinoic acid receptor ligand-binding pocket structure by molecular tinkering. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150484. [PMID: 27069642 PMCID: PMC4821253 DOI: 10.1098/rsos.150484] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Whole genome duplications (WGDs) have been classically associated with the origin of evolutionary novelties and the so-called duplication-degeneration-complementation model describes the possible fates of genes after duplication. However, how sequence divergence effectively allows functional changes between gene duplicates is still unclear. In the vertebrate lineage, two rounds of WGDs took place, giving rise to paralogous gene copies observed for many gene families. For the retinoic acid receptors (RARs), for example, which are members of the nuclear hormone receptor (NR) superfamily, a unique ancestral gene has been duplicated resulting in three vertebrate paralogues: RARα, RARβ and RARγ. It has previously been shown that this single ancestral RAR was neofunctionalized to give rise to a larger substrate specificity range in the RARs of extant jawed vertebrates (also called gnathostomes). To understand RAR diversification, the members of the cyclostomes (lamprey and hagfish), jawless vertebrates representing the extant sister group of gnathostomes, provide an intermediate situation and thus allow the characterization of the evolutionary steps that shaped RAR ligand-binding properties following the WGDs. In this study, we assessed the ligand-binding specificity of cyclostome RARs and found that their ligand-binding pockets resemble those of gnathostome RARα and RARβ. In contrast, none of the cyclostome receptors studied showed any RARγ-like specificity. Together, our results suggest that cyclostome RARs cover only a portion of the specificity repertoire of the ancestral gnathostome RARs and indicate that the establishment of ligand-binding specificity was a stepwise event. This iterative process thus provides a rare example for the diversification of receptor-ligand interactions of NRs following WGDs.
Collapse
Affiliation(s)
- Juliana Gutierrez-Mazariegos
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Eswar Kumar Nadendla
- Centre de Biochimie Structurale, Inserm U1054, CNRS UMR 5048, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Romain A. Studer
- European Molecular Biology Laboratory, European Bioinformatics Institute, (EMBL-EBI)—Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Susana Alvarez
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Angel R. de Lera
- Departamento de Química Organica, Facultad de Química, Universidade de Vigo, 36310 Vigo, Spain
| | - Shigehiro Kuraku
- Phyloinformatics Unit, RIKEN Center for Life Science Technologies, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm U1054, CNRS UMR 5048, Université de Montpellier, 29 Rue de Navacelles, 34090 Montpellier, France
| | - Michael Schubert
- Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 7009, Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Observatoire Océanologique de Villefranche-sur-Mer, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - Vincent Laudet
- Molecular Zoology Team, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| |
Collapse
|
18
|
Kenny NJ, Chan KW, Nong W, Qu Z, Maeso I, Yip HY, Chan TF, Kwan HS, Holland PWH, Chu KH, Hui JHL. Ancestral whole-genome duplication in the marine chelicerate horseshoe crabs. Heredity (Edinb) 2016; 116:190-9. [PMID: 26419336 PMCID: PMC4806888 DOI: 10.1038/hdy.2015.89] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 01/03/2023] Open
Abstract
Whole-genome duplication (WGD) results in new genomic resources that can be exploited by evolution for rewiring genetic regulatory networks in organisms. In metazoans, WGD occurred before the last common ancestor of vertebrates, and has been postulated as a major evolutionary force that contributed to their speciation and diversification of morphological structures. Here, we have sequenced genomes from three of the four extant species of horseshoe crabs-Carcinoscorpius rotundicauda, Limulus polyphemus and Tachypleus tridentatus. Phylogenetic and sequence analyses of their Hox and other homeobox genes, which encode crucial transcription factors and have been used as indicators of WGD in animals, strongly suggests that WGD happened before the last common ancestor of these marine chelicerates >135 million years ago. Signatures of subfunctionalisation of paralogues of Hox genes are revealed in the appendages of two species of horseshoe crabs. Further, residual homeobox pseudogenes are observed in the three lineages. The existence of WGD in the horseshoe crabs, noted for relative morphological stasis over geological time, suggests that genomic diversity need not always be reflected phenotypically, in contrast to the suggested situation in vertebrates. This study provides evidence of ancient WGD in the ecdysozoan lineage, and reveals new opportunities for studying genomic and regulatory evolution after WGD in the Metazoa.
Collapse
Affiliation(s)
- N J Kenny
- Simon F.S. Li Marine Science Laboratory,
School of Life Sciences, Center of Soybean Research, State Key Laboratory of
Agrobiotechnology, The Chinese University of Hong Kong, Shatin,
Hong Kong
| | - K W Chan
- Simon F.S. Li Marine Science Laboratory,
School of Life Sciences, Center of Soybean Research, State Key Laboratory of
Agrobiotechnology, The Chinese University of Hong Kong, Shatin,
Hong Kong
| | - W Nong
- Simon F.S. Li Marine Science Laboratory,
School of Life Sciences, Center of Soybean Research, State Key Laboratory of
Agrobiotechnology, The Chinese University of Hong Kong, Shatin,
Hong Kong
| | - Z Qu
- Simon F.S. Li Marine Science Laboratory,
School of Life Sciences, Center of Soybean Research, State Key Laboratory of
Agrobiotechnology, The Chinese University of Hong Kong, Shatin,
Hong Kong
| | - I Maeso
- Centro Andaluz de Biología del
Desarrollo (CABD), Consejo Superior de Investigaciones
Científicas/Universidad Pablo de Olavide, Sevilla,
Spain
| | - H Y Yip
- Simon F.S. Li Marine Science Laboratory,
School of Life Sciences, Center of Soybean Research, State Key Laboratory of
Agrobiotechnology, The Chinese University of Hong Kong, Shatin,
Hong Kong
| | - T F Chan
- School of Life Sciences, Center of
Soybean Research, State Key Laboratory of Agrobiotechnology, The Chinese
University of Hong Kong, Shatin, Hong Kong
| | - H S Kwan
- School of Life Sciences, The Chinese
University of Hong Kong, Shatin, Hong Kong
| | - P W H Holland
- Department of Zoology, University of
Oxford, Oxford, UK
| | - K H Chu
- Simon F.S. Li Marine Science Laboratory,
School of Life Sciences, The Chinese University of Hong Kong,
Shatin, Hong Kong
| | - J H L Hui
- Simon F.S. Li Marine Science Laboratory,
School of Life Sciences, Center of Soybean Research, State Key Laboratory of
Agrobiotechnology, The Chinese University of Hong Kong, Shatin,
Hong Kong
| |
Collapse
|
19
|
Dossa K, Diouf D, Cissé N. Genome-Wide Investigation of Hsf Genes in Sesame Reveals Their Segmental Duplication Expansion and Their Active Role in Drought Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:1522. [PMID: 27790233 PMCID: PMC5061811 DOI: 10.3389/fpls.2016.01522] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/27/2016] [Indexed: 05/05/2023]
Abstract
Sesame is a survivor crop cultivated for ages in arid areas under high temperatures and limited water conditions. Since its entire genome has been sequenced, revealing evolution, and functional characterization of its abiotic stress genes became a hot topic. In this study, we performed a whole-genome identification and analysis of Hsf gene family in sesame. Thirty genes encoding Hsf domain were found and classified into 3 major classes A, B, and C. The class A members were the most representative one and Hsf genes were distributed in 12 of the 16 linkage groups (except the LG 8, 9, 13, and 16). Evolutionary analysis revealed that, segmental duplication events which occurred around 67 MYA, were the primary force underlying Hsf genes expansion in sesame. Comparative analysis also suggested that sesame has retained most of its Hsf genes while its relatives viz. tomato and potato underwent extensive gene losses during evolution. Continuous purifying selection has played a key role in the maintenance of Hsf genes in sesame. Expression analysis of the Hsf genes in sesame revealed their putative involvement in multiple tissue-/developmental stages. Time-course expression profiling of Hsf genes in response to drought stress showed that 90% Hsfs are drought responsive. We infer that classes B-Hsfs might be the primary regulators of drought response in sesame by cooperating with some class A genes. This is the first insight into this gene family and the results provide some gene resources for future gene cloning and functional studies toward the improvement in stress tolerance of sesame.
Collapse
Affiliation(s)
- Komivi Dossa
- Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la SécheresseSénégal
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
- *Correspondence: Komivi Dossa
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta DiopDakar, Sénégal
| | - Ndiaga Cissé
- Centre d'Etudes Régional pour l'Amélioration de l'Adaptation à la SécheresseSénégal
| |
Collapse
|
20
|
Wang Y, Ma H. Step-wise and lineage-specific diversification of plant RNA polymerase genes and origin of the largest plant-specific subunits. THE NEW PHYTOLOGIST 2015; 207:1198-212. [PMID: 25921392 DOI: 10.1111/nph.13432] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/24/2015] [Indexed: 05/25/2023]
Abstract
Proteins often function as complexes, yet little is known about the evolution of dissimilar subunits of complexes. DNA-directed RNA polymerases (RNAPs) are multisubunit complexes, with distinct eukaryotic types for different classes of transcripts. In addition to Pol I-III, common in eukaryotes, plants have Pol IV and V for epigenetic regulation. Some RNAP subunits are specific to one type, whereas other subunits are shared by multiple types. We have conducted extensive phylogenetic and sequence analyses, and have placed RNAP gene duplication events in land plant history, thereby reconstructing the subunit compositions of the novel RNAPs during land plant evolution. We found that Pol IV/V have experienced step-wise duplication and diversification of various subunits, with increasingly distinctive subunit compositions. Also, lineage-specific duplications have further increased RNAP complexity with distinct copies in different plant families and varying divergence for subunits of different RNAPs. Further, the largest subunits of Pol IV/V probably originated from a gene fusion in the ancestral land plants. We propose a framework of plant RNAP evolution, providing an excellent model for protein complex evolution.
Collapse
Affiliation(s)
- Yaqiong Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Fudan University, Shanghai, 200433, China
- Institutes of Biomedical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| |
Collapse
|
21
|
Sequence and expression variation in SUPPRESSOR of OVEREXPRESSION of CONSTANS 1 (SOC1): homeolog evolution in Indian Brassicas. Dev Genes Evol 2015; 225:287-303. [DOI: 10.1007/s00427-015-0513-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 08/03/2015] [Indexed: 10/23/2022]
|
22
|
Marcet-Houben M, Gabaldón T. Beyond the Whole-Genome Duplication: Phylogenetic Evidence for an Ancient Interspecies Hybridization in the Baker's Yeast Lineage. PLoS Biol 2015; 13:e1002220. [PMID: 26252497 PMCID: PMC4529251 DOI: 10.1371/journal.pbio.1002220] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/01/2015] [Indexed: 11/21/2022] Open
Abstract
Whole-genome duplications have shaped the genomes of several vertebrate, plant, and fungal lineages. Earlier studies have focused on establishing when these events occurred and on elucidating their functional and evolutionary consequences, but we still lack sufficient understanding of how genome duplications first originated. We used phylogenomics to study the ancient genome duplication occurred in the yeast Saccharomyces cerevisiae lineage and found compelling evidence for the existence of a contemporaneous interspecies hybridization. We propose that the genome doubling was a direct consequence of this hybridization and that it served to provide stability to the recently formed allopolyploid. This scenario provides a mechanism for the origin of this ancient duplication and the lineage that originated from it and brings a new perspective to the interpretation of the origin and consequences of whole-genome duplications.
Collapse
Affiliation(s)
- Marina Marcet-Houben
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
23
|
Hose J, Yong CM, Sardi M, Wang Z, Newton MA, Gasch AP. Dosage compensation can buffer copy-number variation in wild yeast. eLife 2015; 4. [PMID: 25955966 PMCID: PMC4448642 DOI: 10.7554/elife.05462] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 05/07/2015] [Indexed: 12/22/2022] Open
Abstract
Aneuploidy is linked to myriad diseases but also facilitates organismal evolution. It remains unclear how cells overcome the deleterious effects of aneuploidy until new phenotypes evolve. Although laboratory strains are extremely sensitive to aneuploidy, we show here that aneuploidy is common in wild yeast isolates, which show lower-than-expected expression at many amplified genes. We generated diploid strain panels in which cells carried two, three, or four copies of the affected chromosomes, to show that gene-dosage compensation functions at >30% of amplified genes. Genes subject to dosage compensation are under higher expression constraint in wild populations—but they show elevated rates of gene amplification, suggesting that copy-number variation is buffered at these genes. We find that aneuploidy provides a clear ecological advantage to oak strain YPS1009, by amplifying a causal gene that escapes dosage compensation. Our work presents a model in which dosage compensation buffers gene amplification through aneuploidy to provide a natural, but likely transient, route to rapid phenotypic evolution. DOI:http://dx.doi.org/10.7554/eLife.05462.001 Evolution is driven by changes to the genes and other genetic information found in the DNA of an organism. These changes might, for example, alter the physical characteristics of the organism, or change how efficiently crucial tasks are carried out inside cells. Whatever the change, if it makes it easier for the organism to survive and reproduce, it is more likely to be passed on to future generations. DNA is organized inside cells in structures called chromosomes. Most of the cells in animals, plants, and fungi contain two copies of each chromosome. However, sometimes mistakes happen during cell division and extra copies of a chromosome—and hence the genes contained within it—may end up in a cell. These extra copies of genes might help to speed up the rate at which a species evolves, as the ‘spare’ copies are free to adapt to new roles. However, having extra copies of genes can also often be harmful, and in humans can cause genetic disorders such as Down syndrome. In the laboratory, chromosomes are commonly studied in a species of yeast called Saccharomyces cerevisiae. This species consists of several groups—or strains—that are genetically distinct from each other. Over the years, breeding the yeast for experiments has created laboratory strains that have lost some of the characteristics seen in wild strains. Earlier studies suggested that these cells fail to grow properly if they contain extra copies of chromosomes. Now, Hose et al. have studied nearly 50 wild strains of Saccharomyces cerevisiae. In these, extra copies of chromosomes are commonplace, and seemingly have no detrimental effect on growth. Instead, Hose et al. found that cells with too many copies of a gene use many of those genes less often than would be expected. This process is known as ‘dosage compensation’. This dosage compensation has not been observed in laboratory strains, in part because the extra gene copies make them sickly and hard to study. Together, the results provide examples of how dosage compensation could help new traits to evolve in a species by reducing the negative effects of duplicated genes. This knowledge may have broad application, from suggesting methods to alleviate human disorders to implicating new ways to engineer useful traits in yeast and other microbes. DOI:http://dx.doi.org/10.7554/eLife.05462.002
Collapse
Affiliation(s)
- James Hose
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Chris Mun Yong
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Maria Sardi
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| | - Zhishi Wang
- Department of Statistics, University of Wisconsin-Madison, Madison, United States
| | - Michael A Newton
- Department of Statistics, University of Wisconsin-Madison, Madison, United States
| | - Audrey P Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
24
|
De La Torre AR, Lin YC, Van de Peer Y, Ingvarsson PK. Genome-wide analysis reveals diverged patterns of codon bias, gene expression, and rates of sequence evolution in picea gene families. Genome Biol Evol 2015; 7:1002-15. [PMID: 25747252 PMCID: PMC4419791 DOI: 10.1093/gbe/evv044] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The recent sequencing of several gymnosperm genomes has greatly facilitated studying the evolution of their genes and gene families. In this study, we examine the evidence for expression-mediated selection in the first two fully sequenced representatives of the gymnosperm plant clade (Picea abies and Picea glauca). We use genome-wide estimates of gene expression (>50,000 expressed genes) to study the relationship between gene expression, codon bias, rates of sequence divergence, protein length, and gene duplication. We found that gene expression is correlated with rates of sequence divergence and codon bias, suggesting that natural selection is acting on Picea protein-coding genes for translational efficiency. Gene expression, rates of sequence divergence, and codon bias are correlated with the size of gene families, with large multicopy gene families having, on average, a lower expression level and breadth, lower codon bias, and higher rates of sequence divergence than single-copy gene families. Tissue-specific patterns of gene expression were more common in large gene families with large gene expression divergence than in single-copy families. Recent family expansions combined with large gene expression variation in paralogs and increased rates of sequence evolution suggest that some Picea gene families are rapidly evolving to cope with biotic and abiotic stress. Our study highlights the importance of gene expression and natural selection in shaping the evolution of protein-coding genes in Picea species, and sets the ground for further studies investigating the evolution of individual gene families in gymnosperms.
Collapse
Affiliation(s)
| | - Yao-Cheng Lin
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Yves Van de Peer
- Department of Plant Systems Biology, VIB, and Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium Genomics Research Institute, University of Pretoria, South Africa
| | - Pär K Ingvarsson
- Department of Ecology and Environmental Science, Umeå University, Sweden Umeå Plant Science Centre, Umeå, Sweden
| |
Collapse
|
25
|
Fischer S, Bernard S, Beslon G, Knibbe C. A model for genome size evolution. Bull Math Biol 2014; 76:2249-91. [PMID: 25142746 PMCID: PMC4153982 DOI: 10.1007/s11538-014-9997-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 07/15/2014] [Indexed: 01/27/2023]
Abstract
We present a model for genome size evolution that takes into account both local mutations such as small insertions and small deletions, and large chromosomal rearrangements such as duplications and large deletions. We introduce the possibility of undergoing several mutations within one generation. The model, albeit minimalist, reveals a non-trivial spontaneous dynamics of genome size: in the absence of selection, an arbitrary large part of genomes remains beneath a finite size, even for a duplication rate 2.6-fold higher than the rate of large deletions, and even if there is also a systematic bias toward small insertions compared to small deletions. Specifically, we show that the condition of existence of an asymptotic stationary distribution for genome size non-trivially depends on the rates and mean sizes of the different mutation types. We also give upper bounds for the median and other quantiles of the genome size distribution, and argue that these bounds cannot be overcome by selection. Taken together, our results show that the spontaneous dynamics of genome size naturally prevents it from growing infinitely, even in cases where intuition would suggest an infinite growth. Using quantitative numerical examples, we show that, in practice, a shrinkage bias appears very quickly in genomes undergoing mutation accumulation, even though DNA gains and losses appear to be perfectly symmetrical at first sight. We discuss this spontaneous dynamics in the light of the other evolutionary forces proposed in the literature and argue that it provides them a stability-related size limit below which they can act.
Collapse
Affiliation(s)
- Stephan Fischer
- INSA-Lyon, Inria, CNRS, LIRIS, UMR5205, 69621, Villeurbanne, France,
| | | | | | | |
Collapse
|
26
|
Comparative mapping between Coho Salmon (Oncorhynchus kisutch) and three other salmonids suggests a role for chromosomal rearrangements in the retention of duplicated regions following a whole genome duplication event. G3-GENES GENOMES GENETICS 2014; 4:1717-30. [PMID: 25053705 PMCID: PMC4169165 DOI: 10.1534/g3.114.012294] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Whole genome duplication has been implicated in evolutionary innovation and rapid diversification. In salmonid fishes, however, whole genome duplication significantly pre-dates major transitions across the family, and re-diploidization has been a gradual process between genomes that have remained essentially collinear. Nevertheless, pairs of duplicated chromosome arms have diverged at different rates from each other, suggesting that the retention of duplicated regions through occasional pairing between homeologous chromosomes may have played an evolutionary role across species pairs. Extensive chromosomal arm rearrangements have been a key mechanism involved in re-dipliodization of the salmonid genome; therefore, we investigated their influence on degree of differentiation between homeologs across salmon species. We derived a linkage map for coho salmon and performed comparative mapping across syntenic arms within the genus Oncorhynchus, and with the genus Salmo, to determine the phylogenetic relationship between chromosome arrangements and the retention of undifferentiated duplicated regions. A 6596.7 cM female coho salmon map, comprising 30 linkage groups with 7415 and 1266 nonduplicated and duplicated loci, respectively, revealed uneven distribution of duplicated loci along and between chromosome arms. These duplicated regions were conserved across syntenic arms across Oncorhynchus species and were identified in metacentric chromosomes likely formed ancestrally to the divergence of Oncorhynchus from Salmo. These findings support previous studies in which observed pairings involved at least one metacentric chromosome. Re-diploidization in salmon may have been prevented or retarded by the formation of metacentric chromosomes after the whole genome duplication event and may explain lineage-specific innovations in salmon species if functional genes are found in these regions.
Collapse
|
27
|
Mühlhausen S, Kollmar M. Whole genome duplication events in plant evolution reconstructed and predicted using myosin motor proteins. BMC Evol Biol 2013; 13:202. [PMID: 24053117 PMCID: PMC3850447 DOI: 10.1186/1471-2148-13-202] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/16/2013] [Indexed: 01/22/2023] Open
Abstract
Background The evolution of land plants is characterized by whole genome duplications (WGD), which drove species diversification and evolutionary novelties. Detecting these events is especially difficult if they date back to the origin of the plant kingdom. Established methods for reconstructing WGDs include intra- and inter-genome comparisons, KS age distribution analyses, and phylogenetic tree constructions. Results By analysing 67 completely sequenced plant genomes 775 myosins were identified and manually assembled. Phylogenetic trees of the myosin motor domains revealed orthologous and paralogous relationships and were consistent with recent species trees. Based on the myosin inventories and the phylogenetic trees, we have identified duplications of the entire myosin motor protein family at timings consistent with 23 WGDs, that had been reported before. We also predict 6 WGDs based on further protein family duplications. Notably, the myosin data support the two recently reported WGDs in the common ancestor of all extant angiosperms. We predict single WGDs in the Manihot esculenta and Nicotiana benthamiana lineages, two WGDs for Linum usitatissimum and Phoenix dactylifera, and a triplication or two WGDs for Gossypium raimondii. Our data show another myosin duplication in the ancestor of the angiosperms that could be either the result of a single gene duplication or a remnant of a WGD. Conclusions We have shown that the myosin inventories in angiosperms retain evidence of numerous WGDs that happened throughout plant evolution. In contrast to other protein families, many myosins are still present in extant species. They are closely related and have similar domain architectures, and their phylogenetic grouping follows the genome duplications. Because of its broad taxonomic sampling the dataset provides the basis for reliable future identification of further whole genome duplications.
Collapse
Affiliation(s)
- Stefanie Mühlhausen
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for biophysical Chemistry, Göttingen, Germany.
| | | |
Collapse
|
28
|
Arkhipova IR, Rodriguez F. Genetic and epigenetic changes involving (retro)transposons in animal hybrids and polyploids. Cytogenet Genome Res 2013; 140:295-311. [PMID: 23899811 DOI: 10.1159/000352069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are discrete genetic units that have the ability to change their location within chromosomal DNA, and constitute a major and rapidly evolving component of eukaryotic genomes. They can be subdivided into 2 distinct types: retrotransposons, which use an RNA intermediate for transposition, and DNA transposons, which move only as DNA. Rapid advances in genome sequencing significantly improved our understanding of TE roles in genome shaping and restructuring, and studies of transcriptomes and epigenomes shed light on the previously unknown molecular mechanisms underlying genetic and epigenetic TE controls. Knowledge of these control systems may be important for better understanding of reticulate evolution and speciation in the context of bringing different genomes together by hybridization and perturbing the established regulatory balance by ploidy changes. See also sister article focusing on plants by Bento et al. in this themed issue.
Collapse
Affiliation(s)
- I R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA. iarkhipova @ mbl.edu
| | | |
Collapse
|
29
|
Shapiro JA. How life changes itself: the Read-Write (RW) genome. Phys Life Rev 2013; 10:287-323. [PMID: 23876611 DOI: 10.1016/j.plrev.2013.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 01/06/2023]
Abstract
The genome has traditionally been treated as a Read-Only Memory (ROM) subject to change by copying errors and accidents. In this review, I propose that we need to change that perspective and understand the genome as an intricately formatted Read-Write (RW) data storage system constantly subject to cellular modifications and inscriptions. Cells operate under changing conditions and are continually modifying themselves by genome inscriptions. These inscriptions occur over three distinct time-scales (cell reproduction, multicellular development and evolutionary change) and involve a variety of different processes at each time scale (forming nucleoprotein complexes, epigenetic formatting and changes in DNA sequence structure). Research dating back to the 1930s has shown that genetic change is the result of cell-mediated processes, not simply accidents or damage to the DNA. This cell-active view of genome change applies to all scales of DNA sequence variation, from point mutations to large-scale genome rearrangements and whole genome duplications (WGDs). This conceptual change to active cell inscriptions controlling RW genome functions has profound implications for all areas of the life sciences.
Collapse
Affiliation(s)
- James A Shapiro
- Dept. of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA. http://www.huffingtonpost.com/james-a-shapiro
| |
Collapse
|
30
|
Soza VL, Haworth KL, Di Stilio VS. Timing and consequences of recurrent polyploidy in meadow-rues (thalictrum, ranunculaceae). Mol Biol Evol 2013; 30:1940-54. [PMID: 23728793 DOI: 10.1093/molbev/mst101] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The discovery of ancient whole-genome duplications in eukaryotic lineages has renewed the interest in polyploidy and its effects on the diversification of organisms. Polyploidy has large-scale effects on both genotype and phenotype and has been linked to the evolution of genome size, dioecy, and changes in ecological interactions, such as pollinator visitation. Here, we take a molecular systematics approach to examine the evolution of polyploidy in the plant genus Thalictrum (Ranunculaceae) and test its correlation to changes in genome size, sexual system, and pollination mode. Thalictrum is an ideal study system due to its extensive ploidy range and floral diversity. Phylogenetic analyses were used for character reconstructions, correlation tests, and dating estimates. Our results suggest that polyploidization occurred frequently and recently in the evolution of Thalictrum, mostly within the last 10.6-5.8 My, coinciding with the diversification of particular clades. In spite of an overall trend of genomic downsizing accompanying polyploidy in angiosperms and proportional increases observed at finer scales, our genome size estimates for Thalictrum show no correlation with chromosome number. Instead, we observe genomic expansion in diploids and genomic contraction in polyploids with increased age. Additionally, polyploidy is not correlated with dioecy in Thalictrum; therefore, other factors must have influenced the evolution of separate sexes in this group. A novel finding from our study is the association of polyploidy with shifts to wind pollination, in particular, during a time period of global cooling and mountain uplift in the Americas.
Collapse
Affiliation(s)
- Valerie L Soza
- Department of Biology, University of Washington, WA, USA
| | | | | |
Collapse
|
31
|
Castagnone-Sereno P, Danchin EGJ, Perfus-Barbeoch L, Abad P. Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:203-20. [PMID: 23682915 DOI: 10.1146/annurev-phyto-082712-102300] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Root-knot nematodes (RKNs) (Meloidogyne spp.) are obligate endoparasites of major worldwide economic importance. They exhibit a wide continuum of variation in their reproductive strategies, ranging from amphimixis to obligatory mitotic parthenogenesis. Molecular phylogenetic studies have highlighted divergence between mitotic and meiotic parthenogenetic RKN species and probable interspecific hybridization as critical steps in their speciation and diversification process. The recent completion of the genomes of two RKNs, Meloidogyne hapla and Meloidogyne incognita, that exhibit striking differences in their mode of reproduction (with and without sex, respectively), their geographic distribution, and their host range has opened the way for deciphering the evolutionary significance of (a)sexual reproduction in these parasites. Accumulating evidence suggests that whole-genome duplication (in M. incognita) and horizontal gene transfers (HGTs) represent major forces that have shaped the genome of current RKN species and may account for the extreme adaptive capacities and parasitic success of these nematodes.
Collapse
|
32
|
Mota NR, Araujo-Jnr EV, Paixão-Côrtes VR, Bortolini MC, Bau CHD. Linking dopamine neurotransmission and neurogenesis: The evolutionary history of the NTAD (NCAM1-TTC12-ANKK1-DRD2) gene cluster. Genet Mol Biol 2012; 35:912-8. [PMID: 23412349 PMCID: PMC3571431 DOI: 10.1590/s1415-47572012000600004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Genetic studies have long suggested the important role of the DRD2 gene in psychiatric disorders and behavior. Further research has shown a conjoined effect of genes in the Chr11q22–23 region, which includes the NCAM1, TTC12, ANKK1 and DRD2 genes, or NTAD cluster. Despite a growing need to unravel the role of this cluster, few studies have taken into account interspecies and evolutionary approaches. This study shows that behaviorally relevant SNPs from the NTAD cluster, such as rs1800497 (Taq1A) and rs6277, are ancient polymorphisms that date back to the common ancestor between modern humans and Neanderthals/Denisovans. Conserved synteny and neighborhood indicate the NTAD cluster seems to have been established at least 400 million years ago, when the first Sarcopterygians emerged. The NTAD genes are apparently co-regulated and this could be attributed to adaptive functional properties, including those that emerged when the central nervous system became more complex. Finally, our findings indicate that NTAD genes, which are related to neurogenesis and dopaminergic neurotransmission, should be approached as a unit in behavioral and psychiatric genetic studies.
Collapse
Affiliation(s)
- Nina Roth Mota
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
33
|
Makino T, McLysaght A. Positionally biased gene loss after whole genome duplication: evidence from human, yeast, and plant. Genome Res 2012; 22:2427-35. [PMID: 22835904 PMCID: PMC3514672 DOI: 10.1101/gr.131953.111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 07/20/2012] [Indexed: 01/23/2023]
Abstract
Whole genome duplication (WGD) has made a significant contribution to many eukaryotic genomes including yeast, plants, and vertebrates. Following WGD, some ohnologs (WGD paralogs) remain in the genome arranged in blocks of conserved gene order and content (paralogons). However, the most common outcome is loss of one of the ohnolog pair. It is unclear what factors, if any, govern gene loss from paralogons. Recent studies have reported physical clustering (genetic linkage) of functionally linked (interacting) genes in the human genome and propose a biological significance for the clustering of interacting genes such as coexpression or preservation of epistatic interactions. Here we conduct a novel test of a hypothesis that functionally linked genes in the same paralogon are preferentially retained in cis after WGD. We compare the number of protein-protein interactions (PPIs) between linked singletons within a paralogon (defined as cis-PPIs) with that of PPIs between singletons across paralogon pairs (defined as trans-PPIs). We find that paralogons in which the number of cis-PPIs is greater than that of trans-PPIs are significantly enriched in human and yeast. The trend is similar in plants, but it is difficult to assess statistical significance due to multiple, overlapping WGD events. Interestingly, human singletons participating in cis-PPIs tend to be classified into "response to stimulus." We uncover strong evidence of biased gene loss after WGD, which further supports the hypothesis of biologically significant gene clusters in eukaryotic genomes. These observations give us new insight for understanding the evolution of genome structure and of protein interaction networks.
Collapse
Affiliation(s)
- Takashi Makino
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
- Department of Ecology and Evolutionary Biology, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Aoife McLysaght
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland
| |
Collapse
|
34
|
Sperling L. Remembrance of things past retrieved from the Paramecium genome. Res Microbiol 2011; 162:587-97. [DOI: 10.1016/j.resmic.2011.02.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 02/17/2011] [Indexed: 11/30/2022]
|
35
|
Liu SL, Adams KL. Dramatic change in function and expression pattern of a gene duplicated by polyploidy created a paternal effect gene in the Brassicaceae. Mol Biol Evol 2010; 27:2817-28. [PMID: 20616146 DOI: 10.1093/molbev/msq169] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
New gene formation by polyploidy has been an ongoing process during the evolution of various eukaryotes that has contributed greatly to the large number of genes in their genomes. After duplication, some genes that are retained can acquire new functions or expression patterns, or subdivide their functions or expression patterns between duplicates. Here, we show that SHORT SUSPENSOR (SSP) and Brassinosteroid Kinase 1 (BSK1) are paralogs duplicated by a polyploidy event that occurred in the Brassicaceae family about 23 Ma. SSP is involved in paternal control of zygote elongation in Arabidopsis thaliana by transcription in the sperm cells of pollen and then translation in the zygote, whereas BSK1 is involved in brassinosteroid signal transduction. Comparative analysis of expression in 63 different organs and developmental stages revealed that BSK1 and SSP have opposite expression patterns in pollen compared with all other parts of the plant. We determined that BSK1 retains the ancestral expression pattern and function. Thus, SSP has diverged in function after duplication from a component of the brassinosteroid signaling pathway to a paternal regulator of the timing of zygote elongation. The ancestral function of SSP was lost by deletions in the kinase domain. Our sequence rate analysis revealed that SSP but not BSK1 has experienced a greatly accelerated rate of amino acid sequence changes and relaxation of purifying selection. In addition, SSP has been duplicated to create a new gene (SSP-like1) with a completely different expression pattern, a shorter coding sequence that has lost a critical functional domain, and a greatly accelerated rate of amino acid sequence evolution along with evidence for positive selection, together indicative of neofunctionalization. This study illustrates two dramatic examples of neofunctionalization following gene duplication by complete changes in expression pattern and function. In addition, our findings indicate that paternal control of zygote elongation by SSP is an evolutionarily recent innovation in the Brassicaceae family.
Collapse
Affiliation(s)
- Shao-Lun Liu
- UBC Botanical Garden and Centre for Plant Research, Vancouver, British Columbia, Canada
| | | |
Collapse
|
36
|
Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. Fast diploidization in close mesopolyploid relatives of Arabidopsis. THE PLANT CELL 2010; 22:2277-90. [PMID: 20639445 PMCID: PMC2929090 DOI: 10.1105/tpc.110.074526] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 06/09/2010] [Accepted: 06/22/2010] [Indexed: 05/18/2023]
Abstract
Mesopolyploid whole-genome duplication (WGD) was revealed in the ancestry of Australian Brassicaceae species with diploid-like chromosome numbers (n = 4 to 6). Multicolor comparative chromosome painting was used to reconstruct complete cytogenetic maps of the cryptic ancient polyploids. Cytogenetic analysis showed that the karyotype of the Australian Camelineae species descended from the eight ancestral chromosomes (n = 8) through allopolyploid WGD followed by the extensive reduction of chromosome number. Nuclear and maternal gene phylogenies corroborated the hybrid origin of the mesotetraploid ancestor and suggest that the hybridization event occurred approximately 6 to 9 million years ago. The four, five, and six fusion chromosome pairs of the analyzed close relatives of Arabidopsis thaliana represent complex mosaics of duplicated ancestral genomic blocks reshuffled by numerous chromosome rearrangements. Unequal reciprocal translocations with or without preceeding pericentric inversions and purported end-to-end chromosome fusions accompanied by inactivation and/or loss of centromeres are hypothesized to be the main pathways for the observed chromosome number reduction. Our results underline the significance of multiple rounds of WGD in the angiosperm genome evolution and demonstrate that chromosome number per se is not a reliable indicator of ploidy level.
Collapse
Affiliation(s)
- Terezie Mandáková
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
| | - Simon Joly
- Institut de Recherche en Biologie Végétale, Université de Montréal and Montreal Botanical Garden, 4101 Sherbrooke East, Montreal, Quebec, Canada H1X 2B2
| | - Martin Krzywinski
- Canada’s Michael Smith Genome Sciences Center, Vancouver, British Columbia, Canada V5Z 4S6
| | - Klaus Mummenhoff
- FB Biologie/Chemie, Botanik, Universität Osnabrück, D-49069 Osnabrück, Germany
| | - Martin A. Lysak
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic
- Address correspondence to
| |
Collapse
|
37
|
The collapse of gene complement following whole genome duplication. BMC Genomics 2010; 11:313. [PMID: 20482863 PMCID: PMC2896955 DOI: 10.1186/1471-2164-11-313] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 05/19/2010] [Indexed: 01/15/2023] Open
Abstract
Background Genome amplification through duplication or proliferation of transposable elements has its counterpart in genome reduction, by elimination of DNA or by gene inactivation. Whether loss is primarily due to excision of random length DNA fragments or the inactivation of one gene at a time is controversial. Reduction after whole genome duplication (WGD) represents an inexorable collapse in gene complement. Results We compare fifteen genomes descending from six eukaryotic WGD events 20-450 Mya. We characterize the collapse over time through the distribution of runs of reduced paralog pairs in duplicated segments. Descendant genomes of the same WGD event behave as replicates. Choice of paralog pairs to be reduced is random except for some resistant regions of contiguous pairs. For those paralog pairs that are reduced, conserved copies tend to concentrate on one chromosome. Conclusions Both the contiguous regions of reduction-resistant pairs and the concentration of runs of single copy genes on a single chromosome are evidence of transcriptional co-regulation, dosage sensitivity or other functional interaction constraining the reduction process. These constraints and their evolution over time show a consistent pattern across evolutionary domains and a highly reproducible pattern, as replicates, for the several descendants of a single WGD.
Collapse
|
38
|
Little AG, Kocha KM, Lougheed SC, Moyes CD. Evolution of the nuclear-encoded cytochrome oxidase subunits in vertebrates. Physiol Genomics 2010; 42:76-84. [PMID: 20233836 DOI: 10.1152/physiolgenomics.00015.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Vertebrate mitochondrial cytochrome c oxidase (COX) possesses 10 nuclear-encoded subunits. Six subunits have paralogs in mammals, but the origins and distribution of isoforms among vertebrates have not been analyzed. We used Bayesian phylogenetic analysis to interpret the origins of each subunit, inferring the roles of gene and genome duplications. The paralogous ancestries of five genes were identical throughout the major vertebrate taxa: no paralogs of COX6c and COX7c, two paralogs of COX4 and COX6a, and three paralogs of COX7a. Two genes had an extra copy in teleosts (COX5a, COX5b), and three genes had additional copies in mammals (COX6b, COX7b, COX8). Focusing on early vertebrates, we examined structural divergence and explored transcriptional profiles across zebrafish tissues. Quantitative transcript profiles revealed dramatic differences in transcript abundance for different subunits. COX7b and COX4 transcripts were typically present at very low levels, whereas COX5a and COX8 were in vast excess in all tissues. For genes with paralogs, two general patterns emerged. For COX5a and COX8, there was ubiquitous expression of one paralog, with the other paralog in lower abundance in all tissues. COX4 and COX6a shared a distinct expression pattern, with one paralog dominant in brain and gills and the other in muscles. The isoform profiles in combination with phylogenetic analyses show that vertebrate COX isoform patterns are consistent with the hypothesis that early whole genome duplications in basal vertebrates governed the isoform repertoire in modern fish and tetrapods, though more recent lineage-specific gene/genome duplications also play a role in select subunits.
Collapse
Affiliation(s)
- A G Little
- Department of Biology, Queen's University, Kingston, Canada
| | | | | | | |
Collapse
|
39
|
Chen FC, Chen CJ, Li WH, Chuang TJ. Gene family size conservation is a good indicator of evolutionary rates. Mol Biol Evol 2010; 27:1750-8. [PMID: 20194423 PMCID: PMC2908708 DOI: 10.1093/molbev/msq055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human–chimpanzee–macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.
Collapse
Affiliation(s)
- Feng-Chi Chen
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Miaoli County, Taiwan
| | | | | | | |
Collapse
|
40
|
Koszul R, Fischer G. A prominent role for segmental duplications in modeling Eukaryotic genomes. C R Biol 2009; 332:254-66. [DOI: 10.1016/j.crvi.2008.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/12/2008] [Indexed: 01/22/2023]
|
41
|
Abstract
The understanding the different kinds of sequences that make up a genome, as well as their proportions in genomes (obtained by the sequencing of the complete genome), has considerably changed our idea of evolution at the genomic level. The former view of a slowly evolving genome has given way to the idea of a genome that can undergo many transformations, on a large or small scale, depending on the evolution of the different types of sequences constituting it. Here we summarise the evolution of these sequences and the impact it can have on the genome. We have focused on micro-transformations, and especially on the impact of transposable elements on genomes.
Collapse
Affiliation(s)
- Eric Bonnivard
- UMR 7138-CNRS-Paris VI-MNHN-IRD, Systématique, Adaptation, Evolution, Equipe Génétique et Evolution, Université P. et M. Curie (Paris 6), Bâtiment A, 7 Quai St Bernard, 75252 Paris Cedex 05, France
| | | |
Collapse
|