1
|
Ribeiro RP, Null RW, Özpolat BD. Sex-biased gene expression precedes sexual dimorphism in the agonadal annelid Platynereis dumerilii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598746. [PMID: 38915681 PMCID: PMC11195272 DOI: 10.1101/2024.06.12.598746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Gametogenesis is the process by which germ cells differentiate into mature sperm and oocytes, cells essential for sexual reproduction. The sex-specific molecular programs that drive spermatogenesis and oogenesis can also serve as sex identification markers. Platynereis dumerilii is a research organism that has been studied in many areas of developmental biology. However investigations often disregard sex, as P. dumerilii juveniles lack sexual dimorphism. The molecular mechanisms of gametogenesis in the segmented worm P. dumerilii are also largely unknown. In this study, we used RNA sequencing to investigate the transcriptomic profiles of gametogenesis in P. dumerilii juveniles. Our analysis revealed that sex-biased gene expression becomes increasingly pronounced during the advanced developmental stages, particularly during the meiotic phases of gametogenesis. We identified conserved genes associated with spermatogenesis, such as dmrt1, and a novel gene psmt, that is associated with oogenesis. Additionally, putative long non-coding RNAs were upregulated in both male and female gametogenic programs. This study provides a foundational resource for germ cell research in P. dumerilii, markers for sex identification, and offers comparative data to enhance our understanding of the evolution of gametogenesis mechanisms across species.
Collapse
Affiliation(s)
- Rannyele P Ribeiro
- Department of Biology. Washington University in St. Louis. St. Louis, MO, USA
- Eugene Bell Center for Regenerative Medicine, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Ryan W Null
- Department of Biology. Washington University in St. Louis. St. Louis, MO, USA
| | - B Duygu Özpolat
- Department of Biology. Washington University in St. Louis. St. Louis, MO, USA
- Eugene Bell Center for Regenerative Medicine, Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
2
|
Noor Z, Zhao Z, Guo S, Wei Z, Cai B, Qin Y, Ma H, Yu Z, Li J, Zhang Y. A Testis-Specific DMRT1 (Double Sex and Mab-3-Related Transcription Factor 1) Plays a Role in Spermatogenesis and Gonadal Development in the Hermaphrodite Boring Giant Clam Tridacna crocea. Int J Mol Sci 2024; 25:5574. [PMID: 38891762 PMCID: PMC11172331 DOI: 10.3390/ijms25115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024] Open
Abstract
The testis-specific double sex and mab-3-related transcription factor 1 (DMRT1) has long been recognized as a crucial player in sex determination across vertebrates, and its essential role in gonadal development and the regulation of spermatogenesis is well established. Here, we report the cloning of the key spermatogenesis-related DMRT1 cDNA, named Tc-DMRT1, from the gonads of Tridacna crocea (T. crocea), with a molecular weight of 41.93 kDa and an isoelectric point of 7.83 (pI). Our hypothesis is that DMRT1 machinery governs spermatogenesis and regulates gonadogenesis. RNAi-mediated Tc-DMRT1 knockdown revealed its critical role in hindering spermatogenesis and reducing expression levels in boring giant clams. A histological analysis showed structural changes, with normal sperm cell counts in the control group (ds-EGFP) but significantly lower concentrations of sperm cells in the experimental group (ds-DMRT1). DMRT1 transcripts during embryogenesis exhibited a significantly high expression pattern (p < 0.05) during the early zygote stage, and whole-embryo in-situ hybridization confirmed its expression pattern throughout embryogenesis. A qRT-PCR analysis of various reproductive stages revealed an abundant expression of Tc-DMRT1 in the gonads during the male reproductive stage. In-situ hybridization showed tissue-specific expression of DMRT1, with a positive signal detected in male-stage gonadal tissues comprising sperm cells, while no signal was detected in other stages. Our study findings provide an initial understanding of the DMRT1 molecular machinery controlling spermatogenesis and its specificity in male-stage gonads of the key bivalve species, Tridacna crocea, and suggest that DMRT1 predominantly functions as a key regulator of spermatogenesis in giant clams.
Collapse
Affiliation(s)
- Zohaib Noor
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Zhen Zhao
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
- Animal Science and Technology College, Guangxi University, Nanning 530004, China
| | - Shuming Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Zonglu Wei
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
- Animal Science and Technology College, Guangxi University, Nanning 530004, China
| | - Borui Cai
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Yanping Qin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Haitao Ma
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| | - Yuehuan Zhang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Z.N.); (Z.Z.); (S.G.); (Z.W.); (B.C.); (Y.Q.); (H.M.); (Z.Y.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519015, China
- Hainan Provincial Key Laboratory of Tropical Marine Biology Technology, Sanya Institute of Oceanology Chinese Academy of Sciences, Sanya 572024, China
| |
Collapse
|
3
|
Li J, Zhang X, Wang X, Wang Z, Li X, Zheng J, Li J, Xu G, Sun C, Yi G, Yang N. Single-nucleus transcriptional and chromatin accessible profiles reveal critical cell types and molecular architecture underlying chicken sex determination. J Adv Res 2024:S2090-1232(24)00185-1. [PMID: 38734369 DOI: 10.1016/j.jare.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Understanding the sex determination mechanisms in birds has great significance for the biological sciences and production in the poultry industry. Sex determination in chickens is a complex process that involves fate decisions of supporting cells such as granulosa or Sertoli cells. However, a systematic understanding of the genetic regulation and cell commitment process underlying sex determination in chickens is still lacking. OBJECTIVES We aimed to dissect the molecular characteristics associated with sex determination in the gonads of chicken embryos. METHODS Single-nucleus RNA-seq (snRNA-seq) and ATAC-seq (snATAC-seq) analysis were conducted on the gonads of female and male chickens at embryonic day 3.5 (E3.5), E4.5, and E5.5. RESULTS Here, we provided a time-course transcriptional and chromatin accessible profiling of gonads during chicken sex determination at single-cell resolution. We uncovered differences in cell composition and developmental trajectories between female and male gonads and found that the divergence of transcription and accessibility in gonadal cells first emerged at E5.5. Furthermore, we revealed key cell-type-specific transcription factors (TFs) and regulatory networks that drive lineage commitment. Sex determination signaling pathways, dominated by BMP signaling, are preferentially activated in males during gonadal development. Further pseudotime analysis of the supporting cells indicated that granulosa cells were regulated mainly by the TEAD gene family and that Sertoli cells were driven by the DMRT1 regulons. Cross-species analysis suggested high conservation of both cell types and cell-lineage-specific TFs across the six vertebrates. CONCLUSIONS Overall, our study will contribute to accelerating the development of sex manipulation technology in the poultry industry and the application of chickens as a unique model for studying cell fate decisions.
Collapse
Affiliation(s)
- Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Junying Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Hu Y, Tan R, Zhu X, Wang B, Wang J, Guo B, Li Y, Du H, Yang Y. Genome-wide identification, phylogeny and expressional profile of the Dmrt gene family in Chinese sturgeon (Acipenser sinensis). Sci Rep 2024; 14:4231. [PMID: 38378745 PMCID: PMC10879162 DOI: 10.1038/s41598-024-54899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/18/2024] [Indexed: 02/22/2024] Open
Abstract
Chinese sturgeon Dmrt gene family was identified and characterized for the first time. A total of 5 putative Dmrt genes were identified. The gene structure, conserved protein domain and the phylogenetic relationship of Dmrt gene family were systematically analyzed. The expressed profile of Chinese sturgeon Dmrt genes in gonad, pituitary and hypothalamus in the male and female were investigated. The results indicated that the accumulation of Dmrt genes was involved in different tissues, and the expression profile also differed among each Dmrt genes. ASDmrt1A, ASDmrt2, ASDmrt3, and ASDmrtA1 were highly expressed in the testis in comparison with other tissue. This result showed that ASDmrt1A, ASDmrt2, ASDmrt3, and ASDmrtA1 played an important role in the development of testicle, and may be useful tool in distinguishing between male and female of Chinese sturgeon. Our study will provide a basis for additional analyses of Chinese sturgeon Dmrt genes. This systematic analysis provided a foundation for further functional characterization of Dmrt genes with an aim of study of Chinese sturgeon Dmrt gene family.
Collapse
Affiliation(s)
- Yacheng Hu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Ruihua Tan
- Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Zhu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Binzhong Wang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Jingshu Wang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Baifu Guo
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Yuan Li
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Hejun Du
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China.
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China.
| | - Yuanjin Yang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China.
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China.
| |
Collapse
|
5
|
Zhao H, Xiao Y, Xiao Z, Wu Y, Ma Y, Li J. Genome-wide investigation of the DMRT gene family sheds new insight into the regulation of sex differentiation in spotted knifejaw (Oplegnathus punctatus) with fusion chromosomes (Y). Int J Biol Macromol 2024; 257:128638. [PMID: 38070801 DOI: 10.1016/j.ijbiomac.2023.128638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 01/26/2024]
Abstract
The role of the DMRT family in male sex determination and differentiation is significant, but its regulatory role in spotted knifejaw with Y fusion chromosomes remains unclear. Through genome-wide scanning, transcriptome analysis, qPCR, FISH, and RNA interference (RNAi), we investigated the DMRT family and the dmrt1-based sex regulation network. Seven DMRTs were identified (DMRT1/2 (2a,2b)/6, DMRT4/5, DMRT3), and dmrt gene dispersion among chromosomes is possibly driven by three whole-genome duplications. Transcriptome analysis enriched genes were associated with sex regulation and constructed a network associated with dmrt1. qPCR and FISH results showed the expression dimorphism of sex-related genes in dmrt-related regulatory networks. RNAi experiments indicated a distinct sex regulation mode in spotted knifejaw. Dmrt1 knockdown upregulated male-related genes (sox9a, sox9b, dmrt1, amh, amhr2) and hsd11b2 expression, which is critical for androgen synthesis. Amhr2 is located on the heterozygous chromosome (Y) and is specifically localized in primary spermatocytes, and is extremely upregulated after dmrt1 knockdown which suggested besides the important role of dmrt1 in male differentiation, the amhr2 along with amhr2/amh system, also play important regulatory roles in maintaining high expression of the hsd11b2 and male differentiation. This study aims to further investigate sex regulatory mechanisms in species with fusion chromosomes.
Collapse
Affiliation(s)
- Haixia Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yongshuang Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China.
| | - Zhizhong Xiao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Yanduo Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuting Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
6
|
Zeng Y, Zheng H, He C, Zhang C, Zhang H, Zheng H. Genome-wide identification and expression analysis of Dmrt gene family and their role in gonad development of Pacific oyster (Crassostrea gigas). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110904. [PMID: 37751789 DOI: 10.1016/j.cbpb.2023.110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
Doublesex and Mab-3-related transcription factor (Dmrt) is a type of transcription factor with a zinc-finger DM structural domain, which plays a significant role in sex determination and differentiation in animals. Although Dmrt has been reported in many vertebrates and invertebrates, it has rarely been studied in bivalves. In this study, a total of three members of the Dmrt gene family were identified and characterized in Crassostrea gigas, and all these CgDmrt genes contained a conserved DM domain. Analysis of the phylogenetic tree and gene structure revealed that Dmrt genes clustered on one branch may have similar functions in bivalves. Expression profiling of CgDmrt mRNA in different tissues and stages of gonad development indicated that CgDmrt3 exhibited sexually dimorphic expression and played an important role in the development of the male gonad in C. gigas. Furthermore, analysis of CgDmrt mRNA expression between fertile triploids and sterile triploids showed that CgDmrt3 may be involved in sperm production. Collectively, the systematic analysis of the CgDmrt genes will provide potential insights into the function of these genes in gonadal development.
Collapse
Affiliation(s)
- Yetao Zeng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Haiqian Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Cheng He
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Chuanxu Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Research Center of Engineering Technology for Subtropical Mariculture of Guangdong Province, Shantou 515063, China.
| |
Collapse
|
7
|
Holtz MA, Racicot R, Preininger D, Stuckert AMM, Mangiamele LA. Genome assembly of the foot-flagging frog, Staurois parvus: a resource for understanding mechanisms of behavior. G3 (BETHESDA, MD.) 2023; 13:jkad193. [PMID: 37625789 PMCID: PMC10542557 DOI: 10.1093/g3journal/jkad193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 03/22/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023]
Abstract
Elaborate and skilled movements of the body have been selected in a variety of species as courtship and rivalry signals. One roadblock in studying these behaviors has been a lack of resources for understanding how they evolved at the genetic level. The Bornean rock frog (Staurois parvus) is an ideal species in which to address this issue. Males wave their hindlimbs in a "foot-flagging" display when competing for mates. The evolution of foot flagging in S. parvus and other species is accompanied by increases in the expression of the androgen receptor gene within its neuromuscular system, but it remains unclear what genetic or transcriptional changes are associated with this behavioral phenotype. We have now assembled the genome of S. parvus, resulting in 3.98 Gbp of 22,402 contigs with an N50 of 611,229 bp. The genome will be a resource for finding genes related to the physiology underlying foot flagging and to adaptations of the neuromuscular system. As a first application of the genome, we also began work in comparative genomics and differential gene expression analysis. We show that the androgen receptor is diverged from other anuran species, and we identify unique expression patterns of genes in the spinal cord and leg muscle that are important for axial patterning, cell specification and morphology, or muscle contraction. This genome will continue to be an important tool for future -omics studies to understand the evolution of elaborate signaling behaviors in this and potentially related species.
Collapse
Affiliation(s)
- Mika A Holtz
- Department of Biological Sciences, Smith College, Northampton, MA 01053, USA
| | - Riccardo Racicot
- Department of Biological Sciences, Smith College, Northampton, MA 01053, USA
| | - Doris Preininger
- Vienna Zoo, 1130 Vienna, Austria
- Department of Evolutionary Biology, University of Vienna, 1030 Vienna, Austria
| | - Adam M M Stuckert
- Department of Biology & Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Lisa A Mangiamele
- Department of Biological Sciences, Smith College, Northampton, MA 01053, USA
| |
Collapse
|
8
|
Wang Q, Cao T, Wang C. Genome-wide identification and expression analysis of Dmrt genes in bivalves. BMC Genomics 2023; 24:457. [PMID: 37582778 PMCID: PMC10428544 DOI: 10.1186/s12864-023-09536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/27/2023] [Indexed: 08/17/2023] Open
Abstract
In recent years, some common themes in the development of sex-specific traits in different animal lineages have started to emerge since the discovery of the Dmrt (doublesex-mab3-related transcription factor gene) genes. Bivalves are characterized by a diversity of sexual systems, including simultaneous hermaphroditism, sequential hermaphroditism, and strict gonochorism. However, to date, no research has focused on the genome-wide characterization and analysis of Dmrt genes in bivalves. In this study, the identification and analysis of Dmrt genes in 15 bivalves were performed using bioinformatics methods. A total of 55 Dmrt genes were retrieved in the studied bivalve genomes. The number of Dmrt genes in different species ranged from 3 to 5. The phylogenetic tree showed that Dmrt genes in bivalves can be subdivided into 5 classes: the Dmrt2-like class, Dmrt3-like class, Dmrt4/5-like class, Dsx-like class, and scallop-specific Dmrt class. The Ka/Ks ratios suggested that all Dmrt classes underwent purifying selection pressure. Furthermore, the spatiotemporal expression of Dmrt genes in four bivalve species suggested that different Dmrt genes may have different functions, and scallop-specific Dmrt genes may play a key role in sex determination/differentiation. In general, this study provides a molecular basis for in-depth examination of the functions of Dmrt genes and phylogenomic analyses in bivalves.
Collapse
Affiliation(s)
- Quanchao Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Key Laboratory of Ecological Warning, Protection & Restoration for Bohai Sea, Ministry of Natural Resources, Qingdao, 266061, China
| | - Tiangui Cao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Chunde Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| |
Collapse
|
9
|
Luo JY, Shen SQ, Xu HJ, Yang JS, Ma WM. The transcription factor masculinizer in sexual differentiation and achieved full functional sex reversal in prawn. iScience 2023; 26:106968. [PMID: 37534170 PMCID: PMC10391606 DOI: 10.1016/j.isci.2023.106968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/08/2023] [Accepted: 05/23/2023] [Indexed: 08/04/2023] Open
Abstract
Some Zinc finger (ZnF) proteins are required for masculinization in silkworms. In the present study, a masculinizer gene (Mr-Masc) with multi-tissue expression is identified in the freshwater prawn Macrobrachium rosenbergii. The Mr-Masc is clustered into a separate branch with ZnF proteins from decapoda by phylogenetic tree analysis. Moreover, Mr-Masc silencing in male postlarvae prawn results in functional sex reversal females known as neo-females, which are applied to all-male monosex offspring breeding. This manipulation has been significant in sexually dimorphic cultured species. In addition, several significantly expressed transcripts are enriched and the effects of crucial signal pathways are focused through the comparative transcriptomic analysis in Mr-Masc gene knockdown. The significantly differentially expressed epidermal growth factor, upregulated low-density lipoprotein receptor, flotillin, and sex-lethal unigenes, downregulated heat shock proteins and forkhead box homologs are focused. The finding offers an innovative perspective on Masc proteins' evolution and physiological function.
Collapse
Affiliation(s)
- Jing-Yu Luo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| | - Shuai-Qi Shen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
- College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Hai-Jing Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Zijingang Campus, Hangzhou, Zhejiang 310058, People’s Republic of China
| | - Wen-Ming Ma
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People’s Republic of China
| |
Collapse
|
10
|
Zhang P, Yang Y, Xu Y, Cui Z. Analyses of the Dmrt family in a decapod crab, Eriocheir sinensis uncover new facets on the evolution of DM domain genes. Front Physiol 2023; 14:1201846. [PMID: 37304820 PMCID: PMC10252143 DOI: 10.3389/fphys.2023.1201846] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
DM domain genes are a group of transcription factors that are integral to sexual development and its evolution in metazoans. Their functions and regulatory mechanisms are not well understood in Malacostraca (crabs and crayfish) while these sex regulators have been widely identified in the past decade. In this study, the Dmrt family was investigated in the decapod crab, Eriocheir sinensis. We find that most members of the EsDmrt family begin to enrich around the juvenile 1 stage. In reproductive organs, EsDsx1, EsDsx2, EsiDMY and EsiDmrt1a highly express in the male-specific androgenic gland (AG), while EsDmrt-like, EsDsx-like, EsDmrt11E, and EsiDmrt1b show relatively high expression in testis. Also, we find the highly aberrant expression of EsiDMY and EsiDmrt1a in the chimeric AG, strongly indicating their function in AG development. Moreover, RNA interference of EsDsx1, EsiDMY, and EsiDmrt1a results in a significant decrease in transcription of the Insulin-like androgenic hormone (IAG), respectively. Our findings suggest that Dmrt genes in E. sinensis primarily function in male sexual differentiation, especially in AG development. Besides, this study identifies two unique groups of Dmrt genes in Malacostraca: Dsx and iDmrt1. In Malacostraca Dsx, we uncover a cryptic mutation in the eight zinc motif-specific residues, which were firmly believed to be invariant across the Dmrt family. This mutation sets the Malacostraca Dsx apart from all the other Dmrt genes and implies a different way of transcriptional regulation. Genes from the iDmrt1 group show phylogenetical limitation to the malacostracan species and underwent positive selection, suggesting their highly specialized gene function to this class. Based on these findings, we propose that Dsx and iDmrt1 in Malacostraca have developed unique transcriptional regulation mechanisms to facilitate AG development. We hope that this study would contribute to our understandings of sexual development in Malacostraca and provide new insights into the evolutionary history of the Dmrt family.
Collapse
Affiliation(s)
- Peng Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yuanfeng Xu
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, China
- Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
11
|
Chen R, Sanders SM, Ma Z, Paschall J, Chang ES, Riscoe BM, Schnitzler CE, Baxevanis AD, Nicotra ML. XY sex determination in a cnidarian. BMC Biol 2023; 21:32. [PMID: 36782149 PMCID: PMC9926710 DOI: 10.1186/s12915-023-01532-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Sex determination occurs across animal species, but most of our knowledge about its mechanisms comes from only a handful of bilaterian taxa. This limits our ability to infer the evolutionary history of sex determination within animals. RESULTS In this study, we generated a linkage map of the genome of the colonial cnidarian Hydractinia symbiolongicarpus and used it to demonstrate that this species has an XX/XY sex determination system. We demonstrate that the X and Y chromosomes have pseudoautosomal and non-recombining regions. We then use the linkage map and a method based on the depth of sequencing coverage to identify genes encoded in the non-recombining region and show that many of them have male gonad-specific expression. In addition, we demonstrate that recombination rates are enhanced in the female genome and that the haploid chromosome number in Hydractinia is n = 15. CONCLUSIONS These findings establish Hydractinia as a tractable non-bilaterian model system for the study of sex determination and the evolution of sex chromosomes.
Collapse
Affiliation(s)
- Ruoxu Chen
- School of Medicine, Tsinghua University, Beijing, China
- Visiting Scholar, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Sanders
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhiwei Ma
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Justin Paschall
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - E Sally Chang
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brooke M Riscoe
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Andreas D Baxevanis
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew L Nicotra
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Walsh HL, Gordon SE, Sperry AJ, Kashiwagi M, Mullican J, Blazer VS. A case study: temporal trends of environmental stressors and reproductive health of smallmouth bass (Micropterus dolomieu) from a site in the Potomac River Watershed, Maryland, USA. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1536-1553. [PMID: 36454361 PMCID: PMC9729326 DOI: 10.1007/s10646-022-02605-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Decades of poor reproductive success and young-of-the-year survival, combined with adult mortality events, have led to a decline in the smallmouth bass (SMB; Micropterus dolomieu) population in sections of the Potomac River. Previous studies have identified numerous biologic and environmental stressors associated with negative effects on SMB health. To better understand the impact of these stressors, this study was conducted at the confluence of Antietam Creek and the Potomac River from 2013 to 2019 to identify temporal changes associated with SMB reproductive health. Surface water samples were collected and analyzed for over 300 organic contaminants, including pesticides, phytoestrogens, pharmaceuticals, hormones and total estrogenicity (E2Eq). Adult SMB were collected and sampled for multiple endpoints, including gene transcripts associated with reproduction (molecular), histopathology (cellular), and organosomatic indices (tissue). In males, biomarkers of estrogenic endocrine disruption, including testicular oocytes (TO) and plasma vitellogenin (Vtg) were assessed. Numerous agriculture-related contaminants or land use patterns were associated with gene transcript abundance in both male and female SMB. Positive associations between pesticides in the immediate catchment with TO severity and E2Eq with plasma Vtg in males were identified. In males, the prevalence of TO and detectable levels of plasma Vtg, liver vitellogenin transcripts (vtg) and testis vtg were high throughout the study. Peaks of complex mixtures of numerous contaminants occurred during the spring/early summer when spawning and early development occurs and to a lesser extent in fall/winter during recrudescence. Management practices to reduce exposure during these critical and sensitive periods may enhance reproductive health of these economically important sportfishes.
Collapse
Affiliation(s)
- Heather L Walsh
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown Research Laboratory, 11649 Leetown Rd., Kearneysville, WV, 25430, USA.
| | - Stephanie E Gordon
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown Research Laboratory, 11649 Leetown Rd., Kearneysville, WV, 25430, USA
| | - Adam J Sperry
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown Research Laboratory, 11649 Leetown Rd., Kearneysville, WV, 25430, USA
| | - Michael Kashiwagi
- Maryland Department of Natural Resources, Fishing and Boating Services, 10932 Putman Rd., Thurmont, MD, 21788, USA
| | - John Mullican
- Maryland Department of Natural Resources, Fishing and Boating Services, 20901 Fish Hatchery Rd., Hagerstown, MD, 21740, USA
| | - Vicki S Blazer
- U.S. Geological Survey, Eastern Ecological Science Center, Leetown Research Laboratory, 11649 Leetown Rd., Kearneysville, WV, 25430, USA
| |
Collapse
|
13
|
Jankowski MD, Fairbairn DJ, Baller JA, Westerhoff BM, Schoenfuss HL. Using the Daphnia magna Transcriptome to Distinguish Water Source: Wetland and Stormwater Case Studies. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2107-2123. [PMID: 35622010 PMCID: PMC9545677 DOI: 10.1002/etc.5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
A major challenge in ecotoxicology is accurately and sufficiently measuring chemical exposures and biological effects given the presence of complex and dynamic contaminant mixtures in surface waters. It is impractical to quantify all chemicals in such matrices over space and time, and even if it were practical, concomitant biological effects would not be elucidated. Our study examined the performance of the Daphnia magna transcriptome to detect distinct responses across three water sources in Minnesota: laboratory (well) waters, wetland waters, and storm waters. Pyriproxyfen was included as a gene expression and male neonate production positive control to examine whether gene expression resulting from exposure to this well-studied juvenoid hormone analog can be detected in complex matrices. Laboratory-reared (<24 h) D. magna were exposed to a water source and/or pyriproxyfen for 16 days to monitor phenotypic changes or 96 h to examine gene expression responses using Illumina HiSeq 2500 (10 million reads per library, 50-bp paired end [2 × 50]). The results indicated that a unique gene expression profile was produced for each water source. At 119 ng/L pyriproxyfen (~25% effect concentration) for male neonate production, as expected, the Doublesex1 gene was up-regulated. In descending order, gene expression patterns were most discernable with respect to pyriproxyfen exposure status, season of stormwater sample collection, and wetland quality, as indicated by the index of biological integrity. However, the biological implications of the affected genes were not broadly clear given limited genome resources for invertebrates. Our study provides support for the utility of short-term whole-organism transcriptomic testing in D. magna to discern sample type, but highlights the need for further work on invertebrate genomics. Environ Toxicol Chem 2022;41:2107-2123. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Mark D. Jankowski
- Minnesota Pollution Control AgencySt. PaulMinnesotaUSA
- Veterinary Population Medicine DepartmentUniversity of Minnesota—Twin CitiesSt. PaulMinnesotaUSA
- US Environmental Protection AgencySeattleWashingtonUSA
| | | | - Joshua A. Baller
- Minnesota Supercomputing InstituteUniversity of Minnesota—Twin CitiesMinneapolisMinnesotaUSA
| | | | - Heiko L. Schoenfuss
- Aquatic Toxicology LaboratorySt. Cloud State UniversitySt. CloudMinnesotaUSA
| |
Collapse
|
14
|
Zhong J, Wan H, Zhang Z, Zeng X, Zou P, Jia X, Wang Y. Cloning, expression, and function of the Spdmrt-like gene in Scylla paramamosain. Mol Biol Rep 2022; 49:6483-6493. [PMID: 35552959 DOI: 10.1007/s11033-022-07477-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The mud crab Scylla paramamosain is an economically important species for aquaculture in China and has sexually dimorphic between females and males. Understanding sex differentiation in this species is essential for the development of monosex aquaculture. The Dmrt genes play a vital role in sex differentiation in animals. METHODS AND RESULTS In this study, two dmrt-like transcript variants, Spdmrt-like-tv1 and Spdmrt-like-v2, were cloned. SpDmrt-like-tv1 contained a DM domain, while SpDmrt-like-tv2 contained a DM and a DMA domain. Spdmrt-like-tv1 and Spdmrt-like-tv2 were both specifically expressed in testis. During testicular development, the expression level of Spdmrt-like-tv1 increased from stage I to stage II (P > 0.05) and then decreased from stage II to stage III (P < 0.05). The expression level of Spdmrt-like-tv2 in stages I and II was significantly higher than that in stage III (P < 0.05). During embryonic development, the expression level of Spdmrt-like-tv1 was higher in the mid-embryonic stage compared with the early and late stages, but the differences were not significant. Moreover, the expression level of Spdmrt-like-tv2 was stable and remained high throughout embryonic development. Furthermore, the expression level of Spdmrt-like-tv2 was significantly higher than that of Spdmrt-like-tv1. Knockdown of Spdmrt-like variants indicated that the regulative target gene of Spdmrt-like-tv1 was Spsox21, and the regulative target genes of Spdmrt-like-tv2 were Spfoxl2 and Spsox21. Combined with the results in our previously published peer-reviewed articles that the expression of Spfoxl2 in the testis was significantly higher than that in the ovary, and Spfoxl2 negatively regulated Spvtg expression. Spsox21 played a role in the development and maintenance of testis as well as in the process of neural development and regulation of body segmentation. CONCLUSION Therefore, we suggest that Spdmrt-like-tv1 and Spdmrt-like-tv2 might be involved in testicular development and embryonic development, and Spdmrt-like-tv2 might play more important roles in these two developmental processes by regulating the expression of Spfoxl2 and Spsox21 due to its high expression.
Collapse
Affiliation(s)
- Jinying Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Haifu Wan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Ziping Zhang
- College of Marine Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xianyuan Zeng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Pengfei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Xiwei Jia
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China. .,Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Xiamen, 361021, China.
| |
Collapse
|
15
|
Ou M, Chen K, Gao D, Wu Y, Luo Q, Liu H, Zhao J. Characterization, expression and CpG methylation analysis of Dmrt1 and its response to steroid hormone in blotched snakehead (Channa maculata). Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110672. [PMID: 34455080 DOI: 10.1016/j.cbpb.2021.110672] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/15/2021] [Accepted: 08/23/2021] [Indexed: 12/17/2022]
Abstract
Dmrt1 is an important transcriptional regulator that plays critical role in male gonadogenesis, testicular differentiation and development. In this study, Dmrt1 was cloned from blotched snakehead (Channa maculata), which is designated as CmDmrt1. CmDmrt1 encoded a putative protein with 293 amino acids and presented an extremely conserved DM domain. It was nearly expressed in the gonads, and the expression was more than 15 times higher in the testis than in the ovary. 1851 bp promoter sequence of CmDmrt1 was characterized and the methylation levels of the CpG sites were analyzed to detect sex-related differences. A significant negative correlation between CmDmrt1 expression and CpG methylation level of its promoter was found in the testis and ovary. During gonadal development, CmDmrt1 transcription displayed strong male-biased expression patterns, increased with the maturation of testis and reached the peak at 195 days after hatching (dah), which indicates a significant role of Dmrt1 in spermatogenesis. Steroid treatment could influence CmDmrt1 expression, and long-term 17β-estradiol (E2) treatment could induce the male-to-female secondary sex reversal (SSR), which resulted in the differentiated testis transformed to ovary or ovotestis. Meanwhile, CmDmrt1 expression was down-regulated to fairly low level in the ovary of the SSR XY fish, which was similar to that in normal XX females ovary. Our research illustrates that Dmrt1 is linked to testis differentiation and spermatogenesis in blotched snakehead, providing information for functional studies on sex differentiation and gonadal development of C. maculata, and scientific basis for the production practice of all-male snakehead breeding.
Collapse
Affiliation(s)
- Mi Ou
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Dandan Gao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yanduo Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| |
Collapse
|
16
|
Picard MAL, Vicoso B, Bertrand S, Escriva H. Diversity of Modes of Reproduction and Sex Determination Systems in Invertebrates, and the Putative Contribution of Genetic Conflict. Genes (Basel) 2021; 12:1136. [PMID: 34440310 PMCID: PMC8391622 DOI: 10.3390/genes12081136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 12/30/2022] Open
Abstract
About eight million animal species are estimated to live on Earth, and all except those belonging to one subphylum are invertebrates. Invertebrates are incredibly diverse in their morphologies, life histories, and in the range of the ecological niches that they occupy. A great variety of modes of reproduction and sex determination systems is also observed among them, and their mosaic-distribution across the phylogeny shows that transitions between them occur frequently and rapidly. Genetic conflict in its various forms is a long-standing theory to explain what drives those evolutionary transitions. Here, we review (1) the different modes of reproduction among invertebrate species, highlighting sexual reproduction as the probable ancestral state; (2) the paradoxical diversity of sex determination systems; (3) the different types of genetic conflicts that could drive the evolution of such different systems.
Collapse
Affiliation(s)
- Marion Anne Lise Picard
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (S.B.); (H.E.)
| | - Beatriz Vicoso
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria;
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (S.B.); (H.E.)
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, 66650 Banyuls-sur-Mer, France; (S.B.); (H.E.)
| |
Collapse
|
17
|
Wang YY, Duan SH, Wang GL, Li JL. Integrated mRNA and miRNA expression profile analysis of female and male gonads in Hyriopsis cumingii. Sci Rep 2021; 11:665. [PMID: 33436779 PMCID: PMC7804246 DOI: 10.1038/s41598-020-80264-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Hyriopsis cumingii is an important species for freshwater pearl cultivation in China. In terms of pearl production, males have larger pearls and better glossiness than females, but there are few reports focusing on the sex of H. cumingii. In this study, six mRNA and six microRNA (miRNA) libraries were prepared from ovaries and testes. Additionally, 28,502 differentially expressed genes (DEGs) and 32 differentially expressed miRNAs (DEMs) were identified. Compared with testis, 14,360 mRNAs and 20 miRNAs were up-regulated in ovary, 14,142 mRNAs and 12 miRNAs were down-regulated. In DEGs, the known genes related to sex determinism and/or differentiation were also identified, such as DMRT1, SOX9, SF1 for males, FOXL2 for females, and other potentially significant candidate genes. Three sex-related pathways have also been identified, which are Wnt, Notch, and TGF-beta. In 32 DEMs, the three miRNAs (miR-9-5p, miR-92, miR-184) were paid more attention, they predicted 28 target genes, which may also be candidates for sex-related miRNAs and genes. Differential miRNAs target genes analysis reveals the pathway associated with oocyte meiosis and spermatogenesis. Overall, the findings of the study provide significant insights to enhance our understanding of sex differentiation and/or sex determination mechanisms for H. cumingii.
Collapse
Affiliation(s)
- Ya-Yu Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Sheng-Hua Duan
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Gui-Ling Wang
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| | - Jia-Le Li
- grid.412514.70000 0000 9833 2433Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai, 201306 China ,National Demonstration Center for Experimental Fisheries Science Education, Shanghai, 201306 China ,Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306 China
| |
Collapse
|
18
|
Xu HJ, Chen YL, Wang YM, Luo JY, Li JW, Shen SQ, Yang JS, Ma WM. Full Functional Sex Reversal Achieved Through Silencing of MroDmrt11E Gene in Macrobrachium rosenbergii: Production of All-Male Monosex Freshwater Prawn. Front Endocrinol (Lausanne) 2021; 12:772498. [PMID: 35370930 PMCID: PMC8970045 DOI: 10.3389/fendo.2021.772498] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
The freshwater prawn Macrobrachium rosenbergii is one kind of important economic aquaculture species and displays remarkable sexual dimorphism. The molecular mechanism of sexual differentiation in M. rosenbergii has been primarily unraveled through the research efforts of the androgenic gland and its related genes. However, the understanding of conserved genes involved in the molecular mechanism underpinning sex determination and sexual differentiation of M. rosenbergii is still fragmentary. MroDmrt11E is a member of the doublesex and mab-3-related transcription factor (Dmrt) gene family and is prominently expressed in the testis. In the present study, in vivo knockdown of MroDmrt11E at the postlarva stage in male prawn induced a complete and functional sex reversal and achieved the production of an all-male monosex population. Furthermore, a great deal of new information of upregulated and downregulated transcriptions involved in sexual differentiation of MroDmrt11E knockdown was enriched by comparative transcriptomic analysis. The effects of RNAi-mediated gene knockdown of MroDmrt11E on the differentially expressed and sex-related candidate genes, such as transformer, fruitless, feminization, insulin-like androgenic gland gene, Dmrt gene family, were primarily focused on, and their possible molecular regulatory relationships in sexual differentiation were analyzed. Meanwhile, the response of primary Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathways was investigated to expound the potential roles of MroDmrt11E in male sexual differentiation, which provided a deeper understanding of the molecular regulatory network underlying sexual differentiation of M. rosenbergii. The finding provided a novel sexual manipulation technique through silencing of Dmrt gene family for achieving a complete and functional sex reversal and offered a new insight regarding the mechanism of the Dmrt gene family in the sexual differentiation of crustaceans.
Collapse
Affiliation(s)
- Hai-Jing Xu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yi-Lai Chen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Yong-Mei Wang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jing-Yu Luo
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jian-Wen Li
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Shuai-Qi Shen
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jin-Shu Yang
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Ming Ma
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
- *Correspondence: Wen-Ming Ma,
| |
Collapse
|
19
|
Cross I, García E, Rodríguez ME, Arias-Pérez A, Portela-Bens S, Merlo MA, Rebordinos L. The genomic structure of the highly-conserved dmrt1 gene in Solea senegalensis (Kaup, 1868) shows an unexpected intragenic duplication. PLoS One 2020; 15:e0241518. [PMID: 33137109 PMCID: PMC7605655 DOI: 10.1371/journal.pone.0241518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/15/2020] [Indexed: 01/17/2023] Open
Abstract
Knowing the factors responsible for sex determination in a species has significant theoretical and practical implications; the dmrt1 gene (Doublesex and Mab-3 (DM)-related Transcription factor 1) plays this role in diverse animal species. Solea senegalensis is a commercially important flat fish in which females grow 30% faster than males. It has 2n = 42 chromosomes and an XX / XY chromosome system for sex determination, without heteromorph chromosomes but with sex proto-chromosome. In the present study, we are providing the genomic structure and nucleotide sequence of dmrt1 gene obtained from cDNA from male and female adult gonads. A cDNA of 2027 containing an open-reading frame (ORF) of 1206 bp and encoding a 402 aa protein it is described for dmrt1 gene of S. senegalensis. Multiple mRNA isoforms indicating a high variable system of alternative splicing in the expression of dmrt1 of the sole in gonads were studied. None isoforms could be related to sex of individuals. The genomic structure of the dmrt1 of S. senegalensis showed a gene of 31400 bp composed of 7 exons and 6 introns. It contains an unexpected duplication of more than 10399 bp, involving part of the exon I, exons II and III and a SINE element found in the sequence that it is proposed as responsible for the duplication. A mature miRNA of 21 bp in length was localized at 336 bp from exon V. Protein-protein interacting networks of the dmrt1 gene showed matches with dmrt1 protein from Cynoglossus semilaevis and a protein interaction network with 11 nodes (dmrt1 plus 10 other proteins). The phylogenetic relationship of the dmrt1 gene in S. senegalensis is consistent with the evolutionary position of its species. The molecular characterization of this gene will enhance its functional analysis and the understanding of sex differentiation in Solea senegalensis and other flatfish.
Collapse
Affiliation(s)
- Ismael Cross
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - Emilio García
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | - María E. Rodríguez
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | | | | - Manuel A. Merlo
- Area de Genética, CASEM, Universidad de Cádiz, Puerto Real, Cádiz, Spain
| | | |
Collapse
|
20
|
Willink B, Duryea MC, Wheat C, Svensson EI. Changes in gene expression during female reproductive development in a color polymorphic insect. Evolution 2020; 74:1063-1081. [DOI: 10.1111/evo.13979] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/19/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Beatriz Willink
- Department of Biology, Evolutionary Ecology Unit, Ecology BuildingLund University Lund 223–62 Sweden
- Current Address: School of BiologyUniversity of Costa Rica San José 11501–2060 Costa Rica
| | | | | | - Erik I. Svensson
- Department of Biology, Evolutionary Ecology Unit, Ecology BuildingLund University Lund 223–62 Sweden
| |
Collapse
|
21
|
He Y, Wu X, Zhu Y, Yang D. Expression Profiles of dmrt1 in Schizothorax kozlovi, and Their Relation to CpG Methylation of Its Promoter and Temperature. Zoolog Sci 2020; 37:140-147. [PMID: 32282145 DOI: 10.2108/zs190054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022]
Abstract
To elucidate the role of dmrt1 in sex differentiation of a teleost fish Schizothorax kozlovi, the full-length sequences of its cDNA and promoter were cloned by rapid amplification of cDNA ends (RACE) and genome walking. The relative mRNA expression levels were determined by quantitative real-time PCR (RT-PCR). The 1095-bp dmrt1 cDNA was predicted to encode a protein of 264 amino acids. It was expressed only in the gonads, and the expression was 17-times higher in the testis than in the ovary. The 1215-bp promoter sequence of dmrt1 was cloned and analyzed to detect sex-related differences in its methylation levels. A significant negative relationship between the dmrt1 expression and CpG methylation of its promoter were found in the testes and ovaries of S. kozlovi. Significant differences in dmrt1 expression levels were also found between the larval and juvenile stages. No significant differences in expression were found during the entire larval stage, and in the individuals among three different temperature groups (10°C, 14°C, and 18°C). Considering that the sex of sampled larval fish cannot be distinguished, correlations between dmrt1 expression and effects of temperature on sex differentiation in S. kozlovi need further study.
Collapse
Affiliation(s)
- Yongfeng He
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China
| | - Xingbing Wu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China
| | - Yongjiu Zhu
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China
| | - Deguo Yang
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs of China, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, Donghu Hi-Tech Development Zone, Wuhan, Hubei 430223, China,
| |
Collapse
|
22
|
Martínez-Juárez A, Moreno-Mendoza N. Mechanisms related to sexual determination by temperature in reptiles. J Therm Biol 2019; 85:102400. [PMID: 31657741 DOI: 10.1016/j.jtherbio.2019.102400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
A number of strategies have emerged that appear to relate to the evolution of mechanisms for sexual determination in vertebrates, among which are genetic sex determination caused by sex chromosomes and environmental sex determination, where environmental factors influence the phenotype of the sex of an individual. Within the reptile group, some orders such as: Chelonia, Crocodylia, Squamata and Rhynchocephalia, manifest one of the most intriguing and exciting environmental sexual determination mechanisms that exists, comprising temperature-dependent sex determination (TSD), where the temperature of incubation that the embryo experiences during its development is fundamental to establishing the sex of the individual. This makes them an excellent model for the study of sexual determination at the molecular, cellular and physiological level, as well as in terms of their implications at an evolutionary and ecological level. There are different hypotheses concerning how this process is triggered and this review aims to describe any new contributions to particular TSD hypotheses, analyzing them from the "eco-evo-devo" perspective.
Collapse
Affiliation(s)
- Adriana Martínez-Juárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico
| | - Norma Moreno-Mendoza
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico.
| |
Collapse
|
23
|
Panara V, Budd GE, Janssen R. Phylogenetic analysis and embryonic expression of panarthropod Dmrt genes. Front Zool 2019; 16:23. [PMID: 31303887 PMCID: PMC6604209 DOI: 10.1186/s12983-019-0322-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 02/08/2023] Open
Abstract
Background One set of the developmentally important Doublesex and Male-abnormal-3 Related Transcription factors (Dmrt) is subject of intense research, because of their role in sex-determination and sexual differentiation. This likely non-monophyletic group of Dmrt genes is represented by the Drosophila melanogaster gene Doublesex (Dsx), the Caenorhabditis elegans Male-abnormal-3 (Mab-3) gene, and vertebrate Dmrt1 genes. However, other members of the Dmrt family are much less well studied, and in arthropods, including the model organism Drosophila melanogaster, data on these genes are virtually absent with respect to their embryonic expression and function. Results Here we investigate the complete set of Dmrt genes in members of all main groups of Arthropoda and a member of Onychophora, extending our data to Panarthropoda as a whole. We confirm the presence of at least four families of Dmrt genes (including Dsx-like genes) in Panarthropoda and study their expression profiles during embryogenesis. Our work shows that the expression patterns of Dmrt11E, Dmrt93B, and Dmrt99B orthologs are highly conserved among panarthropods. Embryonic expression of Dsx-like genes, however, is more derived, likely as a result of neo-functionalization after duplication. Conclusions Our data suggest deep homology of most of the panarthropod Dmrt genes with respect to their function that likely dates back to their last common ancestor. The function of Dsx and Dsx-like genes which are critical for sexual differentiation in animals, however, appears to be much less conserved. Electronic supplementary material The online version of this article (10.1186/s12983-019-0322-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Virginia Panara
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,Present address: Department for Immunology, Genetic and Pathology, Rudbeckslaboratoriet, Dag Hammarskjölds väg 20, Uppsala, Sweden
| | - Graham E Budd
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
24
|
Yan N, Hu J, Li J, Dong J, Sun C, Ye X. Genomic organization and sexually dimorphic expression of the Dmrt1 gene in largemouth bass (Micropterus salmoides). Comp Biochem Physiol B Biochem Mol Biol 2019; 234:68-77. [PMID: 31078703 DOI: 10.1016/j.cbpb.2019.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/28/2019] [Accepted: 05/06/2019] [Indexed: 12/11/2022]
Abstract
Doublesex and Mab-3 related transcription factor (Dmrt) genes play important roles in the process of sex determination and differentiation. In this study, a Dmrt1 gene open reading frame sequence was obtained from the gonadal transcriptome data of largemouth bass (Micropterus salmoides), and identified by cloning and sequencing. The ORF of Dmrt1 is 900 bp long, encodes 298 amino acids, and contains the DM region which is characteristic of Dmrt1. Full gDNA sequence of Dmrt1 was composed of five exons and four introns. RT-PCR and Q-PCR analysis of Dmrt1 were conducted in eight tissues and three developmental stages of mature male and female individuals. In situ hybridization was used to locate the expression of Dmrt1 in the testis and ovary of largemouth bass. The results showed that Dmrt1 was highly expressed in the testis of mature fish, but only weakly expressed in other tissues such as heart, liver, and brain, and exhibited gender dimorphism in the gonads of male and female fish at different stages. Furthermore, the expression level in female fish was very low and decreased gradually with ovary maturation. In situ hybridization indicated positive signals were found in early oocytes, but not in mature oocytes, while strong positive signals were found in all types of mature testis cells. The study showed that the sequence and structure of Dmrt1 were highly conserved and exhibited significant gender dimorphism in largemouth bass, as in other fish species. It is suggested that Dmrt1 plays an important role in sex determination and differentiation in largemouth bass.
Collapse
Affiliation(s)
- Ningning Yan
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jie Hu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI-Shenzhen, Shenzhen 518083, China
| | - Junjian Dong
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chengfei Sun
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
25
|
Wang Y, Jin S, Fu H, Qiao H, Sun S, Zhang W, Jiang S, Gong Y, Xiong Y, Wu Y. Identification and Characterization of the DMRT11E Gene in the Oriental River Prawn Macrobrachium nipponense. Int J Mol Sci 2019; 20:ijms20071734. [PMID: 30965605 PMCID: PMC6480115 DOI: 10.3390/ijms20071734] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/31/2019] [Accepted: 04/05/2019] [Indexed: 12/30/2022] Open
Abstract
The doublesex and mab-3 related transcription factor (DMRT) gene family involvement in sex development is widely conserved from invertebrates to humans. In this study, we identified a DM (Doublesex/Mab-3)-domain gene in Macrobrachium nipponense, which we named MniDMRT11E because it has many similarities to and phylogenetically close relationships with the arthropod DMRT11E. Amino acid alignments and structural prediction uncovered conservation and putative active sites of the DM domain. Real-time PCR analysis showed that the MniDMRT11E was highly expressed in the ovary and testis in both males and females. Cellular localization analysis showed that DMRT11E was mainly located in the oocytes of the ovary and the spermatocyte of the testis. During embryogenesis, the expression level of MniDMRT11E was higher at the cleavage stage than at other stages. During the different stages of ovarian development, MniDMRT11E expression gradually increased from OI to OIII and decreased to the lowest level at the end of OIV. The results indicated that MniDMRT11E probably played important roles in embryonic development and sex maturity in M. nipponense. MniDMRT11E dsRNA injection also significantly reduced vitellogenin (VG) expression and significantly increased insulin-like androgenic gland factor (IAG) expression, indicating a close relationship in gonad development.
Collapse
Affiliation(s)
- Yabing Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
26
|
Lyu Q, Hu J, Yang X, Liu X, Chen Y, Xiao L, Liu Y, Wang Q, Chen J, Huang M, Yu Z, Yang H, Shi H, Zhang Y, Zhao H. Expression profiles of dmrts and foxls during gonadal development and sex reversal induced by 17α-methyltestosterone in the orange-spotted grouper. Gen Comp Endocrinol 2019; 274:26-36. [PMID: 30594589 DOI: 10.1016/j.ygcen.2018.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/24/2018] [Accepted: 12/26/2018] [Indexed: 12/19/2022]
Abstract
The orange-spotted grouper, Epinephelus coioides, is a marine protogynous hermaphrodite fish of commercial importance. There are many examples of sex change species among marine fish, but the molecular basis for the sex change is still unknown. Gonadal expression patterns of the dmrts and foxls genes in E. coioides have pointed to sexual dimorphism in this species and it has been shown that mRNA levels of dmrts and foxls to vary significantly during reproduction cycles. The steroid 17α-methyltestosterone was used to induce sex reversal in these fish, during which dmrts and foxls levels changed significantly and subsequently reverted to normal when 17α-methyltestosterone was withdrawn. Interestingly, the expression of dmrt2b and dmrt3 was not affected by this steroid. We speculate that the role of foxl2 in reproduction may be conserved via regulation of early differentiation of the ovary by the hypothalamus-pituitary-gonad axis, and dmrt2 may have a significant role in premature ovarian differentiation and maintenance in E. coioides. dmrt1 and foxl3 played a role in the development of the testes and are believed to be potential male regulatory genes.
Collapse
Affiliation(s)
- Qingji Lyu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Juan Hu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - XianKuan Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - XiaoChun Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - YiBin Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - YaLi Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - Qing Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - JiaXing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - MinWei Huang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - ZeShu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China
| | - HuiRong Yang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - HeRong Shi
- Guangdong Marine Fishery Experiment Center, Huizhou 516081, Guangdong, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, Guangdong, People's Republic of China.
| | - HuiHong Zhao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China.
| |
Collapse
|
27
|
Issigonis M, Newmark PA. From worm to germ: Germ cell development and regeneration in planarians. Curr Top Dev Biol 2019; 135:127-153. [DOI: 10.1016/bs.ctdb.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Abstract
Sex determination and sexual development are highly diverse and controlled by mechanisms that are extremely labile. While dioecy (separate male and female functions) is the norm for most animals, hermaphroditism (both male and female functions within a single body) is phylogenetically widespread. Much of our current understanding of sexual development comes from a small number of model systems, limiting our ability to make broader conclusions about the evolution of sexual diversity. We present the calyptraeid gastropods as a model for the study of the evolution of sex determination in a sequentially hermaphroditic system. Calyptraeid gastropods, a group of sedentary, filter-feeding marine snails, are sequential hermaphrodites that change sex from male to female during their life span (protandry). This transition includes resorption of the penis and the elaboration of female genitalia, in addition to shifting from production of spermatocytes to oocytes. This transition is typically under environmental control and frequently mediated by social interactions. Males in contact with females delay sex change to transition at larger sizes, while isolated males transition more rapidly and at smaller sizes. This phenomenon has been known for over a century; however, the mechanisms that control the switch from male to female are poorly understood. We review here our current understanding of sexual development and sex determination in the calyptraeid gastropods and other molluscs, highlighting our current understanding of factors implicated in the timing of sex change and the potential mechanisms. We also consider the embryonic origins and earliest expression of the germ line and the effects of environmental contaminants on sexual development.
Collapse
|
29
|
Ge J, Liu C, Tan J, Bian L, Chen S. Transcriptome analysis of scyphozoan jellyfish Rhopilema esculentum from polyp to medusa identifies potential genes regulating strobilation. Dev Genes Evol 2018; 228:243-254. [PMID: 30374762 DOI: 10.1007/s00427-018-0621-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/23/2018] [Indexed: 01/07/2023]
Abstract
Strobilation is a unique asexual reproduction mode of scyphozoan jellyfish, through which benthic polyp develops into pelagic medusa. It is an orderly metamorphosis process triggered by environmental signals. However, the knowledges of molecular mechanisms under the drastic morphological and physiological changes are still limited. In this study, the transcriptomes from polyps to juvenile medusae at different stages were characterized by RNA-seq in scyphozoan jellyfish Rhopilema esculentum. Among 96,076 de novo assembled unigenes, 7090 differentially expressed genes (DEGs) were identified during the developmental stages. The co-expression pattern analysis of DEGs yielded 15 clusters with different expression patterns. Among them, a cluster with 388 unigenes was related to strobila. In this specific cluster, the GO terms related to "sequence-specific DNA binding transcription factor activity" and "sequence-specific DNA binding" were significantly enriched. Transcription factors, including segmentation protein even-skipped-like, segmentation polarity protein engrailed-like, homeobox proteins Otx-like, Twist-like and Cnox2-Pc-like, as well as genes such as RxR-like and Dmrtf-like, were identified to be potentially involved in strobilation. Their expression patterns and the other 11 TFs/genes involved in strobilation were confirmed with qRT-PCR methods. The present study pointed out the role of transcription factors in strobilation and produced a list of novel candidate genes for further studies. It could provide valuable information for understanding the molecular mechanisms of jellyfish strobilation.
Collapse
Affiliation(s)
- Jianlong Ge
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Changlin Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jie Tan
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Li Bian
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.,Laboratory for Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Siqing Chen
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China. .,Laboratory for Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
30
|
Yan H, Shen X, Cui X, Wu Y, Wang L, Zhang L, Liu Q, Jiang Y. Identification of genes involved in gonadal sex differentiation and the dimorphic expression pattern in Takifugu rubripes gonad at the early stage of sex differentiation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1275-1290. [PMID: 29777416 DOI: 10.1007/s10695-018-0519-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Quantifying the expression of mRNAs in the gonads at the critical stage of molecular sex differentiation stage might help to clarify the regulatory network during early sex differentiation and provide new information on the role of sex-related genes in gonadal function. In this study, transcriptomic analysis of sex-related genes expression profiles in fugu gonads at 60 and 90 days after hatching (dah) was conducted firstly, and a total of 112,504,991 clean reads, encompassing 28.35 Gb of sequences were retrieved. Twenty-three thousand eight hundred ten genes were found to be expressed in juvenile fugu gonads, and we mainly focused on the differentially expressed genes that have the potential to be involved in the gonadal sex differentiation. For 60-dah juveniles, we identified 1014 genes that were upregulated in the ovary and 1570 that were upregulated in the testis. For 90-dah juveniles, we identified 1287 genes that were upregulated in the ovary and 1500 that were upregulated in the testis. The dimorphic expression patterns of 15 genes in gonads at 30 and 40 dah were further investigate using qPCR. Cyp11b and star were expressed at higher levels in XY than in XX, while cyp11a1 and cyp19a1a were expressed at higher levels in XX than in XY at 30 dah. At 40 dah, the levels of gsdf, dmrt1, dmrt3, cyp11c1, star, and hsd3b expression were higher in XY, while the levels of foxl2, cyp19a1a, wnt9b, and foxD4 expression were higher in XX. Sox9, cyp11a1, cyp17a1, cyp17a2, and nr5a2 were expressed at similar levels in XX and XY at 40 dah. This is the first report of gonadal transcriptome of fugu at early sex differentiation stage, and our results provide an archive for further study on molecular mechanism underlying sex differentiation in this species.
Collapse
Affiliation(s)
- Hongwei Yan
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xufang Shen
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xin Cui
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Yumeng Wu
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lianshun Wang
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lei Zhang
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| | - Yusheng Jiang
- College of Fisheries and life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| |
Collapse
|
31
|
Li R, Zhang L, Li W, Zhang Y, Li Y, Zhang M, Zhao L, Hu X, Wang S, Bao Z. FOXL2 and DMRT1L Are Yin and Yang Genes for Determining Timing of Sex Differentiation in the Bivalve Mollusk Patinopecten yessoensis. Front Physiol 2018; 9:1166. [PMID: 30246781 PMCID: PMC6113668 DOI: 10.3389/fphys.2018.01166] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/03/2018] [Indexed: 01/24/2023] Open
Abstract
Sex determination and differentiation have long been a research hotspot in metazoans. However, little is known about when and how sex differentiation occurs in most mollusks. In this study, we conducted a combined morphological and molecular study on sex differentiation in the Yesso scallop Patinopecten yessoensis. Histological examination on gonads from 5- to 13-month-old juveniles revealed that the morphological sex differentiation occurred at 10 months of age. To determine the onset of molecular sex differentiation, molecular markers were screened for early identification of sex. The gonadal expression profiles of eight candidate genes for sex determination or differentiation showed that only two genes displayed sexually dimorphic expression, with FOXL2 being abundant in ovaries and DMRT1L in testes. In situ hybridization revealed that both of them were detected in germ cells and follicle cells. We therefore developed LOG10(DMRT1L/FOXL2) for scallop sex identification and confirmed its feasibility in differentiated individuals. By tracing its changes in 5- to 13-month-old juveniles, molecular sex differentiation time was determined: some scallops differentiate early in September when they are 7 months old, and some do late in December when they are 10 months old. Two kinds of coexpression patterns were found between FOXL2 and DMRT1L: expected antagonism after differentiation and unexpected coordination before differentiation. Our results revealed that scallop sex differentiation co-occurs with the formation of follicles, and molecular sex differentiation is established prior to morphological sex differentiation. Our study will assist in a better understanding of the molecular mechanism underlying bivalve sex differentiation.
Collapse
Affiliation(s)
- Ruojiao Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yang Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Yangping Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Liang Zhao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Tsakogiannis A, Manousaki T, Lagnel J, Sterioti A, Pavlidis M, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The transcriptomic signature of different sexes in two protogynous hermaphrodites: Insights into the molecular network underlying sex phenotype in fish. Sci Rep 2018; 8:3564. [PMID: 29476120 PMCID: PMC5824801 DOI: 10.1038/s41598-018-21992-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/14/2018] [Indexed: 01/22/2023] Open
Abstract
Sex differentiation is a puzzling problem in fish due to the variety of reproductive systems and the flexibility of their sex determination mechanisms. The Sparidae, a teleost family, reflects this remarkable diversity of sexual mechanisms found in fish. Our aim was to capture the transcriptomic signature of different sexes in two protogynous hermaphrodite sparids, the common pandora Pagellus erythrinus and the red porgy Pagrus pagrus in order to shed light on the molecular network contributing to either the female or the male phenotype in these organisms. Through RNA sequencing, we investigated sex-specific differences in gene expression in both species' brains and gonads. The analysis revealed common male and female specific genes/pathways between these protogynous fish. Whereas limited sex differences found in the brain indicate a sexually plastic tissue, in contrast, the great amount of sex-biased genes observed in gonads reflects the functional divergence of the transformed tissue to either its male or female character. Α common "crew" of well-known molecular players is acting to preserve either sex identity of the gonad in these fish. Lastly, this study lays the ground for a deeper understanding of the complex process of sex differentiation in two species with an evolutionary significant reproductive system.
Collapse
Affiliation(s)
- A Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - T Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - J Lagnel
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - A Sterioti
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - M Pavlidis
- Department of Biology, University of Crete, Heraklion, Greece
| | - N Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece.
| |
Collapse
|
33
|
Otani A, Nakajima T, Okumura T, Fujii S, Tomooka Y. Sex Reversal and Analyses of Possible Involvement of Sex Steroids in Scallop Gonadal Development in Newly Established Organ-Culture Systems. Zoolog Sci 2017; 34:86-92. [PMID: 28397607 DOI: 10.2108/zs160070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Many molluscs perform sex reversal, and sex hormones may be involved in the process. In adult scallops, Patinopecten yessoensis, gonadotropin releasing hormone and 17β-estradiol (E2) are involved in male sexual maturation, however, little is known about the effects of E2 and testosterone (T) on the gonadal differentiation in young scallops. In the present study, scallop gonadal development was analyzed to determine the sex reversal stage in Funka bay, and effects of E2 and T were examined. In Funka bay, almost all scallops were male at month 12. Scallops equipped with ambiguous gonads were 61.1% at month 16 and disappeared at month 18. Therefore, sex reversal in Funka bay occurs at around month 16. For establishment of organ culture systems for bivalves, Manila clam gonads were cultured in 15% L-15 medium diluted with HBSS containing 10% KSR on agarose gel at 10°C, and the gonads survived for 14 days. Scallop gonads were also able to be cultured in 30% L15 medium diluted with ASW containing 10% KSR on agarose gel for seven days. At mature stage, Foxl2 and Tesk were predominantly expressed in ovary and testis, respectively. When scallop gonads at sex reversal stage were organ-cultured, sex steroid treatment decreased Tesk expression in the majority of scallop gonads at sex reversal stage. However, no obvious change in Foxl2 and Tesk expression was detected in mature gonads in response to either E2 or T in culture, suggesting sex steroid treatment might affect gonadal development at sex reversal stage.
Collapse
Affiliation(s)
- Ayano Otani
- 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tadaaki Nakajima
- 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Tomomi Okumura
- 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Shiro Fujii
- 2 Department of Liberal Arts Education, Faculty of Industrial Science and Technology, Tokyo University of Science, 102-1 Tomino, Oshamambe-cho, Yamakoshi-gun, Hokkaido 049-3514, Japan
| | - Yasuhiro Tomooka
- 1 Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
34
|
Yang H, Basquin D, Pauli D, Oliver B. Drosophila melanogaster positive transcriptional elongation factors regulate metabolic and sex-biased expression in adults. BMC Genomics 2017; 18:384. [PMID: 28521739 PMCID: PMC5436443 DOI: 10.1186/s12864-017-3755-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptional elongation is a generic function, but is also regulated to allow rapid transcription responses. Following relatively long initiation and promoter clearance, RNA polymerase II can pause and then rapidly elongate following recruitment of positive elongation factors. Multiple elongation complexes exist, but the role of specific components in adult Drosophila is underexplored. Results We conducted RNA-seq experiments to analyze the effect of RNAi knockdown of Suppressor of Triplolethal and lilliputian. We similarly analyzed the effect of expressing a dominant negative Cyclin-dependent kinase 9 allele. We observed that almost half of the genes expressed in adults showed reduced expression, supporting a broad role for the three tested genes in steady-state transcript abundance. Expression profiles following lilliputian and Suppressor of Triplolethal RNAi were nearly identical raising the possibility that they are obligatory co-factors. Genes showing reduced expression due to these RNAi treatments were short and enriched for genes encoding metabolic or enzymatic functions. The dominant-negative Cyclin-dependent kinase 9 profiles showed both overlapping and specific differential expression, suggesting involvement in multiple complexes. We also observed hundreds of genes with sex-biased differential expression following treatment. Conclusion Transcriptional profiles suggest that Lilliputian and Suppressor of Triplolethal are obligatory cofactors in the adult and that they can also function with Cyclin-dependent kinase 9 at a subset of loci. Our results suggest that transcriptional elongation control is especially important for rapidly expressed genes to support digestion and metabolism, many of which have sex-biased function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3755-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiwang Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA.
| | - Denis Basquin
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Daniel Pauli
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
35
|
Ledón-Rettig CC, Zattara EE, Moczek AP. Asymmetric interactions between doublesex and tissue- and sex-specific target genes mediate sexual dimorphism in beetles. Nat Commun 2017; 8:14593. [PMID: 28239147 PMCID: PMC5333360 DOI: 10.1038/ncomms14593] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 01/11/2017] [Indexed: 12/29/2022] Open
Abstract
Sexual dimorphisms fuel significant intraspecific variation and evolutionary diversification. Yet the developmental-genetic mechanisms underlying sex-specific development remain poorly understood. Here, we focus on the conserved sex-determination gene doublesex (dsx) and the mechanisms by which it mediates sex-specific development in a horned beetle species by combining systemic dsx knockdown, high-throughput sequencing of diverse tissues and a genome-wide analysis of Dsx-binding sites. We find that Dsx regulates sex-biased expression predominantly in males, that Dsx's target repertoires are highly sex- and tissue-specific and that Dsx can exercise its regulatory role via two distinct mechanisms: as a sex-specific modulator by regulating strictly sex-specific targets, or as a switch by regulating the same genes in males and females in opposite directions. More generally, our results suggest Dsx can rapidly acquire new target gene repertoires to accommodate evolutionarily novel traits, evidenced by the large and unique repertoire identified in head horns, a recent morphological innovation.
Collapse
Affiliation(s)
- C. C. Ledón-Rettig
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington, Indiana 47405-7107, USA
| | - E. E. Zattara
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington, Indiana 47405-7107, USA
| | - A. P. Moczek
- Department of Biology, Indiana University, 915 E. Third Street, Myers Hall 150, Bloomington, Indiana 47405-7107, USA
| |
Collapse
|
36
|
Webster KA, Schach U, Ordaz A, Steinfeld JS, Draper BW, Siegfried KR. Dmrt1 is necessary for male sexual development in zebrafish. Dev Biol 2017; 422:33-46. [PMID: 27940159 PMCID: PMC5777149 DOI: 10.1016/j.ydbio.2016.12.008] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 10/20/2022]
Abstract
The dmrt1 (doublesex and mab-3 related transcription factor 1) gene is a key regulator of sex determination and/or gonadal sex differentiation across metazoan animals. This is unusual given that sex determination genes are typically not well conserved. The mechanisms by which zebrafish sex is determined have remained elusive due to the lack of sex chromosomes and the complex polygenic nature of sex determination in domesticated strains. To investigate the role of dmrt1 in zebrafish sex determination and gonad development, we isolated mutations disrupting this gene. We found that the majority of dmrt1 mutant fish develop as fertile females suggesting a complete male-to-female sex reversal in mutant animals that would have otherwise developed as males. A small percentage of mutant animals became males, but were sterile and displayed testicular dysgenesis. Therefore zebrafish dmrt1 functions in male sex determination and testis development. Mutant males had aberrant gonadal development at the onset of gonadal sex-differentiation, displaying reduced oocyte apoptosis followed by development of intersex gonads and failed testis morphogenesis and spermatogenesis. By contrast, female ovaries developed normally. We found that Dmrt1 is necessary for normal transcriptional regulation of the amh (anti-Müllerian hormone) and foxl2 (forkhead box L2) genes, which are thought to be important for male or female sexual development respectively. Interestingly, we identified one dmrt1 mutant allele that co-operates with a linked segregation distorter locus to generate an apparent XY sex determination mechanism. We conclude that dmrt1 is dispensable for ovary development but necessary for testis development in zebrafish, and that dmrt1 promotes male development by transcriptionally regulating male and female genes as has been described in other animals. Furthermore, the strong sex-ratio bias caused by dmrt1 reduction-of-function points to potential mechanisms through which sex chromosomes may evolve.
Collapse
Affiliation(s)
- Kaitlyn A Webster
- University of Massachusetts Boston, Biology Department, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Ursula Schach
- Max Planck Institute for Developmental Biology, Department Genetics, Spemanstrasse 35, 72076 Tübingen, Germany
| | - Angel Ordaz
- University of California Davis, Department of Molecular and Cellular Biology, One Shields Ave., Davis, CA 95616, USA
| | - Jocelyn S Steinfeld
- University of Massachusetts Boston, Biology Department, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Bruce W Draper
- University of California Davis, Department of Molecular and Cellular Biology, One Shields Ave., Davis, CA 95616, USA
| | - Kellee R Siegfried
- University of Massachusetts Boston, Biology Department, 100 Morrissey Blvd., Boston, MA 02125, USA.
| |
Collapse
|
37
|
Gopinath G, Arunkumar KP, Mita K, Nagaraju J. Role of Bmznf-2, a Bombyx mori CCCH zinc finger gene, in masculinisation and differential splicing of Bmtra-2. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 75:32-44. [PMID: 27260399 DOI: 10.1016/j.ibmb.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 06/05/2023]
Abstract
Deciphering the regulatory factors involved in Bombyx mori sex determination has been a puzzle, challenging researchers for nearly a century now. The pre-mRNA of B. mori doublesex (Bmdsx), a master regulator gene of sexual differentiation, is differentially spliced, producing Bmdsxm and Bmdsxf transcripts in males and females respectively. The putative proteins encoded by these differential transcripts orchestrate antagonistic functions, which lead to sexual differentiation. A recent study in B. mori illustrated the role of a W-derived fem piRNA in conferring femaleness. In females, the fem piRNA was shown to suppress the activity of a Z-linked CCCH type zinc finger (znf) gene, Masculiniser (masc), which indirectly promotes the Bmdsxm type of splicing. In this study, we report a novel autosomal (Chr 25) CCCH type znf motif encoding gene Bmznf-2 as one of the potential factors in the Bmdsx sex specific differential splicing, and we also provide insights into its role in the alternative splicing of Bmtra2 by using ovary derived BmN cells. Over-expression of Bmznf-2 induced Bmdsxm type of splicing (masculinisation) with a correspondingly reduced expression of Bmdsxf type isoform in BmN cells. Further, the site-directed mutational studies targeting the tandem CCCH znf motifs revealed their indispensability in the observed phenotype of masculinisation. Additionally, the dual luciferase assays in BmN cells using 5' UTR region of the Bmznf-2 strongly implied the existence of a translational repression over this gene. From these findings, we propose Bmznf-2 to be one of the potential factors of masculinisation similar to Masc. From the growing number of Bmdsx splicing regulators, we assume that the sex determination cascade of B. mori is quite intricate in nature; hence, it has to be further investigated for its comprehensive understanding.
Collapse
Affiliation(s)
- Gajula Gopinath
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kallare P Arunkumar
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India.
| | - Kazuei Mita
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Javaregowda Nagaraju
- Centre of Excellence for Genetics and Genomics of Silkmoths, Laboratory of Molecular Genetics, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500001, India
| |
Collapse
|
38
|
Chandler JC, Aizen J, Elizur A, Battaglene SC, Ventura T. Male Sexual Development and the Androgenic Gland: Novel Insights through the de novo Assembled Transcriptome of the Eastern Spiny Lobster, Sagmariasus verreauxi. Sex Dev 2016; 9:338-54. [PMID: 26927314 DOI: 10.1159/000443943] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2015] [Indexed: 11/19/2022] Open
Abstract
The Eastern spiny lobster, Sagmariasus verreauxi, is commercially important in fisheries, with growing aquaculture potential, driving an interest to better understand male sexual differentiation. Amongst the Decapoda, the androgenic gland (AG) and the insulin-like androgenic gland hormone (IAG) have a well-defined function in male sexual differentiation. However, IAG is not a sex determinant and therefore must be considered as part of a broader, integrated pathway. This work uses a transcriptomic, multi-tissue approach to provide an integrated description of male-biased expression as mediated through the AG. Transcriptomic analyses demonstrate that IAG expression is stage- and eyestalk-regulated (low in immature, high in mature and 6-times higher in hypertrophied glands), with IAG being the predominant AG-specific factor. The low expression of this key factor in immature males suggests the involvement of other tissues in male sexual differentiation. Across tissues, the gonad (87.8%) and antennal gland (73.5%) show the highest male-biased differential expression of transcripts and also express 4 sex-determination regulators, known as Dmrts, with broader expression of Sv-Sxl and Sv-TRA-2. In order to better understand male sexual differentiation, tissues other than the AG must also be considered. This research highlights the gonad and antennal gland as showing significant male-biased expression patterns, including the Sv-Dmrts.
Collapse
Affiliation(s)
- Jennifer C Chandler
- GeneCology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast (USC), Maroochydore, Qld., Australia
| | | | | | | | | |
Collapse
|