1
|
Jiang XY, Li FW, Chen YQ, Fang JR, Luo SK, Wang HB. Exosomes Derived from Human Adipose-Derived Stem Cells Cannot Distinctively Promote Graft Survival in Cryopreservation Fat Grafting. Aesthetic Plast Surg 2023; 47:2117-2129. [PMID: 37400586 DOI: 10.1007/s00266-023-03457-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/08/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Cryopreserved fat has limited clinical applications due to its rapid absorption, high degree of fibrosis, and risk of complications after grafting. Many studies have verified that Adipose-derived mesenchymal stem cell-derived exosomes (ADSC-Exos) can improve fresh fat graft survival. This study assessed whether ADSC-Exos could improve the survival of cryopreserved fat grafts. METHODS Exosomes were isolated from human ADSCs were subcutaneously engrafted with adipose tissues stored under different conditions (fresh; cryopreserved for 1 month) into the backs of BALB/c nude mice (n = 24), and exosomes or PBS were administered weekly. Grafts were harvested at 1, 2, 4, and 8 weeks, and fat retention rate, histologic, and immunohistochemical analyses were conducted. RESULTS At 1, 2, and 4 weeks after the transfer, cryopreserved fat grafts in groups of exosome-treated showed better fat integrity, fewer oil cysts, and reduced fibrosis. Further investigations of macrophage infiltration and neovascularization revealed that those exosomes increased the number of M2 macrophages at 2 and 4 weeks (p<0.05), but had limited impact on vascularization (p>0.05). It's important to note that no significant differences (p>0.05) were observed between the two groups in both histological and immunohistochemical evaluations at 8 weeks post-transplantation. CONCLUSIONS This study suggests that ADSC-Exos could improve the survival of cryopreserved fat grafts in the short term (within 4 weeks), but the overall improvement was poor (after 8 weeks). This suggests that the utility of using ADSC-Exos to treat cryopreserved adipose tissue grafts is limited. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Xuan-Yu Jiang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
- School of Medicine, Jinan University, Guangzhou City, Guangdong Province, China
| | - Fang-Wei Li
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
| | - Yi-Qing Chen
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Jun-Ren Fang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China
| | - Sheng-Kang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China.
- School of Medicine, Jinan University, Guangzhou City, Guangdong Province, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China.
| | - Hai-Bin Wang
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, 466 Middle Xin Gang Road, Guangzhou City, Guangdong Province, China.
- School of Medicine, Jinan University, Guangzhou City, Guangdong Province, China.
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
2
|
Favaretto F, Compagnin C, Cogliati E, Montagner G, Dell’Antonia F, Berna G, Vettor R, Milan G, Trojan D. Characterization of Human Subcutaneous Adipose Tissue and Validation of the Banking Procedure for Autologous Transplantation. Int J Mol Sci 2023; 24:8190. [PMID: 37175896 PMCID: PMC10179225 DOI: 10.3390/ijms24098190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Adipose tissue (AT) is composed of a heterogeneous population which comprises both progenitor and differentiated cells. This heterogeneity allows a variety of roles for the AT, including regenerative functions. In fact, autologous AT is commonly used to repair soft tissue defects, and its cryopreservation could be a useful strategy to reduce the patient discomfort caused by multiple harvesting procedures. Our work aimed to characterize the cryopreserved AT and to validate its storage for up to three years for clinical applications. AT components (stromal vascular fraction-SVF and mature adipocytes) were isolated in fresh and cryopreserved samples using enzymatic digestion, and cell viability was assessed by immunofluorescence (IF) staining. Live, apoptotic and necrotic cells were quantified using cytometry by evaluating phosphatidylserine binding to fluorescent-labeled Annexin V. A multiparametric cytometry was also used to measure adipogenic (CD34+CD90+CD31-CD45-) and endothelial (CD34+CD31+CD45-) precursors and endothelial mature cells (CD34-CD31+CD45-). The maintenance of adipogenic abilities was evaluated using in vitro differentiation of SVF cultures and fluorescent lipid staining. We demonstrated that AT that is cryopreserved for up to three years maintains its differentiation potential and cellular composition. Given our results, a clinical study was started, and two patients had successful transplants without any complications using autologous cryopreserved AT.
Collapse
Affiliation(s)
- Francesca Favaretto
- Department of Medicine, Internal Medicine 3, Padova Hospital, University of Padova, 35128 Padova, Italy
- Fondazione Banca dei Tessuti del Veneto (FBTV), 31100 Treviso, Italy
| | - Chiara Compagnin
- Department of Medicine, Internal Medicine 3, Padova Hospital, University of Padova, 35128 Padova, Italy
| | - Elisa Cogliati
- Fondazione Banca dei Tessuti del Veneto (FBTV), 31100 Treviso, Italy
| | - Giulia Montagner
- Fondazione Banca dei Tessuti del Veneto (FBTV), 31100 Treviso, Italy
| | - Francesco Dell’Antonia
- Unità Operativa Complessa di Chirurgia Plastica, ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Giorgio Berna
- Unità Operativa Complessa di Chirurgia Plastica, ULSS2 Marca Trevigiana, 31100 Treviso, Italy
| | - Roberto Vettor
- Department of Medicine, Internal Medicine 3, Padova Hospital, University of Padova, 35128 Padova, Italy
| | - Gabriella Milan
- Department of Medicine, Internal Medicine 3, Padova Hospital, University of Padova, 35128 Padova, Italy
| | - Diletta Trojan
- Fondazione Banca dei Tessuti del Veneto (FBTV), 31100 Treviso, Italy
| |
Collapse
|
3
|
Zhang PQ, Tan PC, Gao YM, Zhang XJ, Xie Y, Zheng DN, Zhou SB, Li QF. The effect of glycerol as a cryoprotective agent in the cryopreservation of adipose tissue. Stem Cell Res Ther 2022; 13:152. [PMID: 35395949 PMCID: PMC8994386 DOI: 10.1186/s13287-022-02817-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/24/2021] [Indexed: 01/02/2023] Open
Abstract
Background Long-term preservation of adipose tissue is crucial for clinical applications. Researchers should consider both efficiency and biosafety when choosing a cryoprotective agent (CPA) for adipose tissue preservation. Glycerol has been applied as a nontoxic CPA for multiple tissues but not adipose tissue. We aimed to evaluate the efficacy of glycerol as a CPA for adipose tissue cryopreservation. Methods Fresh human adipose tissues were obtained from patients who underwent liposuction and divided into 1 mL samples. Each sample was randomly mixed with 1 mL of CPA: 60–100% glycerol, 0.25 mol/L trehalose or DMSO + FBS and cryopreserved in − 196 °C liquid nitrogen for one month. After thawing and elution, the tissues were immediately evaluated for activity and structural integrity in vitro. Then, 0.2 mL of each sample was transplanted subdermally to the nude mouse dorsum and harvested after one month for histological examination to assess the effect of the cryopreserved fat in transplantation. Results After cryopreservation, the samples treated with DMSO + FBS, trehalose, 60% and 70% glycerol had a more integrated structure than the samples in other groups. Tissues preserved with 70% glycerol had the highest G3PDH activity of 24.41 ± 0.70, comparable to 24.76 ± 0.48 in fresh tissue (p > 0.05). Adipose-derived stem cells (ASC) viability, proliferation and differentiation capability were also better preserved in 70% glycerol group. In vivo analysis showed that tissue preserved with 70% glycerol had a retention rate of 52.37 ± 7.53%, significantly higher than other groups. Histological observation demonstrated better structural integrity and viability in 70% glycerol group. Compared to the DMSO + FBS and trehalose groups, the glycerol groups showed lower tissue inflammation. Conclusion Glycerol (70%) is efficient in adipose tissue cryopreservation. Glycerol-based CPAs, which are nontoxic and show biosafety, are a promising solution for clinical tissue cryopreservation. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02817-z.
Collapse
Affiliation(s)
- Pei-Qi Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Poh-Ching Tan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yi-Ming Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Xiao-Jie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.,College of Life Sciences, Shanghai Normal University, Shanghai, People's Republic of China
| | - Yun Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Dan-Ning Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Shuang-Bai Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| | - Qing-Feng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
4
|
Lin CH, Tsai CH, Yang IC, Ma H. Frozen Fat Grafts Maintain Vascular Endothelial Growth Factor Expression and Mediate Angiogenesis During Adipose-Derived Stem Cell Enrichment for Soft Tissue Augmentation. Ann Plast Surg 2022; 88:S4-S12. [PMID: 35102020 DOI: 10.1097/sap.0000000000003075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Fresh fat grafts are commonly used in both esthetic and reconstructive surgeries, but the graft resorption rate varies. Cryopreservation of unused fat for later touch-up is one option to resolve this variation. In our previous studies, we found that fat cryopreservation may be a practical strategy for storing fat tissue. To explore the cryopreservation method, we evaluated the role of vascular endothelial growth factor (VEGF) in human frozen fat grafts. METHODS The concentration of VEGF in human frozen fat grafts subjected to different preservation times was determined using Western blotting and enzyme-linked immunosorbent assay. The angiogenic effect of frozen fat grafts was evaluated using a chorioallantoic membrane assay. Furthermore, the impact of adding human adipose-derived stem cells (hADSCs) or different concentrations of avastin (bevacizumab) to frozen fat grafts on angiogenesis was assessed. The viability of frozen fat grafts with or without hADSCs was evaluated using a nude mouse implantation study. Explanted fat tissues were examined on days 1, 4, 7, 14, 28, and 90, and morphological and histological analyses, immunohistochemistry, and enzyme-linked immunosorbent assay (VEGF concentration) were carried out. RESULTS No significant difference in VEGF concentration between fresh and frozen fat was observed with respect to preservation duration. In the chorioallantoic membrane assay, frozen fat grafts with hADSCs displayed significantly enhanced angiogenesis. Avastin was found to decrease angiogenesis in frozen fat grafts. However, in the nude mouse implantation study, frozen fat grafts displayed VEGF maintenance, with the highest concentration observed on day 7. Adding hADSCs to the graft further increased the VEGF concentration and CD31 expression. Fat graft viability was found to be higher in the frozen fat grafts containing hADSCs than in grafts without hADSCs. CONCLUSIONS Human fat grafts can maintain VEGF expression under frozen conditions for at least 12 months. The addition of hADSCs to the frozen fat graft could further enhance angiogenesis, VEGF expression, and fat cell viability.
Collapse
Affiliation(s)
| | - Chi-Han Tsai
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital
| | - I-Chen Yang
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Taipei Veterans General Hospital
| | | |
Collapse
|
5
|
Optimization of Adipose Tissue Cryopreservation Techniques in a Murine Model. Plast Reconstr Surg Glob Open 2021; 9:e3926. [PMID: 35028258 PMCID: PMC8751777 DOI: 10.1097/gox.0000000000003926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
Background: The aim of this study was to develop an adipose tissue (AT) cryopreservation protocol that is effective, simple, and maintains the functionality and viability of AT after thawing and transplantation. Methods: Two cryopreservation temperatures (T°), −20°C and −80°C, and two cryoprotective agents (CPAs), trehalose and hydroxyethyl starch (HES), were compared first in an experimental study, using a slowfreezing protocol. The five experimental groups were the following: (a) Fresh AT (control group), (b) T = −20°C, 10%HES, (c) T = −80°C, 10%HES, (d) T = −20°C, 0.35M trehalose, (e) T = −80°C, 0.35M trehalose. We evaluated the morphology (histological studies) and tissue viability by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genic expression. Based on the results of the preliminary study, an in vivo study was performed, choosing as cryopreservation T° −20°C. HES and trehalose were compared as cryoprotective agents and with a control group (fresh AT). AT grafts were transplanted into immunodeficient mice. After 1 month of inoculation, animals were euthanized and samples were recovered. Samples were weighted and processed for histological study, viability study (GAPDH genic expression), and vascularization study (VEGF genic expression). Results: The initial histological study demonstrated that all AT cryopreserved group samples showed typical histological features of AT, similar to that of the control group. Statistically significant differences were not observed (P > 0.05) in GAPDH expression between different groups related to temperature or CPA. Referring to the in vivo studies, cryopreserved groups showed good take of the graft and normal AT architectural preservation, as well as a clear vascular network. Statistically significant differences were not found (P > 0.05) with regard to graft take (%), GAPDH, or VEGF expression. Conclusion: Slow freezing at −20°C using trehalose, and −20°C using HES as cryoprotective agents are both straightforward and easy AT cryopreservation procedures, with results similar to those of fresh AT in terms of tissue viability and morphohistological characteristics.
Collapse
|
6
|
Crowley CA, Smith WPW, Seah KTM, Lim SK, Khan WS. Cryopreservation of Human Adipose Tissues and Adipose-Derived Stem Cells with DMSO and/or Trehalose: A Systematic Review. Cells 2021; 10:cells10071837. [PMID: 34360005 PMCID: PMC8307030 DOI: 10.3390/cells10071837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
Adipose tissue senescence is implicated as a major player in obesity- and ageing-related disorders. There is a growing body of research studying relevant mechanisms in age-related diseases, as well as the use of adipose-derived stem cells in regenerative medicine. The cell banking of tissue by utilising cryopreservation would allow for much greater flexibility of use. Dimethyl sulfoxide (DMSO) is the most commonly used cryopreservative agent but is toxic to cells. Trehalose is a sugar synthesised by lower organisms to withstand extreme cold and drought that has been trialled as a cryopreservative agent. To examine the efficacy of trehalose in the cryopreservation of human adipose tissue, we conducted a systematic review of studies that used trehalose for the cryopreservation of human adipose tissues and adipose-derived stem cells. Thirteen articles, including fourteen studies, were included in the final review. All seven studies that examined DMSO and trehalose showed that they could be combined effectively to cryopreserve adipocytes. Although studies that compared nonpermeable trehalose with DMSO found trehalose to be inferior, studies that devised methods to deliver nonpermeable trehalose into the cell found it comparable to DMSO. Trehalose is only comparable to DMSO when methods are devised to introduce it into the cell. There is some evidence to support using trehalose instead of using no cryopreservative agent.
Collapse
Affiliation(s)
- Conor A. Crowley
- Australasian College of Cosmetic Surgery, Parramatta, NSW 2150, Australia;
| | - William P. W. Smith
- School of Clinical Medicine, University of Cambridge, Cambridge CB2 0SP, UK;
| | - K. T. Matthew Seah
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
- Correspondence:
| | - Soo-Keat Lim
- The Ashbrook Cosmetic Surgery, Mosman, NSW 2088, Australia;
| | - Wasim S. Khan
- Division of Trauma and Orthopaedic Surgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge CB2 0QQ, UK;
| |
Collapse
|
7
|
Mazini L, Ezzoubi M, Malka G. Overview of current adipose-derived stem cell (ADSCs) processing involved in therapeutic advancements: flow chart and regulation updates before and after COVID-19. Stem Cell Res Ther 2021; 12:1. [PMID: 33397467 PMCID: PMC7781178 DOI: 10.1186/s13287-020-02006-w] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/01/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ADSCs) have raised big interest in therapeutic applications in regenerative medicine and appear to fulfill the criteria for a successful cell therapy. Their low immunogenicity and their ability to self-renew, to differentiate into different tissue-specific progenitors, to migrate into damaged sites, and to act through autocrine and paracrine pathways have been altogether testified as the main mechanisms whereby cell repair and regeneration occur. The absence of standardization protocols in cell management within laboratories or facilities added to the new technologies improved at patient's bedside and the discrepancies in cell outcomes and engraftment increase the limitations on their widespread use by balancing their real benefit versus the patient safety and security. Also, comparisons across pooled patients are particularly difficult in the fact that multiple medical devices are used and there is absence of harmonized assessment assays despite meeting regulations agencies and efficient GMP protocols. Moreover, the emergence of the COVID-19 breakdown added to the complexity of implementing standardization. Cell- and tissue-based therapies are completely dependent on the biological manifestations and parameters associated to and induced by this virus where the scope is still unknown. The initial flow chart identified for stem cell therapies should be reformulated and updated to overcome patient infection and avoid significant variability, thus enabling more patient safety and therapeutic efficiency. The aim of this work is to highlight the major guidelines and differences in ADSC processing meeting the current good manufacturing practices (cGMP) and the cellular therapy-related policies. Specific insights on standardization of ADSCs proceeding at different check points are also presented as a setup for the cord blood and bone marrow.
Collapse
Affiliation(s)
- Loubna Mazini
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Center of Biological and Medical Sciences CIAM, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mohamed Ezzoubi
- Centre des Brûlés et chirurgie réparatrice, Centre Hospitalier Universitaire Ibn Rochd Casablanca, Faculté de Médecine et de Pharmacie Casablanca, Casablanca, Morocco
| | - Gabriel Malka
- Laboratoire Cellules Souches et Régénération Cellulaire et Tissulaire, Center of Biological and Medical Sciences CIAM, Mohammed VI Polytechnic University (UM6P), Lot 660, Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| |
Collapse
|
8
|
Abstract
Currently, fat transplantation occurs immediately after harvesting procedures. Because low rates of fat graft take are well reported in the literature, many patients require multiple surgical procedures for fat graft harvest. These subsequent procedures lead to increased cost, donor-site morbidity, and patient discomfort in the long term. The ability to preserve our patients' own adipose aspirate would allow us to counteract these shortcomings and ultimately improve the clinical outcome after fat grafting. Unfortunately, there is no optimal and practical adipose tissue cryopreservation protocol for use by the plastic surgeon at the present time. Because of this dilemma, the senior author (L.L.Q.P.) has investigated this concept in an effort to create a protocol that is both technically sound and clinically achievable to allow for the long-term preservation of adipose tissue. In this article, the authors aim to outline this effort, review current clinical applications that have been reported in the literature, and detail exciting future perspectives in the use of preserved lipoaspirates for repeated fat grafting procedures or in the form of cell-based therapy engineered for reconstructive endeavors for their patients.
Collapse
Affiliation(s)
- Shaili Gal
- From the Division of Plastic Surgery, Department of Surgery, University of California, Davis
| | - Lee L Q Pu
- From the Division of Plastic Surgery, Department of Surgery, University of California, Davis
| |
Collapse
|
9
|
|
10
|
Effect of Cryopreservation on Human Adipose Tissue and Isolated Stromal Vascular Fraction Cells: In Vitro and In Vivo Analyses. Plast Reconstr Surg 2018; 141:232e-243e. [PMID: 29369990 DOI: 10.1097/prs.0000000000004030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Adipose tissue is a source of adipose-derived stromal/stem cells for tissue engineering and reconstruction and a tissue source for fat grafts. Although liposuction is a simple procedure for the harvest of adipose tissue, the repetition of this surgical intervention can cause adverse effects to the patient and can be a limiting factor for immediate use. Cryopreservation can avoid the morbidity associated with repetitive liposuction, allowing the use of stored tissue after the initial harvest procedure. This article focuses on the characterization of fresh and cryopreserved human adipose tissue. METHODS Lipoaspirates from eight donors were processed as fresh adipose tissue or cryopreserved for 4 to 6 weeks. Fresh and cryopreserved tissues were collagenase digested and the stromal vascular fraction cells were characterized immediately or cryopreserved. Characterization was based on stromal vascular fraction cell proliferation and immunophenotype. In vivo fat grafting was performed in C57BL/6 green fluorescent protein mice to analyze morphology of the tissue and its adiposity using confocal microscopy, histochemical staining (i.e., hematoxylin and eosin and Masson trichrome), and immunohistochemistry (i.e., green fluorescent protein, perilipin, and CD31). RESULTS Although tissue and stromal vascular fraction cell cryopreservation reduced the total cell yield, the remaining viable cells retained their adhesive and proliferative properties. The stromal vascular fraction cell immunophenotype showed a significant reduction in the hematopoietic surface markers and increased expression of stromal and adipogenic markers following cryopreservation. In vivo cryopreserved fat grafts showed morphology similar to that of freshly implanted fat grafts. CONCLUSION In this study, the authors demonstrated that cryopreserved adipose tissue is a potential source of stromal vascular fraction cells and a suitable source for fat grafts.
Collapse
|
11
|
Huang H, Zhao G, Zhang Y, Xu J, Toth TL, He X. Predehydration and Ice Seeding in the Presence of Trehalose Enable Cell Cryopreservation. ACS Biomater Sci Eng 2017; 3:1758-1768. [PMID: 28824959 PMCID: PMC5558192 DOI: 10.1021/acsbiomaterials.7b00201] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022]
Abstract
Conventional approaches for cell cryopreservation require the use of toxic membrane-penetrating cryoprotective agents (pCPA), which limits the clinical application of cryopreserved cells. Here, we show intentionally induced ice formation at a high subzero temperature (> -10 °C) during cryopreservation, which is often referred to as ice seeding, could result in significant cell injury in the absence of any pCPA. This issue can be mitigated by predehydrating cells using extracellular trehalose to their minimal volume with minimized osmotically active water before ice seeding. We further observe that ice seeding can minimize the interfacial free energy that drives the devastating ice recrystallization-induced cell injury during warming cryopreserved samples. Indeed, by combining predehydration using extracellular trehalose with ice seeding at high subzero temperatures, high cell viability or recovery is achieved for fibroblasts, adult stem cells, and red blood cells after cryopreservation without using any pCPA. The pCPA-free technology developed in this study may greatly facilitate the long-term storage and ready availability of living cells, tissues, and organs that are of high demand by modern cell-based medicine.
Collapse
Affiliation(s)
- Haishui Huang
- Department
of Biomedical Engineering, The Ohio State
University, 1080 Carmack Road, Columbus, Ohio 43210, United
States
- Department
of Mechanical Engineering, The Ohio State
University, 201 W 19th
Avenue, Columbus, Ohio 43210, United States
| | - Gang Zhao
- Centre
for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Yuntian Zhang
- Department
of Biomedical Engineering, The Ohio State
University, 1080 Carmack Road, Columbus, Ohio 43210, United
States
- Centre
for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230027, China
| | - Jiangsheng Xu
- Department
of Biomedical Engineering, The Ohio State
University, 1080 Carmack Road, Columbus, Ohio 43210, United
States
- Davis
Heart and Lung Research Institute, The Ohio
State University, 473
W 12th Avenue, Columbus, Ohio 43210, United
States
- Comprehensive
Cancer Center, The Ohio State University, 460 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Thomas L. Toth
- Vincent Department
of Obstetrics and Gynecology, Vincent Reproductive Medicine and IVF, Massachusetts General Hospital, 55 Fruit Street, Boston, Massachusetts 02114, United States
- Department
of Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts 02114, United States
| | - Xiaoming He
- Department
of Biomedical Engineering, The Ohio State
University, 1080 Carmack Road, Columbus, Ohio 43210, United
States
- Davis
Heart and Lung Research Institute, The Ohio
State University, 473
W 12th Avenue, Columbus, Ohio 43210, United
States
- Comprehensive
Cancer Center, The Ohio State University, 460 W 12th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
12
|
Roato I, Alotto D, Belisario DC, Casarin S, Fumagalli M, Cambieri I, Piana R, Stella M, Ferracini R, Castagnoli C. Adipose Derived-Mesenchymal Stem Cells Viability and Differentiating Features for Orthopaedic Reparative Applications: Banking of Adipose Tissue. Stem Cells Int 2016; 2016:4968724. [PMID: 28018432 PMCID: PMC5153503 DOI: 10.1155/2016/4968724] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 01/05/2023] Open
Abstract
Osteoarthritis is characterized by loss of articular cartilage also due to reduced chondrogenic activity of mesenchymal stem cells (MSCs) from patients. Adipose tissue is an attractive source of MSCs (ATD-MSCs), representing an effective tool for reparative medicine, particularly for treatment of osteoarthritis, due to their chondrogenic and osteogenic differentiation capability. The treatment of symptomatic knee arthritis with ATD-MSCs proved effective with a single infusion, but multiple infusions could be also more efficacious. Here we studied some crucial aspects of adipose tissue banking procedures, evaluating ATD-MSCs viability, and differentiation capability after cryopreservation, to guarantee the quality of the tissue for multiple infusions. We reported that the presence of local anesthetic during lipoaspiration negatively affects cell viability of cryopreserved adipose tissue and cell growth of ATD-MSCs in culture. We observed that DMSO guarantees a faster growth of ATD-MSCs in culture than trehalose. At last, ATD-MSCs derived from fresh and cryopreserved samples at -80°C and -196°C showed viability and differentiation ability comparable to fresh samples. These data indicate that cryopreservation of adipose tissue at -80°C and -196°C is equivalent and preserves the content of ATD-MSCs in Stromal Vascular Fraction (SVF), guaranteeing the differentiation ability of ATD-MSCs.
Collapse
Affiliation(s)
- Ilaria Roato
- CeRMS, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Daniela Alotto
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | | | - Stefania Casarin
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Mara Fumagalli
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Irene Cambieri
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | - Raimondo Piana
- Department of Orthopaedic Oncology, CTO Hospital, Torino, Italy
| | - Maurizio Stella
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| | | | - Carlotta Castagnoli
- Skin Bank, Department of General and Specialized Surgery, A.O.U. Città della Salute e della Scienza, Torino, Italy
| |
Collapse
|
13
|
The Relationship of a Combination of Human Adipose Tissue-Derived Stem Cells and Frozen Fat with the Survival Rate of Transplanted Fat. Arch Plast Surg 2015; 42:677-85. [PMID: 26618113 PMCID: PMC4659979 DOI: 10.5999/aps.2015.42.6.677] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/11/2015] [Accepted: 08/17/2015] [Indexed: 11/25/2022] Open
Abstract
Background The survival rate of grafted fat is difficult to predict, and repeated procedures are frequently required. In this study, the effects of the freezing period of harvested adipose tissue and the addition of human adipose tissue-derived stem cells (ASCs) on the process of fat absorption were studied. Methods Adipose tissue was obtained from patients who underwent a lipoaspirated fat graft. The fat tissue was cryopreserved at -20℃ in a domestic refrigerator. A total of 40 nude mice were used. The mice in the experimental group received three different subcutaneous injections in the back: an injection of fresh fat and ASCs, an injection of fat that had been frozen for one month and ASCs, and an injection of fat that had been frozen for two months and ASCs. The control mice received fat grafts without ASCs. The mice were sacrificed at four or eight weeks after the procedure, and the grafted fat tissues were harvested. The extracted fat was evaluated using photographic analysis, volume measurements, and histological examination. Results In the control group, the fat resorption rates four weeks after transplantation in the grafts of fresh fat, fat that had been frozen for one month, and fat that had been frozen for two months were 21.14%, 22.46%, and 42.56%, respectively. In the experimental group, the corresponding resorption rates were 6.68%, 13.0%, and 33.9%, respectively. Conclusions ASCs can increase the fat graft survival rate. The use of ASCs in fat grafting can reduce the need for repeated fat grafts and provide good long term results.
Collapse
|
14
|
Comparison of the viability of cryopreserved fat tissue in accordance with the thawing temperature. Arch Plast Surg 2015; 42:143-9. [PMID: 25798384 PMCID: PMC4366694 DOI: 10.5999/aps.2015.42.2.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/29/2014] [Accepted: 10/07/2014] [Indexed: 12/04/2022] Open
Abstract
Background Adipose tissue damage of cryopreserved fat after autologous fat transfer is inevitable in several processes of re-transplantation. This study aims to compare and analyze the survivability of adipocytes after thawing fat cryopreserved at -20℃ by using thawing methods used in clinics. Methods The survival rates of adipocytes in the following thawing groups were measured: natural thawing at 25℃ for 15 minutes; natural thawing at 25℃ for 5 minutes, followed by rapid thawing at 37℃ in a water bath for 5 minutes; and rapid thawing at 37℃ for 10 minutes in a water bath. The survival rates of adipocytes were assessed by measuring the volume of the fat layer in the top layers separated after centrifugation, counting the number of live adipocytes after staining with trypan blue, and measuring the activity of mitochondria in the adipocytes. Results In the group with rapid thawing for 10 minutes in a water bath, it was observed that the cell count of live adipocytes and the activity of the adipocyte mitochondria were significantly higher than in the other two groups (P<0.05). The volume of the fat layer separated by centrifugation was also measured to be higher, which was, however, not statistically significant. Conclusions It was shown that the survival rate of adipocytes was higher when the frozen fat tissue was thawed rapidly at 37℃. It can thus be concluded that if fats thawed with this method are re-transplanted, the survival rate of cryopreserved fats in transplantation will be improved, and thus, the effect of autologous fat transfer will increase.
Collapse
|
15
|
Abstract
This article first discusses some fundamentals of cryobiology and challenges for cell and tissue cryopreservation. Then, the results of cryopreservation of adipose cells and tissues, including adipose-derived stem cells, in the last decade are reviewed. In addition, from the viewpoint of cryobiology, some desired future work in fat cryopreservation is proposed that would benefit the optimization, standardization, and better application of such techniques.
Collapse
Affiliation(s)
- Zhiquan Shu
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lee L Q Pu
- Division of Plastic Surgery, University of California Davis, 2221 Stockton Boulevard, Suite 2123, Sacramento, CA 95817, USA.
| |
Collapse
|
16
|
Hall M, Heffelfinger R. Autologous Fat Transfer as a Facial Filler: Current and Future Applications. CURRENT OTORHINOLARYNGOLOGY REPORTS 2015. [DOI: 10.1007/s40136-014-0071-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
17
|
Wang J, Zhao G, Zhang P, Wang Z, Zhang Y, Gao D, Zhou P, Cao Y. Measurement of the biophysical properties of porcine adipose-derived stem cells by a microperfusion system. Cryobiology 2014; 69:442-50. [PMID: 25445459 DOI: 10.1016/j.cryobiol.2014.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/18/2014] [Accepted: 10/06/2014] [Indexed: 11/28/2022]
Abstract
Adipose-derived stem cells (ADSCs), which are an accessible source of adult stem cells with capacities for self-renewal and differentiation into various cell types, have a promising potential in tissue engineering and regenerative medicine strategies. To meet the clinical demand for ADSCs, cryopreservation has been applied for long-term ADSC preservation. To optimize the addition, removal, freezing, and thawing of cryoprotective agents (CPAs) applied to ADSCs, we measured the transport properties of porcine ADSCs (pADSCs). The cell responses of pADSCs to hypertonic phosphate-buffered saline and common CPAs, dimethyl sulfoxide, ethylene glycol, and glycerol were measured by a microperfusion system at temperatures of 28, 18, 8, and -2°C. We determined the osmotically inactive cell volume (Vb), hydraulic conductivity (Lp), and CPA permeability (Ps) at various temperatures in a two-parameter model. Then, we quantitatively analyzed the effect of temperature on the transport properties of the pADSC membrane. Biophysical parameters were used to optimize CPA addition, removal, and freezing processes to minimize excessive shrinkage of pADSCs during cryopreservation. The biophysical properties of pADSCs have a great potential for effective optimization of cryopreservation procedures.
Collapse
Affiliation(s)
- Jianye Wang
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Gang Zhao
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China.
| | - Pengfei Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zhen Wang
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yunhai Zhang
- Anhui Provincial Laboratory for Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China.
| | - Dayong Gao
- Centre for Biomedical Engineering, Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China
| | - Ping Zhou
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China
| | - Yunxia Cao
- Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei, Anhui 230027, China
| |
Collapse
|
18
|
Bissoyi A, Pramanik K. Role of the Apoptosis Pathway in Cryopreservation-Induced Cell Death in Mesenchymal Stem Cells Derived from Umbilical Cord Blood. Biopreserv Biobank 2014; 12:246-54. [DOI: 10.1089/bio.2014.0005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Akalabya Bissoyi
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Krishna Pramanik
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| |
Collapse
|
19
|
Abstract
BACKGROUND Injectable fillers are sometimes necessary to correct slight skin irregularities. However, there have been reports of necrosis after injection of alloplastic materials and heterogeneous transplants. On the other hand, the advantages of autogenous tissue grafts over those fillers are well established. Volumetric reshaping of the face with autologous tissue injection is a popular and reliable method with good long-term results. However, procedures performed on the fragile skin of the nose are prone to complications. OBJECTIVES The author conducted a study of injectable autologous microfat grafting to the nose in patients with secondary nasal deformities. METHODS During a 5-year period, 313 patients who had secondary nasal deformities with slight skin irregularities or severe nasal skin damage were treated with microfat grafting. At each patient's first injection session, excess harvested fat was cryopreserved for subsequent injection. To correct minor irregularities, 0.3 to 0.8 mL of microfat was injected during each session; for major irregularities or defects, 1 to 6 mL was required for each session. RESULTS One to 3 injections of microfat provided satisfactory results in all patients who had minor irregularities. For patients with multiple and severe irregularities, 3 to 6 injections were necessary and resulted in high patient satisfaction. In another group of patients, with severe traumatic skin damage, 6 to 16 injections were necessary for reconstruction. After repeated injections, each patient's skin damage was repaired. CONCLUSIONS Autologous microfat injection appears to be safe and effective for correcting slight irregularities of the nose. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- O Onur Erol
- Dr Erol is Professor Emeritus, Department of Plastic Surgery at Hacettepe University, Ankara; Past Head of the Department of Plastic Surgery at Istanbul Science University; and a staff surgeon at American-Koc Hospital, Istanbul, Turkey
| |
Collapse
|
20
|
A clinical scalable cryopreservation method of adipose tissue for reconstructive surgery assessed by stromal vascular fraction and mice studies. Plast Reconstr Surg 2014; 133:815-826. [PMID: 24675187 DOI: 10.1097/prs.0000000000000051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Adipose tissue is widely used in plastic surgery. The main obstacle is that it can be used only immediately after liposuction, while reconstruction often requires several procedures to achieve optimal results. This study aimed to develop a cryopreservation protocol directly applicable to clinical situations, allowing repetitive procedures without multiple tissue harvests. METHODS The authors first tested scalable bags suitable for therapeutic uses. All subsequent experiments were performed in those bags. The authors evaluated in vitro, on the basis of cell viability, cell number, phenotype, and stromal cell proliferation, the efficacy of six cryopreservation media composed of an external cryoprotectant (human albumin or hydroxylethyl starch) with or without an internal cryoprotectant (dimethyl sulfoxide). Two storage temperatures (-196°C and -80°C) were tested in vitro and in vivo (subcutaneous graft in 30 nude mice) with the selected medium. RESULTS The combination of 5% dimethyl sulfoxide and 95% hydroxylethyl yielded in vitro results that were good and the most consistent. With this cryoprotective solution, the authors observed no significant difference in vitro for a storage period of 7 days. When the storage was extended to 1 month, the cell viability was decreased by 10 percent for both storage temperatures. The in vivo experiments assessed the superiority of cryopreservation at -80°C with less graft resorption (60 percent and 70 percent, respectively, for -80°C and -196°C) and less fibrosis. CONCLUSION The study's protocol with a chemically defined cryoprotective solution, specific scalable bags constrained in an aluminum holder, and a storage temperature of -80°C is promising for long-term adipose tissue cryopreservation.
Collapse
|
21
|
Kaviani M, Ezzatabadipour M, Nematollahi-Mahani SN, Salehinejad P, Mohammadi M, Kalantar SM, Motamedi B. Evaluation of gametogenic potential of vitrified human umbilical cord Wharton's jelly–derived mesenchymal cells. Cytotherapy 2014; 16:203-12. [DOI: 10.1016/j.jcyt.2013.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/05/2013] [Accepted: 10/27/2013] [Indexed: 10/25/2022]
|
22
|
Lee HJ, Kim EK. Effects of Long-Term Cryopreservation on Fat Grafts: An Experimental Study. ARCHIVES OF AESTHETIC PLASTIC SURGERY 2014. [DOI: 10.14730/aaps.2014.20.2.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Hee Jong Lee
- Department of Plastic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Key Kim
- Department of Plastic Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Lee H, Ko EH, Lai M, Wei N, Balroop J, Kashem Z, Zhang M. Delineating the relationships among the formation of reactive oxygen species, cell membrane instability and innate autoimmunity in intestinal reperfusion injury. Mol Immunol 2013; 58:151-9. [PMID: 24365749 DOI: 10.1016/j.molimm.2013.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/15/2013] [Accepted: 11/20/2013] [Indexed: 01/07/2023]
Abstract
Acute intestinal ischemia is a medical emergency with a high mortality rate, attesting to the need for a better understanding of its pathogenesis and the development of effective therapies. The goal of this study was to delineate the relationships among intracellular and extracellular events in intestinal ischemia/reperfusion (I/R) injury, particularly the formation of reactive oxygen species (ROS), cell membrane instability associated with lipid peroxidation and the innate autoimmune response mediated by natural IgM and complement. A murine model of natural IgM-mediated intestinal I/R was used. Mice overexpressing anti-oxidant enzyme SOD1 were found to have significantly reduced intestinal tissue damage and complete blockage of IgM-mediated complement activation compared with WT controls. To determine if cell membrane instability was an event intermediate between ROS formation and natural IgM-mediated innate autoimmune response, the cell membrane stabilizer (trehalose) was administered to WT mice prior to the induction of intestinal ischemia. Treatment with trehalose significantly protected animals from I/R injury and inhibited IgM-mediated complement activation although it did not prevent membrane lipid peroxidation. These data indicate that in normal mice subjected to I/R injury, intracellular ROS formation is an event upstream of the lipid peroxidation which results in cell membrane instability. The membrane instability leads to an innate autoimmune response by natural IgM and complement. Trehalose, a nontoxic disaccharide tolerated well by animals and humans, has promise as a protective agent for patients with medical conditions related to acute intestinal ischemia.
Collapse
Affiliation(s)
- Haekyung Lee
- Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Eun Hee Ko
- Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Mark Lai
- Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Biomedical Sciences, Long Island University, Brookville, NY 11548, United States
| | - Na Wei
- Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Biomedical Sciences, Long Island University, Brookville, NY 11548, United States
| | - Javi Balroop
- Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Chemical and Biomolecular Engineering, NYU-Polytechnic Institute, Brooklyn, NY 11201, United States
| | - Zerin Kashem
- Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Ming Zhang
- Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, United States.
| |
Collapse
|
24
|
Wang WZ, Fang XH, Williams SJ, Stephenson LL, Baynosa RC, Wong N, Khiabani KT, Zamboni WA. The effect of lipoaspirates cryopreservation on adipose-derived stem cells. Aesthet Surg J 2013; 33:1046-55. [PMID: 23966549 DOI: 10.1177/1090820x13501690] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Autologous fat grafting has gained popularity, particularly with the discovery of adipose-derived stem cells (ADSC). The possibility of freezing lipoaspirates (LA) for later use has intriguing clinical potential. However, the effect of LA cryopreservation on ADSC is unclear. OBJECTIVES The authors explore the effect of LA cryopreservation on ADSC viability. METHODS Human LA (n = 8) were harvested using a standard technique. Lipoaspirate samples were either processed immediately as fresh LA (A) or stored at -20°C and then at -80°C for 30 days with (B) or without (C) freezing medium. Stromal vascular fraction (SVF) was separated from adipocytes and either cultured to obtain purified ADSC or processed for the isolation of 3 distinct ADSC subpopulations (CD90(+)/CD45(-), CD105(+)/CD45(-), and CD34(+)/CD31(-)). Apoptosis and necrosis were determined by an annexin V/propidium iodide assay and quantified by flow cytometry. The capability of ADSC for long-term proliferation and differentiation was also examined. RESULTS There were no significant differences in the apoptosis and necrosis of adipocytes, SVF, or ADSC between groups A and B. However, cell viability in SVF and ADSC was significantly compromised in group C as compared with group B (P < .01) due to higher ADSC apoptosis but not necrosis. The viable ADSC isolated from fresh or frozen LA were cultured for more than 20 passages and demonstrated similar patterns and speed of proliferation with strong capability to differentiate, evidenced by cell doubling time and positive staining with Oil Red O (Sigma-Aldrich, St Louis, Missouri) and alkaline phosphatase. CONCLUSIONS Lipoaspirates cryopreservation had a significant impact on ADSC apoptosis but not on ADSC necrosis, proliferation, or differentiations. Freezing medium provides significant protection against ADSC apoptosis.
Collapse
Affiliation(s)
- Wei Z Wang
- Department of Surgery, Division of Plastic Surgery at the University of Nevada School of Medicine, Las Vegas, Nevada
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Erol OO, Agaoglu G. Facial rejuvenation with staged injections of cryopreserved fat and tissue cocktail: clinical outcomes in the past 10 years. Aesthet Surg J 2013; 33:639-53. [PMID: 23813395 DOI: 10.1177/1090820x13493904] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Facial rejuvenation by autologous fat transfer is common in aesthetic plastic surgery. The main drawback is progressive resorption, requiring repeated harvesting and microfat grafting. OBJECTIVE The authors present a method for cryopreservation of excess harvested fat and tissue to enable subsequent use of previously harvested excess material. METHODS Fat grafts were harvested using a 50-mL syringe and a 3- or 4-mm cannula. A tissue "cocktail" composed of dermis, fascia, and fat was prepared from excised scar tissue, tissue from abdominoplasty, or tissue from reduction mammaplasty. Cocktail specimens were placed in sterile tubes, immersed in a liquid nitrogen tank (-196°C), and stored at -80°C. At 3- to 6-month intervals, repeated cryopreserved fat graft injections were performed. Patients were evaluated by comparing preoperative and postoperative photographs. RESULTS Between 2000 and 2010, a total of 5199 cryopreserved fat or tissue injections were performed in 2439 consecutive patients (age range, 19-80 years). Nasolabial folds and lips were the most common injection sites. Clinical outcomes were satisfactory, and improved contour was achieved in most patients after repeated injections. CONCLUSIONS Cryopreservation of excess tissue for future injection is promising since repetitive injections are often required after resorption of microfat grafts. In our study, the survival of cryopreserved tissue cocktail or fat was comparable to that of fresh fat grafts and is therefore an effective adjuvant method for facial rejuvenation.
Collapse
|
26
|
Pu LL. Cryopreservation of adipose tissue. Organogenesis 2012; 5:138-42. [PMID: 20046677 DOI: 10.4161/org.5.3.9586] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 01/22/2023] Open
Abstract
The main obstacle to achieving favorable outcome of soft-tissue augmentation after autologous fat transplantation is unpredictable long-term results due to the high rate of absorption in the grafted site. At the present time, adipose aspirates can only be used for immediate autologous fat grafting during the same procedure in which liposuction is performed; therefore adipose aspirates obtained from the procedure are usually discarded. it has been a strong desire of both surgeons and patients to be able to preserve the adipose aspirates, if an optimal technique were available, for potential future applications. For the last several years, cryopreservation of adipose tissue has been studied extensively in the author's laboratory. Several findings from this exciting translational research will lead to develop a reliable method for long-term preservation of adipose tissue in the future. in addition, successful long-term preservation of adipose tissue may open a new era in adipose tissue related tissue regeneration.
Collapse
Affiliation(s)
- Lee Lq Pu
- Division of Plastic Surgery; University of California at Davis; Sacramento, CA USA
| |
Collapse
|
27
|
Thirumala S, Goebel WS, Woods EJ. Clinical grade adult stem cell banking. Organogenesis 2012; 5:143-54. [PMID: 20046678 DOI: 10.4161/org.5.3.9811] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 08/14/2009] [Indexed: 12/17/2022] Open
Abstract
There has been a great deal of scientific interest recently generated by the potential therapeutic applications of adult stem cells in human care but there are several challenges regarding quality and safety in clinical applications and a number of these challenges relate to the processing and banking of these cells ex-vivo. As the number of clinical trials and the variety of adult cells used in regenerative therapy increases, safety remains a primary concern. This has inspired many nations to formulate guidelines and standards for the quality of stem cell collection, processing, testing, banking, packaging and distribution. Clinically applicable cryopreservation and banking of adult stem cells offers unique opportunities to advance the potential uses and widespread implementation of these cells in clinical applications. Most current cryopreservation protocols include animal serum proteins and potentially toxic cryoprotectant additives (CPAs) that prevent direct use of these cells in human therapeutic applications. Long term cryopreservation of adult stem cells under good manufacturing conditions using animal product free solutions is critical to the widespread clinical implementation of ex-vivo adult stem cell therapies. Furthermore, to avoid any potential cryoprotectant related complications, reduced CPA concentrations and efficient post-thaw washing to remove CPA are also desirable. The present review focuses on the current strategies and important aspects of adult stem cell banking for clinical applications. These include current good manufacturing practices (cGMPs), animal protein free freezing solutions, cryoprotectants, freezing & thawing protocols, viability assays, packaging and distribution. The importance and benefits of banking clinical grade adult stem cells are also discussed.
Collapse
Affiliation(s)
- Sreedhar Thirumala
- General Biotechnology LLC; Indiana University School of Medicine; Indianapolis, IN USA
| | | | | |
Collapse
|
28
|
Kang XL, Shen H. Pigmentation of Skin Graft Is Improved by Cryopreservation of Human Skin With Trehalose. J Oral Maxillofac Surg 2012; 70:1464-72. [DOI: 10.1016/j.joms.2011.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/26/2011] [Indexed: 10/17/2022]
|
29
|
Chaytor JL, Tokarew JM, Wu LK, Leclère M, Tam RY, Capicciotti CJ, Guolla L, von Moos E, Findlay CS, Allan DS, Ben RN. Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology 2011; 22:123-33. [PMID: 21852258 DOI: 10.1093/glycob/cwr115] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ice recrystallization inhibition activity of various mono- and disaccharides has been correlated with their ability to cryopreserve human cell lines at various concentrations. Cell viabilities after cryopreservation were compared with control experiments where cells were cryopreserved with dimethylsulfoxide (DMSO). The most potent inhibitors of ice recrystallization were 220 mM solutions of disaccharides; however, the best cell viability was obtained when a 200 mM d-galactose solution was utilized. This solution was minimally cytotoxic at physiological temperature and effectively preserved cells during freeze-thaw. In fact, this carbohydrate was just as effective as a 5% DMSO solution. Further studies indicated that the cryoprotective benefit of d-galactose was a result of its internalization and its ability to mitigate osmotic stress, prevent intracellular ice formation and/or inhibit ice recrystallization. This study supports the hypothesis that the ability of a cryoprotectant to inhibit ice recrystallization is an important property to enhance cell viability post-freeze-thaw. This cryoprotective benefit is observed in three different human cell lines. Furthermore, we demonstrated that the ability of a potential cryoprotectant to inhibit ice recrystallation may be used as a predictor of its ability to preserve cells at subzero temperatures.
Collapse
Affiliation(s)
- Jennifer L Chaytor
- Department of Chemistry, University of Ottawa, D'Iorio Hall, 10 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wilson A, Butler PE, Seifalian AM. Adipose-derived stem cells for clinical applications: a review. Cell Prolif 2011; 44:86-98. [PMID: 21199013 PMCID: PMC6496460 DOI: 10.1111/j.1365-2184.2010.00736.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 08/27/2010] [Indexed: 01/05/2023] Open
Abstract
The use of stem cells derived from adipose tissue as an autologous and self-replenishing source for a variety of differentiated cell phenotypes, provides a great deal of promise for reconstructive surgery. In this article, we review available literature encompassing methods of extraction of pluripotent adipose stem cells (ASCs) from lipoaspirate locations, their storage, options for culture, growth and differentiation, cryopreservation and its effect on stem cell survival and proliferation, and new technologies involving biomaterials and scaffolds. We will conclude by assessing potential avenues for developing this incredibly promising field.
Collapse
Affiliation(s)
- A Wilson
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, UK
| | | | | |
Collapse
|
31
|
Zhang HT, Chen H, Zhao H, Dai YW, Xu RX. Neural stem cells differentiation ability of human umbilical cord mesenchymal stromal cells is not altered by cryopreservation. Neurosci Lett 2010; 487:118-22. [PMID: 20946937 DOI: 10.1016/j.neulet.2010.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/02/2010] [Accepted: 10/05/2010] [Indexed: 12/29/2022]
Abstract
Human umbilical mesenchymal stem cells (HUMSCs) have potential therapeutic use in the recovery of central nervous system injury for their ability to differentiate into neural stem cells. However, for transformed HUMSCs to be constantly available for use during surgery a reliable method of cell storage is necessary. The present study aimed to determine whether a simple method of cryopreservation by slow cooling with Me(2)SO had an effect on the proliferation, secretion and differentiation capacities of HUMSCs. These results demonstrate that cryopreservation has no effect on the phenotype, cell cycle, cell proliferation and the ability to secret neurotrophins. Non-cryopreserved and cryopreserved HUMSCs showed the similar ability to differentiate into neural stem-like cells. There results show that cryopreservation by slow cooling with Me(2)SO is effective to retain the proliferation and neural differentiation ability of HUMSCs, cryopreserved HUMSCs maybe very useful for future clinical applications in neural regenerative medicine.
Collapse
Affiliation(s)
- Hong-Tian Zhang
- Department of Neurosurgery, The Military General Hospital of PLA, Beijing, China
| | | | | | | | | |
Collapse
|
32
|
|
33
|
Akt and phosphoinositide regulation and wortmannin-dependent induction of phospho-Akt in 3T3-L1 adipocytes on cold exposure followed by rewarming. J Therm Biol 2010. [DOI: 10.1016/j.jtherbio.2010.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Cui X, Pu LLQ. The search for a useful method for the optimal cryopreservation of adipose aspirates: part II. In vivo study. Aesthet Surg J 2010; 30:451-6. [PMID: 20601577 DOI: 10.1177/1090820x10374100] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The previous in vitro study showed that trehalose, when used as a cryoprotective agent (CPA) in an optimal concentration, can provide adequate protection of adipose aspirates during cryopreservation. OBJECTIVE The authors evaluated the efficacy of trehalose in its optimal concentration for cryopreservation of human fat grafts in a well-established animal model. METHODS In this study (n = 20 in each group), adipose aspirates were harvested and processed from a female patient; the protocol for freezing and thawing of fat grafts was the same as the in vitro study. In the control group, 0.5 mL of fresh fat grafts was injected into the posterior scalp of a nude mouse. In the cryopreservation group 1, a combination of dimethyl sulfoxide (in 0.5M) and trehalose (in 0.2M) was injected as a CPA. In the cryopreservation group 2, only the optimal concentration of trehalose (in 0.35M) was administered as a CPA. In both cryopreservation groups, 0.5 mL of cryopreserved fat grafts was thawed and injected into the animal in the same manner as the control group. All animals in each group were observed for gross appearance of maintained fat grafts over their posterior scalps for up to eight weeks. The final volume and weight of maintained fat grafts and their histology were evaluated at the end of the study. RESULTS Group 2, compared with group 1, respectively, had equivalently maintained volume (38.2 +/- 10.1% versus 46.1 +/- 14.4%, ns) and weight (34.1 +/- 12.1% versus 38.9 +/- 14.7%, ns). However, the results from both cryopreservation groups were still inferior to those from the control group (both P < .05). Histologically, the basic structure of adipose tissue was maintained in all three groups. CONCLUSION Trehalose, serving as a CPA in its optimal concentration, appears to provide adequate protection of human fat grafts during cryopreservation in vivo. Such protection is similar to that provided by the combination of dimethyl sulfoxide and trehalose as a CPA. Because of its safety and effectiveness, trehalose can possibly be administered to patients for long-term preservation of their fat grafts.
Collapse
Affiliation(s)
- Xiangdong Cui
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
35
|
De Rosa A, De Francesco F, Tirino V, Ferraro GA, Desiderio V, Paino F, Pirozzi G, D'Andrea F, Papaccio G. A new method for cryopreserving adipose-derived stem cells: an attractive and suitable large-scale and long-term cell banking technology. Tissue Eng Part C Methods 2010; 15:659-67. [PMID: 19254116 DOI: 10.1089/ten.tec.2008.0674] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Recent studies have shown potential ways for improving stem cell cryopreservation. The major need for autologous stem cell use is a long-term storage: this arises from the humans' hope of future use of their own cells. Therefore, it is important to evaluate the cell potential of vitality and differentiation before and after cryopreservation. Although several studies have shown a long-term preservation of adipose tissue, a few of them focused their attention to stem cells. The aim of this study was to evaluate the fate of cryopreserved stem cells collected from adipose tissue and stored at low a temperature in liquid nitrogen through an optimal cryopreservation solution (using slowly cooling in 6% threalose, 4% dimethyl sulfoxide, and 10% fetal bovine serum) and to develop a novel approach to efficiently preserve adipose-derived stem cells (ASCs) for future clinical applications. Results showed that stem cells, after being thawed, are still capable of differentiation and express all surface antigens detected before storage, confirming the integrity of their biology. In particular, ASCs differentiated into adipocytes, showed diffuse positivity for PPARgamma and adiponectin, and were also able to differentiate into endothelial cells without addition of angiogenic factors. Therefore, ASCs can be long-term cryopreserved, and this, due to their great numbers, is an attractive tool for clinical applications as well as of impact for the derived market.
Collapse
Affiliation(s)
- Alfredo De Rosa
- Dipartimento di Discipline Odontostomatologiche, Ortodontiche e Chirurgiche, Seconda Università degli Studi di Napoli , Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Current world literature. Curr Opin Organ Transplant 2009; 14:103-11. [PMID: 19337155 DOI: 10.1097/mot.0b013e328323ad31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Grewal N, Yacomotti L, Melkonyan V, Massey M, Bradley JP, Zuk PA. Freezing adipose tissue grafts may damage their ability to integrate into the host. Connect Tissue Res 2009; 50:14-28. [PMID: 19212849 DOI: 10.1080/03008200802385981] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, the effect of freezing on the morphology, viability, and VEGF synthesis of human adipose tissue grafts is examined. Currently, storage of adipose grafts involves freezing in simple saline solutions. However, the effect of freezing on the morphology and function of adipose tissue remains unclear. As a result, this study attempts to determine whether freezing adipose grafts should be considered prior to soft-tissue augmentation. In this study, the freezing of adipose grafts in saline for only 24 hr resulted in morphological changes in vivo and affected their ability to synthesize VEGF. The use of a simple cryopreservation medium containing sucrose appeared to maintain VEGF synthetic levels by the grafts and improved both their morphology and retention in vivo. However, the benefits of this cryopreservation medium were directly linked to storage time as long-term storage did not result in any noticeable benefit to graft retention. Finally, as an alternative to freezing, adipose grafts were combined with human adipose-derived stem cells (ASCs) to determine if their presence could enhance in vivo graft structure. The presence of ASCs did appear to improve graft structure in vivo over the short term and was also capable of improving tissue morphology when combined with grafts frozen in PBS. In conclusion, the successful use of adipose grafts may require a closer examination of the graft's storage conditions and time. Specifically, it now appears that the practice of freezing in saline may not be advisable if graft viability, activity, and structure are to be maintained in vivo.
Collapse
Affiliation(s)
- Navanjun Grewal
- Department of Surgery, Division of Plastic Surgery, Regenerative Bioengineering and Repair Laboratory, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
38
|
ROH MIRYUNG, JUNG JINYOUNG, CHUNG KEEYANG. Autologous Fat Transplantation for Depressed Linear Scleroderma-Induced Facial Atrophic Scars. Dermatol Surg 2008. [DOI: 10.1097/00042728-200812000-00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Chan C, McCulley S, Macmillan R. Autologous fat transfer – a review of the literature with a focus on breast cancer surgery. J Plast Reconstr Aesthet Surg 2008; 61:1438-48. [DOI: 10.1016/j.bjps.2008.08.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Accepted: 08/21/2008] [Indexed: 02/06/2023]
|
40
|
Roh MR, Jung JY, Chung KY. Autologous fat transplantation for depressed linear scleroderma-induced facial atrophic scars. Dermatol Surg 2008; 34:1659-65. [PMID: 19018828 DOI: 10.1111/j.1524-4725.2008.34343.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Facial linear scleroderma results in depressed atrophic scars. Autologous fat transplantation has been widely used, and fat appears to be an ideal material for filling depressed atrophic scars and contour deformities, but long-term results for autologous fat transplantation are controversial. OBJECTIVE To review the short- and long-term results of 20 patients who underwent multiple autologous fat transplantations for depressed atrophic scar correction. METHODS Twenty patients with clinically inactive facial linear scleroderma were included. They received at least two transplantations and had a 12-month follow-up evaluation. RESULTS On the forehead, 51% to 75% improvement (average grading scale: 2.4) was achieved when observed at least 12 months after the last treatment. For the chin, correction was poor (average grading scale: 0.7) with less than 25% improvement. The infraorbital area showed fair correction, but the nose showed poor correction. Two of three patients with scalp reduction surgery showed excellent results, showing only slight scar widening. CONCLUSIONS Autologous fat transplantation is an effective method for long-term correction of depressed atrophic scars left by linear scleroderma on the forehead but is less effective for corrections on the nose, infraorbital area, and chin.
Collapse
Affiliation(s)
- Mi Ryung Roh
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
41
|
Liu G, Zhou H, Li Y, Li G, Cui L, Liu W, Cao Y. Evaluation of the viability and osteogenic differentiation of cryopreserved human adipose-derived stem cells. Cryobiology 2008; 57:18-24. [PMID: 18495102 DOI: 10.1016/j.cryobiol.2008.04.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/04/2008] [Accepted: 04/10/2008] [Indexed: 01/22/2023]
Abstract
Human adipose-derived stem cells (ASCs) have the ability to differentiate into osteoblasts and thus the potential therapeutic use to tissue-engineer bone, so a reliable method for cell storage is necessary. The aim of this study was to determine whether a simple method of cryopreservation with 10% Me(2)SO as a protectant had an effect on proliferation potential and osteogenic differentiation of ASCs isolated from fresh human adipose tissue. ASCs were harvested from 6 human lipoaspirates and each was halved for either cryopreservation in liquid nitrogen for 2 weeks or for control culture. Cells from the second-passage were plated at a density of 5000cells/well in 24-well plates and cultured with or without osteogenic media for 14 days. Cell surface antigens were used to identify the cryopreserved ASCs by flow cytometry. The proliferation rate of both populations was evaluated using a cell DNA assay. To detect osteogenic differentiation of both the cryopreserved and non-cryopreserved populations, determination of osteoblastic protein production (alkaline phosphatase and osteocalcin) and excellular matrix calcification (calcium content) was applied. The expression of osteoblastic-associated genes was also analyzed using reverse-transcription polymerase chain reaction. These results demonstrate that cryopreservation has no effect on the phenotype, proliferation or osteogenic differentiation of human ASCs, showing cryopreserved human ASCs might be applied for bone tissue engineering.
Collapse
Affiliation(s)
- Guangpeng Liu
- Shanghai Tissue Engineering Research and Development Center, Shanghai 200235, China.
| | | | | | | | | | | | | |
Collapse
|