1
|
M Y T, Tellakula SS, Suryavanshi SV, G S K, Vasudev S C, Ranganath SH. Fusogenic liposome-coated nanoparticles for rapid internalization into donor corneal endothelial tissue to enable prophylaxis before transplantation. NANOSCALE ADVANCES 2023; 5:6410-6422. [PMID: 38024318 PMCID: PMC10662038 DOI: 10.1039/d3na00535f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
Cold stress (hypothermia) during storage and cytokine stress due to acute allograft rejection adversely affect the donor corneal endothelium in the short term. Pharmacological pre-treatment (before transplantation) of the donor corneal endothelium or cells (propagated in vitro for cell injection therapy) with microtubule stabilizers, cold stress protectants, and other molecules is an attractive strategy to tackle damage caused by hypothermia and cytokine stress. These molecules can be delivered intracellularly to the donor corneal endothelium or cells at controlled rates for desired periods and with one-time administration using nanoparticles. However, the death-to-preservation time of donor corneas of more than 4 to 6 h significantly decreases endothelial cell density and increases the risk of microbial contamination. Therefore, we have developed fusogenic liposome-coated nanoparticles for rapid internalization of nanoparticles into cultured corneal endothelial cells and ex vivo corneal endothelial tissue. Here, we have shown that the fusogenic liposome-coated nanoparticles have the intrinsic ability to efficiently and rapidly internalize into cultured corneal endothelial cells and ex vivo corneal tissue within 3 h by possibly fusing with the cell membrane and bypassing the endocytic pathway. Lactate dehydrogenase assay showed that the internalized fusogenic liposome-coated nanoparticles did not cause cytotoxicity in endothelial cells associated with the ex vivo cornea for at least up to 2 days. Thus, fusogenic liposome-coated nanoparticles have great potential as a platform for engineering cells and endothelial tissue of donor corneas to facilitate prophylactic drug delivery during storage and after transplantation.
Collapse
Affiliation(s)
- Thanuja M Y
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology B. H. Road Tumakuru 572103 India +91 816 2214038
| | - Suraksha S Tellakula
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology B. H. Road Tumakuru 572103 India +91 816 2214038
| | - Samarth V Suryavanshi
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology B. H. Road Tumakuru 572103 India +91 816 2214038
| | - Keerthana G S
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology B. H. Road Tumakuru 572103 India +91 816 2214038
| | - Chandan Vasudev S
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology B. H. Road Tumakuru 572103 India +91 816 2214038
| | - Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology B. H. Road Tumakuru 572103 India +91 816 2214038
| |
Collapse
|
2
|
Thanuja MY, Ranganath SH, Srinivas SP. Role of Oxidative Stress in the Disruption of the Endothelial Apical Junctional Complex During Corneal Cold Storage. J Ocul Pharmacol Ther 2022; 38:664-681. [PMID: 36255463 DOI: 10.1089/jop.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose: To characterize the impact of corneal cold storage (CS) on the endothelial apical junctional complex (AJC). Methods: Porcine corneas were held in CS (4°C; 1-7 days) with Cornisol™ preservation medium supplemented with epothilone B (EpoB; microtubule stabilizer; 100 nM), SB-203580 (p38 mitogen-activated protein [MAP] kinase inhibitor; 20 μM), or antioxidants (quercetin, 100 μM; vitamin E, 1 mM; deferoxamine, an iron chelator, 10 mM). After CS termination, the damage to endothelial AJC was characterized by imaging perijunctional actomyosin ring (PAMR) and zonula occludens (ZO-1). The effects of EpoB and SB-203580 were characterized by imaging microtubules. The loss in the barrier function was assessed in cultured cells grown on biotin-coated gelatin by permeability to fluorescein isothiocyanate (FITC)-avidin. The accumulation of reactive oxygen species (ROS), altered mitochondrial membrane potential (MMP), lipid peroxidation, and lactate dehydrogenase (LDH) release were also determined in response to CS. Results: CS led to the loss of microtubules, destruction of PAMR, and breakdown of ZO-1 in the endothelium. The severity of damage increased when CS was prolonged. Although rewarming of the tissue increased the damage, the effect was marginal. CS also induced accumulation of ROS, alteration in MMP, lipid peroxidation, enhanced LDH release, and increased permeability to FITC-avidin. These changes were opposed by EpoB, SB-203580, and antioxidants. Conclusion: Corneal CS destroys AJC of the endothelium, leading to loss of its barrier function. The effects were surmounted by microtubule stabilization, p38 MAP kinase inhibition, and antioxidants. Thus, there is potential for reformulation of the preservation medium to maintain the health of the donor corneal endothelium before transplantation.
Collapse
Affiliation(s)
- M Y Thanuja
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | - Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | | |
Collapse
|
3
|
Baust JM, Snyder KK, Van Buskirk RG, Baust JG. Assessment of the Impact of Post-Thaw Stress Pathway Modulation on Cell Recovery following Cryopreservation in a Hematopoietic Progenitor Cell Model. Cells 2022; 11:cells11020278. [PMID: 35053394 PMCID: PMC8773610 DOI: 10.3390/cells11020278] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/23/2021] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The development and use of complex cell-based products in clinical and discovery science continues to grow at an unprecedented pace. To this end, cryopreservation plays a critical role, serving as an enabling process, providing on-demand access to biological material, facilitating large scale production, storage, and distribution of living materials. Despite serving a critical role and substantial improvements over the last several decades, cryopreservation often remains a bottleneck impacting numerous areas including cell therapy, tissue engineering, and tissue banking. Studies have illustrated the impact and benefit of controlling cryopreservation-induced delayed-onset cell death (CIDOCD) through various “front end” strategies, such as specialized media, new cryoprotective agents, and molecular control during cryopreservation. While proving highly successful, a substantial level of cell death and loss of cell function remains associated with cryopreservation. Recently, we focused on developing technologies (RevitalICE™) designed to reduce the impact of CIDOCD through buffering the cell stress response during the post-thaw recovery phase in an effort to improve the recovery of previously cryopreserved samples. In this study, we investigated the impact of modulating apoptotic caspase activation, oxidative stress, unfolded protein response, and free radical damage in the initial 24 h post-thaw on overall cell survival. Human hematopoietic progenitor cells in vitro cryopreserved in both traditional extracellular-type and intracellular-type cryopreservation freeze media were utilized as a model cell system to assess impact on survival. Our findings demonstrated that through the modulation of several of these pathways, improvements in cell recovery were obtained, regardless of the freeze media and dimethyl sulfoxide concentration utilized. Specifically, through the use of oxidative stress inhibitors, an average increase of 20% in overall viability was observed. Furthermore, the results demonstrated that by using the post-thaw recovery reagent on samples cryopreserved in intracellular-type media (Unisol™), improvements in overall cell survival approaching 80% of non-frozen controls were attained. While improvements in overall survival were obtained, an assessment on the impact of specific cell subpopulations and functionality remains to be completed. While work remains, these results represent an important step forward in the development of improved cryopreservation processes for use in discovery science, and commercial and clinical settings.
Collapse
Affiliation(s)
- John M. Baust
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Correspondence: ; Tel.: +1-(607)-687-8701
| | - Kristi K. Snyder
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
| | - Robert G. Van Buskirk
- CPSI Biotech, 2 Court St., Owego, NY 13827, USA; (K.K.S.); (R.G.V.B.)
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| | - John G. Baust
- Center for Translational Stem Cell and Tissue Engineering, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA;
- Department of Biological Sciences, Binghamton University, 4400 Vestal Parkway East, Binghamton, NY 13902, USA
| |
Collapse
|
4
|
Zhang H, Huang H, Zheng P, Feng R, Wang X, Huang F, Ma M, Tian Y, Zhang G. The alleviative effect of thyroid hormone on cold stress-induced apotosis via HSP70 and mitochondrial apoptosis signal pathway in bovine Sertoli cells. Cryobiology 2021; 105:63-70. [PMID: 34863702 DOI: 10.1016/j.cryobiol.2021.11.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
Thyroid hormone was involved in gene expression and functional regulation in various signal pathways. Cold stress can increase triiodothyronine (T3) level in the blood. The aim of this study was to investigate the effect of T3 on HSP70 expression and apoptosis in Sertoli cells (SCs) under cold stress in vitro culture at 26 °C, and provide a theoretical and practical basis for improving the reproductive efficiency of bulls in cold areas. SCs were treated with different cold stress duration and different T3 concentrations for pre-screening. HSP70 inhibitor was added later, and the apoptotic rate was measured using flow cytometry. The expression of HSP70 and the main genes of mitochondrial apoptosis pathway were determined by means of real-time PCR and western-blot, respectively. The localization of HSP70 was assessed by immunofluorescence. The results showed that cold stress (26 °C, 6 h) played an inductive role in SCs apoptotic rate (P < 0.01) and the transfer of HSP70 into the nucleus. 100 nM T3 further promoted HSP70 expression and its transfer into the nucleus, which significantly inhibited the expression of vital genes (cyt-c, Caspase-9 and Caspase-3) in mitochondrial pathway (P < 0.05). Subsequently, higher survival and lower apoptotic rates of SCs (P < 0.01) were observed. When T3 and HSP70 inhibitor were added together, the expression of cyt-c, Caspase-9 and Caspase-3 were inhibited (P < 0.05), and then the declining apoptotic rate increased again (P < 0.01). In conclusion, T3 can regulate HSP70 expression and translocation to mediate mitochondrial apoptosis pathway to inhibit SCs apoptosis induced by cold stress.
Collapse
Affiliation(s)
- Han Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - He Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Peng Zheng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Rui Feng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Fushuo Huang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mingjun Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yaguang Tian
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Guixue Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
5
|
Smeringaiova I, Paaske Utheim T, Jirsova K. Ex vivo expansion and characterization of human corneal endothelium for transplantation: a review. Stem Cell Res Ther 2021; 12:554. [PMID: 34717745 PMCID: PMC8556978 DOI: 10.1186/s13287-021-02611-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium plays a key role in maintaining corneal transparency. Its dysfunction is currently treated with penetrating or lamellar keratoplasty. Advanced cell therapy methods seek to address the persistent global deficiency of donor corneas by enabling the renewal of the endothelial monolayer with tissue-engineered grafts. This review provides an overview of recently published literature on the preparation of endothelial grafts for transplantation derived from cadaveric corneas that have developed over the last decade (2010–2021). Factors such as the most suitable donor parameters, culture substrates and media, endothelial graft storage conditions, and transplantation methods are discussed. Despite efforts to utilize alternative cellular sources, such as induced pluripotent cells, cadaveric corneas appear to be the best source of cells for graft preparation to date. However, native endothelial cells have a limited natural proliferative capacity, and they often undergo rapid phenotype changes in ex vivo culture. This is the main reason why no culture protocol for a clinical-grade endothelial graft prepared from cadaveric corneas has been standardized so far. Currently, the most established ex vivo culture protocol involves the peel-and-digest method of cell isolation and cell culture by the dual media method, including the repeated alternation of high and low mitogenic conditions. Culture media are enriched by additional substances, such as signaling pathway (Rho-associated protein kinase, TGF-β, etc.) inhibitors, to stimulate proliferation and inhibit unwanted morphological changes, particularly the endothelial-to-mesenchymal transition. To date, this promising approach has led to the development of endothelial grafts for the first in-human clinical trial in Japan. In addition to the lack of a standard culture protocol, endothelial-specific markers are still missing to confirm the endothelial phenotype in a graft ready for clinical use. Because the corneal endothelium appears to comprise phenotypically heterogeneous populations of cells, the genomic and proteomic expression of recently proposed endothelial-specific markers, such as Cadherin-2, CD166, or SLC4A11, must be confirmed by additional studies. The preparation of endothelial grafts is still challenging today, but advances in tissue engineering and surgery over the past decade hold promise for the successful treatment of endothelial dysfunctions in more patients worldwide.
Collapse
Affiliation(s)
- Ingrida Smeringaiova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Katerina Jirsova
- Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic.
| |
Collapse
|
6
|
Thanuja MY, Suma BS, Dinesh D, Ranganath SH, Srinivas SP. Microtubule Stabilization Protects Hypothermia-Induced Damage to the Cytoskeleton and Barrier Integrity of the Corneal Endothelial Cells. J Ocul Pharmacol Ther 2021; 37:399-411. [PMID: 34227869 DOI: 10.1089/jop.2021.0036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose: To determine the impact of hypothermia on the barrier function of donor corneal endothelium, thereby enhancing the success of corneal transplantation. Methods: Primary cultures of porcine endothelial cells were subjected to hypothermia (15 h; 4°C). The impact on microtubule assembly, peri-junctional actomyosin ring (PAMR), and ZO-1 was assessed by immunocytochemistry with and without pretreatment with a microtubule-stabilizing agent (Epothilone B; EpoB; 100 nM) and a p38 MAP kinase inhibitor (SB-203580; 20 μM). In addition, EpoB-loaded PLGA nanoparticles (ENPs) prepared by nanoprecipitation technique and coated with poly-L-lysine (PLL-ENPs) were administered one-time for sustained intracellular delivery of EpoB. Results: Exposure to hypothermia led to microtubule disassembly concomitant with the destruction of PAMR and the displacement of ZO-1 at the cellular periphery, suggesting a loss in barrier integrity. These adverse effects were attenuated by pretreatment with EpoB or SB-203580. PLL-ENPs possessed a zeta potential of ∼26 mV and a size of ∼110 nm. Drug loading and entrapment efficiency were 5% (w/w) and ∼87%, respectively, and PLL-ENPs showed a biphasic release in vitro: burst phase (1 day), followed by a sustained phase (∼4 weeks). Pretreatment with PLL-ENPs (0.4 mg/mL) for 24 h stabilized the microtubules and opposed the hypothermia-induced damage to PAMR and the redistribution of ZO-1. Conclusions: Hypothermia induces microtubule disassembly via activation of p38 MAP kinase and subsequently breaks down the barrier function of the endothelium. Sustained intracellular delivery of EpoB using nanoparticles has the potential to overcome endothelial barrier failure during prolonged cold storage of donor cornea.
Collapse
Affiliation(s)
- Marasarakottige Y Thanuja
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | - Bangalore S Suma
- Bioimaging Facility, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Divyasree Dinesh
- Department of Biotechnology, Siddaganga Institute of Technology, Tumakuru, India
| | - Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, Tumakuru, India
| | | |
Collapse
|
7
|
Gomez A, Serrano A, Salero E, Tovar A, Amescua G, Galor A, Keane RW, de Rivero Vaccari JP, Sabater AL. Tumor necrosis factor-alpha and interferon-gamma induce inflammasome-mediated corneal endothelial cell death. Exp Eye Res 2021; 207:108574. [PMID: 33848524 DOI: 10.1016/j.exer.2021.108574] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/19/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE Chronic corneal endothelial cell (CEC) loss results in corneal edema and vision loss in conditions such as pseudophakic bullous keratopathy (PBK), Fuchs' dystrophy, and corneal graft failure. Low CEC density has been associated with an elevation of intraocular pro-inflammatory cytokines such as tumor necrosis factor (TNF)-α and interferon (INF)-γ. These cytokines are capable of triggering pyroptosis, a programmed cell death mechanism mediated by the inflammasome, prompting the activation of the pro-inflammatory cytokine interleukin (IL)-1β, the perpetuation of inflammation, and subsequent damage of corneal endothelial tissue. Therefore, the purpose of this study was to determine the deleterious contribution of the inflammasome and pyroptosis to CEC loss. METHODS CECs from human donor corneas were treated ex vivo with TNF-α and IFN-γ for 48 h. Levels of caspase-1 and IL-1β were then assayed by ELISA, and the expression of caspase-1 and gasdermin-D (GSDM-D) were confirmed by immunofluorescence. Endothelial cell damage was analyzed by a lactate dehydrogenase (LDH) release assay, and oxidative stress was determined by measuring the levels of reactive oxygen species (ROS) in the culture media. RESULTS Inflammasome activation and oxidative stress were elevated in CECs following exposure to TNF-α and IFN-γ, which resulted in cell death by pyroptosis as determined by LDH release which was inhibited by the caspase-1 inhibitor Ac-YVAD-cmk. CONCLUSION CEC death is induced by the pro-inflammatory cytokines TNF-α and IFN-γ, which contribute to inflammasome activation. Moreover, the inflammasome is a promising therapeutic target for the treatment of chronic CEC loss.
Collapse
Affiliation(s)
- Angela Gomez
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andres Serrano
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Enrique Salero
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Arianna Tovar
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Guillermo Amescua
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anat Galor
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami Miller School of Medicine, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Neurological Surgery, The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, FL, USA
| | - Alfonso L Sabater
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA; Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Abstract
Vitrification is an alternative to cryopreservation by freezing that enables hydrated living cells to be cooled to cryogenic temperatures in the absence of ice. Vitrification simplifies and frequently improves cryopreservation because it eliminates mechanical injury from ice, eliminates the need to find optimal cooling and warming rates, eliminates the importance of differing optimal cooling and warming rates for cells in mixed cell type populations, eliminates the need to find a frequently imperfect compromise between solution effects injury and intracellular ice formation, and can enable chilling injury to be "outrun" by using rapid cooling without a risk of intracellular ice formation. On the other hand, vitrification requires much higher concentrations of cryoprotectants than cryopreservation by freezing, which introduces greater risks of both osmotic damage and cryoprotectant toxicity. Fortunately, a large number of remedies for the latter problem have been discovered over the past 35 years, and osmotic damage can in most cases be eliminated or adequately controlled by paying careful attention to cryoprotectant introduction and washout techniques. Vitrification therefore has the potential to enable the superior and convenient cryopreservation of a wide range of biological systems (including molecules, cells, tissues, organs, and even some whole organisms), and it is also increasingly recognized as a successful strategy for surviving harsh environmental conditions in nature. But the potential of vitrification is sometimes limited by an insufficient understanding of the complex physical and biological principles involved, and therefore a better understanding may not only help to improve present outcomes but may also point the way to new strategies that may be yet more successful in the future. This chapter accordingly describes the basic principles of vitrification and indicates the broad potential biological relevance of this alternative method of cryopreservation.
Collapse
|
9
|
Ting DSJ, Peh GSL, Adnan K, Mehta JS. Translational and Regulatory Challenges of Corneal Endothelial Cell Therapy: A Global Perspective. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:52-62. [PMID: 33267724 DOI: 10.1089/ten.teb.2020.0319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell therapies are emerging as a unique class of clinical therapeutics in medicine. In 2015, Holoclar (ex vivo expanded autologous human corneal epithelial cells containing stem cells) gained the regulatory approval for treating limbal stem cell deficiency after chemical eye burn. This has set a precedent in ophthalmology and in medicine, reinforcing the therapeutic promise of cell therapy. However, to generalize and commercialize cell therapies on a global scale, stringent translational and regulatory requirements need to be fulfilled at both local and international levels. Over the past decade, the Singapore group has taken significant steps in developing human corneal endothelial cell (HCEnC) therapy for treating corneal endothelial diseases, which are currently the leading indication for corneal transplantation in many countries. Successful development of HCEnC therapy may serve as a novel solution to the current global shortage of donor corneas. Based on the experience in Singapore, this review aims to provide a global perspective on the translational and regulatory challenges for bench-to-bedside translation of cell therapy. Specifically, we discussed about the characterization of the critical quality attributes (CQA), the challenges that can affect the CQA, and the variations in the regulatory framework embedded within different regions, including Singapore, Europe, and the United States. Impact statement Functional corneal endothelium is critical to normal vision. Corneal endothelial disease-secondary to trauma, surgery, or pathology-represents an important cause of visual impairment and blindness in both developed and developing countries. Currently, corneal transplantation serves as the current gold standard for treating visually significant corneal endothelial diseases, although limited by the shortage of donor corneas. Over the past decade, human corneal endothelial cell therapy has emerged as a promising treatment option for treating corneal endothelial diseases. To allow widespread application of this therapy, significant regulatory challenges will need to be systematically overcome.
Collapse
Affiliation(s)
- Darren Shu Jeng Ting
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom.,Department of Ophthalmology, Queen's Medical Centre, Nottingham, United Kingdom.,Singapore Eye Research Institute, Singapore, Singapore
| | - Gary S L Peh
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | | | - Jodhbir S Mehta
- Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,Schools of Material Science and Engineering, Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
10
|
Research Progress of the Application of Hypothermia in the Eye. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3897168. [PMID: 33381263 PMCID: PMC7758138 DOI: 10.1155/2020/3897168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023]
Abstract
Hypothermia is widely used in the medical field to protect organs or tissues from damage. Different research fields have different explanations of the protection mechanism of hypothermia. Hypothermia is also widely used in the field of ophthalmology, for example, in the eye bank, the preservation of corneal tissue and the preservation of the eyeball. Low temperature can also be applied to some ophthalmic diseases, such as allergic conjunctivitis, retinal ischemia, and retinal hypoxia. It is used to relieve eye symptoms or reduce tissue damage. Hypothermic techniques have important applications in ophthalmic surgery, such as corneal refractive surgery, vitrectomy surgery, and ciliary body cryotherapy for end-stage glaucoma. Hypothermia can reduce the inflammation of the cornea and protect the retinal tissue. The eyeball is a complex organ, including collagen tissue of the eyeball wall and retinal nerve tissue and retinal blood vessels. The mechanism of low temperature protecting eye tissue is complicated. It is important to understand the mechanism of hypothermia and its applications in ophthalmology. This review introduces the mechanism of hypothermia and its application in the eye banks, eye diseases (allergic conjunctivitis, retinal ischemia, and hypoxia), and eye surgeries (corneal transplant surgery, corneal refractive surgery, and vitrectomy).
Collapse
|
11
|
Warner RM, Ampo E, Nelson D, Benson JD, Eroglu A, Higgins AZ. Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method. Cryobiology 2020; 98:219-232. [PMID: 33157080 DOI: 10.1016/j.cryobiol.2020.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 01/07/2023]
Abstract
Cryopreservation in a vitrified state has vast potential for long-term storage of tissues and organs that may be damaged by ice formation. However, the toxicity imparted by the high concentration of cryoprotectants (CPAs) required to vitrify these specimens remains a hurdle. To address this challenge, we previously developed a mathematical approach to design less toxic CPA equilibration methods based on the minimization of a toxicity cost function. This approach was used to design improved methods for equilibration of bovine pulmonary artery endothelial cells (BPAEC) with glycerol. To fully capitalize on the toxicity cost function approach, it is critical to describe the toxicity kinetics of additional CPAs, including multi-CPA mixtures that are commonly used for vitrification. In this work, we used automated liquid handling to characterize the toxicity kinetics of five of the most common CPAs (glycerol, dimethyl sulfoxide (DMSO), propylene glycol, ethylene glycol, and formamide), along with their binary and ternary mixtures for BPAEC. In doing so, we developed experimental methods that can be used to determine toxicity kinetics more quickly and accurately. Our results highlight some common CPA toxicity trends, including the relatively low toxicity of ethylene glycol and a general increase in toxicity as the CPA concentration increases. Our results also suggest potential new approaches to reduce toxicity, including a surprising toxicity neutralization effect of glycerol on formamide. In the future, this dataset will serve as the basis to expand our CPA toxicity model, enabling application of the toxicity cost function approach to vitrification solutions containing multiple CPAs.
Collapse
Affiliation(s)
- Ross M Warner
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Emi Ampo
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA
| | - Dylan Nelson
- College of Pharmacy, Oregon State University, Corvallis, OR, USA
| | - James D Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ali Eroglu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Adam Z Higgins
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
12
|
Wahlig S, Peh GSL, Adnan K, Ang HP, Lwin CN, Morales-Wong F, Ong HS, Lovatt M, Mehta JS. Optimisation of Storage and Transportation Conditions of Cultured Corneal Endothelial Cells for Cell Replacement Therapy. Sci Rep 2020; 10:1681. [PMID: 32015414 PMCID: PMC6997453 DOI: 10.1038/s41598-020-58700-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 12/29/2022] Open
Abstract
As the cornea is one of the most transplanted tissues in the body it has placed a burden on the provision of corneas from cadaveric donors. Corneal endothelial dysfunction is the leading indication for cornea transplant. Therefore, tissue engineering is emerging as an alternative approach to overcome the global shortage of transplant-grade corneas. The propagation and expansion of corneal endothelial cells has been widely reported. However, one obstacle to overcome is the transport and storage of corneal endothelial cells. In this study we investigated whether tissue engineered corneal endothelial cells can be preserved in hypothermic conditions. Human corneal endothelial cells (HCEnCs) were exposed to various temperatures (4 °C, 23 °C, and 37 °C) in both adherent and suspension storage models. Optimal storage media and storage duration was tested along with post-storage viability. Following storage and subsequent recovery at 37 °C, cell phenotype was assessed by immunofluorescence, gene and protein expression, and proliferative capacity analysis. Functionality was also assessed within a rabbit model of bullous keratopathy. Our data support our hypothesis that functional HCEnCs can be preserved in hypothermic conditions.
Collapse
Affiliation(s)
- Stephen Wahlig
- Duke University School of Medicine, Durham, NC, USA.,Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Gary S L Peh
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Khadijah Adnan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Heng-Pei Ang
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - Chan N Lwin
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore
| | - F Morales-Wong
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore.,Autonomous University of Nuevo Leon (UANL), University Hospital, Monterrey, Mexico
| | - Hon Shing Ong
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore.,Singapore National Eye Centre, Singapore, Singapore
| | - Matthew Lovatt
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore. .,Duke-NUS Graduate Medical School, Singapore, Singapore.
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore, Singapore. .,Duke-NUS Graduate Medical School, Singapore, Singapore. .,Singapore National Eye Centre, Singapore, Singapore. .,School of Material Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
13
|
Yeh KY, Lai CY, Lin CY, Hsu CC, Lo CP, Her GM. ATF4 overexpression induces early onset of hyperlipidaemia and hepatic steatosis and enhances adipogenesis in zebrafish. Sci Rep 2017; 7:16362. [PMID: 29180630 PMCID: PMC5703967 DOI: 10.1038/s41598-017-16587-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/13/2017] [Indexed: 02/08/2023] Open
Abstract
Activating transcription factor 4 (ATF4) is constitutively expressed in a variety of tissues, and regulates several pathological features associated with metabolic diseases such as non-alcoholic fatty liver diseases (NAFLD) and obesity. However, the role of ATF4 in animal model systems is poorly understood. To investigate ATF4 functions in zebrafish, we conditionally expressed ATF4 proteins, using a Tet-off transgenic system. We observed early-onset hyperlipidaemia and liver steatosis in ATF4 transgenic zebrafish (ATs) without doxycycline treatment (ATs − Dox). Oil Red O (ORO)-stained signals were predominant in the intravascular blood vessels and liver buds of larval ATs − Dox, indicating that ATF4 functionally promotes lipogenesis. Further, ATF4 overexpression accompanied the stimulation of the unfolded protein response. Therefore, adult ATs − Dox showed increased lipid accumulation, which led, in turn, to liver steatosis. Liver histology and ORO staining of ATs − Dox hepatocytes also indicated oxidative stress and induced NASH-like phenotypes. Moreover, ATF4 overexpression accelerated adipocyte differentiation via CCAAT enhancer binding protein-beta and peroxisome proliferator activated receptor-gamma inducible expression. ATs-Dox zebrafish showed increased weight gain with larger fat pads due to adipocyte hyperplasia. In this study, we report that ATF4 is a potential stimulator of lipid biosynthesis and adipogenesis in zebrafish.
Collapse
Affiliation(s)
- Kun-Yun Yeh
- Division of Hemato-Oncology, Department of Internal Medicine, Chang-Chung Memorial Hospital, 222 Maijin Road, Keelung, 204, Taiwan
| | - Chi-Yu Lai
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, 2, Pei Ning Road, Keelung, 202, Taiwan
| | - Chiu-Ya Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, 2, Pei Ning Road, Keelung, 202, Taiwan
| | - Chia-Chun Hsu
- Department of Radiology, Buddhist Tzu Chi General Hospital, Taichung Branch, No. 66 Fēngxìng Road Section 1, Taichung, 427, Taiwan.,School of Medicine, Tzu Chi University, No.701, Sec. 3, Jhongyang Road, Hualien, 97004, Taiwan
| | - Chung-Ping Lo
- Department of Radiology, Buddhist Tzu Chi General Hospital, Taichung Branch, No. 66 Fēngxìng Road Section 1, Taichung, 427, Taiwan.,School of Medicine, Tzu Chi University, No.701, Sec. 3, Jhongyang Road, Hualien, 97004, Taiwan
| | - Guor Mour Her
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, 2, Pei Ning Road, Keelung, 202, Taiwan.
| |
Collapse
|
14
|
Liu H, Chen J, Jiang X, Wang T, Xie X, Hu H, Yu F, Wang X, Fan H. Apoptotic signal pathways and regulatory mechanisms of cancer cells induced by IL-24. ACTA ACUST UNITED AC 2016. [DOI: 10.1007/s11859-016-1205-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Corwin WL, Baust JM, Baust JG, Van Buskirk RG. Implications of differential stress response activation following non-frozen hepatocellular storage. Biopreserv Biobank 2015; 11:33-44. [PMID: 24845253 DOI: 10.1089/bio.2012.0045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hepatocytes are critical for numerous cell therapies and in vitro investigations. A limiting factor for their use in these applications is the ability to process and preserve them without loss of viability or functionality. Normal rat hepatocytes (NHEPs) and human hepatoma (C3A) cells were stored at either 4°C or 37°C to examine post-processing stress responses. Resveratrol and salubrinal were used during storage to determine how targeted molecular stress pathway modulation would affect cell survival. This study revealed that storage outcome is dependent upon numerous factors including: cell type, storage media, storage length, storage temperature, and chemical modulator. These data implicate a molecular-based stress response that is not universal but is specific to the set of conditions under which cells are stored. Further, these findings allude to the potential for targeted protection or destruction of particular cell types for numerous applications, from diagnostic cell selection to cell-based therapy. Ultimately, this study demonstrates the need for further in-depth molecular investigations into the cellular stress response to bioprocessing and preservation.
Collapse
Affiliation(s)
- William L Corwin
- 1 Institute of Biomedical Technology, Binghamton University , Binghamton, New York
| | | | | | | |
Collapse
|
16
|
Biobanking: The Future of Cell Preservation Strategies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 864:37-53. [PMID: 26420612 DOI: 10.1007/978-3-319-20579-3_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With established techniques cryopreservation is often viewed as an "old school" discipline yet modern cryopreservation is undergoing another scientific and technology development growth phase. In this regard, today's cryopreservation processes and cryopreserved products are found at the forefront of research in the areas of discovery science, stem cell research, diagnostic development and personalized medicine. As the utilization of cryopreserved cells continues to increase, the demands placed on the biobanking industry are increasing and evolving at an accelerated rate. No longer are samples providing for high immediate post-thaw viability adequate. Researchers are now requiring samples where not only is there high cell recovery but that the product recovered is physiologically and biochemically identical to its pre-freeze state at the genominic, proteomic, structural, functional and reproductive levels. Given this, biobanks are now facing the challenge of adapting strategies and protocols to address these needs moving forward. Recent studies have shown that the control and direction of the molecular response of cells to cryopreservation significantly impacts final outcome. This chapter provides an overview of the molecular stress responses of cells to cryopreservation, the impact of the apoptotic and necrotic cell death continuum and how studies focused on the targeted modulation of common and/or cell specific responses to freezing temperatures provide a path to improving sample quality and utility. This line of investigation has provided a new direction and molecular-based foundation guiding new research, technology development and procedures. As the use of and the knowledge base surrounding cryopreservation continues to expand, this path will continue to provide for improvements in overall efficacy and outcome.
Collapse
|
17
|
Corwin WL, Baust JM, Baust JG, Van Buskirk RG. Characterization and modulation of human mesenchymal stem cell stress pathway response following hypothermic storage. Cryobiology 2014; 68:215-26. [PMID: 24508650 DOI: 10.1016/j.cryobiol.2014.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 02/04/2023]
Abstract
Human mesenchymal stem cell (hMSC) research has grown exponentially in the last decade. The ability to process and preserve these cells is vital to their use in stem cell therapy. As such, understanding the complex, molecular-based stress responses associated with biopreservation is necessary to improve outcomes and maintain the unique stem cell properties specific to hMSC. In this study hMSC were exposed to cold storage (4°C) for varying intervals in three different media. The addition of resveratrol or salubrinal was studied to determine if either could improve cell tolerance to cold. A rapid elevation in apoptosis at 1h post-storage as well as increased levels of necrosis through the 24h of recovery was noted in samples. The addition of resveratrol resulted in significant improvements to hMSC survival while the addition of salubrinal revealed a differential response based on the media utilized. Decreases in both apoptosis and necrosis together with decreased cell stress/death signaling protein levels were observed following modulation. Further, ER stress and subsequent unfolded protein response (UPR) stress pathway activation was implicated in response to hMSC hypothermic storage. This study is an important first step in understanding hMSC stress responses to cold exposure and demonstrates the impact of targeted molecular modulation of specific stress pathways on cold tolerance thereby yielding improved outcomes. Continued research is necessary to further elucidate the molecular mechanisms involved in hypothermic-induced hMSC cell death. This study has demonstrated the potential for improving hMSC processing and storage through targeting select cell stress pathways.
Collapse
Affiliation(s)
- William L Corwin
- CPSI Biotech, 2 Court St, Owego, NY 13827, United States; Institute of Biomedical Technology, Binghamton University, Binghamton, NY 13902, United States.
| | - John M Baust
- CPSI Biotech, 2 Court St, Owego, NY 13827, United States; Institute of Biomedical Technology, Binghamton University, Binghamton, NY 13902, United States
| | - John G Baust
- Institute of Biomedical Technology, Binghamton University, Binghamton, NY 13902, United States; Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States
| | - Robert G Van Buskirk
- CPSI Biotech, 2 Court St, Owego, NY 13827, United States; Institute of Biomedical Technology, Binghamton University, Binghamton, NY 13902, United States; Department of Biological Sciences, Binghamton University, Binghamton, NY 13902, United States
| |
Collapse
|
18
|
Fahy GM, Guan N, de Graaf IAM, Tan Y, Griffin L, Groothuis GMM. Cryopreservation of precision-cut tissue slices. Xenobiotica 2012; 43:113-32. [DOI: 10.3109/00498254.2012.728300] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Current world literature. Curr Opin Ophthalmol 2012; 23:330-5. [PMID: 22673820 DOI: 10.1097/icu.0b013e32835584e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Nikolaev NI, Liu Y, Hussein H, Williams DJ. The sensitivity of human mesenchymal stem cells to vibration and cold storage conditions representative of cold transportation. J R Soc Interface 2012; 9:2503-15. [PMID: 22628214 DOI: 10.1098/rsif.2012.0271] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2-8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s(-2) and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s(-2), peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s(-2), peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage.
Collapse
Affiliation(s)
- N I Nikolaev
- Centre for Biological Engineering, Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK
| | | | | | | |
Collapse
|
21
|
Park CS, Cha H, Kwon EJ, Sreenivasaiah PK, Kim DH. The chemical chaperone 4-phenylbutyric acid attenuates pressure-overload cardiac hypertrophy by alleviating endoplasmic reticulum stress. Biochem Biophys Res Commun 2012; 421:578-84. [PMID: 22525677 DOI: 10.1016/j.bbrc.2012.04.048] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 04/10/2012] [Indexed: 11/19/2022]
Abstract
Evidence has shown that endoplasmic reticulum stress (ERS) is associated with the pathogenesis of cardiac hypertrophy. The aim of this study was to investigate whether direct alleviation of ER stress by 4-phenylbutyric acid (PBA), a known chemical chaperone drug, could attenuate pressure-overload cardiac hypertrophy in mice. The effects of orally administered PBA (100mg/kg body weight daily for a week) were examined using mice undergoing transverse aortic constriction (TAC-mice), an animal model to produce pressure overload. TAC application for 1 week led to a 1.8-fold increase in the ratio of the heart weight over body weight (HW/BW) and up-regulation of the hypertrophy markers ANF and BNF accompanied by up-regulation of ERS markers (GRP78, p-PERK, and p-elF2α). The oral administration of PBA to the TAC-mice reduced hypertrophy (19%) and severely downregulated the fibrosis-related genes (transforming growth factor-β1, phospho-smad2, and pro-collagen isoforms). We conclude that ERS is induced as a consequence of remodeling during pathological hypertrophy and that PBA may help to relieve ERS and play a protective role against cardiac hypertrophy and possibly heart failure. We suggest PBA as a novel therapeutic agent for cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Chang Sik Park
- School of Life Sciences and Systems Biology Research Center, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro (1 Oryong-dong), Buk-gu, Gwangju 500-712, Republic of Korea
| | | | | | | | | |
Collapse
|