1
|
Salehi E, Shadboorestan A, Mohammadi-Bardbori A, Mousavi A, Kargar-Abargouei E, Sarkoohi P, Omidi M. Effect of crocin and quercetin supplementation in cryopreservation medium on post-thaw human sperm quality. Cell Tissue Bank 2024; 25:531-540. [PMID: 37776436 DOI: 10.1007/s10561-023-10110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/28/2023] [Indexed: 10/02/2023]
Abstract
Biochemical and physical changes during the cryopreservation process adversely affect sperm function required for fertilization. Recently, many studies have been conducted to find effective pre-freezing treatments to limit these damages. The present study aimed to investigate the effects of pre-freezing treatment with quercetin and crocin, individually or in combination, on sperm parameters after thawing procedure. For this, semen samples from 20 normozoospermic men were collected and then each sample was divided into five equal parts: 1. fresh group 2. frozen-thawed group without addition of antioxidants 3. frozen-thawed group containing 1 mM crocin, 4. frozen-thawed group containing 50 μM quercetin, and 5. frozen-thawed group containing a combination of 1 mM crocin and 50 μM quercetin. Pre-cryopreservation and post-thaw sperm motility, morphology, viability, DNA fragmentation, reactive oxygen species [1] (ROS) levels, and mitochondrial membrane potential [2] (MMP) were investigated. Cryopreservation significantly reduced sperm quality. Both crocin and quercetin individually improved sperm progressive motility, decreased ROS levels, reduced DNA fragmentation, and marginally increased MMP, though crocin seems to be more successful in protecting sperm quality. More interestingly, the combined addition of crocin and quercetin to the sperm-freezing medium did not show positive effects on sperm quality. Crocin and quercetin may play a role in mitigating the cryopreservation-induced injury to sperm.
Collapse
Affiliation(s)
- Ensieh Salehi
- Department of Gynecology, School of Medicine, Fertility and Infertility Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abedeh Mousavi
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Elias Kargar-Abargouei
- Department of Anatomy, School of Medicine, Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Parisa Sarkoohi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
2
|
Hai E, Li B, Zhang J, Zhang J. Sperm freezing damage: the role of regulated cell death. Cell Death Discov 2024; 10:239. [PMID: 38762505 PMCID: PMC11102515 DOI: 10.1038/s41420-024-02013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Substantial progress in research on sperm cryopreservation has occurred since the twentieth century, especially focusing on improving sperm freezing procedures and optimizing semen extenders. However, the cellular biological mechanisms of sperm freezing damage are still unclear, which greatly restricts the promotion and development of sperm cryopreservation. An essential component of sperm freezing damage is the occurrence of cell death. Considering the existence of multiple types of cell death pathways, this review discusses connections between characteristics of regulated cell death (e.g., apoptosis and ferroptosis), and accidental cell death (e.g., intracellular ice crystals) with sperm freezing damage and explores possible future research directions in this field.
Collapse
Affiliation(s)
- Erhan Hai
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Boyuan Li
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jian Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China
| | - Jiaxin Zhang
- Inner Mongolia Key Laboratory of Sheep & Goat Genetics Breeding and Reproduction, College of Animal Science, Inner Mongolia Agricultural University, Hohhot, 010018, Inner Mongolia, China.
| |
Collapse
|
3
|
Farrokhi Z, Sharafi M, Hezavehei M, Torabi A, Shahverdi M, Rahimi S. The Effects of Glycerophospholipid Nanomicelles on the Cryotolerance of Frozen-Thawed Rooster Sperm. Biopreserv Biobank 2023; 21:593-598. [PMID: 36637861 DOI: 10.1089/bio.2022.0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Semen banking is an efficient method of artificial insemination for commercial breeders. However, the cryopreservation process induces severe damages to plasma membranes, which leads to reduced fertility potential of thawed sperm. The replacement of membrane lipids with oxidized membrane lipids repairs the cell membrane and improves its stability. The aim of this study was to investigate the effects of glycerophospholipid (GPL) nanomicelles on the cryosurvival of thawed rooster semen. Semen samples were collected from six 29-week Ross broiler breeder roosters, then mixed and divided into five equal parts. The samples were diluted with the Beltsville extender containing different concentrations of GPL according to the following groups: 0 (GPL-0), 0.1% (GPL-0.1), 0.5% (GPL-0.5), 1% (GPL-1), and 1.5% (GPL-1.5), then diluted semen was gradually cooled to 4°C during 3 hours and stored in liquid nitrogen. The optimum concentration of GPL was determined based on the quality parameters of thawed sperm. Our results showed sperm exposed to GPL-1 had significantly increased motion parameters and mitochondrial activity. The percentages of viability and membrane integrity were significantly higher in the GPL-1, and GPL-1.5 groups compared with the other groups (p < 0.05). Moreover, the lowest rate of apoptosis and lipid peroxidation were observed in the GPL-1 and GPL-1.5 groups in comparison with the frozen control group. Our findings indicated that membrane lipid replacement with GPL nanomicelles (1% and 1.5%) could substitute for damaged lipids in membranes and protect sperm cells against cryoinjury.
Collapse
Affiliation(s)
- Zahra Farrokhi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohsen Sharafi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Maryam Hezavehei
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Ali Torabi
- Research Center for Reproduction and Fertility, Faculty of Veterinary medicine, Montreal University, St-Hyacinthe, Canada
| | - Maryam Shahverdi
- Department of Embryology Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Shaban Rahimi
- Department of Poultry Science, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
4
|
Jung SE, Ryu BY. New strategies for germ cell cryopreservation: Cryoinjury modulation. Clin Exp Reprod Med 2023; 50:213-222. [PMID: 37995749 PMCID: PMC10711243 DOI: 10.5653/cerm.2023.06016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/29/2023] [Accepted: 07/17/2023] [Indexed: 11/25/2023] Open
Abstract
Cryopreservation is an option for the preservation of pre- or post-pubertal female or male fertility. This technique not only is beneficial for human clinical applications, but also plays a crucial role in the breeding of livestock and endangered species. Unfortunately, frozen germ cells, including oocytes, sperm, embryos, and spermatogonial stem cells, are subject to cryoinjury. As a result, various cryoprotective agents and freezing techniques have been developed to mitigate this damage. Despite extensive research aimed at reducing apoptotic cell death during freezing, a low survival rate and impaired cell function are still observed after freeze-thawing. In recent decades, several cell death pathways other than apoptosis have been identified. However, the relationship between these pathways and cryoinjury is not yet fully understood, although necroptosis and autophagy appear to be linked to cryoinjury. Therefore, gaining a deeper understanding of the molecular mechanisms of cryoinjury could aid in the development of new strategies to enhance the effectiveness of the freezing of reproductive tissues. In this review, we focus on the pathways through which cryoinjury leads to cell death and propose novel approaches to enhance freezing efficacy based on signaling molecules.
Collapse
Affiliation(s)
- Sang-Eun Jung
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
- Division of Hematology & Oncology, Department of Medicine, Washington University in St. Louis, Saint Louis, MO, USA
| | - Buom-Yong Ryu
- Department of Animal Science & Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
5
|
Yang YT, Yan B, Li YH, Guo LN, Wang WW, Liu LJ, Yu HG, Diao H. Phosphodiesterase 10A inhibitor PF-2545920 as a prospective agent for the clinical promotion of sperm motility. Asian J Androl 2023; 25:608-615. [PMID: 37026191 PMCID: PMC10521960 DOI: 10.4103/aja2022117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/07/2023] [Indexed: 04/08/2023] Open
Abstract
Phosphodiesterase (PDE) inhibitors can improve sperm motility in patients with asthenozoospermia. However, the most commonly reported nonselective PDE inhibitor pentoxifylline and PDE5 inhibitor sildenafil have the disadvantages of requiring a high concentration and destroying sperm integrity. We examined the PDE10A inhibitor PF-2545920 to compare its ability to promote sperm motility with that of pentoxifylline and sildenafil. After seminal plasma was discarded, several semen samples were subjected to four treatments (control, PF-2545920, pentoxifylline, and sildenafil) to evaluate their ability to affect motility, viability, and spontaneous acrosome reactions. Intracellular calcium and adenosine triphosphate (ATP), mitochondrial membrane potential, and penetration through viscous medium were assessed by flow cytometry, luciferase, and hyaluronic acid after treatment with PF-2545920. Statistical analyses were performed using the analysis of variance statistical test. PF-2545920 elevated the percentage of motile spermatozoa compared to the control, pentoxifylline, and sildenafil groups at 10 µmol l -1 ( P < 0.01). It is less toxic to GC-2spd mouse spermatocytes cells and spermatozoa and causes fewer spontaneous acrosomal reactions ( P < 0.05). PF-2545920 also increased mitochondrial membrane potential ( P < 0.001) and altered intracellular calcium ( P < 0.05) in a dose-dependent manner, including increasing sperm hyaluronic acid penetrating ability ( P < 0.05). Therefore, PF-2545920 might be an excellent choice for stimulating the sperm motility.
Collapse
Affiliation(s)
- Yi-Ting Yang
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Bin Yan
- Reproductive Medicine Centre, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu-Hua Li
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li-Na Guo
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wei-Wei Wang
- School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Li-Jie Liu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - He-Guo Yu
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Diao
- NHC Key Laboratory of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
6
|
Moretti E, Signorini C, Corsaro R, Giamalidi M, Collodel G. Human Sperm as an In Vitro Model to Assess the Efficacy of Antioxidant Supplements during Sperm Handling: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051098. [PMID: 37237965 DOI: 10.3390/antiox12051098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Spermatozoa are highly differentiated cells that produce reactive oxygen species (ROS) due to aerobic metabolism. Below a certain threshold, ROS are important in signal transduction pathways and cellular physiological processes, whereas ROS overproduction damages spermatozoa. Sperm manipulation and preparation protocols during assisted reproductive procedures-for example, cryopreservation-can result in excessive ROS production, exposing these cells to oxidative damage. Thus, antioxidants are a relevant topic in sperm quality. This narrative review focuses on human spermatozoa as an in vitro model to study which antioxidants can be used to supplement media. The review comprises a brief presentation of the human sperm structure, a general overview of the main items of reduction-oxidation homeostasis and the ambivalent relationship between spermatozoa and ROS. The main body of the paper deals with studies in which human sperm have been used as an in vitro model to test antioxidant compounds, including natural extracts. The presence and the synergic effects of different antioxidant molecules could potentially lead to more effective products in vitro and, in the future, in vivo.
Collapse
Affiliation(s)
- Elena Moretti
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Roberta Corsaro
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Maria Giamalidi
- Department of Genetics and Biotechnology, Faculty of Biology, University of Athens, 15701 Athens, Greece
| | - Giulia Collodel
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| |
Collapse
|
7
|
Leptin and prolactin reduce cryodamage in normozoospermic human semen samples during cryopreservation. Rev Int Androl 2022; 21:100336. [PMID: 36280439 DOI: 10.1016/j.androl.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/25/2021] [Accepted: 12/29/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Cryopreservation has destructive effects on the function and structure of spermatozoa. It is known that leptin and prolactin play an active role in decreasing the rates of reactive oxygen species and DNA fragmentation, as well as enhancing sperm motility. Hence, this experiment aimed to investigate the effects of leptin and prolactin as pro-survival factors on the normozoospermic human semen samples during cryopreservation. MATERIAL AND METHODS Semen samples were collected from 15 healthy, fertile men ranging from 25 to 40 years. Cryopreservation of the samples was performed in liquid nitrogen over a period of two weeks, using five varying concentrations of leptin/prolactin, 0, 10, 100, 500, and 1000ng/ml respectively. Sperm motility, total caspase activity, and mitochondrial and cytosolic ROS were measured by flowcytometry, TUNEL, and other appropriate tests after thawing of the samples. RESULTS Both hormones were observed to have positive effects on the motility of the samples post-cryopreservation, the highest improvement being in the 100ng/ml concentration leptin and prolactin in comparison to the control group (P=0.01 and P=0.041, respectively). A significant reduction of mitochondrial ROS was also observed in 100 and 1000ng/ml of leptin (P=0.042), and there was a considerable decrease in the cytosolic ROS in the 100ng/ml of prolactin in comparison to the control group (P=0.048). Total caspase activity was also highly reduced in the 100, 500, and 1000ng/ml of leptin compared to the control group (P=0.039). Interestingly, both hormones also significantly decreased DNA fragmentation in 1000ng/ml compared to the control group (P=0.042). CONCLUSION It can be concluded that leptin and prolactin act as protective agents against cryodamage to spermatozoa during cryopreservation.
Collapse
|
8
|
Shaaban HH, Hozayen WG, Khaliefa AK, El-Kenawy AE, Ali TM, Ahmed OM. Diosmin and Trolox Have Anti-Arthritic, Anti-Inflammatory and Antioxidant Potencies in Complete Freund’s Adjuvant-Induced Arthritic Male Wistar Rats: Roles of NF-κB, iNOS, Nrf2 and MMPs. Antioxidants (Basel) 2022; 11:antiox11091721. [PMID: 36139795 PMCID: PMC9495550 DOI: 10.3390/antiox11091721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune disease caused by a malfunction of the immune system. The aim of this study was to examine the anti-arthritic effects and suggest the mechanisms of actions of diosmin and trolox in male Wistar rats. Complete Freund’s adjuvant (CFA) was used to establish RA in the animals by subcutaneous injection of 100 µL CFA/rat into plantar region of right hind leg in two consecutive days. Diosmin and/or trolox were administered orally at a dosage of 20 mg/kg/day to CFA-induced arthritic rats for 2 weeks. The normal and arthritic control groups were orally given the same equivalent volume of a vehicle (1% carboxymethyl cellulose) in which treatment agents were dissolved. At the end of the experiment, blood samples were collected from the jugular vein for the detection of the total leukocyte count (TLC) and differential leukocyte count (DLC) in blood and the detection of rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), tumor necrosis factor-α (TNF-α), interleukin-13 (IL-13), and interleukin-17 (IL-17) levels by enzyme-linked immunosorbent assay (ELISA), as well as markers of oxidative stress and the antioxidant defense system in serum. The right hind ankle regions of three rats from each group were dissected out and fixed in 10% neutral-buffered formalin for histological examination and the other three were kept at −30 °C for Western blot analysis of nuclear factor-kappa B (NF-κB) protein 50 (NF-κB p50), NF-κB p65, inducible nitric oxide synthase (iNOS), nuclear factor erythroid-2-related factor 2 (Nrf2), and matrix metalloproteinase (MMP)-1 (MMP-1), MMP-3, and MMP-9. The CFA injection was deleterious to the ankle joint’s histological architecture, manifesting as infiltration of inflammatory cells into the articular cartilage, hyperplasia of the synovium, and erosion of the cartilage. All these effects were ameliorated by diosmin and/or trolox, with the combined dose being the most effective. The two compounds significantly lowered the elevated serum levels of RF, ACPA, TNF-α, and IL-17, as well as other pro-inflammatory mediators, such as NF-κB p50, NF-κB p65, iNOS, MMP-1, MMP-3 and MMP-9. They also increased the levels of the anti-inflammatory cytokine, IL-13, and the cytoprotective transcription factor Nrf2. The compounds stimulated higher activities of antioxidants, such as glutathione, glutathione-S-transferase, catalase, and superoxide dismutase, and reduced lipid peroxidation in the serum of arthritic rats. In conclusion, diosmin, trolox, and their combination, which was the most potent, exerted anti-arthritic, anti-inflammatory and antioxidant effects by suppressing NF-κB signaling, inhibiting matrix metalloproteinases, and activating Nrf2.
Collapse
Affiliation(s)
- Huda H. Shaaban
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Walaa G. Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Amal K. Khaliefa
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Ayman E. El-Kenawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
- Correspondence: or
| |
Collapse
|
9
|
Bang S, Tanga BM, Fang X, Seong G, Saadeldin IM, Qamar AY, Lee S, Kim KJ, Park YJ, Nabeel AHT, Yu IJ, Cooray A, Lee KP, Cho J. Cryopreservation of Pig Semen Using a Quercetin-Supplemented Freezing Extender. Life (Basel) 2022; 12:life12081155. [PMID: 36013334 PMCID: PMC9410179 DOI: 10.3390/life12081155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Reactive oxygen species (ROS) produced during freeze−thaw procedures cause oxidative damage to the sperm, reducing fertility. We aimed to improve the post-thaw quality of pig sperm by quercetin (QRN) supplementation to reduce the cryodamage associated with the freeze−thaw procedure. Four equal aliquots of pooled boar semen were diluted with a freezing extender supplemented with different concentrations of QRN (0, 25, 50, and 100 µM) and then were subjected to cryopreservation in liquid nitrogen. Semen analysis was performed following 7 days of cryopreservation. Results demonstrated that the semen samples supplemented with 50 µM QRN significantly improved the post-thaw sperm quality than those subjected to other supplementations (p < 0.05). Semen samples supplemented with 50 µM QRN showed significantly improved plasma membrane functional integrity (47.5 ± 1.4 vs. 43.1 ± 4.1, 45.3 ± 1.7, and 44.1 ± 1.4) and acrosome integrity (73.6 ± 3.4 vs. 66.3 ± 2.4, 66.7 ± 3.6, and 68.3 ± 32.9) as compared to the control, 25 µM, and 100 µM QRN groups, respectively. The mitochondrial activity of the 50 µM QRN group was greater than control and 25 µM QRN groups (43.0 ± 1.0 vs. 39.1 ± 0.9 and 41.9 ± 1.0) but showed no difference with the 100 µM QRN group. Moreover, the 50 µM QRN group showed a higher sperm number displaced to 1 cm and 3 cm points in the artificial mucus than other groups. Therefore, supplementing the freezing extender with QRN can serve as an effective tool to reduce the magnitude of oxidative damage associated with sperm freezing.
Collapse
Affiliation(s)
- Seonggyu Bang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Bereket Molla Tanga
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Xun Fang
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Gyeonghwan Seong
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Islam M. Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
- Research Institute of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Ahmad Yar Qamar
- Collage of Veterinary and Animal Science, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
| | - Keun-Jung Kim
- Livestock Experiment Institute, Government of Chungcheongnam-do, Cheongyang-gun 33303, Korea; (K.-J.K.); (Y.-J.P.)
| | - Yun-Jae Park
- Livestock Experiment Institute, Government of Chungcheongnam-do, Cheongyang-gun 33303, Korea; (K.-J.K.); (Y.-J.P.)
| | - Abdelbagi Hamad Talha Nabeel
- Laboratory of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (A.H.T.N.); (I.-j.Y.)
| | - Il-jeoung Yu
- Laboratory of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan 54596, Korea; (A.H.T.N.); (I.-j.Y.)
| | - Akila Cooray
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (A.C.); (K.P.L.)
| | - Kyu Pil Lee
- Department of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (A.C.); (K.P.L.)
| | - Jongki Cho
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.B.); (B.M.T.); (X.F.); (G.S.); (I.M.S.); (S.L.)
- Correspondence: ; Tel.: +82-42-821-6788; Fax: +82-72-821-89
| |
Collapse
|
10
|
Asadi E, Najafi A, Benson JD. Exogenous Melatonin Ameliorates the Negative Effect of Osmotic Stress in Human and Bovine Ovarian Stromal Cells. Antioxidants (Basel) 2022; 11:antiox11061054. [PMID: 35739950 PMCID: PMC9219940 DOI: 10.3390/antiox11061054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Ovarian tissue cryopreservation transplantation (OTCT) is the most flexible option to preserve fertility in women and children with cancer. However, OTCT is associated with follicle loss and an accompanying short lifespan of the grafts. Cryopreservation-induced damage could be due to cryoprotective agent (CPA) toxicity and osmotic shock. Therefore, one way to avoid this damage is to maintain the cell volume within osmotic tolerance limits (OTLs). Here, we aimed to determine, for the first time, the OTLs of ovarian stromal cells (OSCs) and their relationship with reactive oxygen species (ROS) and mitochondrial respiratory chain activity (MRCA) of OSCs. We evaluated the effect of an optimal dose of melatonin on OTLs, viability, MRCA, ROS and total antioxidant capacity (TAC) of both human and bovine OSCs in plated and suspended cells. The OTLs of OSCs were between 200 and 375 mOsm/kg in bovine and between 150 and 500 mOsm/kg in human. Melatonin expands OTLs of OSCs. Furthermore, melatonin significantly reduced ROS and improved TAC, MRCA and viability. Due to the narrow osmotic window of OSCs, it is important to optimize the current protocols of OTCT to maintain enough alive stromal cells, which are necessary for follicle development and graft longevity. The addition of melatonin is a promising strategy for improved cryopreservation media.
Collapse
|
11
|
Ebrahimi B, Matavos-Aramyan H, Keshtgar S. The cryoprotective effect of vitamins on human spermatozoa quality: a systematic review and meta-analysis. Cell Tissue Bank 2021; 23:213-225. [PMID: 34476664 DOI: 10.1007/s10561-021-09953-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/18/2021] [Indexed: 01/19/2023]
Abstract
The Cryopreservation of spermatozoa ensures preserving fertility potential after some medical treatments such as chemotherapy and radiotherapy in cancer patients. However, many spermatozoa encounter serious damages, and their motility and viability decrease considerably after thawing. The excessive production of reactive oxygen species is one of the major causes of these damages. The supplementation of cryopreservation media with vitamins, which are well-known antioxidants, can reduce cryopreservation-induced damages. In this systematic review, we aimed to evaluate the cryoprotective effect of various vitamins on the quality of cryopreserved-thawed human spermatozoa. Two researchers searched PubMed, ISI, and Scopus databases up to March 2020. All original articles using vitamins in human spermatozoa cryopreservation media were included. We used a standardized form to extract sample size and to determine sample quality, the type and dose of vitamins, and the cryopreservation methods and their effects. We performed a meta-analysis on studies with available data (Mean + SD in cryoprotectant and cryoprotectant + cryoprotectant groups). We also performed a test of between-study heterogeneity, subgroup analysis, and meta-regression. Out of 258 studies, 16 articles were included for the analysis. Our meta-analysis revealed that using vitamins in cryopreservation media could increase motility by 4.60% (95% CI 6.16, 3.05; P = 0.0001), viability by 5.71% (95% CI 9.71, 1.72; P = 0.0001), and DNA integrity by 10.20% (95% CI 12.98, 7.42; P = 0.0001) in cryopreserved-thawed spermatozoa. We found a significant correlation between using vitamins and improved spermatozoa quality; the sperm motility and viability were improved and DNA fragmentation was reduced after thawing by vitamins. However, we could not emphasize on any type or dose of vitamins but we conclude that the anti-oxidative function of vitamins is the main reason for these benefits.
Collapse
Affiliation(s)
- Bahareh Ebrahimi
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hedieh Matavos-Aramyan
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, 71348-45794, Shiraz, Iran
| | - Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, 71348-45794, Shiraz, Iran.
| |
Collapse
|
12
|
Ma Y, Gao L, Tian Y, Chen P, Yang J, Zhang L. Advanced biomaterials in cell preservation: Hypothermic preservation and cryopreservation. Acta Biomater 2021; 131:97-116. [PMID: 34242810 DOI: 10.1016/j.actbio.2021.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Cell-based medicine has made great advances in clinical diagnosis and therapy for various refractory diseases, inducing a growing demand for cell preservation as support technology. However, the bottleneck problems in cell preservation include low efficiency and poor biocompatibility of traditional protectants. In this review, cell preservation technologies are categorized according to storage conditions: hypothermic preservation at 1 °C~35 °C to maintain short-term cell viability that is useful in cell diagnosis and transport, while cryopreservation at -196 °C~-80 °C to maintain long-term cell viability that provides opportunities for therapeutic cell product storage. Firstly, the background and developmental history of the protectants used in the two preservation technologies are briefly introduced. Secondly, the progress in different cellular protection mechanisms for advanced biomaterials are discussed in two preservation technologies. In hypothermic preservation, the hypothermia-induced and extracellular matrix-loss injuries to cells are comprehensively summarized, as well as the recent biomaterials dependent on regulation of cellular ATP level, stabilization of cellular membrane, balance of antioxidant defense system, and supply of mimetic ECM to prolong cell longevity are provided. In cryopreservation, cellular injuries and advanced biomaterials that can protect cells from osmotic or ice injury, and alleviate oxidative stress to allow cell survival are concluded. Last, an insight into the perspectives and challenges of this technology is provided. We envision advanced biocompatible materials for highly efficient cell preservation as critical in future developments and trends to support cell-based medicine. STATEMENT OF SIGNIFICANCE: Cell preservation technologies present a critical role in cell-based applications, and more efficient biocompatible protectants are highly required. This review categorizes cell preservation technologies into hypothermic preservation and cryopreservation according to their storage conditions, and comprehensively reviews the recently advanced biomaterials related. The background, development, and cellular protective mechanisms of these two preservation technologies are respectively introduced and summarized. Moreover, the differences, connections, individual demands of these two technologies are also provided and discussed.
Collapse
Affiliation(s)
- Yiming Ma
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Lei Gao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Yunqing Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Pengguang Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China
| | - Jing Yang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| | - Lei Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, PR China; Frontier Technology Research Institute, Tianjin University, Tianjin 300350, PR China.
| |
Collapse
|
13
|
Ibis E, Hayme S, Baysal E, Gul N, Ozkavukcu S. Efficacy and safety of papaverine as an in vitro motility enhancer on human spermatozoa. J Assist Reprod Genet 2021; 38:1523-1537. [PMID: 33772411 PMCID: PMC8266967 DOI: 10.1007/s10815-021-02160-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/18/2021] [Indexed: 12/26/2022] Open
Abstract
PURPOSE The aim of this study was to examine the ability and safety of papaverine supplementation for in vitro sperm motility enhancement. In addition, sperm motility enhancement of papaverine was compared to pentoxifylline and theophylline. The post-thaw spermatozoa were used as an asthenozoospermia model. METHODS Post thaw sperm suspensions were divided into two groups: papaverine (100 μmol/L) and control, and each was investigated in two subgroups of 30- and 60-min exposure times. Detailed motility parameters were detected using a computerized sperm motility analyzer. Acrosomal status, viability, apoptosis, and DNA fragmentation were evaluated by flow cytometry. Furthermore, the motility-enhancing capacity of papaverine, pentoxifylline, and theophylline was compared. RESULTS Cryopreservation impaired sperm parameters dramatically but no significant changes occurred in acrosomal status and apoptosis. Supplementation of papaverine enhanced motility parameters consistently at all exposure intervals, significantly. However, viability was lower at the 60th minute compared to the 30th minute (p=0.019). Papaverine did not alter any acrosomal or apoptotic markers at any time points. All of the compounds compared in this study increased the motility parameters, where theophylline supplementation provided significantly better improvement in total motility compared to papaverine and pentoxifylline. CONCLUSION Our results suggest that in vitro papaverine treatment for 30 min adequately improves motility of post-thaw sperm, without leading to acrosome reaction, DNA damage, and viability loss. Theophylline's potency on increasing the ratio of total motile spermatozoa was found significantly superior than the two tested compounds. Prospective clinical studies with embryo production, pregnancy, and live birth data should be undertaken.
Collapse
Affiliation(s)
- Ebru Ibis
- Center for Assisted Reproduction, Department of Obstetrics and Gynecology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Serhat Hayme
- Department of Biostatistics, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Ekin Baysal
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Nursel Gul
- Department of Biology, Ankara University Graduate School of Natural and Applied Sciences, Ankara, Turkey
| | - Sinan Ozkavukcu
- Center for Assisted Reproduction, Department of Obstetrics and Gynecology, Ankara University Faculty of Medicine, Ankara, Turkey.
- Department of Histology and Embryology, Ankara University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
14
|
Hezavehei M, Sharafi M, Fathi R, Shahverdi A, Gilani MAS. Membrane lipid replacement with nano-micelles in human sperm cryopreservation improves post-thaw function and acrosome protein integrity. Reprod Biomed Online 2021; 43:257-268. [PMID: 34256996 DOI: 10.1016/j.rbmo.2021.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 12/27/2022]
Abstract
RESEARCH QUESTION Membrane lipid replacement (MLR) of oxidized membrane lipids can restore sperm cellular membrane functionality and help improve surface protein stability during cryopreservation. What are the effects of MLR with nano-micelles made from a glycerophospholipid (GPL) mixture and cholesterol-loaded cyclodextrin (CLC), on the cryosurvival and expression of acrosome-related proteins in thawed human spermatozoa? DESIGN Twenty samples were used to determine the optimum level of nano-micelles by incubation of semen with different concentrations of GPL (0.1 and 1%) and CLC (1 and 2 mg/ml) (including GPL-0.1, GPL-1, CLC-1, CLC-2, CLC-1/GPL-0.1, CLC-2/GPL-0.1, CLC-1/GPL-1 and CLC-2/GPL-1) before cryopreservation. Then, 30 semen samples were collected, and each sample was divided into the following three aliquots: fresh, frozen control and frozen incubated with optimum level of nano-micelles (0.1% GPL and 1 mg/ml CLC). RESULTS CLC-1/GPL-0.1 and GPL-0.1 significantly increased motility parameters. CLC-1, GPL-0.1 and CLC-1/GPL-0.1 significantly improved viability rate compared with frozen control group. Significantly higher mitochondrial activity and acrosome integrity, and a lower rate of apoptosis, were observed in the CLC-1/GPL-0.1 compared with the frozen control group. The expression ratios of arylsulfatase A (ARSA), serine protease 37 (PRSS37), serine protease inhibitor Kazal-type 2 (SPINK2) and equatorin (EQTN) significantly increased compared with the frozen control group. CONCLUSIONS Modification of membrane cholesterol and GPL mixtures in spermatozoa enhances their acrosome protein integrity by inhibiting early apoptotic changes and spontaneous acrosome reactions.
Collapse
Affiliation(s)
- Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem St Tehran 16635-148, Iran
| | - Mohsen Sharafi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem St Tehran 16635-148, Iran; Department of Animal Science, College of Agriculture, Tarbiat Modarres University
| | - Rohoullah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem St Tehran 16635-148, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem St Tehran 16635-148, Iran.
| | - Mohammad Ali Sadighi Gilani
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Banihashem St Tehran 16635-148, Iran.
| |
Collapse
|
15
|
Alqawasmeh OAM, Zhao M, Chan CPS, Leung MBW, Chow KC, Agarwal N, Mak JSM, Wang CC, Pang CP, Li TC, Chu WK, Chan DYL. Green tea extract as a cryoprotectant additive to preserve the motility and DNA integrity of human spermatozoa. Asian J Androl 2021; 23:150-156. [PMID: 33154201 PMCID: PMC7991818 DOI: 10.4103/aja.aja_58_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/19/2020] [Indexed: 01/06/2023] Open
Abstract
Cryopreservation impairs sperm quality and functions, including motility and DNA integrity. Antioxidant additives in sperm freezing media have previously brought improvements in postthawed sperm quality. Green tea extract (GTE) is widely considered as an excellent antioxidant, and its beneficial role has been proven in other human cells. This study aims to evaluate the GTE as a potential additive in cryopreservation media of human spermatozoa. In part one, the semen of 20 normozoospermic men was used to optimize the concentration of GTE that maintains sperm motility and DNA integrity against oxidative stress, induced by hydrogen peroxide (H2O2). Spermatozoa were treated with GTE at different concentrations before incubation with H2O2. In part two, the semen of 45 patients was cryopreserved with or without 1.0 ng ml-1 GTE. After 2 weeks, the semen was thawed, and the effect on sperm motility and DNA fragmentation was observed. Our data showed that GTE significantly protected sperm motility and DNA integrity against oxidative stress induced by H2O2when added at a final concentration of 1.0 ng ml-1. We found that the addition of 1.0 ng ml-1 GTE to cryopreservation media significantly increased sperm motility and DNA integrity (both P < 0.05). More interestingly, patients with high sperm DNA damage benefited similarly from the GTE supplementation. However, there was no significant change in the reactive oxygen species (ROS) level. In conclusion, supplementing sperm freezing media with GTE has a significant protective effect on human sperm motility and DNA integrity, which may be of clinical interest.
Collapse
Affiliation(s)
- Odai AM Alqawasmeh
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Carol PS Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Maran BW Leung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ki C Chow
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Nikunj Agarwal
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jennifer SM Mak
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi C Wang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi P Pang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin C Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai K Chu
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - David YL Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
16
|
Multiparametric Study of Antioxidant Effect on Ram Sperm Cryopreservation-From Field Trials to Research Bench. Animals (Basel) 2021; 11:ani11020283. [PMID: 33498656 PMCID: PMC7911426 DOI: 10.3390/ani11020283] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The use of antioxidant compounds could be a successful tool to improve sperm cryopreservation protocols in ovine species. These molecules have been widely employed in different mammalian species with this purpose. It is important to consider the existence of a species-specific antioxidant effect discarding the extrapolations from other animal species. To corroborate the real effectiveness of these compounds is important to combine two approaches: in vitro sperm quality analyses and in vivo field trials based on fertility. In the first scenario, a multiparametric analyses and novel tests based on spermatozoa redox balance, as the main target of antioxidants, could improve the accuracy on antioxidant effectiveness on sperm quality. Moreover, an extensive field insemination study provides the definitive tool to select the best antioxidant treatment. All these aspects have been applied and extensively discussed throughout this manuscript. Novel approaches have been incorporated, such as RedoxSYS, to provide more accuracy in the integrative studies of Redox status in spermatozoa. The effectiveness of an antioxidant treatment, as trolox in our study, should be demonstrated in an integrative way, from in vivo (fertility trials) to in vitro analyses (sperm quality assays), especially when the final aim is to reach AI implementation. Abstract The optimization of sperm cryopreservation protocols in ram is a feasible tool to reinforce artificial insemination technologies considering the desirable application of sperm by vaginal/cervical or transcervical deposition. Cryopreservation provokes different types of damage on spermatozoa and many of these detrimental effects are triggered by redox deregulation. For this reason, the antioxidant supplementation in sperm cryopreservation protocols to decrease reactive oxygen species (ROS) levels and to equilibrate redox status has been widely employed in different species. Despite this, more fertility trials are necessary to provide the definitive tool to ensure the antioxidant effectiveness on sperm quality. For this reason, in this work, we performed a multiparametric analysis of some previously tested antioxidants (crocin, GSH and Trolox) on ram sperm cryopreservation from field trials to sperm quality analyses focused on new strategies to measure redox balance. Attending to fertility trial, Trolox supplementation registered an improvement concerning to fertility (when we considered high fertility males) and multiple lambing frequency and other complementary and descriptive data related to lambing performance such as prolificacy and fecundity. This positive effect was more evident in multiple lambing frequency when we considered low fertility males than in global male analysis. In vitro analyses of sperm quality confirmed in vivo trials registering a positive effect on sperm viability and redox balance. In this study, we provided the definitive evidence that the role of trolox on redox balance maintenance has a direct effect on fertility parameters, such as prolificacy. The effectiveness of antioxidant treatments was tested, for the first time in ovine species, using an integrative and multiparametric approach combining in vivo and in vitro analyses and novel approaches, such as RedoxSYS. These types of strategies should be applied to improve sperm conservation methods and optimize AI technologies upgrading the correlation between in vitro and in vivo analyses.
Collapse
|
17
|
Effect of sulforaphane on apoptosis, reactive oxygen species and lipids peroxidation of human sperm during cryopreservation. Cryobiology 2020; 99:122-130. [PMID: 33248050 DOI: 10.1016/j.cryobiol.2020.11.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023]
Abstract
Sperm cryopreservation is a common procedure to preserve viable sperm for an indefinite period. This procedure has numerous detrimental effects on sperm function due to increased generation of reactive oxygen species (ROS). During cryopreservation, while ROS increases, antioxidant enzymes level decreases. It has been shown that a relationship exist between lower antioxidant levels and infertility. l-Sulforaphane (SFN) is an isothiocyanate in cruciferous vegetables of the brassica class that has potent protective effects against oxidative stress. The purpose of the present study was to evaluate the effects of SFN supplementation during the freeze-thaw process on different parameters of human spermatozoa which can influence sperm fertilizing ability. Samples were collected from 25 healthy men and each sample was divided into three groups: fresh, control (untreated frozen/thawed samples) and treatment (treated frozen/thawed with SFN) groups. Sperm parameters, ROS production (using flow cytometry), plasma membrane integrity (using flow cytometry), Lipid peroxidation (using ELISA) were evaluated. Our results demonstrated that 5 μM SFN improved all parameters of sperm including viability (P < 0.001), motility, and morphology (P < 0.05) after the freeze-thaw process. Furthermore, SFN reduced the levels of intracellular hydrogen peroxide (P < 0.01) and superoxide anion (P < 0.05). Also, SFN significantly increased the percentage of viable sperm cells with the intact plasma membrane (P < 0.001) and decreased the level of lipid peroxidation after the freeze-thaw process (P < 0.01).Our findings showed that spermatozoa treatment with 5 μM SFN before the freeze-thaw process has protective effects against oxidative stress and could decrease the detrimental effects of this process on sperm quality.
Collapse
|
18
|
Bahmyari R, Zare M, Sharma R, Agarwal A, Halvaei I. The efficacy of antioxidants in sperm parameters and production of reactive oxygen species levels during the freeze-thaw process: A systematic review and meta-analysis. Andrologia 2020; 52:e13514. [PMID: 31967363 DOI: 10.1111/and.13514] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 11/30/2022] Open
Abstract
To investigate the impact of antioxidants in sperm parameters and reduction in reactive oxygen species production during the freeze-thaw process. PubMed, Scopus, Web of Science, Embase and Cochrane central library were systematically searched. Of the 1583 articles, 23 studies were selected for data extraction. Our results show that antioxidants improved sperm progressive motility (standardised mean difference (SMD) = 1; 95% CI: 0.62, 1.38; p < .001) and viability (SMD = 1.20; 95% CI: 0.50, 1.91; p = .001) and reduced sperm DNA fragmentation (SDF) and hydrogen peroxide (H2 O2 ) production, but there was no significant improvement in total sperm motility after thawing. Acetyl-l-carnitine/l-carnitine, melatonin and catalase had a significant positive impact on progressive motility. The role of tempol and melatonin in improving viability was significant compared to other antioxidants. Moreover, a significant reduction in SDF was observed after addition of butylated hydroxytoluene, tempol and vitamin E. However, the prevention of H2 O2 production was significant only after the addition of tempol. Our overall results displayed the positive impact of antioxidants on progressive sperm motility, viability and reduction in SDF and H2 O2 production, but no significant impact of antioxidants on total sperm motility was seen during the freeze-thaw process.
Collapse
Affiliation(s)
- Rezvan Bahmyari
- Department of Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Morteza Zare
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Iman Halvaei
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
19
|
Cryopreservation of Sperm: Effects on Chromatin and Strategies to Prevent Them. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1166:149-167. [PMID: 31301051 DOI: 10.1007/978-3-030-21664-1_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cryopreservation is a technique that can keep sperm alive indefinitely, enabling the conservation of male fertility. It involves the cooling of semen samples and their storage at -196 °C in liquid nitrogen. At this temperature all metabolic processes are arrested. Sperm cryopreservation is of fundamental importance for patients undergoing medical or surgical treatments that could induce sterility, such as cancer patients about to undergo genotoxic chemotherapy or radiotherapy, as it offers these patients not only the hope of future fertility but also psychological support in dealing with the various stages of the treatment protocols.Despite its importance for assisted reproduction technology (ART) and its success in terms of babies born, this procedure can cause cell damage and impaired sperm function. Various studies have evaluated the impact of cryopreservation on chromatin structure, albeit with contradictory results. Some, but not all, authors found significant sperm DNA damage after cryopreservation. However, studies attempting to explain the mechanisms involved in the aetiology of cryopreservation-induced DNA damage are still limited. Some reported an increase in sperm with activated caspases after cryopreservation, while others found an increase in the percentage of oxidative DNA damage. There is still little and contradictory information on the mechanism of the generation of DNA fragmentation after cryopreservation. A number of defensive strategies against cryoinjuries have been proposed in the last decade. Most studies focused on supplementing cryoprotectant medium with various antioxidant molecules, all aimed at minimising oxidative damage and thus improving sperm recovery. Despite the promising results, identification of the ideal antioxidant treatment method is still hampered by the heterogeneity of the studies, which describe the use of different antioxidant regimens at different concentrations or in different combinations. For this reason, additional studies are needed to further investigate the use of antioxidants, individually and in combination, in the cryopreservation of human sperm, to determine the most beneficial conditions for optimal sperm recovery and preservation of fertility.
Collapse
|
20
|
Shokri S, Ebrahimi SM, Ziaeipour S, Nejatbakhsh R. Effect of insulin on functional parameters of human cryopreserved sperms. Cryobiology 2019; 87:68-73. [DOI: 10.1016/j.cryobiol.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 02/04/2023]
|
21
|
Human Semen Samples with High Antioxidant Reservoir May Exhibit Lower Post-Cryopreservation Recovery of Sperm Motility. Biomolecules 2019; 9:biom9030111. [PMID: 30893949 PMCID: PMC6468513 DOI: 10.3390/biom9030111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Cryopreservation-thawing of human semen was found to reduce the level of antioxidant activity surrounding the sperm, which may negatively affect post-cryopreservation (post-thaw) recovery of sperm motility. Therefore, the current manufactured cryoprotectant media have been supplemented with certain antioxidants to preserve the loss in seminal antioxidant activity. In this study, we aimed to explore the correlation between total antioxidant capacity (TAC) of human semen samples before cryopreservation and the post-thaw recovery of sperm motility. Normal semen specimens (n = 77) were recruited in this study. Sperm motility was measured for each semen sample before and after cryopreservation and the post-thaw recovery of sperm motility was calculated. Seminal TAC was measured spectrophotometrically before cryopreservation for each semen sample using the sensitive cupric ion-reducing antioxidant capacity (CUPRAC) method. The results from this study showed that the post-thaw recovery of sperm motility is negatively correlated (p = 0.0404, p = 0.0402) with the absorbance at 450 nm and the values of seminal TAC in terms of µM Trolox equivalents, as evaluated by CUPRAC, respectively. In conclusion, the total antioxidant reservoir in each ejaculated semen specimen could be a factor in determining the post-thaw recovery of sperm motility toward lower recovery for semen specimens of high antioxidant content.
Collapse
|
22
|
Liu W, Yang T, Xu Z, Xu B, Deng Y. Methyl-mercury induces apoptosis through ROS-mediated endoplasmic reticulum stress and mitochondrial apoptosis pathways activation in rat cortical neurons. Free Radic Res 2018; 53:26-44. [DOI: 10.1080/10715762.2018.1546852] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Tianyao Yang
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
23
|
Shi X, Hu H, Ji G, Zhang J, Liu R, Zhang H, Li M. Protective Effect of Sucrose and Antioxidants on Cryopreservation of Sperm Motility and DNA Integrity in C57BL/6 Mice. Biopreserv Biobank 2018; 16:444-450. [DOI: 10.1089/bio.2018.0037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Xiaowei Shi
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Huanhuan Hu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Guojie Ji
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Jing Zhang
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Rui Liu
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Han Zhang
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Mingwen Li
- Key Laboratory of Fertility Preservation, School of Life Sciences and Technologies, Sanquan College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
24
|
Hezavehei M, Sharafi M, Kouchesfahani HM, Henkel R, Agarwal A, Esmaeili V, Shahverdi A. Sperm cryopreservation: A review on current molecular cryobiology and advanced approaches. Reprod Biomed Online 2018; 37:327-339. [PMID: 30143329 DOI: 10.1016/j.rbmo.2018.05.012] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022]
Abstract
The cryopreservation of spermatozoa was introduced in the 1960s as a route to fertility preservation. Despite the extensive progress that has been made in this field, the biological and biochemical mechanisms involved in cryopreservation have not been thoroughly elucidated to date. Various factors during the freezing process, including sudden temperature changes, ice formation and osmotic stress, have been proposed as reasons for poor sperm quality post-thaw. Little is known regarding the new aspects of sperm cryobiology, such as epigenetic and proteomic modulation of sperm and trans-generational effects of sperm freezing. This article reviews recent reports on molecular and cellular modifications of spermatozoa during cryopreservation in order to collate the existing understanding in this field. The aim is to discuss current freezing techniques and novel strategies that have been developed for sperm protection against cryo-damage, as well as evaluating the probable effects of sperm freezing on offspring health.
Collapse
Affiliation(s)
- Maryam Hezavehei
- Department of EmbryologyReproductive Biomedicine Research CentreRoyan Institute for Reproductive BiomedicineACECRTehranIran; Department of Animal BiologyFaculty of Biological SciencesKharazmi UniversityTehranIran
| | - Mohsen Sharafi
- Department of Poultry ScienceFaculty of AgricultureTarbiat Modares UniversityTehranIran.
| | | | - Ralf Henkel
- American Centre for Reproductive MedicineCleveland ClinicClevelandUSA
| | - Ashok Agarwal
- Department of Medical BioscienceUniversity of the Western CapeBellvilleSouth Africa
| | - Vahid Esmaeili
- Department of EmbryologyReproductive Biomedicine Research CentreRoyan Institute for Reproductive BiomedicineACECRTehranIran
| | - Abdolhossein Shahverdi
- Department of EmbryologyReproductive Biomedicine Research CentreRoyan Institute for Reproductive BiomedicineACECRTehranIran.
| |
Collapse
|
25
|
Ferreira G, Costa C, Bassaizteguy V, Santos M, Cardozo R, Montes J, Settineri R, Nicolson GL. Incubation of human sperm with micelles made from glycerophospholipid mixtures increases sperm motility and resistance to oxidative stress. PLoS One 2018; 13:e0197897. [PMID: 29856778 PMCID: PMC5984032 DOI: 10.1371/journal.pone.0197897] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/10/2018] [Indexed: 12/31/2022] Open
Abstract
Membrane integrity is essential in maintaining sperm viability, signaling, and motility, which are essential for fertilization. Sperm are highly susceptible to oxidative stress, as they are rich in sensitive polyunsaturated fatty acids (PUFA), and are unable to synthesize and repair many essential membrane constituents. Because of this, sperm cellular membranes are important targets of this process. Membrane Lipid Replacement (MLR) with glycerophospholipid mixtures (GPL) has been shown to ameliorate oxidative stress in cells, restore their cellular membranes, and prevent loss of function. Therefore, we tested the effects of MLR on sperm by tracking and monitoring GPL incorporation into their membrane systems and studying their effects on sperm motility and viability under different experimental conditions. Incubation of sperm with mixtures of exogenous, unoxidized GPL results in their incorporation into sperm membranes, as shown by the use of fluorescent dyes attached to GPL. The percent overall (total) sperm motility was increased from 52±2.5% to 68±1.34% after adding GPL to the incubation media, and overall sperm motility was recovered from 7±2% after H2O2 treatment to 58±2.5%)(n = 8, p<0.01) by the incorporation of GPL into sperm membranes. When sperm were exposed to H2O2, the mitochondrial inner membrane potential (MIMP), monitored using the MIMP tracker dye JC-1 in flow cytometry, diminished, whereas the addition of GPL prevented the decrease in MIMP. Confocal microscopy with Rhodamine-123 and JC-1 confirmed the mitochondrial localization of the dyes. We conclude that incubation of human sperm with glycerolphospholipids into the membranes of sperm improves sperm viability, motility, and resistance to oxidizing agents like H2O2. This suggests that human sperm might be useful to test innovative new treatments like MLR, since such treatments could improve fertility when it is adversely affected by increased oxidative stress.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Carlos Costa
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Verónica Bassaizteguy
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Marcelo Santos
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Romina Cardozo
- Departamento de Biofísica, Laboratorio de Canales Iónicos y Señalización Celular, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | | | - Robert Settineri
- Sierra Productions Research, LLC, Irvine, California, United States of America
| | - Garth L. Nicolson
- Dept. of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California, United States of America
| |
Collapse
|
26
|
He Y, Li H, Wang K, Zhang Y, Zhao X. Loss of protein kinase 2 subunit alpha 2 (CK2α’) effect ram sperm function after freezing and thawing process. Anim Reprod Sci 2017; 181:9-15. [DOI: 10.1016/j.anireprosci.2017.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 11/25/2022]
|
27
|
Amidi F, Pazhohan A, Shabani Nashtaei M, Khodarahmian M, Nekoonam S. The role of antioxidants in sperm freezing: a review. Cell Tissue Bank 2016; 17:745-756. [DOI: 10.1007/s10561-016-9566-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022]
|