1
|
Murray A, Kilbride P, Gibson MI. Trehalose in cryopreservation. Applications, mechanisms and intracellular delivery opportunities. RSC Med Chem 2024; 15:2980-2995. [PMID: 39309363 PMCID: PMC11411628 DOI: 10.1039/d4md00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/08/2024] [Indexed: 09/25/2024] Open
Abstract
Cryopreservation is crucial to fields including immune and stem cell therapies, reproductive technology, blood banking, regenerative medicine and across all biotechnology. During cryopreservation, cryoprotectants are essential to protect cells from the damage caused by exposure to freezing temperatures. The most common penetrating cryoprotectants, such as DMSO and glycerol do not give full recovery and have a cytotoxicity limit on the concentration which can be applied. The non-reducing disaccharide trehalose has been widely explored and used to supplement these, inspired by its use in nature to aid survival at extreme temperatures and/or desiccation. However, trehalose has challenges to its use, particular its low membrane permeability, and how its protective role compares to other sugars. Here we review the application of trehalose and its reported benefit and seek to show where chemical tools can improve its function. In particular, we highlight emerging chemical methods to deliver (as cargo, or via selective permeation) into the intracellular space. This includes encapsulation, cell penetrating peptides or (selective) modification of hydroxyls on trehalose.
Collapse
Affiliation(s)
- Alex Murray
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
| | | | - Matthew I Gibson
- Department of Chemistry, University of Warwick CV4 7AL UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick CV4 7AL UK
- Asymptote, Cytiva Chivers Way Cambridge CB24 9BZ USA
- Department of Chemistry, University of Manchester Oxford Road Manchester M13 9PL UK
- Manchester Institute of Biotechnology, University of Manchester 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|
2
|
Pupyshev AB, Klyushnik TP, Akopyan AA, Singh SK, Tikhonova MA. Disaccharide Trehalose in Experimental Therapies for Neurodegenerative Disorders: Molecular Targets and Translational Potential. Pharmacol Res 2022; 183:106373. [PMID: 35907433 DOI: 10.1016/j.phrs.2022.106373] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Induction of autophagy is a prospective approach to the treatment of neurodegeneration. In the recent decade, trehalose attracted special attention. It is an autophagy inducer with negligible adverse effects and is approved for use in humans according to FDA requirements. Trehalose has a therapeutic effect in various experimental models of diseases. This glucose disaccharide with a flexible α-1-1'-glycosidic bond has unique properties: induction of mTOR-independent autophagy (with kinase AMPK as the main target) and a chaperone-like effect on proteins imparting them natural spatial structure. Thus, it can reduce the accumulation of neurotoxic aberrant/misfolded proteins. Trehalose has an anti-inflammatory effect and inhibits detrimental oxidative stress partially owing to the enhancement of endogenous antioxidant defense represented by the Nrf2 protein. The disaccharide activates lysosome and autophagosome biogenesis pathways through the protein factors TFEB and FOXO1. Here we review various mechanisms of the neuroprotective action of trehalose and touch on the possibility of pleiotropic effects. Current knowledge about specific features of trehalose pharmacodynamics is discussed. The neuroprotective effects of trehalose in animal models of major neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases are examined too. Attention is given to translational transition to clinical trials of this drug, especially oral and parenteral routes of administration. Besides, the possibility of enhancing the therapeutic benefit via a combination of mTOR-dependent and mTOR-independent autophagy inducers is analyzed. In general, trehalose appears to be a promising multitarget tool for the inhibition of experimental neurodegeneration and requires thorough investigation of its clinical capabilities.
Collapse
Affiliation(s)
- Alexander B Pupyshev
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Tatyana P Klyushnik
- Mental Health Research Center, Kashirskoye shosse 34, Moscow 115522, Russia.
| | - Anna A Akopyan
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| | - Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Krishna Bhawan, 594 Kha/123, Shahinoor Colony, Nilmatha, Uttar Pradesh, Lucknow 226002, India.
| | - Maria A Tikhonova
- Scientific Research Institute of Neurosciences and Medicine (SRINM); Timakova Str. 4, Novosibirsk 630117, Russia.
| |
Collapse
|
3
|
Artificial cells for the treatment of liver diseases. Acta Biomater 2021; 130:98-114. [PMID: 34126265 DOI: 10.1016/j.actbio.2021.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/06/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Liver diseases have become an increasing health burden and account for over 2 million deaths every year globally. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they also suffer limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. Artificial cells have demonstrated advantages in long-term storage, targeting capability, and tuneable features. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment. First, the design of artificial cells and their biomimicking functions are summarized. Then, systems that mimic cell surface properties are introduced with two concepts highlighted: cell membrane-coated artificial cells and synthetic lipid-based artificial cells. Next, cell microencapsulation strategy is summarized and discussed. Finally, challenges and future perspectives of artificial cells are outlined. STATEMENT OF SIGNIFICANCE: Liver diseases have become an increasing health burden. Standard therapies including liver transplant and cell therapy offer a promising treatment for liver diseases, but they have limitations such as adverse immune reactions and lack of long-term efficacy. Artificial cells that mimic certain functions of a living cell have emerged as a new strategy to overcome some of the challenges that liver cell therapy faces at present. This article provides an overview of the recent progress in developing artificial cells and their potential applications in liver disease treatment, including the design of artificial cells and their biomimicking functions, two systems that mimic cell surface properties (cell membrane-coated artificial cells and synthetic lipid-based artificial cells), and cell microencapsulation strategy. We also outline the challenges and future perspectives of artificial cells.
Collapse
|
4
|
Creation of a novel lipid-trehalose derivative showing positive interaction with the cell membrane and verification of its cytoprotective effect during cryopreservation. J Biosci Bioeng 2021; 132:71-80. [PMID: 33895082 DOI: 10.1016/j.jbiosc.2021.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022]
Abstract
Cryopreservation is important for enabling long-term cell preservation. However, physical damage due to ice crystal formation and membrane permeation by dimethyl sulfoxide (DMSO) severely affects cryopreserved cell viability. To ensure cell survival and functional maintenance after cryopreservation, it is important to protect the cell membrane, the most vulnerable cell component, from freeze-thaw damage. This study aimed to create a glycolipid derivative having a positive interaction with the cell membrane and cytoprotective effects. As a result, we synthesized a novel trehalose derivative, oleyl-trehalose (Oleyl-Treh), composed of trehalose and oleyl groups. Its use led to increased viable cell counts when used with DMSO in a non-cytotoxic concentration range (1.6 nM-16 μM). Oleyl-Treh significantly improved viability and liver-specific functions of hepatocytes after cryopreservation, including albumin secretion, ethoxyresorufin-O-deethylase activity (an indicator of cytochrome P450 family 1 subfamily A member 1 activity), and ammonia metabolism. Oleyl-Treh could localize trehalose to the cell membrane; furthermore, the oleyl group affected cell membrane fluidity and exerted cryoprotective effects. This novel cryoprotective agent, which shows a positive interaction with the cell membrane, provides a unique approach toward cell protection during cryopreservation.
Collapse
|
5
|
Chang T, Zhao G. Ice Inhibition for Cryopreservation: Materials, Strategies, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002425. [PMID: 33747720 PMCID: PMC7967093 DOI: 10.1002/advs.202002425] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/15/2020] [Indexed: 05/14/2023]
Abstract
Cryopreservation technology has developed into a fundamental and important supporting method for biomedical applications such as cell-based therapeutics, tissue engineering, assisted reproduction, and vaccine storage. The formation, growth, and recrystallization of ice crystals are the major limitations in cell/tissue/organ cryopreservation, and cause fatal cryoinjury to cryopreserved biological samples. Flourishing anti-icing materials and strategies can effectively regulate and suppress ice crystals, thus reducing ice damage and promoting cryopreservation efficiency. This review first describes the basic ice cryodamage mechanisms in the cryopreservation process. The recent development of chemical ice-inhibition molecules, including cryoprotectant, antifreeze protein, synthetic polymer, nanomaterial, and hydrogel, and their applications in cryopreservation are summarized. The advanced engineering strategies, including trehalose delivery, cell encapsulation, and bioinspired structure design for ice inhibition, are further discussed. Furthermore, external physical field technologies used for inhibiting ice crystals in both the cooling and thawing processes are systematically reviewed. Finally, the current challenges and future perspectives in the field of ice inhibition for high-efficiency cryopreservation are proposed.
Collapse
Affiliation(s)
- Tie Chang
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Gang Zhao
- Department of Electronic Science and TechnologyUniversity of Science and Technology of ChinaHefeiAnhui230027China
| |
Collapse
|
6
|
Forouzanfar F, Guest PC, Jamialahmadi T, Sahebkar A. Hepatoprotective Effect of Trehalose: Insight into Its Mechanisms of Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1328:489-500. [PMID: 34981500 DOI: 10.1007/978-3-030-73234-9_34] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Yoshida K, Ono F, Chouno T, Perocho BR, Ikegami Y, Shirakigawa N, Ijima H. Cryoprotective enhancing effect of very low concentration of trehalose on the functions of primary rat hepatocytes. Regen Ther 2020; 15:173-179. [PMID: 33426216 PMCID: PMC7770350 DOI: 10.1016/j.reth.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 11/12/2022] Open
Abstract
Introduction Cells have various applications in biomedical research. Cryopreservation is a cell-preservation technique that provides cells for such applications. After cryopreservation, sensitive cells, such as primary hepatocytes, suffer from low viability due to the physical damage caused by ice crystals, highlighting the need for better methods of cryopreservation to improve cell viability. Given the importance of effectively suppressing ice crystal formation to protect cellular structure, trehalose has attracted attention as cryoprotectant based on its ability to inhibit ice crystal formation; however, trehalose induces osmotic stress. Therefore, to establish a cell-cryopreservation technique, it is necessary to provide an optimal balance between the protective and damaging effects of trehalose. Methods In this study, we evaluated the effects of osmotic stress and ice crystal formation on the viability and function of primary rat hepatocytes at wide range of trehalose concentration. Results There was no osmotic stress at very low concentrations (2.6 μM) of trehalose, and 2.6 μM trehalose drives the formation of finer ice crystals, which are less damaging to the cell membrane. Furthermore, we found that the number of viable hepatocytes after cryopreservation were 70% higher under the 2.6 μM trehalose-supplemented conditions than under the dimethyl sulfoxide-supplemented conditions. Moreover, non-cryopreserved cells and cells cryopreserved with trehalose showed comparable intracellular dehydrogenase activity. Conclusions We showed that trehalose at very low concentrations (2.6 μM) improved dramatically viability and liver function of hepatocyte after cryopreservation. Very low concentration of trehalose could suppress ice crystal formation and protect cell structure. There was a correlation between osmotic pressure of trehalose and hepatocytes viability. Very low concentration of trehalose improved viability and liver function of hepatocyte after cryopreservation.
Collapse
Affiliation(s)
- Kozue Yoshida
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| | - Fumiyasu Ono
- Global Innovation Center, Kyushu University, Fukuoka Industry-Academia Symphonicity 4-1, Kyudai-Shinmachi, Nishi-ku, Fukuoka-city, Fukuoka 819-0388, Japan
| | - Takehiro Chouno
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| | - Bual Ronald Perocho
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan.,Department of Chemical Engineering & Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, A. Bonifacio Avenue, Tibanga, Iligan City 9200 Philippines
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| | - Nana Shirakigawa
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka-city, Fukuoka 819-0395, Japan
| |
Collapse
|
8
|
Awan M, Buriak I, Fleck R, Fuller B, Goltsev A, Kerby J, Lowdell M, Mericka P, Petrenko A, Petrenko Y, Rogulska O, Stolzing A, Stacey GN. Dimethyl sulfoxide: a central player since the dawn of cryobiology, is efficacy balanced by toxicity? Regen Med 2020; 15:1463-1491. [PMID: 32342730 DOI: 10.2217/rme-2019-0145] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dimethyl sulfoxide (DMSO) is the cryoprotectant of choice for most animal cell systems since the early history of cryopreservation. It has been used for decades in many thousands of cell transplants. These treatments would not have taken place without suitable sources of DMSO that enabled stable and safe storage of bone marrow and blood cells until needed for transfusion. Nevertheless, its effects on cell biology and apparent toxicity in patients have been an ongoing topic of debate, driving the search for less cytotoxic cryoprotectants. This review seeks to place the toxicity of DMSO in context of its effectiveness. It will also consider means of reducing its toxic effects, the alternatives to its use and their readiness for active use in clinical settings.
Collapse
Affiliation(s)
- Maooz Awan
- Institute for Liver & Digestive Health, UCL Division of Medicine, Royal Free Hospital, UCL, London, NW3 2PF, UK
| | - Iryna Buriak
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Roland Fleck
- Centre for Ultrastructural Imaging, Kings College London, London, SE1 1UL, UK
| | - Barry Fuller
- Department of Surgical Biotechnology, UCL Division of Surgery, Royal Free Hospital, UCL, London, NW3 2QG, UK
| | - Anatoliy Goltsev
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Julie Kerby
- Cell & Gene Therapy Catapult, 12th Floor Tower Wing, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Mark Lowdell
- Centre for Cell, Gene & Tissue Therapy, Royal Free London NHS FT & UCL, London, NW3 2PF, UK
| | - Pavel Mericka
- Tissue Bank, University Hospital Hradec Kralové, Czech Republic
| | - Alexander Petrenko
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Yuri Petrenko
- Department of Biomaterials & Biophysical Methods, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olena Rogulska
- Institute for Problems of Cryobiology & Cryomedicine, National Academy of Sciences of Ukraine, Pereyaslavska 23, 61016, Kharkiv
| | - Alexandra Stolzing
- University of Loughborough, Centre for Biological Engineering, Loughborough University, Holywell Park, Loughborough, UK
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Hertfordshire, SG8 8HZ
- Beijing Stem Cell Bank, Institute of Zoology, Chinese Academy of Sciences, 25–2 Beishuan West, Haidan District, 100190 Beijing, China
- Institute of Stem Cells & Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Yu G, Li R, Hubel A. Interfacial Interactions of Sucrose during Cryopreservation Detected by Raman Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7388-7395. [PMID: 30398347 PMCID: PMC8023323 DOI: 10.1021/acs.langmuir.8b01616] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is considerable interest in the use of sugars to preserve cells. In this study, low temperature Raman spectroscopy was used to characterize the behaviors of sucrose during freezing. The hydrogen bond network between sucrose and water was investigated at -10 °C and -50 °C, and the Raman spectra showed strengthened sucrose-water and sucrose-sucrose hydrogen bonds in more concentrated sucrose solution at -50 °C. The concentration of sucrose at the ice interface increased as the ice density decreased, and it plateaued across a narrow channel of nonfrozen sucrose solution before it decreased toward the next ice interface. The biophysical environment at interfaces between the cell and nonfrozen sucrose solution and between the cell and extracellular ice was also studied. A thin layer of nonfrozen sucrose solution was observed at the interface between the cell and extracellular ice. The extracellular concentration of sucrose at this interface was generally lower than that of bulk nonfrozen sucrose solution. The variation of sucrose concentration outside different regions of the cell membrane suggests that the chemical environment around the cell during freezing may be more heterogeneous than previously thought. Raman spectra and images also showed colocalization of nonfrozen sucrose solution and the cell, which implied that direct interaction between sucrose and cell membrane might be responsible for protective properties of sucrose. Sucrose was predominantly distributed outside the cell, and the observation of strong partitioning of sucrose across the cell membrane is consistent with substantial cell dehydration detected by the Raman spectra. This work enhances our understanding of the behaviors of sucrose solution and its interactions with cells at low temperature and can improve cryopreservation protocols of cells frozen in a sucrose-based media.
Collapse
Affiliation(s)
- Guanglin Yu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rui Li
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Allison Hubel
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Effects of four disaccharides on nucleation and growth of ice crystals in concentrated glycerol aqueous solution. Cryobiology 2018; 86:47-51. [PMID: 30597125 DOI: 10.1016/j.cryobiol.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/10/2018] [Accepted: 12/27/2018] [Indexed: 11/22/2022]
Abstract
Devitrification has been determined to be one of the major causes of cell death in cryopreservation by vitrification method. Reliable quantification of the nucleation and growth of ice crystals of devitrification is of great importance for the optimization of the vitrification solutions. In the present study, cryomicroscopy was used to investigate the nucleation and growth of ice crystals in concentrated glycerol aqueous solution (60 wt%) in the presence of sucrose, trehalose, maltose and lactose. Results showed that sucrose rather than trehalose seems to be the most effective one to inhibit the nucleation and ice growth, despite the excellent inhibitory ability of trehalose on ice growth that has been confirmed in many researches. Hence, for ice inhibition, sucrose was a more effective disaccharide additive to suppress nucleation and growth of ice crystals that occurred during devitrification in concentrated glycerol solutions.
Collapse
|
11
|
Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front Pharmacol 2018; 9:1199. [PMID: 30420804 PMCID: PMC6215815 DOI: 10.3389/fphar.2018.01199] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs)-based therapeutics are based on the premise that EVs shed by stem cells exert similar therapeutic effects and these have been proposed as an alternative to cell therapies. EV-mediated delivery is an effective and efficient system of cell-to-cell communication which can confer therapeutic benefits to their target cells. EVs have been shown to promote tissue repair and regeneration in various animal models such as, wound healing, cardiac ischemia, diabetes, lung fibrosis, kidney injury, and many others. Given the unique attributes of EVs, considerable thought must be given to the preservation, formulation and cold chain strategies in order to effectively translate exciting preclinical observations to clinical and commercial success. This review summarizes current understanding around EV preservation, challenges in maintaining EV quality, and also bioengineering advances aimed at enhancing the long-term stability of EVs.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jean L. Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
12
|
Gurruchaga H, Saenz Del Burgo L, Orive G, Hernandez RM, Ciriza J, Pedraz JL. Low molecular-weight hyaluronan as a cryoprotectant for the storage of microencapsulated cells. Int J Pharm 2018; 548:206-216. [PMID: 29969709 DOI: 10.1016/j.ijpharm.2018.06.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 10/28/2022]
Abstract
The low-temperature storage of therapeutic cell-based products plays a crucial role in their clinical translation for the treatment of diverse diseases. Although dimethylsulfoxide (DMSO) is the most successful cryoprotectant in slow freezing of microencapsulated cells, it has shown adverse effects after cryopreserved cell-based products implantation. Therefore, the search of alternative non-toxic cryoprotectants for encapsulated cells is continuously investigated to move from bench to the clinic. In this work, we investigated the low molecular-weight hyaluronan (low MW-HA), a natural non-toxic and non-sulfated glycosaminoglycan, as an alternative non-permeant cryoprotectant for the slow freezing cryopreservation of encapsulated cells. Cryopreservation with low MW-HA provided similar metabolic activity, cell dead and early apoptotic cell percentage and membrane integrity after thawing, than encapsulated cells stored with either DMSO 10% or Cryostor 10. However, the beneficial outcomes with low MW-HA were not comparable to DMSO with some encapsulated cell types, such as the human insulin secreting cell line, 1.1B4, maybe explained by the different expression of the CD44 surface receptor. Altogether, we can conclude that low MW-HA represents a non-toxic natural alternative cryoprotectant to DMSO for the cryopreservation of encapsulated cells.
Collapse
Affiliation(s)
- H Gurruchaga
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - R M Hernandez
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
13
|
Cardoso LMF, Alves LA. Comparative Physiology as an Idea Factory for Preserving and Freezing Organs and Cells for Transplantation. Bioessays 2018; 40:e1800144. [PMID: 30168861 DOI: 10.1002/bies.201800144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Liana M F Cardoso
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| | - Luiz A Alves
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21045-900, Brazil
| |
Collapse
|
14
|
Shi M, Feng S, Zhang X, Ji C, Xu F, Lu TJ. Droplet based vitrification for cell aggregates: Numerical analysis. J Mech Behav Biomed Mater 2018; 82:383-393. [PMID: 29656233 DOI: 10.1016/j.jmbbm.2018.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/06/2018] [Accepted: 03/21/2018] [Indexed: 10/17/2022]
Abstract
Cell aggregates represent the main format of cells existing in vivo and have been widely used as tissue and disease models in vitro. Nevertheless, the preservation of cell aggregates while maintaining their functionalities for off-the-shelf applications is still challenging. Among various preservation methods, droplet-based vitrification exhibits superior advantages for the cryopreservation of cell aggregates; however, the physical mechanisms underlying droplet-based vitrification of cell aggregate using this method remain elusive. To address this issue, we proposed a voronoi model to construct two-dimensional geometric morphologies of cell aggregates and established a coupled physical model to describe the diffusion, heat transfer and crystallization processes during vitrification. Based on these models, we performed a numerical study on the variation and distribution of cryoprotectant (CPA) concentration, temperature and crystallization in cell aggregates during droplet-based vitrification. The results show that although cell membrane is not an obvious barrier in heat transfer, it affects the diffusion of CPA remarkably as a biologic film and thus the following crystallization in cell aggregates. The effective protection of CPA during vitrification occurs during the initial stage of CPA diffusion, thus a longer CPA loading time does not necessarily lead to significant decrease in crystallization, but rather may induce more toxicity to cells.
Collapse
Affiliation(s)
- Meng Shi
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shangsheng Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Mechanical Structure Strength and Vibration, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaohui Zhang
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Changchun Ji
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; State Key Laboratory of Mechanical Structure Strength and Vibration, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, PR China; MOE Key Laboratory of Multifunctional Structures and Materials, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|