1
|
Burgstaller SM, Auer KE, Rülicke T. A simple method for repeated in vivo sperm collection from laboratory mice. J Assist Reprod Genet 2024; 41:2537-2546. [PMID: 39017771 PMCID: PMC11405545 DOI: 10.1007/s10815-024-03201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE Mouse spermatozoa for archiving laboratory mice or for in vitro fertilization (IVF) are routinely obtained from the cauda epididymis of adult males sacrificed for this purpose. To avoid the death of the donor, we tested whether a precisely timed interruption of the mating act could be used for repeated sperm collection from laboratory mice. METHODS Sperm donors (B6D2F1) were mated with a receptive female, and mating behavior was observed. The stud was separated from the female 1-2 s after the onset of the ejaculatory shudder. The ejected copulatory plug with the yellowish viscous ejaculate was carefully removed from the penile cup. RESULTS A total of 80 ejaculates were successfully obtained from 100 ejaculations. The latency to first mount was 1.1 ± 1.1 min (mean ± SD) and to ejaculation 8.1 ± 4.7 min. The average number of mounts to ejaculation was 10.5 ± 5.8, and the mean number of spermatozoa per collected ejaculate was 1.86 ± 1.05 × 106. An average fertilization rate of 76% was observed after IVF. CONCLUSIONS Separating the stud from the female just before ejaculation is feasible, easy to learn, and requires no special equipment. The sperm count of collected ejaculates is lower than natural ejaculations, but higher than previous in vivo sperm collection methods achieved. We recommend this simple sperm collection method in mice, especially when the donor cannot be sacrificed and/or repeated sperm collection from the same animal is required for experimental purposes.
Collapse
Affiliation(s)
- Sophie M Burgstaller
- Department of Biomedical Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin E Auer
- Department of Biomedical Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria.
| |
Collapse
|
2
|
He M, Sun L, Xu J, Wu C, Zhang S, Gao J, Zhang D, Gan Y, Bian Y, Wei J, Zhang W, Zhang W, Han X, Dai J. Evaluation of Dry Ice for Short-Term Storage and Transportation of Frozen Boar Semen. Animals (Basel) 2024; 14:1422. [PMID: 38791640 PMCID: PMC11117202 DOI: 10.3390/ani14101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
To address the safety problems posed by the transportation of boar semen using LN, this study was conducted on the short-term storage of frozen boar semen in dry ice (-79 °C). Boar semen frozen in LN was transferred to dry ice, kept for 1 day, 3 days, 5 days, 7 days, or 8 days, and then moved back to LN. The quality of frozen semen stored in LN or dry ice was determined to evaluate the feasibility of short-distance transportation with dry ice. The results showed that 60 °C for 8 s was the best condition for thawing frozen semen stored in dry ice. No significant differences in spermatozoa motility, plasma membrane integrity, or acrosome integrity were observed in semen after short-term storage in dry ice compared to LN (p > 0.05). There were no significant changes in antioxidant properties between storage groups either (p > 0.05). In conclusion, dry ice could be used as a cold source for the short-term transportation of frozen boar semen for at least 7 days, without affecting sperm motility, morphological integrity, or antioxidant indices.
Collapse
Affiliation(s)
- Mengqian He
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.X.); (C.W.); (S.Z.); (J.G.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| | - Lingwei Sun
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.X.); (C.W.); (S.Z.); (J.G.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| | - Jiehuan Xu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.X.); (C.W.); (S.Z.); (J.G.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| | - Caifeng Wu
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.X.); (C.W.); (S.Z.); (J.G.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| | - Shushan Zhang
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.X.); (C.W.); (S.Z.); (J.G.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| | - Jun Gao
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.X.); (C.W.); (S.Z.); (J.G.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
| | - Defu Zhang
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.X.); (C.W.); (S.Z.); (J.G.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| | - Yeqing Gan
- Shanghai Jiading Municipal Centre for Disease Control and Prevention, Shanghai 201899, China; (Y.G.); (Y.B.); (J.W.)
| | - Yi Bian
- Shanghai Jiading Municipal Centre for Disease Control and Prevention, Shanghai 201899, China; (Y.G.); (Y.B.); (J.W.)
| | - Jinliang Wei
- Shanghai Jiading Municipal Centre for Disease Control and Prevention, Shanghai 201899, China; (Y.G.); (Y.B.); (J.W.)
| | - Weijian Zhang
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai 200051, China; (W.Z.); (W.Z.)
| | - Wengang Zhang
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai 200051, China; (W.Z.); (W.Z.)
| | - Xuejun Han
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| | - Jianjun Dai
- Shanghai Municipal Key Laboratory of Agri-Genetics and Breeding, Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (L.S.); (J.X.); (C.W.); (S.Z.); (J.G.); (D.Z.)
- Key Laboratory of Livestock and Poultry Resources (Pig) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China;
| |
Collapse
|
3
|
Anastas ZM, Byrne PG, O'Brien JK, Hobbs RJ, Upton R, Silla AJ. The Increasing Role of Short-Term Sperm Storage and Cryopreservation in Conserving Threatened Amphibian Species. Animals (Basel) 2023; 13:2094. [PMID: 37443891 DOI: 10.3390/ani13132094] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Multidisciplinary approaches to conserve threatened species are required to curb biodiversity loss. Globally, amphibians are facing the most severe declines of any vertebrate class. In response, conservation breeding programs have been established in a growing number of amphibian species as a safeguard against further extinction. One of the main challenges to the long-term success of conservation breeding programs is the maintenance of genetic diversity, which, if lost, poses threats to the viability and adaptive potential of at-risk populations. Integrating reproductive technologies into conservation breeding programs can greatly assist genetic management and facilitate genetic exchange between captive and wild populations, as well as reinvigorate genetic diversity from expired genotypes. The generation of offspring produced via assisted fertilisation using frozen-thawed sperm has been achieved in a small but growing number of amphibian species and is poised to be a valuable tool for the genetic management of many more threatened species globally. This review discusses the role of sperm storage in amphibian conservation, presents the state of current technologies for the short-term cold storage and cryopreservation of amphibian sperm, and discusses the generation of cryo-derived offspring.
Collapse
Affiliation(s)
- Zara M Anastas
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Phillip G Byrne
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Justine K O'Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rebecca J Hobbs
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW 2088, Australia
| | - Rose Upton
- Conservation Science Research Group, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Aimee J Silla
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Van NT, Kim SV. Improved approach for the cryopreservation of mouse sperm by combining monothioglycerol and l-glutamine. Cryobiology 2023; 111:142-145. [PMID: 37001845 PMCID: PMC10247421 DOI: 10.1016/j.cryobiol.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/07/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
The CryoPreservation Media (CPM) for mouse sperm using raffinose and skim milk have been improved by adding either monothioglycerol (MTG) or l-glutamine to reduce the oxidative damage during sperm freezing and thawing. The CARD-CPM utilizing l-glutamine, but not MTG, has been widely used to meet the rising demand for cryopreservation of genetically modified mice, as the CARD method also improved sperm capacitation and in vitro fertilization (IVF). However, the viability of sperm frozen in the CARD-CPM is highly variable, indicating a room for improvement. To develop a more dependable technique for mouse sperm cryopreservation, we investigate whether combining MTG and l-glutamine in the CPM (MG-CPM) can produce a synergistic impact on sperm thawing and IVF rate. We found that MG-CPM reduced the incidence of infertility and increased the IVF success rate. Therefore, cryopreservation of mouse sperm in MG-CPM is a reliable method to ensure embryo generation from frozen sperm.
Collapse
Affiliation(s)
- Nguyen T Van
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, 19107, USA
| | - Sangwon V Kim
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA; Sidney Kimmel Cancer Center, Jefferson Health, Philadelphia, PA, 19107, USA.
| |
Collapse
|
5
|
Horvath-Pereira BDO, Almeida GHDR, da Silva Júnior LN, do Nascimento PG, Horvath Pereira BDO, Fireman JVBT, Pereira MLDRF, Carreira ACO, Miglino MA. Biomaterials for Testicular Bioengineering: How far have we come and where do we have to go? Front Endocrinol (Lausanne) 2023; 14:1085872. [PMID: 37008920 PMCID: PMC10060902 DOI: 10.3389/fendo.2023.1085872] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
Traditional therapeutic interventions aim to restore male fertile potential or preserve sperm viability in severe cases, such as semen cryopreservation, testicular tissue, germ cell transplantation and testicular graft. However, these techniques demonstrate several methodological, clinical, and biological limitations, that impact in their results. In this scenario, reproductive medicine has sought biotechnological alternatives applied for infertility treatment, or to improve gamete preservation and thus increase reproductive rates in vitro and in vivo. One of the main approaches employed is the biomimetic testicular tissue reconstruction, which uses tissue-engineering principles and methodologies. This strategy pursues to mimic the testicular microenvironment, simulating physiological conditions. Such approach allows male gametes maintenance in culture or produce viable grafts that can be transplanted and restore reproductive functions. In this context, the application of several biomaterials have been proposed to be used in artificial biological systems. From synthetic polymers to decellularized matrixes, each biomaterial has advantages and disadvantages regarding its application in cell culture and tissue reconstruction. Therefore, the present review aims to list the progress that has been made and the continued challenges facing testicular regenerative medicine and the preservation of male reproductive capacity, based on the development of tissue bioengineering approaches for testicular tissue microenvironment reconstruction.
Collapse
Affiliation(s)
| | | | | | - Pedro Gabriel do Nascimento
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Centre for Natural and Human Sciences, Federal University of ABC, São Paulo, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Production of mouse offspring from zygotes fertilized with freeze-dried spermatids. Sci Rep 2022; 12:18430. [PMID: 36319672 PMCID: PMC9626645 DOI: 10.1038/s41598-022-22850-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Mouse cloning by nuclear transfer using freeze-drying (FD) somatic cells is now possible, but the success rate is significantly lower than that of FD spermatozoa. Because spermatozoa, unlike somatic cells, are haploid cells with hardened nuclei due to protamine, the factors responsible for their tolerance to FD treatment remain unclear. In this study, we attempt to produce offspring from FD spermatid, a haploid sperm progenitor cell whose nuclei, like somatic cells, have not yet been replaced by protamine. We developed a method for collecting FD spermatids from testicular suspension. Despite the significantly lower success rate than that of FD spermatozoa, healthy offspring were obtained when FD spermatids were injected into oocytes. Offspring were also obtained from FD spermatids derived from immature male mice that had not yet produced spermatozoa. These results suggest that nuclear protaminization, rather than haploid nuclei, is one of the key processes responsible for tolerance to FD treatment.
Collapse
|
7
|
Sun Y, Li Y, Zong Y, Mehaisen GMK, Chen J. Poultry genetic heritage cryopreservation and reconstruction: advancement and future challenges. J Anim Sci Biotechnol 2022; 13:115. [PMID: 36210477 PMCID: PMC9549680 DOI: 10.1186/s40104-022-00768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
Poultry genetics resources, including commercial selected lines, indigenous breeds, and experimental lines, are now being irreversibly lost at an alarming rate due to multiple reasons, which further threats the future livelihood and academic purpose. Collections of germplasm may reduce the risk of catastrophic loss of genetic diversity by guaranteeing that a pool of genetic variability is available to ensure the reintroduction and replenishment of the genetic stocks. The setting up of biobanks for poultry is challenging because the high sensitiveness of spermatozoa to freezing–thawing process, inability to cryopreserve the egg or embryo, coupled with the females being heterogametic sex. The progress in cryobiology and biotechnologies have made possible the extension of the range of germplasm for poultry species available in cryobanks, including semen, primordial germ cells, somatic cells and gonads. In this review, we introduce the state-of-the-art technologies for avian genetic resource conservation and breed reconstruction, and discuss the potential challenges for future study and further extending of these technologies to ongoing and future conservation efforts.
Collapse
|
8
|
Zhang X, Hu ZT, Li Y, Li YX, Xian M, Guo SM, Hu JH. Effect of Astragalus polysaccharides on the cryopreservation of goat semen. Theriogenology 2022; 193:47-57. [DOI: 10.1016/j.theriogenology.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/05/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022]
|
9
|
Wakayama S, Ito D, Hayashi E, Ishiuchi T, Wakayama T. Healthy cloned offspring derived from freeze-dried somatic cells. Nat Commun 2022; 13:3666. [PMID: 35790715 PMCID: PMC9256722 DOI: 10.1038/s41467-022-31216-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Maintaining biodiversity is an essential task, but storing germ cells as genetic resources using liquid nitrogen is difficult, expensive, and easily disrupted during disasters. Our aim is to generate cloned mice from freeze-dried somatic cell nuclei, preserved at -30 °C for up to 9 months after freeze drying treatment. All somatic cells died after freeze drying, and nucleic DNA damage significantly increased. However, after nuclear transfer, we produced cloned blastocysts from freeze-dried somatic cells, and established nuclear transfer embryonic stem cell lines. Using these cells as nuclear donors for re-cloning, we obtained healthy cloned female and male mice with a success rate of 0.2-5.4%. Here, we show that freeze-dried somatic cells can produce healthy, fertile clones, suggesting that this technique may be important for the establishment of alternative, cheaper, and safer liquid nitrogen-free bio-banking solutions.
Collapse
Affiliation(s)
- Sayaka Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| | - Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Erika Hayashi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Takashi Ishiuchi
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu, 400-8510, Japan. .,Advanced Biotechnology Center, University of Yamanashi, Kofu, 400-8510, Japan.
| |
Collapse
|
10
|
Water structure in glycerol: Spectroscopic and computer simulation investigation of hydrogen bonding and water clustering. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
S. Aljaser F. Cryopreservation Methods and Frontiers in the Art of Freezing Life in Animal Models. Vet Med Sci 2022. [DOI: 10.5772/intechopen.101750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The development in cryobiology in animal breeding had revolutionized the field of reproductive medicine. The main objective to preserve animal germplasm stems from variety of reasons such as conservation of endangered animal species, animal diversity, and an increased demand of animal models and/or genetically modified animals for research involving animal and human diseases. Cryopreservation has emerged as promising technique for fertility preservation and assisted reproduction techniques (ART) for production of animal breeds and genetically engineered animal species for research. Slow rate freezing and rapid freezing/vitrification are the two main methods of cryopreservation. Slow freezing is characterized by the phase transition (liquid turning into solid) when reducing the temperature below freezing point. Vitrification, on the other hand, is a phenomenon in which liquid solidifies without the formation of ice crystals, thus the process is referred to as a glass transition or ice-free cryopreservation. The vitrification protocol applies high concentrations of cryoprotective agents (CPA) used to avoid cryoinjury. This chapter provides a brief overview of fundamentals of cryopreservation and established methods adopted in cryopreservation. Strategies involved in cryopreserving germ cells (sperm and egg freezing) are included in this chapter. Last section describes the frontiers and advancement of cryopreservation in some of the important animal models like rodents (mouse and rats) and in few large animals (sheep, cow etc).
Collapse
|
12
|
A simple and efficient cryopreservation method for mouse small intestinal and colon organoids for regenerative medicine. Biochem Biophys Res Commun 2022; 595:14-21. [DOI: 10.1016/j.bbrc.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/18/2022]
|
13
|
Infertility Treatment Now and in the Future. Obstet Gynecol Clin North Am 2021; 48:801-812. [PMID: 34756298 DOI: 10.1016/j.ogc.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Treatment of infertility has evolved as understanding of reproduction has improved. Fertility promoting surgery still is performed and recent advances have broken new ground. Hormonal treatments to correct gonadal dysfunction have been developed, but multiple gestation continues to be a significant complication. Assisted reproductive technologies have improved such that in vitro fertilization and its variants increasingly are used to treat nearly all causes of infertility. Advances in assisted reproduction are of 2 types: (1) incremental optimization of existing techniques and (2) development of new, disruptive technologies. Artificial intelligence and stem cell technologies are poised to have impact in the near future.
Collapse
|
14
|
Ito D, Wakayama S, Emura R, Ooga M, Wakayama T. Mailing viable mouse freeze-dried spermatozoa on postcards. iScience 2021; 24:102815. [PMID: 34471856 PMCID: PMC8390851 DOI: 10.1016/j.isci.2021.102815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 07/01/2021] [Indexed: 01/04/2023] Open
Abstract
Freeze-drying techniques allow the preservation of mammalian spermatozoa without using liquid nitrogen. However, the current method requires the use of glass ampoules, which are breakable, expensive, and bulky to store or transport. In this study, we evaluated whether mouse freeze-dried (FD) spermatozoa can be preserved and transported on thin materials. In this study, we demonstrated that FD sperm can be preserved in thin plastic sheets. Its DNA integrity was comparable to that of glass ampoule spermatozoa, and healthy offspring were obtained after preservation at -30°C for more than 3 months. We attached preserved FD sperm to postcards, and transported these to other laboratory inexpensively at room temperatures without any protection. This method will facilitate the preservation of thousands of mouse strains in a single card holder, promote collaboration between laboratories, conservation of genetic resources, and assisted reproductive technology.
Collapse
Affiliation(s)
- Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| | - Rina Emura
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| |
Collapse
|
15
|
Kaneko R, Kakinuma T, Sato S, Jinno-Oue A. Improvement of short straws for sperm cryopreservation: installing an air-permeable filter facilitates handling. J Reprod Dev 2021; 67:235-239. [PMID: 33853994 PMCID: PMC8238672 DOI: 10.1262/jrd.2021-019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Saving space for sperm cryopreservation would aid mouse genetics research. We previously developed the ST (sperm freezing in ShorT STraw to reduce STorage
space) method for cryopreserving mouse sperm in a smaller storage space than conventional methods. However, our ST method has two drawbacks: difficulties during
freeze-thaw procedures and the potential risk of sperm loss during storage. Here, we refine ST, terming the new method improved ST (iST). In iST, the straw has
an air-permeable filter and the straw container (2-ml cryotube) is endowed with air vents. As in our ST method, iST frozen-thawed sperm showed good performance
upon in vitro fertilization. Moreover, up to nine straws can be stored in one cryotube, occupying less storage space than conventional methods.
This method provides an easy and space-saving cryopreservation method for mouse sperm, and thus will be valuable for mouse genetics researchers.
Collapse
Affiliation(s)
- Ryosuke Kaneko
- KOKORO-Biology Group, Laboratories for Integrated Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan.,Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Toshie Kakinuma
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Sachiko Sato
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Atsushi Jinno-Oue
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| |
Collapse
|
16
|
Hart-Johnson S, Mankelow K. Archiving genetically altered animals: a review of cryopreservation and recovery methods for genome edited animals. Lab Anim 2021; 56:26-34. [PMID: 33847177 DOI: 10.1177/00236772211007306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the ever-expanding numbers of genetically altered (GA) animals created in this new age of CRISPR/Cas, tools for helping the management of this vast and valuable resource are essential. Cryopreservation of embryos and germplasm of GA animals has been a widely used tool for many years now, allowing for the archiving, distribution and colony management of stock. However, each year brings an array of advances, improving survival rates of embryos, success rates of in-vitro fertilisation and the ability to better share lines and refine the methods to preserve them. This article will focus on the mouse field, referencing the latest developments and assessing their efficacy and ease of implementation, with a brief note on other common genetically altered species (rat, zebrafish, Xenopus, avian species and non-human Primates).
Collapse
|
17
|
Abstract
Germplasm cryobanking of transgenic rodent models is a valuable tool for protecting important genotypes from genetic drift, genetic contamination, and loss of breeding colonies due to disease or catastrophic disasters to the housing facilities as well as avoiding stress associated with domestic and international live animal shipment. Furthermore, cryopreservation of germplasm enhances management efficiencies by saving animal room space, reducing workload for staff, reducing cost of maintaining live animals, reducing the number of animals used to maintain a breeding colony, and facilitating transportation of genetics by allowing distribution of frozen germplasm rather than live animals which also reduces the risk of transfer of pathogens between facilities. Thus, effective long-term preservation methods of mouse spermatozoa are critical for future reconstitution of scientifically important mouse strains used for biomedical research.
Collapse
Affiliation(s)
- Yuksel Agca
- College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| | - Cansu Agca
- College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
18
|
Starciuc T, Guinet Y, Hedoux A, Shalaev E. Water content thresholds in glycerol/water system: Low- and high-wavenumber Raman spectroscopy study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Takeo T, Nakao S, Nakagawa Y, Sztein JM, Nakagata N. Cryopreservation of mouse resources. Lab Anim Res 2020; 36:33. [PMID: 32963977 PMCID: PMC7495967 DOI: 10.1186/s42826-020-00066-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/10/2020] [Indexed: 01/19/2023] Open
Abstract
The cryopreservation of sperm and embryos is useful to efficiently archive valuable resources of genetically engineered mice. Till date, more than 60,000 strains of genetically engineered mice have been archived in mouse banks worldwide. Researchers can request for the archived mouse strains for their research projects. The research infrastructure of mouse banks improves the availability of mouse resources, the productivity of research projects, and the reproducibility of animal experiments. Our research team manages the mouse bank at the Center for Animal Resources and Development in Kumamoto University and continuously develops new techniques in mouse reproductive technology to efficiently improve the system of mouse banking. In this review, we introduce the activities of mouse banks and the latest techniques used in mouse reproductive technology.
Collapse
Affiliation(s)
- Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Satohiro Nakao
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Yoshiko Nakagawa
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Jorge M Sztein
- Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811 Japan
| | - Naomi Nakagata
- Division of Reproductive Biotechnology and Innovation, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
20
|
Öztürk AE, Bodu M, Bucak MN, Ağır V, Özcan A, Keskin N, İli P, Topraggaleh TR, Sidal H, Başpınar N, Dursun Ş. The synergistic effect of trehalose and low concentrations of cryoprotectants can improve post-thaw ram sperm parameters. Cryobiology 2020; 95:157-163. [DOI: 10.1016/j.cryobiol.2020.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 10/24/2022]
|
21
|
DNA fragmentation index (DFI) as a measure of sperm quality and fertility in mice. Sci Rep 2020; 10:3833. [PMID: 32123279 PMCID: PMC7052244 DOI: 10.1038/s41598-020-60876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Although thousands of genetically modified mouse strains have been cryopreserved by sperm freezing, the likelihood of cryorecovery success cannot be accurately predicted using conventional sperm parameters. The objective of the present study was to assess the extent to which measurement of a sperm DNA fragmentation index (DFI) can predict sperm quality and fertility after cryopreservation. Using a modified TUNEL assay, we measured and correlated the DFI of frozen-thawed sperm from 83 unique mutant mouse strains with sperm count, motility and morphology. We observed a linear inverse correlation between sperm DFI and sperm morphology and motility. Further, sperm DFI was significantly higher from males with low sperm counts compared to males with normal sperm counts (P < 0.0001). Additionally, we found that viable embryos derived using sperm from males with high DFI (62.7 ± 7.2% for IVF and 73.3 ± 8.1% for ICSI) failed to litter after embryo transfer compared to embryos from males with low DFI (20.4 ± 7.9% for IVF and 28.1 ± 10.7 for ICSI). This study reveals that measurement of DFI provides a simple, informative and reliable measure of sperm quality and can accurately predict male mouse fertility.
Collapse
|
22
|
García-García MJ. A History of Mouse Genetics: From Fancy Mice to Mutations in Every Gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:1-38. [PMID: 32304067 DOI: 10.1007/978-981-15-2389-2_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The laboratory mouse has become the model organism of choice in numerous areas of biological and biomedical research, including the study of congenital birth defects. The appeal of mice for these experimental studies stems from the similarities between the physiology, anatomy, and reproduction of these small mammals with our own, but it is also based on a number of practical reasons: mice are easy to maintain in a laboratory environment, are incredibly prolific, and have a relatively short reproductive cycle. Another compelling reason for choosing mice as research subjects is the number of tools and resources that have been developed after more than a century of working with these small rodents in laboratory environments. As will become obvious from the reading of the different chapters in this book, research in mice has already helped uncover many of the genes and processes responsible for congenital birth malformations and human diseases. In this chapter, we will provide an overview of the methods, scientific advances, and serendipitous circumstances that have made these discoveries possible, with a special emphasis on how the use of genetics has propelled scientific progress in mouse research and paved the way for future discoveries.
Collapse
|
23
|
Nakagata N, Takeo T. Basic mouse reproductive techniques developed and modified at the Center for Animal Resources and Development (CARD), Kumamoto University. Exp Anim 2019; 68:391-395. [PMID: 31243193 PMCID: PMC6842795 DOI: 10.1538/expanim.19-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Center for Animal Resources and Development (CARD), Kumamoto University was
established in 1998. We provide advanced research support services for the mouse-based
biomedical research community via an official and a premium mouse bank system. To
efficiently manage these mouse banks, we have actively developed and modified basic mouse
reproductive techniques. We shall introduce these techniques in this paper.
Collapse
Affiliation(s)
- Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Toru Takeo
- Division of Reproductive Engineering, Center for Animal Resources and Development (CARD), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| |
Collapse
|
24
|
Ito D, Wakayama S, Kamada Y, Shibasaki I, Kamimura S, Ooga M, Wakayama T. Effect of trehalose on the preservation of freeze-dried mice spermatozoa at room temperature. J Reprod Dev 2019; 65:353-359. [PMID: 31118350 PMCID: PMC6708850 DOI: 10.1262/jrd.2019-058] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Freeze-drying of spermatozoa is a convenient and safe method to preserve mammalian genetic material without the use of liquid nitrogen or a deep freezer. However, freeze-dried spermatozoa
(FD sperm) are not frequently used because of the low success rate of offspring after intracytoplasmic spermatozoa injection (ICSI). In this study, we determined the optimal concentration
and a point of action of trehalose as a protectant for the preservation of FD sperm from different mouse strains at room temperature (RT). Although trehalose demonstrated no potential to
protect the FD sperm of ICR mice against the freeze-drying procedure itself, the blastocyst rate was significantly improved when FD sperm was preserved for more than 1 month at RT (56–63%
vs. 29% without trehalose). The optimal concentration of trehalose was 0.5 M. Importantly, remarkable results were obtained when spermatozoa of inbred mouse strains
(C57BL/6N, C3H/He, and 129/Sv) were used, and many offspring were obtained when FD sperm that was preserved for 3 months at RT (26–28% vs. 6–11% of without trehalose) was
used. However, when DNA damage in FD sperm was examined by gamma-H2Ax assays, it was found that trehalose failed to protect the FD sperm from DNA damage. These results suggest that trehalose
has the potential to protect other sperm factors rather than sperm DNA during preservation at RT for longer periods and trehalose is more effective for inbred mouse strains.
Collapse
Affiliation(s)
- Daiyu Ito
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Sayaka Wakayama
- Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| | - Yuko Kamada
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Present: Kameda Medical Center, Chiba 296-8602, Japan
| | - Ikue Shibasaki
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Present: RIKEN Center for Brain Science (CBS), Wako 351-0198, Japan
| | - Satoshi Kamimura
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Present: Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masatoshi Ooga
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan
| | - Teruhiko Wakayama
- Faculty of Life and Environmental Science, University of Yamanashi, Kofu 400-8510, Japan.,Advanced Biotechnology Center, University of Yamanashi, Kofu 400-8510, Japan
| |
Collapse
|
25
|
Kaneko R, Kakinuma T, Sato S, Jinno-Oue A. Freezing sperm in short straws reduces storage space and allows transport in dry ice. J Reprod Dev 2018; 64:541-545. [PMID: 30270280 PMCID: PMC6305849 DOI: 10.1262/jrd.2018-100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient cryopreservation and transportation of mouse sperm are among the most desirable strategies for current and future research on mouse genetics. However, the current method for sperm
cryopreservation uses an 11-cm plastic straw, which is a bulky and fragile container. Developing an alternative to overcome the limitations associated with this method would accelerate
biomedical research. Here, we developed the ST (sperm-freezing in ShorT STraw to reduce STorage space) method for cryopreserving mouse sperm in short 3.8-cm plastic straws. Up to nine short
straws can be stored in a cryotube, reducing storage space. We further show that sperm frozen by the ST method can be transported in liquid nitrogen or dry ice without any detrimental
effects on subsequent fertilization and the birth rate. Our findings suggest that this sperm-freezing method is beneficial not only for individual laboratories but also for large-scale
mutagenesis/knockout and phenotyping programs.
Collapse
Affiliation(s)
- Ryosuke Kaneko
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Toshie Kakinuma
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Sachiko Sato
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Atsushi Jinno-Oue
- Bioresource Center, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| |
Collapse
|