1
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
2
|
Tan J, Jia S, Xu Q, Lin C, Cao Y, Shen J, Han S, Li Z, Zhou X. Hydrogel encapsulation facilitates a low-concentration cryoprotectant for cryopreservation of mouse testicular tissue. Colloids Surf B Biointerfaces 2024; 242:114096. [PMID: 39053031 DOI: 10.1016/j.colsurfb.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Cryopreserved testicular tissue offers a promising method to restore fertility in male infertility patients. Current protocols rely on high concentrations of penetrating cryoprotectants (pCPAs), such as dimethyl sulfoxide (DMSO), which necessitating complex washing procedures and posing risks of toxicity. Hydrogel encapsulation presents a non-toxic alternative for cellular cryopreservation. This study investigates the effects of various types, concentrations, and thicknesses of hydrogel encapsulation on the cryopreservation of mouse testicular tissue. Testicular tissues loaded with varying concentrations of DMSO were encapsulated in alginate or gelatin-methacryloyl (GelMA) hydrogels. We evaluated hydrogels as potential CPAs to reduce pCPA concentrations and determine optimal combinations for cryopreservation. Post-cryopreservation, tissues were cultured using organ culture methods to assess spermatogenesis progression. Cryomicroscopy and differential scanning calorimetry (DSC) were used to examine ice crystal formation, melting enthalpy, and non-freezing water content in different hydrogels during cooling. Results indicate that 3 % alginate or 5 % GelMA hydrogel with thin encapsulation optimally preserves mouse testicular tissue. Using 20 % DMSO in 5 % GelMA thin encapsulation showed comparable apoptosis rates, improved morphology, higher mitochondrial activity, and enhanced antioxidant capacity compared to conventional 30 % DMSO without encapsulation. This suggests that hydrogel encapsulation reduces pCPA concentration by 10 %, thereby mitigating toxic damage. Hydrogel encapsulation can reduce basement membrane shrinkage of testicular tissue during cryopreservation. Moreover, frozen tissues remained viable with preserved germ cells after being cultured for one week on alginate methacryloyl (AlgMA) hydrogel using the gas-liquid interphase method. Cryomicroscopy and DSC studies confirmed the hydrogel's ability to inhibit ice crystal growth. In conclusion, this study introduces novel strategies for male fertility preservation and advances cryopreservation technology for clinical applications in assisted reproduction.
Collapse
Affiliation(s)
- Jia Tan
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| | - Shuqin Jia
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| | - Qiang Xu
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| | - Chunyan Lin
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| | - Yukun Cao
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| | - Jing Shen
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China
| | - Sha Han
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng Li
- Department of Andrology, the Center for Men's Health, Urologic Medical Center, Shanghai Key Laboratory of Reproductive Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xinli Zhou
- Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai 200093, China; Shanghai Co-innovation Center for Energy Therapy of Tumors, Shanghai 200093, China; Shanghai Technical Service Platform for Cryopreservation of Biological Resources, Shanghai 200093, China.
| |
Collapse
|
3
|
Bashiri Z, Gholipourmalekabadi M, Khadivi F, Salem M, Afzali A, Cham TC, Koruji M. In vitro spermatogenesis in artificial testis: current knowledge and clinical implications for male infertility. Cell Tissue Res 2023; 394:393-421. [PMID: 37721632 DOI: 10.1007/s00441-023-03824-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/14/2023] [Indexed: 09/19/2023]
Abstract
Men's reproductive health exclusively depends on the appropriate maturation of certain germ cells known as sperm. Certain illnesses, such as Klinefelter syndrome, cryptorchidism, and syndrome of androgen insensitivity or absence of testis maturation in men, resulting in the loss of germ cells and the removal of essential genes on the Y chromosome, can cause non-obstructive azoospermia. According to laboratory research, preserving, proliferating, differentiating, and transplanting spermatogonial stem cells or testicular tissue could be future methods for preserving the fertility of children with cancer and men with azoospermia. Therefore, new advances in stem cell research may lead to promising therapies for treating male infertility. The rate of progression and breakthrough in the area of in vitro spermatogenesis is lower than that of SSC transplantation, but newer methods are also being developed. In this regard, tissue and cell culture, supplements, and 3D scaffolds have opened new horizons in the differentiation of stem cells in vitro, which could improve the outcomes of male infertility. Various 3D methods have been developed to produce cellular aggregates and mimic the organization and function of the testis. The production of an artificial reproductive organ that supports SSCs differentiation will certainly be a main step in male infertility treatment.
Collapse
Affiliation(s)
- Zahra Bashiri
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Omid Fertility & Infertility Clinic, Hamedan, Iran.
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Khadivi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Maryam Salem
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azita Afzali
- Hajar Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Tat-Chuan Cham
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5B4, Canada
| | - Morteza Koruji
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Shahid Hemmat Highway, Tehran, 1449614535, Iran.
| |
Collapse
|
4
|
Gomes FDR, Ñaupas LVS, Palomino GJQ, Celiz RHY, Sá NAR, Novaes MAS, Ferreira ACA, Brito DCC, Freitas VJF, Costa BN, Lucci CM, Fernandes CCL, Rondina D, Figueiredo JR, Tetaping GM, Rodrigues APR. Definition of protocols for cryopreservation and three-dimensional in vitro culture of prepubertal goat testicular tissue after histomorphological, ultrastructural, and functional analysis. Theriogenology 2023; 211:151-160. [PMID: 37639997 DOI: 10.1016/j.theriogenology.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/27/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
This study aims to define the best method (slow freezing or vitrification) and fragment size (1, 5, or 9 mm³) for prepubertal goat testis cryopreservation, as well as to evaluate testicular morphological integrity after cryopreservation and in vitro culture (IVC). Initially (experiment I), 1, 5, or 9 mm³ testis fragments were cryopreserved by slow freezing using a Mr. Frosty container with 20% Dimethylsulfoxide (DMSO) or vitrified using the Ovarian Tissue Cryosystem (OTC) device, (Equilibration solution - ES: 10% DMSO and 10% ethylene glycol - EG; Vitrification solution - VS: 20% DMSO and 20% EG) and then subjected to morphological analysis, type I and III collagen quantification and gene expression (Oct4, C-kit, Bax, and Bcl-2). Subsequently, (experiment II), fresh or cryopreserved by slow freezing testis fragments were cultured in vitro and submitted to morphological analysis by scanning electron microscopy. The data from the experiment I revealed fewer morphological alterations in 1 and 5 mm³ fragments after vitrification and slow freezing, respectively. The percentage of type I collagen fibers in 5 and 9 mm³ frozen was higher than in fresh or vitrified fragments. For type III collagen, fresh or frozen fragments of 1 and 5 mm3 showed a higher percentage than fragments of 9 mm3. Gene expression for Oct4 and C-kit after slow freezing or vitrification in the 5 mm3 fragments was lower than that observed in the fresh fragments. The Bax:Bcl-2 ratio in the 1 and 9 mm³ fragments was lower than in the 5 mm³ fragments for fresh fragments or after freezing. In experiment II, fragments cultured in vitro, previously frozen or not, showed more morphological alterations than fresh or frozen fragments. We concluded that slow freezing of 5 mm³ fragments was the best protocol for cryopreserving prepubertal goat testis and although the results of IVC are encouraging, it still needs improvement to restore testicular function after cryopreservation.
Collapse
Affiliation(s)
- F D R Gomes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - L V S Ñaupas
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - G J Q Palomino
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - R H Y Celiz
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - N A R Sá
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - M A S Novaes
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A C A Ferreira
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - D C C Brito
- School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - V J F Freitas
- Laboratory of Physiology and Control of Reproduction (LFCR), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - B N Costa
- Laboratory of Animal Reproduction, Department of Physiological Sciences, Institute of Biological Sciences, Darcy Ribeiro University Campus, Brasília, DF, Brazil
| | - C M Lucci
- Laboratory of Animal Reproduction, Department of Physiological Sciences, Institute of Biological Sciences, Darcy Ribeiro University Campus, Brasília, DF, Brazil
| | - C C L Fernandes
- College of Health Sciences, University of Fortaleza, Fortaleza, CE, Brazil
| | - D Rondina
- Laboratory of Nutrition and Production of Ruminants (LANUPRUMI), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - J R Figueiredo
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - G M Tetaping
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil
| | - A P R Rodrigues
- Laboratory of Manipulation of Oocytes and Ovarian Pre-Antral Follicles (LAMOFOPA), Faculty of Veterinary Medicine, State University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
5
|
de Carvalho JVG, Soares ARB, Leão DL, Reis AN, Santos RR, Rodrigues APR, Domingues SFS. Effect of Different Vitrification Techniques on Viability and Apoptotic Index of Domestic Cat Testicular Tissue Cells. Animals (Basel) 2023; 13:2768. [PMID: 37685032 PMCID: PMC10486519 DOI: 10.3390/ani13172768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 09/10/2023] Open
Abstract
Vitrification is essential for successful tissue cryopreservation and biobanking in wild cats. This study aimed to compare different methods of vitrification (Ovarian Tissue Cryosystem-OTC, Straws-STW, and Solid Surface vitrification-SSV) for testicular fragment vitrification in tom cats. Testicular fragments were recovered from five adult tom cats and subjected to equilibrium vitrification using different cryovials and methods under the same conditions of vitrification solutions and cryoprotectants. The efficiencies of the methods were evaluated using histological analysis of spermatogonia and Sertoli cell nuclei, seminiferous tubular basement membrane detachment, and the gonadal epithelium shrinkage score scale. Cell viability was assessed using Hoechst PI and Terminal deoxynucleotidyl transferase nick end labeling (TUNEL) assay. The results showed that OTC is an effective vitrification method for maintaining the distinction between spermatogonia and Sertoli cells. OTC was similar to the control for basal membrane detachment parameters (p = 0.05). Epithelial shrinkage was low in the SSV group, which showed the highest percentage of viable cells among the vitrified groups (p = 0.0023). The OTC and SSV vitrification methods were statistically similar in terms of the percentage of TUNEL-positive cells (p = 0.05). Therefore, OTC and SSV provide favorable conditions for maintaining viable cat testicular tissue cells after vitrification.
Collapse
Affiliation(s)
- Julyne Vivian Guimarães de Carvalho
- Laboratory of Wild Animal Biotechnology and Medicine, Faculty of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Brazil
- Postgraduate Program in Animal Health and Production in the Amazon, Federal Rural University of the Amazon, Belém 66077-830, Brazil
| | - Airton R. B. Soares
- Laboratory of Wild Animal Biotechnology and Medicine, Faculty of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Brazil
- Postgraduate Program of Animal Reproduction in Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Brazil
| | - Danuza L. Leão
- Laboratory of Wild Animal Biotechnology and Medicine, Faculty of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Brazil
| | - Adriana N. Reis
- Laboratory of Wild Animal Biotechnology and Medicine, Faculty of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Brazil
| | - Regiane R. Santos
- Laboratory of Wild Animal Biotechnology and Medicine, Faculty of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Brazil
| | - Ana P. R. Rodrigues
- Laboratory of Manipulation of Oocytes and Preantral Follicles (LAMOFOPA), State University of Ceara, Fortaleza 60714-903, Brazil
| | - Sheyla F. S. Domingues
- Laboratory of Wild Animal Biotechnology and Medicine, Faculty of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Brazil
- Postgraduate Program in Animal Health and Production in the Amazon, Federal Rural University of the Amazon, Belém 66077-830, Brazil
- Postgraduate Program of Animal Reproduction in Amazon, Institute of Veterinary Medicine, Federal University of Pará, Castanhal 68740-970, Brazil
| |
Collapse
|
6
|
Önen S, Atik AC, Gizer M, Köse S, Yaman Ö, Külah H, Korkusuz P. A pumpless monolayer microfluidic device based on mesenchymal stem cell-conditioned medium promotes neonatal mouse in vitro spermatogenesis. Stem Cell Res Ther 2023; 14:127. [PMID: 37170113 PMCID: PMC10173473 DOI: 10.1186/s13287-023-03356-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Childhood cancer treatment-induced gonadotoxicity causes permanent infertility/sub-infertility in nearly half of males. The current clinical and experimental approaches are limited to cryopreservation of prepubertal testicular strips and in vitro spermatogenesis which are inadequate to achieve the expanded spermatogonial stem/progenitor cells and spermatogenesis in vitro. Recently, we reported the supportive effect of bone marrow-derived mesenchymal cell co-culture which is inadequate after 14 days of culture in static conditions in prepubertal mouse testis due to lack of microvascular flow and diffusion. Therefore, we generated a novel, pumpless, single polydimethylsiloxane-layered testis-on-chip platform providing a continuous and stabilized microfluidic flow and real-time cellular paracrine contribution of allogeneic bone marrow-derived mesenchymal stem cells. METHODS We aimed to evaluate the efficacy of this new setup in terms of self-renewal of stem/progenitor cells, spermatogenesis and structural and functional maturation of seminiferous tubules in vitro by measuring the number of undifferentiated and differentiating spermatogonia, spermatocytes, spermatids and tubular growth by histochemical, immunohistochemical, flow cytometric and chromatographic techniques. RESULTS Bone marrow-derived mesenchymal stem cell-based testis-on-chip platform supported the maintenance of SALL4(+) and PLZF(+) spermatogonial stem/progenitor cells, for 42 days. The new setup improved in vitro spermatogenesis in terms of c-Kit(+) differentiating spermatogonia, VASA(+) total germ cells, the meiotic cells including spermatocytes and spermatids and testicular maturation by increasing testosterone concentration and improved tubular growth for 42 days in comparison with hanging drop and non-mesenchymal stem cell control. CONCLUSIONS Future fertility preservation for male pediatric cancer survivors depends on the protection/expansion of spermatogonial stem/progenitor cell pool and induction of in vitro spermatogenesis. Our findings demonstrate that a novel bone marrow-derived mesenchymal stem cell-based microfluidic testis-on-chip device supporting the maintenance of stem cells and spermatogenesis in prepubertal mice in vitro. This new, cell therapy-based microfluidic platform may contribute to a safe, precision-based cell and tissue banking protocols for prepubertal fertility restoration in future.
Collapse
Affiliation(s)
- Selin Önen
- Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey
- Department of Medical Biology, Atilim University, Ankara, Turkey
| | - Ali Can Atik
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
- METU MEMS Center, Ankara, Turkey
| | - Merve Gizer
- Department of Stem Cell Sciences, Hacettepe University, Ankara, Turkey
| | - Sevil Köse
- Department of Plastic, Reconstructive, and Aesthetic Surgery, Akdeniz University, Antalya, Turkey
| | - Önder Yaman
- Department of Urology, Ankara University, Ankara, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara, Turkey
- METU MEMS Center, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Faculty of Medicine, Hacettepe University, Sihhiye, Ankara, 06100, Turkey.
| |
Collapse
|
7
|
Mesenchymal stem cells promote spermatogonial stem/progenitor cell pool and spermatogenesis in neonatal mice in vitro. Sci Rep 2022; 12:11494. [PMID: 35798781 PMCID: PMC9263145 DOI: 10.1038/s41598-022-15358-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Prepubertal cancer treatment leads to irreversible infertility in half of the male patients. Current in vitro spermatogenesis protocols and cryopreservation techniques are inadequate to expand spermatogonial stem/progenitor cells (SSPC) from testicles. Bone marrow derived mesenchymal stem cells (BM-MSC) bearing a close resemblance to Sertoli cells, improved spermatogenesis in animal models. We asked if a co-culture setup supported by syngeneic BM-MSC that contributes to the air–liquid interphase (ALI) could lead to survival, expansion and differentiation of SSPCs in vitro. We generated an ALI platform able to provide a real-time cellular paracrine contribution consisting of syngeneic BM-MSCs to neonatal C57BL/6 mice testes. We aimed to evaluate the efficacy of this culture system on SSPC pool expansion and spermatogenesis throughout a complete spermatogenic cycle by measuring the number of total germ cells (GC), the undifferentiated and differentiating spermatogonia, the spermatocytes and the spermatids. Furthermore, we evaluated the testicular cell cycle phases, the tubular and luminal areas using histochemical, immunohistochemical and flow cytometric techniques. Cultures in present of BM-MSCs displayed survival of ID4(+) spermatogonial stem cells (SSC), expansion of SALL4(+) and OCT4(+) SSPCs, VASA(+) total GCs and Ki67(+) proliferative cells at 42 days and an increased number of SCP3(+) spermatocytes and Acrosin(+) spermatids at 28 days. BM-MSCs increased the percentage of mitotic cells within the G2-M phase of the total testicular cell cycle increased for 7 days, preserved the cell viability for 42 days and induced testicular maturation by enlargement of the tubular and luminal area for 42 days in comparison to the control. The percentage of PLZF(+) SSPCs increased within the first 28 days of culture, after which the pool started to get smaller while the number of spermatocytes and spermatids increased simultaneously. Our findings established the efficacy of syngeneic BM-MSCs on the survival and expansion of the SSPC pool and differentiation of spermatogonia to round spermatids during in vitro culture of prepubertal mice testes for 42 days. This method may be helpful in providing alternative cures for male fertility by supporting in vitro differentiated spermatids that can be used for round spermatid injection (ROSI) to female oocyte in animal models. These findings can be further exploited for personalized cellular therapy strategies to cure male infertility of prepubertal cancer survivors in clinics.
Collapse
|
8
|
Tran KTD, Valli-Pulaski H, Colvin A, Orwig KE. Male fertility preservation and restoration strategies for patients undergoing gonadotoxic therapies†. Biol Reprod 2022; 107:382-405. [PMID: 35403667 PMCID: PMC9382377 DOI: 10.1093/biolre/ioac072] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Medical treatments for cancers or other conditions can lead to permanent infertility. Infertility is an insidious disease that impacts not only the ability to have a biological child but also the emotional well-being of the infertile individuals, relationships, finances, and overall health. Therefore, all patients should be educated about the effects of their medical treatments on future fertility and about fertility preservation options. The standard fertility preservation option for adolescent and adult men is sperm cryopreservation. Sperms can be frozen and stored for a long period, thawed at a later date, and used to achieve pregnancy with existing assisted reproductive technologies. However, sperm cryopreservation is not applicable for prepubertal patients who do not yet produce sperm. The only fertility preservation option available to prepubertal boys is testicular tissue cryopreservation. Next-generation technologies are being developed to mature those testicular cells or tissues to produce fertilization-competent sperms. When sperm and testicular tissues are not available for fertility preservation, inducing pluripotent stem cells derived from somatic cells, such as blood or skin, may provide an alternative path to produce sperms through a process call in vitro gametogenesis. This review describes standard and experimental options to preserve male fertility as well as the experimental options to produce functional spermatids or sperms from immature cryopreserved testicular tissues or somatic cells.
Collapse
Affiliation(s)
- Kien T D Tran
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Hanna Valli-Pulaski
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Amanda Colvin
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA,Magee-Womens Research Institute, Pittsburgh, PA, USA
| | - Kyle E Orwig
- Correspondence: Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Magee-Womens Research Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA. Tel: 412-641-2460; E-mail:
| |
Collapse
|
9
|
Patra T, Gupta MK. Solid surface vitrification of goat testicular cell suspension enriched for spermatogonial stem cells. Cryobiology 2021; 104:8-14. [PMID: 34822805 DOI: 10.1016/j.cryobiol.2021.11.177] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/09/2021] [Accepted: 11/21/2021] [Indexed: 01/13/2023]
Abstract
This study reports solid surface vitrification (SSV) of goat testicular cell suspensions (TCS) enriched for spermatogonial stem cells (SSCs). The TCS was isolated from pre-pubertal goat testis by enzymatic digestion, enriched for SSCs by filtration and differential plating, and were vitrified-warmed by SSV. The study showed that SSV could successfully vitrify goat TCS although the percentage of live cells in the vitrified-warmed group was lower (74.8 ± 4.1%) than in non-vitrified control (80.6 ± 6.27%). The vitrified-warmed TCS formed putative SSC colonies upon their in vitro culture, but the colony size of vitrified-warmed cells (24.3 ± 1.8 μm) was smaller than those of non-vitrified warmed cells (58.4 ± 2.5 μm). Mitochondrial activity (0.40 vs. 0.38 A U.), population doubling time (33.45 ± 1.25 h vs. 31.86 ± 1.90 h), and the cell proliferation rate (0.72 ± 0.10 vs. 0.75 ± 0.11 per day) of total cells (including putative SSCs and other somatic cells) did not differ (p > 0.05) between control and SSV vitrified-warmed groups. However, during in vitro culture for 96 h, vitrified-warmed cells showed significantly lower (0.75 vs. 1.33 A U.; p < 0.05) mitochondrial activity than non-vitrified controls. The DCFDA assay showed that ROS activity was significantly (p < 0.05) higher in vitrified-warmed cells (52.8 ± 4.1 A U) than non-vitrified control cells (32.8 ± 2.1 AU). In conclusion, our results suggest that SSC-enriched goat TCS could be successfully cryopreserved by SSV. However, ROS-induced damages to cell cytoplasmic components reduce their cellular proliferation and require further improvement in the protocol. To the best of our knowledge, this study is the first report on the SSV of SSC-enriched goat TCS.
Collapse
Affiliation(s)
- Tanushree Patra
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, Odisha, 769008, India.
| |
Collapse
|