1
|
Shokhen M, Albeck A, Borisov V, Israel Y, Levy NS, Levy AP. Conformational analysis of the IQSEC2 protein by statistical thermodynamics. Curr Res Struct Biol 2024; 8:100158. [PMID: 39431217 PMCID: PMC11490877 DOI: 10.1016/j.crstbi.2024.100158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Mutations in the IQSEC2 gene result in severe intellectual disability, epilepsy and autism. The primary function of IQSEC2 is to serve as a guanine exchange factor (GEF) controlling the activation of ARF6 which in turn mediates membrane trafficking and synaptic connections between neurons. As IQSEC2 is a large intrinsically disordered protein little is known of the structure of the protein and how this influences its function. Understanding this structure and function relationship is critical for the development of novel therapies to treat IQSEC2 disease. We therefore sought to identify IQSEC2 conformers in unfolded and folded states and analyze how conformers differ when binding to ARF6 and thereby influence GEF catalysis. We simulated the folding process of IQSEC2 by accelerated molecular dynamics (aMD). Following the ensemble method of Gibbs, we proposed that the number of microstates in the ensemble replicating a protein macroscopic system is the total number of MD snapshots sampled on the production MD trajectory. We divided the entire range of reaction coordinate into a series of consecutive, non-overlapping bins. Thermal fluctuations of biomolecules in local equilibrium states are Gaussian in form. To predict the free energy and entropy of different conformational states using statistical thermodynamics, the density of states was estimated taking into account how many MD snapshots constitute each conformational state. IQSEC2 dimers derived from the most stable folded and unfolded conformers of IQSEC2 were generated by protein-protein docking and then used to construct IQSEC2-ARF6 encounter complexes. We suggest that IQSEC2 folding and dimerization are two competing processes that may be used by nature to regulate the process of GDP exchange on ARF6 catalyzed by IQSEC2.
Collapse
Affiliation(s)
- Michael Shokhen
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Amnon Albeck
- Department of Chemistry, Bar Ilan University, Ramat Gan, Israel
| | - Veronika Borisov
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Yonat Israel
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Nina S. Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| | - Andrew P. Levy
- Technion Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Viegas RG, Martins IBS, Leite VBP. Understanding the Energy Landscape of Intrinsically Disordered Protein Ensembles. J Chem Inf Model 2024; 64:4149-4157. [PMID: 38713459 DOI: 10.1021/acs.jcim.4c00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A substantial portion of various organisms' proteomes comprises intrinsically disordered proteins (IDPs) that lack a defined three-dimensional structure. These IDPs exhibit a diverse array of conformations, displaying remarkable spatiotemporal heterogeneity and exceptional conformational flexibility. Characterizing the structure or structural ensemble of IDPs presents significant conceptual and methodological challenges owing to the absence of a well-defined native structure. While databases such as the Protein Ensemble Database (PED) provide IDP ensembles obtained through a combination of experimental data and molecular modeling, the absence of reaction coordinates poses challenges in comprehensively understanding pertinent aspects of the system. In this study, we leverage the energy landscape visualization method (JCTC, 6482, 2019) to scrutinize four IDP ensembles sourced from PED. ELViM, a methodology that circumvents the need for a priori reaction coordinates, aids in analyzing the ensembles. The specific IDP ensembles investigated are as follows: two fragments of nucleoporin (NUL: 884-993 and NUS: 1313-1390), yeast sic 1 N-terminal (1-90), and the N-terminal SH3 domain of Drk (1-59). Utilizing ELViM enables the comprehensive validation of ensembles, facilitating the detection of potential inconsistencies in the sampling process. Additionally, it allows for identifying and characterizing the most prevalent conformations within an ensemble. Moreover, ELViM facilitates the comparative analysis of ensembles obtained under diverse conditions, thereby providing a powerful tool for investigating the functional mechanisms of IDPs.
Collapse
Affiliation(s)
- Rafael G Viegas
- Federal Institute of Education, Science and Technology of São Paulo (IFSP), Catanduva, São Paulo 15.808-305, Brazil
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Ingrid B S Martins
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Vitor B P Leite
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, São Paulo 15054-000, Brazil
| |
Collapse
|
3
|
Guo HB, Huntington B, Perminov A, Smith K, Hastings N, Dennis P, Kelley-Loughnane N, Berry R. AlphaFold2 modeling and molecular dynamics simulations of an intrinsically disordered protein. PLoS One 2024; 19:e0301866. [PMID: 38739602 PMCID: PMC11090348 DOI: 10.1371/journal.pone.0301866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/23/2024] [Indexed: 05/16/2024] Open
Abstract
We use AlphaFold2 (AF2) to model the monomer and dimer structures of an intrinsically disordered protein (IDP), Nvjp-1, assisted by molecular dynamics (MD) simulations. We observe relatively rigid dimeric structures of Nvjp-1 when compared with the monomer structures. We suggest that protein conformations from multiple AF2 models and those from MD trajectories exhibit a coherent trend: the conformations of an IDP are deviated from each other and the conformations of a well-folded protein are consistent with each other. We use a residue-residue interaction network (RIN) derived from the contact map which show that the residue-residue interactions in Nvjp-1 are mainly transient; however, those in a well-folded protein are mainly persistent. Despite the variation in 3D shapes, we show that the AF2 models of both disordered and ordered proteins exhibit highly consistent profiles of the pLDDT (predicted local distance difference test) scores. These results indicate a potential protocol to justify the IDPs based on multiple AF2 models and MD simulations.
Collapse
Affiliation(s)
- Hao-Bo Guo
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
- UES Inc., Dayton, OH, United States of America
| | - Baxter Huntington
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
- Miami University, Oxford, OH, United States of America
| | - Alexander Perminov
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
- Miami University, Oxford, OH, United States of America
| | - Kenya Smith
- United States Air Force Academy, Colorado Springs, CO, United States of America
| | - Nicholas Hastings
- United States Air Force Academy, Colorado Springs, CO, United States of America
| | - Patrick Dennis
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
| | - Nancy Kelley-Loughnane
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
| | - Rajiv Berry
- Material and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Mason, OH, United States of America
| |
Collapse
|
4
|
de Raffele D, Ilie IM. Unlocking novel therapies: cyclic peptide design for amyloidogenic targets through synergies of experiments, simulations, and machine learning. Chem Commun (Camb) 2024; 60:632-645. [PMID: 38131333 DOI: 10.1039/d3cc04630c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Existing therapies for neurodegenerative diseases like Parkinson's and Alzheimer's address only their symptoms and do not prevent disease onset. Common therapeutic agents, such as small molecules and antibodies struggle with insufficient selectivity, stability and bioavailability, leading to poor performance in clinical trials. Peptide-based therapeutics are emerging as promising candidates, with successful applications for cardiovascular diseases and cancers due to their high bioavailability, good efficacy and specificity. In particular, cyclic peptides have a long in vivo stability, while maintaining a robust antibody-like binding affinity. However, the de novo design of cyclic peptides is challenging due to the lack of long-lived druggable pockets of the target polypeptide, absence of exhaustive conformational distributions of the target and/or the binder, unknown binding site, methodological limitations, associated constraints (failed trials, time, money) and the vast combinatorial sequence space. Hence, efficient alignment and cooperation between disciplines, and synergies between experiments and simulations complemented by popular techniques like machine-learning can significantly speed up the therapeutic cyclic-peptide development for neurodegenerative diseases. We review the latest advancements in cyclic peptide design against amyloidogenic targets from a computational perspective in light of recent advancements and potential of machine learning to optimize the design process. We discuss the difficulties encountered when designing novel peptide-based inhibitors and we propose new strategies incorporating experiments, simulations and machine learning to design cyclic peptides to inhibit the toxic propagation of amyloidogenic polypeptides. Importantly, these strategies extend beyond the mere design of cyclic peptides and serve as template for the de novo generation of (bio)materials with programmable properties.
Collapse
Affiliation(s)
- Daria de Raffele
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| | - Ioana M Ilie
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, Science Park 904, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands.
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands
| |
Collapse
|
5
|
Patel KN, Chavda D, Manna M. Molecular Docking of Intrinsically Disordered Proteins: Challenges and Strategies. Methods Mol Biol 2024; 2780:165-201. [PMID: 38987470 DOI: 10.1007/978-1-0716-3985-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Intrinsically disordered proteins (IDPs) are a novel class of proteins that have established a significant importance and attention within a very short period of time. These proteins are essentially characterized by their inherent structural disorder, encoded mainly by their amino acid sequences. The profound abundance of IDPs and intrinsically disordered regions (IDRs) in the biological world delineates their deep-rooted functionality. IDPs and IDRs convey such extensive functionality through their unique dynamic nature, which enables them to carry out huge number of multifaceted biomolecular interactions and make them "interaction hub" of the cellular systems. Additionally, with such widespread functions, their misfunctioning is also intimately associated with multiple diseases. Thus, understanding the dynamic heterogeneity of various IDPs along with their interactions with respective binding partners is an important field with immense potentials in biomolecular research. In this context, molecular docking-based computational approaches have proven to be remarkable in case of ordered proteins. Molecular docking methods essentially model the biomolecular interactions in both structural and energetic terms and use this information to characterize the putative interactions between the two participant molecules. However, direct applications of the conventional docking methods to study IDPs are largely limited by their structural heterogeneity and demands for unique IDP-centric strategies. Thus, in this chapter, we have presented an overview of current methodologies for successful docking operations involving IDPs and IDRs. These specialized methods majorly include the ensemble-based and fragment-based approaches with their own benefits and limitations. More recently, artificial intelligence and machine learning-assisted approaches are also used to significantly reduce the complexity and computational burden associated with various docking applications. Thus, this chapter aims to provide a comprehensive summary of major challenges and recent advancements of molecular docking approaches in the IDP field for their better utilization and greater applicability.Asp (D).
Collapse
Affiliation(s)
- Keyur N Patel
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Dhruvil Chavda
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
6
|
Sharma B, Mattaparthi VSK. Prediction of interface between regions of varying degrees of order or disorderness in intrinsically disordered proteins from dihedral angles. J Biomol Struct Dyn 2023:1-11. [PMID: 38116756 DOI: 10.1080/07391102.2023.2294837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that do not form uniquely defined three-dimensional (3-D) structures. Experimental research on IDPs is difficult since they go against the traditional protein structure-function paradigm. Although there are several predictors of disorder based on amino acid sequences, but very limited based on the 3-D structures of proteins. Dihedral angles have a significant role in predicting protein structure because they establish a protein's backbone, which, coupled with its side chain, establishes its overall shape. Here, we have carried out atomistic Molecular Dynamics (MD) simulations on four different proteins: one ordered protein (Monellin), two partially disordered proteins (p53-TAD and Amyloid beta (Aβ1-42) peptide), and one completely disordered protein (Histatin 5). The MD simulation trajectories for the corresponding four proteins were used to conduct dihedral angle (ϕ and ѱ) analysis. Then, the average dihedral angles for each of the residues were calculated and plotted against the residue index. We noticed steep rises or falls in the average ϕ value at certain locations in the plot. These sudden shifts in the average ϕ value reflect the interface between regions of varying degrees of order or disorderness in intrinsically disordered proteins. Using this method, the probable conformer of a protein with a higher degree of disorder can be found among the ensembles of structures sampled during the MD simulations. The results of our study offer new understandings on precisely identifying regions of various degrees of disorder in intrinsically disordered proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Babli Sharma
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| | - Venkata Satish Kumar Mattaparthi
- Molecular Modelling and Simulation Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India
| |
Collapse
|
7
|
Balasubramanian S, Maharana S, Srivastava A. "Boundary residues" between the folded RNA recognition motif and disordered RGG domains are critical for FUS-RNA binding. J Biol Chem 2023; 299:105392. [PMID: 37890778 PMCID: PMC10687056 DOI: 10.1016/j.jbc.2023.105392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 09/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Fused in sarcoma (FUS) is an abundant RNA-binding protein, which drives phase separation of cellular condensates and plays multiple roles in RNA regulation. The RNA-binding ability of FUS protein is crucial to its cellular function. Here, our molecular simulation study on the FUS-RNA complex provides atomic resolution insights into the observations from biochemical studies and also illuminates our understanding of molecular driving forces that mediate the structure, stability, and interaction of the RNA recognition motif (RRM) and RGG domains of FUS with a stem-loop junction RNA. We observe clear cooperativity and division of labor among the ordered (RRM) and disordered domains (RGG1 and RGG2) of FUS that leads to an organized and tighter RNA binding. Irrespective of the length of RGG2, the RGG2-RNA interaction is confined to the stem-loop junction and the proximal stem regions. On the other hand, the RGG1 interactions are primarily with the longer RNA stem. We find that the C terminus of RRM, which make up the "boundary residues" that connect the folded RRM with the long disordered RGG2 stretch of the protein, plays a critical role in FUS-RNA binding. Our study provides high-resolution molecular insights into the FUS-RNA interactions and forms the basis for understanding the molecular origins of full-length FUS interaction with RNA.
Collapse
Affiliation(s)
| | - Shovamayee Maharana
- Department of Molecular and Cell Biology, Indian Institute of Science Bangalore, Bangalore, Karnataka, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science Bangalore, Bangalore, Karnataka, India.
| |
Collapse
|
8
|
Abraham Versloot R, Arias-Orozco P, Tadema MJ, Rudolfus Lucas FL, Zhao X, Marrink SJ, Kuipers OP, Maglia G. Seeing the Invisibles: Detection of Peptide Enantiomers, Diastereomers, and Isobaric Ring Formation in Lanthipeptides Using Nanopores. J Am Chem Soc 2023; 145:18355-18365. [PMID: 37579582 PMCID: PMC10450680 DOI: 10.1021/jacs.3c04076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 08/16/2023]
Abstract
Mass spectrometry (MS) is widely used in proteomic analysis but cannot differentiate between molecules with the same mass-to-charge ratio. Nanopore technology might provide an alternative method for the rapid and cost-effective analysis and sequencing of proteins. In this study, we demonstrate that nanopore currents can distinguish between diastereomeric and enantiomeric differences in l- and d-peptides, not observed by conventional MS analysis, down to individual d-amino acids in small opioid peptides. Molecular dynamics simulations suggest that similar to chiral chromatography the resolution likely arises from multiple chiral interactions during peptide transport across the nanopore. Additionally, we used nanopore recordings to rapidly assess 4- and 11-amino acid ring formation in lanthipeptides, a process used in the synthesis of pharmaceutical peptides. The cyclization step requires distinguishing between constitutional isomers, which have identical MS signals and typically involve numerous tedious experiments to confirm. Hence, nanopore technology offers new possibilities for the rapid and cost-effective analysis of peptides, including those that cannot be easily differentiated by mass spectrometry.
Collapse
Affiliation(s)
| | - Patricia Arias-Orozco
- Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| | - Matthijs Jonathan Tadema
- Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| | | | - Xinghong Zhao
- Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| | - Oscar Paul Kuipers
- Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and
Biotechnology Institute, University of Groningen, 9747AG Groningen, Netherlands
| |
Collapse
|
9
|
Xie Q, Kasahara K, Higo J, Takahashi T. Molecular Mechanisms of Functional Modulation of Transcriptional Coactivator PC4 via Phosphorylation on Its Intrinsically Disordered Region. ACS OMEGA 2023; 8:14572-14582. [PMID: 37125110 PMCID: PMC10134458 DOI: 10.1021/acsomega.3c00364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
To investigate the effects of phosphorylation on the function of the human positive cofactor 4 (PC4), an enhanced molecular dynamics (MD) simulation was performed. The simulation system consists of the N-terminal intrinsic disordered region (IDR) of PC4 and a complex that comprises the C-terminal acidic activation domain of a herpes simplex virion protein 16 (VP16ad) and a homodimer of the C-terminal structured core domain of PC4 (PC4ctd). An earlier report of an experimental study reported that the PC4-VP16ad interaction is modulated by incremental phosphorylation of the IDR. That report also proposed a dynamic model where phosphorylated serine residues of a segment (SEAC) in the IDR contact positively charged residues (lysin and arginine) of another segment (K-rich) in the IDR. This contact formation induced by the phosphorylation results in variation of PC4-VP16ad interaction. However, this contact formation has not yet been measured directly because it is transiently formed and because the SEAC and K-rich segments are unstructured with high flexibility. We performed two simulations to mimic the incremental phosphorylation: the IDR was not phosphorylated in one simulation and only partially phosphorylated in the other. Our simulation results indicate that the phosphorylation weakens the IDR-VP16ad contact considerably with the induction of a compact structure in the IDR. This structure was stabilized by electrostatic interactions between the phosphorylated serine residues of a segment and lysine or arginine residues of another segment in the IDR, but the conformational fluctuation of this compact structure was considerably large. Consequently, the present study supports the experimentally proposed dynamic model. Results of this study can be important for computational elucidation of the functional modulation of PC4.
Collapse
Affiliation(s)
- Qilin Xie
- Graduate
School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kota Kasahara
- College
of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Junichi Higo
- Graduate
School of Information Science, University
of Hyogo, 7-1-28 minatojima
Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
- Research
Organization of Science and Technology, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| | - Takuya Takahashi
- College
of Life Sciences, Ritsumeikan University, 1-1-1 Noji-higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
10
|
Dutta P, Sengupta N. Efficient Interrogation of the Kinetic Barriers Demarcating Catalytic States of a Tyrosine Kinase with Optimal Physical Descriptors and Mixture Models. Chemphyschem 2023; 24:e202200595. [PMID: 36394126 DOI: 10.1002/cphc.202200595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
Computer simulations are increasingly used to access thermo-kinetic information underlying structural transformation of protein kinases. Such information are necessary to probe their roles in disease progression and interactions with drug targets. However, the investigations are frequently challenged by forbiddingly high computational expense, and by the lack of standard protocols for the design of low dimensional physical descriptors that encode system features important for transitions. Here, we consider the demarcating characteristics of the different states of Abelson tyrosine kinase associated with distinct catalytic activity to construct a set of physically meaningful, orthogonal collective variables that preserve the slow modes of the system. Independent sampling of each metastable state is followed by the estimation of global partition function along the appropriate physical descriptors using the modified Expectation Maximized Molecular Dynamics method. The resultant free energy barriers are in excellent agreement with experimentally known rate-limiting dynamics and activation energy computed with conventional enhanced sampling methods. We discuss possible directions for further development and applications.
Collapse
Affiliation(s)
- Pallab Dutta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| | - Neelanjana Sengupta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India
| |
Collapse
|
11
|
Krishnamohan A, Hamilton GL, Goutam R, Sanabria H, Morcos F. Coevolution and smFRET Enhances Conformation Sampling and FRET Experimental Design in Tandem PDZ1-2 Proteins. J Phys Chem B 2023; 127:884-898. [PMID: 36693159 PMCID: PMC9900596 DOI: 10.1021/acs.jpcb.2c06720] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The structural flexibility of proteins is crucial for their functions. Many experimental and computational approaches can probe protein dynamics across a range of time and length-scales. Integrative approaches synthesize the complementary outputs of these techniques and provide a comprehensive view of the dynamic conformational space of proteins, including the functionally relevant limiting conformational states and transition pathways between them. Here, we introduce an integrative paradigm to model the conformational states of multidomain proteins. As a model system, we use the first two tandem PDZ domains of postsynaptic density protein 95. First, we utilize available sequence information collected from genomic databases to identify potential amino acid interactions in the PDZ1-2 tandem that underlie modeling of the functionally relevant conformations maintained through evolution. This was accomplished through combination of coarse-grained structural modeling with outputs from direct coupling analysis measuring amino acid coevolution, a hybrid approach called SBM+DCA. We recapitulated five distinct, experimentally derived PDZ1-2 tandem conformations. In addition, SBM+DCA unveiled an unidentified, twisted conformation of the PDZ1-2 tandem. Finally, we implemented an integrative framework for the design of single-molecule Förster resonance energy transfer (smFRET) experiments incorporating the outputs of SBM+DCA with simulated FRET observables. This resulting FRET network is designed to mutually resolve the predicted limiting state conformations through global analysis. Using simulated FRET observables, we demonstrate that structural modeling with the newly designed FRET network is expected to outperform a previously used empirical FRET network at resolving all states simultaneously. Integrative approaches to experimental design have the potential to provide a new level of detail in characterizing the evolutionarily conserved conformational landscapes of proteins, and thus new insights into functional relevance of protein dynamics in biological function.
Collapse
Affiliation(s)
- Aishwarya Krishnamohan
- Departments of Biological Sciences and Bioengineering, University of Texas at Dallas, Richardson, Texas75080, United States
| | - George L Hamilton
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Rajen Goutam
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, South Carolina29634, United States
| | - Faruck Morcos
- Departments of Biological Sciences and Bioengineering, University of Texas at Dallas, Richardson, Texas75080, United States.,Center for Systems Biology, University of Texas at Dallas, Richardson, Texas75080, United States
| |
Collapse
|
12
|
Evans R, Ramisetty S, Kulkarni P, Weninger K. Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology. Biomolecules 2023; 13:124. [PMID: 36671509 PMCID: PMC9856150 DOI: 10.3390/biom13010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Intense study of intrinsically disordered proteins (IDPs) did not begin in earnest until the late 1990s when a few groups, working independently, convinced the community that these 'weird' proteins could have important functions. Over the past two decades, it has become clear that IDPs play critical roles in a multitude of biological phenomena with prominent examples including coordination in signaling hubs, enabling gene regulation, and regulating ion channels, just to name a few. One contributing factor that delayed appreciation of IDP functional significance is the experimental difficulty in characterizing their dynamic conformations. The combined application of multiple methods, termed integrative structural biology, has emerged as an essential approach to understanding IDP phenomena. Here, we review some of the recent applications of the integrative structural biology philosophy to study IDPs.
Collapse
Affiliation(s)
- Rachel Evans
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
13
|
Dorival J, Moraïs S, Labourel A, Rozycki B, Cazade PA, Dabin J, Setter-Lamed E, Mizrahi I, Thompson D, Thureau A, Bayer EA, Czjzek M. Mapping the deformability of natural and designed cellulosomes in solution. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:68. [PMID: 35725490 PMCID: PMC9210761 DOI: 10.1186/s13068-022-02165-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/08/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Natural cellulosome multi-enzyme complexes, their components, and engineered 'designer cellulosomes' (DCs) promise an efficient means of breaking down cellulosic substrates into valuable biofuel products. Their broad uptake in biotechnology relies on boosting proximity-based synergy among the resident enzymes, but the modular architecture challenges structure determination and rational design. RESULTS We used small angle X-ray scattering combined with molecular modeling to study the solution structure of cellulosomal components. These include three dockerin-bearing cellulases with distinct substrate specificities, original scaffoldins from the human gut bacterium Ruminococcus champanellensis (ScaA, ScaH and ScaK) and a trivalent cohesin-bearing designer scaffoldin (Scaf20L), followed by cellulosomal complexes comprising these components, and the nonavalent fully loaded Clostridium thermocellum CipA in complex with Cel8A from the same bacterium. The size analysis of Rg and Dmax values deduced from the scattering curves and corresponding molecular models highlight their variable aspects, depending on composition, size and spatial organization of the objects in solution. CONCLUSIONS Our data quantifies variability of form and compactness of cellulosomal components in solution and confirms that this native plasticity may well be related to speciation with respect to the substrate that is targeted. By showing that scaffoldins or components display enhanced compactness compared to the free objects, we provide new routes to rationally enhance their stability and performance in their environment of action.
Collapse
Affiliation(s)
- Jonathan Dorival
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, 29680, Roscoff, Bretagne, France
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Aurore Labourel
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Bartosz Rozycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Pierre-Andre Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jérôme Dabin
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, 29680, Roscoff, Bretagne, France
| | - Eva Setter-Lamed
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Mirjam Czjzek
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, 29680, Roscoff, Bretagne, France.
| |
Collapse
|
14
|
Lebold KM, Best RB. Tuning Formation of Protein-DNA Coacervates by Sequence and Environment. J Phys Chem B 2022; 126:2407-2419. [PMID: 35317553 DOI: 10.1021/acs.jpcb.2c00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The high concentration of nucleic acids and positively charged proteins in the cell nucleus provides many possibilities for complex coacervation. We consider a prototypical mixture of nucleic acids together with the polycationic C-terminus of histone H1 (CH1). Using a minimal coarse-grained model that captures the shape, flexibility, and charge distributions of the molecules, we find that coacervates are readily formed at physiological ionic strengths, in agreement with experiment, with a progressive increase in local ordering at low ionic strength. Variation of the positions of charged residues in the protein tunes phase separation: for well-mixed or only moderately blocky distributions of charge, there is a modest increase of local ordering with increasing blockiness that is also associated with an increased propensity to phase separate. This ordering is also associated with a slowdown of rotational and translational diffusion in the dense phase. However, for more extreme blockiness (and consequently higher local charge density), we see a qualitative change in the condensed phase to become a segregated structure with a dramatically increased ordering of the DNA. Naturally occurring proteins with these sequence properties, such as protamines in sperm cells, are found to be associated with very dense packing of nucleic acids.
Collapse
Affiliation(s)
- Kathryn M Lebold
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert B Best
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
15
|
Kulkarni P, Leite VBP, Roy S, Bhattacharyya S, Mohanty A, Achuthan S, Singh D, Appadurai R, Rangarajan G, Weninger K, Orban J, Srivastava A, Jolly MK, Onuchic JN, Uversky VN, Salgia R. Intrinsically disordered proteins: Ensembles at the limits of Anfinsen's dogma. BIOPHYSICS REVIEWS 2022; 3:011306. [PMID: 38505224 PMCID: PMC10903413 DOI: 10.1063/5.0080512] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 03/21/2024]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack rigid 3D structure. Hence, they are often misconceived to present a challenge to Anfinsen's dogma. However, IDPs exist as ensembles that sample a quasi-continuum of rapidly interconverting conformations and, as such, may represent proteins at the extreme limit of the Anfinsen postulate. IDPs play important biological roles and are key components of the cellular protein interaction network (PIN). Many IDPs can interconvert between disordered and ordered states as they bind to appropriate partners. Conformational dynamics of IDPs contribute to conformational noise in the cell. Thus, the dysregulation of IDPs contributes to increased noise and "promiscuous" interactions. This leads to PIN rewiring to output an appropriate response underscoring the critical role of IDPs in cellular decision making. Nonetheless, IDPs are not easily tractable experimentally. Furthermore, in the absence of a reference conformation, discerning the energy landscape representation of the weakly funneled IDPs in terms of reaction coordinates is challenging. To understand conformational dynamics in real time and decipher how IDPs recognize multiple binding partners with high specificity, several sophisticated knowledge-based and physics-based in silico sampling techniques have been developed. Here, using specific examples, we highlight recent advances in energy landscape visualization and molecular dynamics simulations to discern conformational dynamics and discuss how the conformational preferences of IDPs modulate their function, especially in phenotypic switching. Finally, we discuss recent progress in identifying small molecules targeting IDPs underscoring the potential therapeutic value of IDPs. Understanding structure and function of IDPs can not only provide new insight on cellular decision making but may also help to refine and extend Anfinsen's structure/function paradigm.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Vitor B. P. Leite
- Departamento de Física, Instituto de Biociências, Letras e Ciências Exatas, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Supriyo Bhattacharyya
- Translational Bioinformatics, Center for Informatics, Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Atish Mohanty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Srisairam Achuthan
- Center for Informatics, Division of Research Informatics, City of Hope National Medical Center, Duarte, California 91010, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Rajeswari Appadurai
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore 560012, India
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | | | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California 91010, USA
| |
Collapse
|
16
|
Rizzuti B. Molecular simulations of proteins: From simplified physical interactions to complex biological phenomena. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140757. [PMID: 35051666 DOI: 10.1016/j.bbapap.2022.140757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Abstract
Molecular dynamics simulation is the most popular computational technique for investigating the structural and dynamical behaviour of proteins, in search of the molecular basis of their function. Far from being a completely settled field of research, simulations are still evolving to best capture the essential features of the atomic interactions that govern a protein's inner motions. Modern force fields are becoming increasingly accurate in providing a physical description adequate to this purpose, and allow us to model complex biological systems under fairly realistic conditions. Furthermore, the use of accelerated sampling techniques is improving our access to the observation of progressively larger molecular structures, longer time scales, and more hidden functional events. In this review, the basic principles of molecular dynamics simulations and a number of key applications in the area of protein science are summarized, and some of the most important results are discussed. Examples include the study of the structure, dynamics and binding properties of 'difficult' targets, such as intrinsically disordered proteins and membrane receptors, and the investigation of challenging phenomena like hydration-driven processes and protein aggregation. The findings described provide an overall picture of the current state of this research field, and indicate new perspectives on the road ahead to the upcoming future of molecular simulations.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
17
|
Extended ensemble simulations of a SARS-CoV-2 nsp1-5'-UTR complex. PLoS Comput Biol 2022; 18:e1009804. [PMID: 35045069 PMCID: PMC8803185 DOI: 10.1371/journal.pcbi.1009804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 01/31/2022] [Accepted: 01/04/2022] [Indexed: 11/19/2022] Open
Abstract
Nonstructural protein 1 (nsp1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a 180-residue protein that blocks translation of host mRNAs in SARS-CoV-2-infected cells. Although it is known that SARS-CoV-2’s own RNA evades nsp1’s host translation shutoff, the molecular mechanism underlying the evasion was poorly understood. We performed an extended ensemble molecular dynamics simulation to investigate the mechanism of the viral RNA evasion. Simulation results suggested that the stem loop structure of the SARS-CoV-2 RNA 5’-untranslated region (SL1) binds to both nsp1’s N-terminal globular region and intrinsically disordered region. The consistency of the results was assessed by modeling nsp1-40S ribosome structure based on reported nsp1 experiments, including the X-ray crystallographic structure analysis, the cryo-EM electron density map, and cross-linking experiments. The SL1 binding region predicted from the simulation was open to the solvent, yet the ribosome could interact with SL1. Cluster analysis of the binding mode and detailed analysis of the binding poses suggest residues Arg124, Lys47, Arg43, and Asn126 may be involved in the SL1 recognition mechanism, consistent with the existing mutational analysis. The pandemic of COVID-19 is still rampant all over the world as of 2021 June. SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), the causative pathogen of COVID-19, encodes a protein called nsp1 (nonstructural protein 1), which modulates and hijacks the ribosome of the infected host cells. With nsp1, infected human cells selectively translate SARS-CoV-2’s RNA, which increases the virus reproduction efficiency while evading the host immunity. Though it has been known that nsp1 recognizes characteristic stem-loop structure at 5’-end of SARS-CoV-2’s RNA (called SL1), the molecular mechanism underlying the recognition has been poorly understood. We investigated the mechanism of selective translation using the all-atom molecular dynamics simulation of nsp1-SL1 complex. Our simulation results suggest that the binding between nsp1 and SL1 is multi-modal. The results also imply that both the N-terminal globular part and the C-terminal flexible tail of nsp1 are involved in the binding. The residues involved in nsp1-SL1 binding coincides with the known mutant analyses of SARS-CoV-1 and SARS-CoV-2, as well as experimental evidence about nsp1-ribosome interactions.
Collapse
|
18
|
Kumar A, Chakraborty D, Mugnai ML, Straub JE, Thirumalai D. Sequence Determines the Switch in the Fibril Forming Regions in the Low-Complexity FUS Protein and Its Variants. J Phys Chem Lett 2021; 12:9026-9032. [PMID: 34516126 PMCID: PMC8826754 DOI: 10.1021/acs.jpclett.1c02310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Residues spanning distinct regions of the low-complexity domain of the RNA-binding protein, Fused in Sarcoma (FUS-LC), form fibril structures with different core morphologies. Solid-state NMR experiments show that the 214-residue FUS-LC forms a fibril with an S-bend (core-1, residues 39-95), while the rest of the protein is disordered. In contrast, the fibrils of the C-terminal variant (FUS-LC-C; residues 111-214) have a U-bend topology (core-2, residues 112-150). Absence of the U-bend in FUS-LC implies that the two fibril cores do not coexist. Computer simulations show that these perplexing findings could be understood in terms of the population of sparsely populated fibril-like excited states in the monomer. The propensity to form core-1 is higher compared to core-2. We predict that core-2 forms only in truncated variants that do not contain the core-1 sequence. At the monomer level, sequence-dependent enthalpic effects determine the relative stabilities of the core-1 and core-2 topologies.
Collapse
Affiliation(s)
- Abhinaw Kumar
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Mauro Lorenzo Mugnai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Coarse-grained simulations of phase separation driven by DNA and its sensor protein cGAS. Arch Biochem Biophys 2021; 710:109001. [PMID: 34352244 DOI: 10.1016/j.abb.2021.109001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023]
Abstract
The enzyme cGAS functions as a sensor that recognizes the cytosolic DNA from foreign pathogen. The activation of the protein triggers the transcription of inflammatory genes, leading into the establishment of an antipathogen state. An interesting new discovery is that the detection of DNA by cGAS induced the formation of liquid-like droplets. However how cells regulate the formation of these droplets is still not fully understood. In order to unravel the molecular mechanism beneath the DNA-mediated phase separation of cGAS, we developed a polymer-based coarse-grained model which takes into accounts the basic structural organization in DNA and cGAS, as well as the binding properties between these biomolecules. This model was further integrated into a hybrid simulation algorithm. With this computational method, a multi-step kinetic process of aggregation between cGAS and DNA was observed. Moreover, we systematically tested the model under different concentrations and binding parameters. Our simulation results show that phase separation requires both cGAS dimerization and protein-DNA interactions, whereas polymers can be kinetically trapped in small aggregates under strong binding affinities. Additionally, we demonstrated that supramolecular assembly can be facilitated by increasing the number of functional modules in protein or DNA polymers, suggesting that multivalency and intrinsic disordered regions play positive roles in regulating phase separation. This is consistent to previous experimental evidences. Taken together, this is, to the best of our knowledge, the first computational model to study condensation of cGAS-DNA complexes. While the method can reach the timescale beyond the capability of atomic-level MD simulations, it still includes information about spatial arrangement of functional modules in biopolymers that is missing in the mean-field theory. Our work thereby adds a useful dimension to a suite of existing experimental and computational techniques to study the dynamics of phase separation in biological systems.
Collapse
|
20
|
Ledoux J, Trouvé A, Tchertanov L. Folding and Intrinsic Disorder of the Receptor Tyrosine Kinase KIT Insert Domain Seen by Conventional Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:ijms22147375. [PMID: 34298994 PMCID: PMC8307779 DOI: 10.3390/ijms22147375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
The kinase insert domain (KID) of RTK KIT is the key recruitment region for downstream signalling proteins. KID, studied by molecular dynamics simulations as a cleaved polypeptide and as a native domain fused to KIT, showed intrinsic disorder represented by a set of heterogeneous conformations. The accurate atomistic models showed that the helical fold of KID is mainly sequence dependent. However, the reduced fold of the native KID suggests that its folding is allosterically controlled by the kinase domain. The tertiary structure of KID represents a compact array of highly variable α- and 310-helices linked by flexible loops playing a principal role in the conformational diversity. The helically folded KID retains a collapsed globule-like shape due to non-covalent interactions associated in a ternary hydrophobic core. The free energy landscapes constructed from first principles-the size, the measure of the average distance between the conformations, the amount of helices and the solvent-accessible surface area-describe the KID disorder through a collection of minima (wells), providing a direct evaluation of conformational ensembles. We found that the cleaved KID simulated with restricted N- and C-ends better reproduces the native KID than the isolated polypeptide. We suggest that a cyclic, generic KID would be best suited for future studies of KID f post-transduction effects.
Collapse
|
21
|
Clerc I, Sagar A, Barducci A, Sibille N, Bernadó P, Cortés J. The diversity of molecular interactions involving intrinsically disordered proteins: A molecular modeling perspective. Comput Struct Biotechnol J 2021; 19:3817-3828. [PMID: 34285781 PMCID: PMC8273358 DOI: 10.1016/j.csbj.2021.06.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Intrinsically Disordered Proteins and Regions (IDPs/IDRs) are key components of a multitude of biological processes. Conformational malleability enables IDPs/IDRs to perform very specialized functions that cannot be accomplished by globular proteins. The functional role for most of these proteins is related to the recognition of other biomolecules to regulate biological processes or as a part of signaling pathways. Depending on the extent of disorder, the number of interacting sites and the type of partner, very different architectures for the resulting assemblies are possible. More recently, molecular condensates with liquid-like properties composed of multiple copies of IDPs and nucleic acids have been proven to regulate key processes in eukaryotic cells. The structural and kinetic details of disordered biomolecular complexes are difficult to unveil experimentally due to their inherent conformational heterogeneity. Computational approaches, alone or in combination with experimental data, have emerged as unavoidable tools to understand the functional mechanisms of this elusive type of assemblies. The level of description used, all-atom or coarse-grained, strongly depends on the size of the molecular systems and on the timescale of the investigated mechanism. In this mini-review, we describe the most relevant architectures found for molecular interactions involving IDPs/IDRs and the computational strategies applied for their investigation.
Collapse
Affiliation(s)
- Ilinka Clerc
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Amin Sagar
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Alessandro Barducci
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Nathalie Sibille
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Pau Bernadó
- Centre de Biochimie Structurale, INSERM, CNRS, Université de Montpellier, France
| | - Juan Cortés
- LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
22
|
Miret-Casals L, Vannecke W, Hoogewijs K, Arauz-Garofalo G, Gay M, Díaz-Lobo M, Vilaseca M, Ampe C, Van Troys M, Madder A. Furan warheads for covalent trapping of weak protein-protein interactions: cross-linking of thymosin β4 to actin. Chem Commun (Camb) 2021; 57:6054-6057. [PMID: 34036992 DOI: 10.1039/d1cc01731d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe furan as a triggerable 'warhead' for site-specific cross-linking using the actin and thymosin β4 (Tβ4)-complex as model of a weak and dynamic protein-protein interaction (PPI) with known 3D structure and with application potential in disease contexts. The identified cross-linked residues demonstrate that lysine is a target for the furan warhead. The presented in vitro validation of covalently acting 'furan-armed' Tβ4-variants provides initial proof to further exploit furan-technology for covalent drug design targeting lysines.
Collapse
Affiliation(s)
- Laia Miret-Casals
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Krijgslaan 281 S4, Ghent B-9000, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Itaya H, Kasahara K, Xie Q, Yano Y, Matsuzaki K, Takahashi T. All-Atom Molecular Dynamics Elucidating Molecular Mechanisms of Single-Transmembrane Model Peptide Dimerization in a Lipid Bilayer. ACS OMEGA 2021; 6:11458-11465. [PMID: 34056301 PMCID: PMC8153988 DOI: 10.1021/acsomega.1c00482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Protein-protein interactions between transmembrane helices are essential elements for membrane protein structures and functions. To understand the effects of peptide sequences and lipid compositions on these interactions, single-molecule experiments using model systems comprising artificial peptides and membranes have been extensively performed. However, their dynamic behavior at the atomic level remains largely unclear. In this study, we applied the all-atom molecular dynamics (MD) method to simulate the interactions of single-transmembrane helical peptide dimers in membrane environments, which has previously been analyzed by single-molecule experiments. The simulations were performed with two peptides (Ala- and Leu-based artificially designed peptides, termed "host peptide", and the host peptide added with the GXXXG motif, termed "GXXXG peptide"), two membranes (pure-POPC and POPC mixed with 30% cholesterols), and two dimer directions (parallel and antiparallel), consistent with those in the previous experiment. As a result, the MD simulations with parallel dimers reproduced the experimentally observed tendency that introducing cholesterols weakened the interactions in the GXXXG dimer and facilitated those in the host dimer. Our simulation suggested that the host dimer formed hydrogen bonds but the GXXXG dimer did not. However, some discrepancies were also observed between the experiments and simulations. Limitations in the space and time scales of simulations restrict the large-scale undulation and peristaltic motions of the membranes, resulting in differences in lateral pressure profiles. This effect could cause a discrepancy in the rotation angles of helices against the membrane normal.
Collapse
Affiliation(s)
- Hayato Itaya
- Graduate
School of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Kota Kasahara
- College
of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Qilin Xie
- College
of Pharmaceutical Sciences, Ritsumeikan
University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| | - Yoshiaki Yano
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Katsumi Matsuzaki
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, 46-29 Yoshida-Shimo-Adachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuya Takahashi
- College
of Life Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
24
|
Kozak F, Kurzbach D. How to assess the structural dynamics of transcription factors by integrating sparse NMR and EPR constraints with molecular dynamics simulations. Comput Struct Biotechnol J 2021; 19:2097-2105. [PMID: 33995905 PMCID: PMC8085671 DOI: 10.1016/j.csbj.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
We review recent advances in modeling structural ensembles of transcription factors from nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopic data, integrated with molecular dynamics (MD) simulations. We focus on approaches that confirm computed conformational ensembles by sparse constraints obtained from magnetic resonance. This combination enables the deduction of functional and structural protein models even if nuclear Overhauser effects (NOEs) are too scarce for conventional structure determination. We highlight recent insights into the folding-upon-DNA binding transitions of intrinsically disordered transcription factors that could be assessed using such integrative approaches.
Collapse
Affiliation(s)
- Fanny Kozak
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Waehringer Str. 38, 1090 Vienna, Austria
| | - Dennis Kurzbach
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
25
|
Bari KJ, Prakashchand DD. Fundamental Challenges and Outlook in Simulating Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins. J Phys Chem Lett 2021; 12:1644-1656. [PMID: 33555894 DOI: 10.1021/acs.jpclett.0c03404] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intrinsically disordered proteins (IDPs) populate an ensemble of dynamic conformations, making their structural characterization by experiments challenging. Many IDPs undergo liquid-liquid phase separation into dense membraneless organelles with myriad cellular functions. Multivalent interactions in low-complexity IDPs promote the formation of these subcellular coacervates. While solution NMR, Förster resonance energy transfer (FRET), and small-angle X-ray scattering (SAXS) studies on IDPs have their own challenges, recent computational methods draw a rational trade-off to characterize the driving forces underlying phase separation. In this Perspective, we critically evaluate the scope of approximation-free field theoretic simulations, well-tempered ensemble methods, enhanced sampling techniques, coarse-grained force fields, and slab simulation approaches to offer an improved understanding of phase separation. A synergy between simulation length scale and model resolution would reduce the existing caveats and enable theories of polymer physics to elucidate finer details of liquid-liquid phase separation (LLPS). These computational advances offer promise for rigorous characterization of the IDP proteome and designing peptides with tunable material and self-assembly properties.
Collapse
Affiliation(s)
- Khandekar Jishan Bari
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Berhampur, Odisha 760010, India
| | - Dube Dheeraj Prakashchand
- Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Gopanpally, Hyderabad 500107, India
| |
Collapse
|
26
|
Fatafta H, Samantray S, Sayyed-Ahmad A, Coskuner-Weber O, Strodel B. Molecular simulations of IDPs: From ensemble generation to IDP interactions leading to disorder-to-order transitions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:135-185. [PMID: 34656328 DOI: 10.1016/bs.pmbts.2021.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure but do exhibit some dynamical and structural ordering. The structural plasticity of IDPs indicates that entropy-driven motions are crucial for their function. Many IDPs undergo function-related disorder-to-order transitions upon by their interaction with specific binding partners. Approaches that are based on both experimental and theoretical tools enable the biophysical characterization of IDPs. Molecular simulations provide insights into IDP structural ensembles and disorder-to-order transition mechanisms. However, such studies depend strongly on the chosen force field parameters and simulation techniques. In this chapter, we provide an overview of IDP characteristics, review all-atom force fields recently developed for IDPs, and present molecular dynamics-based simulation methods that allow IDP ensemble generation as well as the characterization of disorder-to-order transitions. In particular, we introduce metadynamics, replica exchange molecular dynamics simulations, and also kinetic models resulting from Markov State modeling, and provide various examples for the successful application of these simulation methods to IDPs.
Collapse
Affiliation(s)
- Hebah Fatafta
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Suman Samantray
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; AICES Graduate School, RWTH Aachen University, Aachen, Germany
| | | | - Orkid Coskuner-Weber
- Molecular Biotechnology, Turkish-German University, Sahinkaya Caddesi, Istanbul, Turkey
| | - Birgit Strodel
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
27
|
Ruan H, Yu C, Niu X, Zhang W, Liu H, Chen L, Xiong R, Sun Q, Jin C, Liu Y, Lai L. Computational strategy for intrinsically disordered protein ligand design leads to the discovery of p53 transactivation domain I binding compounds that activate the p53 pathway. Chem Sci 2020; 12:3004-3016. [PMID: 34164069 PMCID: PMC8179352 DOI: 10.1039/d0sc04670a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intrinsically disordered proteins or intrinsically disordered regions (IDPs) have gained much attention in recent years due to their vital roles in biology and prevalence in various human diseases. Although IDPs are perceived as attractive therapeutic targets, rational drug design targeting IDPs remains challenging because of their conformational heterogeneity. Here, we propose a hierarchical computational strategy for IDP drug virtual screening (IDPDVS) and applied it in the discovery of p53 transactivation domain I (TAD1) binding compounds. IDPDVS starts from conformation sampling of the IDP target, then it combines stepwise conformational clustering with druggability evaluation to identify potential ligand binding pockets, followed by multiple docking screening runs and selection of compounds that can bind multi-conformations. p53 is an important tumor suppressor and restoration of its function provides an opportunity to inhibit cancer cell growth. TAD1 locates at the N-terminus of p53 and plays key roles in regulating p53 function. No compounds that directly bind to TAD1 have been reported due to its highly disordered structure. We successfully used IDPDVS to identify two compounds that bind p53 TAD1 and restore wild-type p53 function in cancer cells. Our study demonstrates that IDPDVS is an efficient strategy for IDP drug discovery and p53 TAD1 can be directly targeted by small molecules. A hierarchical computational strategy for IDP drug virtual screening (IDPDVS) was proposed and successfully applied to identify compounds that bind p53 TAD1 and restore wild-type p53 function in cancer cells.![]()
Collapse
Affiliation(s)
- Hao Ruan
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Chen Yu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China.,Beijing Nuclear Magnetic Resonance Center, Peking University Beijing 100871 China
| | - Weilin Zhang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Hanzhong Liu
- Center for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China +861062751490
| | - Limin Chen
- Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
| | - Ruoyao Xiong
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Qi Sun
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486
| | - Changwen Jin
- College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China.,Beijing Nuclear Magnetic Resonance Center, Peking University Beijing 100871 China
| | - Ying Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486.,Center for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China +861062751490
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China +861062757486.,Center for Quantitative Biology, Academy of Advanced Interdisciplinary Studies, Peking University Beijing 100871 China +861062751490.,Peking-Tsinghua Center for Life Sciences, Peking University Beijing 100871 China
| |
Collapse
|
28
|
Jain K, Ghribi O, Delhommelle J. Folding Free-Energy Landscape of α-Synuclein (35-97) Via Replica Exchange Molecular Dynamics. J Chem Inf Model 2020; 61:432-443. [PMID: 33350818 DOI: 10.1021/acs.jcim.0c01278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The misfolding and aggregation of α-synuclein (α-syn) in Lewy bodies are implicated in the pathogenesis of various neurodegenerative disorders, such as Parkinson's disease and dementia. The formation of α-syn fibrils is a complex process, involving various intermediates and oligomeric forms. These intermediates establish at an early stage of aggregation and subsequently lead to fibrillation. Determining which conformations are accessible to monomeric α-syn and especially, as shown in a recent work, to the central amino acids from residue 35 to residue 97 (63 residues) is thus crucial to understand the formation of these oligomers. Here, we carry out extensive replica exchange molecular dynamics (total time-18 μs) with an all-atom model and explicit solvent to characterize the free-energy landscape of human α-syn (residue 35 to residue 97). The simulation results lead us to identify two free-energy basins. Clustering analysis for the deepest free-energy minimum reveals a compact structure, with a secondary structure predominantly α-helix, while the shallower minimum corresponds to an elongated conformation, also predominantly α-helix. Furthermore, at physiological temperature, we find that conformational rearrangements happen via helix breaks due to the presence of glycine. We also show that the most likely conformations are characterized by the α-helix structure rather than the β-hairpin structure (for residue 38 to residue 53), in contrast with prior simulation studies using coarse-grained models or an implicit solvent. For higher temperatures, we observe a shift in secondary structure with a decrease in the population of α-helix in favor of random coils, β-bend, and β-turns.
Collapse
Affiliation(s)
- Karnesh Jain
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Othman Ghribi
- Department of Biomedical Sciences, School of Medicine & Health Sciences, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
29
|
Ruan H, Kiselar J, Zhang W, Li S, Xiong R, Liu Y, Yang S, Lai L. Integrative structural modeling of a multidomain polo-like kinase. Phys Chem Chem Phys 2020; 22:27581-27589. [PMID: 33236741 DOI: 10.1039/d0cp05030j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polo-like kinase 1 (PLK1) is a key regulator and coordinator for mitotic signaling that contains two major functional units of a kinase domain (KD) and a polo-box domain (PBD). While individual domain structures of the KD and the PBD are known, how they interact and assemble into a functional complex remains an open question. The structural model from the KD-PBD-Map205PBM heterotrimeric crystal structure of zebrafish PLK1 represents a major step in understanding the KD and the PBD interactions. However, how these two domains interact when connected by a linker in the full length PLK1 needs further investigation. By integrating different sources of structural data from small-angle X-ray scattering, hydroxyl radical protein footprinting, and computational sampling, here we report an overall architecture for PLK1 multidomain assembly between the KD and the PBD. Our model revealed that the KD uses its C-lobe to interact with the PBD via the site near the phosphopeptide binding site in its auto-inhibitory state in solution. Disruption of this auto-inhibition via site-directed mutagenesis at the KD-PBD interface increases its kinase activity, supporting the functional role of KD-PBD interactions predicted for regulating the PLK1 kinase function. Our results indicate that the full length human PLK1 takes dynamic structures with a variety of domain-domain interfaces in solution.
Collapse
Affiliation(s)
- Hao Ruan
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Dudás EF, Pálfy G, Menyhárd DK, Sebák F, Ecsédi P, Nyitray L, Bodor A. Tumor-Suppressor p53TAD 1-60 Forms a Fuzzy Complex with Metastasis-Associated S100A4: Structural Insights and Dynamics by an NMR/MD Approach. Chembiochem 2020; 21:3087-3095. [PMID: 32511842 PMCID: PMC7689910 DOI: 10.1002/cbic.202000348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Conformationally flexible protein complexes represent a major challenge for structural and dynamical studies. We present herein a method based on a hybrid NMR/MD approach to characterize the complex formed between the disordered p53TAD1-60 and the metastasis-associated S100A4. Disorder-to-order transitions of both TAD1 and TAD2 subdomains upon interaction is detected. Still, p53TAD1-60 remains highly flexible in the bound form, with residues L26, M40, and W53 being anchored to identical hydrophobic pockets of the S100A4 monomer chains. In the resulting "fuzzy" complex, the clamp-like binding of p53TAD1-60 relies on specific hydrophobic anchors and on the existence of extended flexible segments. Our results demonstrate that structural and dynamical NMR parameters (cumulative Δδ, SSP, temperature coefficients, relaxation time, hetNOE) combined with MD simulations can be used to build a structural model even if, due to high flexibility, the classical solution structure calculation is not possible.
Collapse
Affiliation(s)
- Erika F. Dudás
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
| | - Gyula Pálfy
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
| | - Dóra K. Menyhárd
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
- MTA-ELTE Protein Modelling Research GroupPázmány Péter sétány. 1/aBudapest1117Hungary
| | - Fanni Sebák
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
- Doctoral School of Pharmaceutical SciencesSemmelweis UniversityÜllői út 26Budapest1085Hungary
| | - Péter Ecsédi
- Department of BiochemistryEötvös Loránd UniversityPázmány Péter sétány 1/cBudapest1117Hungary
| | - László Nyitray
- Department of BiochemistryEötvös Loránd UniversityPázmány Péter sétány 1/cBudapest1117Hungary
| | - Andrea Bodor
- Laboratory of Structural Chemistry and BiologyEötvös Loránd UniversityPázmány Péter sétány 1/aBudapest1117Hungary
| |
Collapse
|
31
|
Kasahara K, Terazawa H, Itaya H, Goto S, Nakamura H, Takahashi T, Higo J. myPresto/omegagene 2020: a molecular dynamics simulation engine for virtual-system coupled sampling. Biophys Physicobiol 2020; 17:140-146. [PMID: 33240741 PMCID: PMC7671739 DOI: 10.2142/biophysico.bsj-2020013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/10/2020] [Indexed: 12/03/2022] Open
Abstract
The molecular dynamics (MD) method is a promising approach for investigating the molecular mechanisms of microscopic phenomena. In particular, generalized ensemble MD methods can efficiently explore the conformational space with a rugged free-energy surface. However, the implementation and acquisition of technical knowledge for each generalized ensemble MD method are not straightforward for end-users. Here, we present a new version of the myPresto/omegagene software, which is an MD simulation engine tailored for a series of generalized ensemble methods, which are virtual-system coupled multicanonical MD (V-McMD), virtual-system coupled adaptive umbrella sampling (V-AUS), and virtual-system coupled canonical MD (VcMD). This program has been applied in several studies analyzing free-energy landscapes of a variety of molecular systems with all-atom simulations. The updated version provides new functionality for coarse-grained simulations powered by the hydrophobicity scale method. The software package includes a step-by-step tutorial document for enhanced conformational sampling of the poly-glutamine (poly-Q) oligomer expressed as a one-bead per residue model. The myPresto/omegagene software is freely available at the following URL: https://github.com/kotakasahara/omegagene under the Apache2 license.
Collapse
Affiliation(s)
- Kota Kasahara
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hiroki Terazawa
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hayato Itaya
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Satoshi Goto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Haruki Nakamura
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Takahashi
- College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Junichi Higo
- Graduate School of Simulation Studies, University of Hyogo, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
32
|
Garlick JM, Mapp AK. Selective Modulation of Dynamic Protein Complexes. Cell Chem Biol 2020; 27:986-997. [PMID: 32783965 PMCID: PMC7469457 DOI: 10.1016/j.chembiol.2020.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Dynamic proteins perform critical roles in cellular machines, including those that control proteostasis, transcription, translation, and signaling. Thus, dynamic proteins are prime candidates for chemical probe and drug discovery but difficult targets because they do not conform to classical rules of design and screening. Selectivity is pivotal for candidate probe molecules due to the extensive interaction network of these dynamic hubs. Recognition that the traditional rules of probe discovery are not necessarily applicable to dynamic proteins and their complexes, as well as technological advances in screening, have produced remarkable results in the last 2-4 years. Particularly notable are the improvements in target selectivity for small-molecule modulators of dynamic proteins, especially with techniques that increase the discovery likelihood of allosteric regulatory mechanisms. We focus on approaches to small-molecule screening that appear to be more suitable for highly dynamic targets and have the potential to streamline identification of selective modulators.
Collapse
Affiliation(s)
- Julie M Garlick
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
33
|
Zhang H, Sang J, Li L, Jiang L, Lu F, He S, Cui W, Zhang X, Liu F. Molecular basis for the inhibitory effects of 5-hydroxycyclopenicillone on the conformational transition of Aβ 40 monomer. J Biomol Struct Dyn 2020; 39:6440-6451. [PMID: 32723218 DOI: 10.1080/07391102.2020.1799863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Previous studies have indicated that 5-hydroxycyclopenicillone (HCP), an active compound derived from marine sponge, could inhibit oligomerization of amyloid β-protein (Aβ). However, the molecular basis for the interaction between HCP and Aβ remains unclear. Herein, all-atom molecular dynamics (MD) simulations were used to explore the conformational conversion of an Aβ40 monomer at different concentrations (0-40 mM) of HCP at the atomic level. It is confirmed that the conformational transition of the Aβ40 monomer is prevented by HCP in a concentration-dependent manner in silico. In 40 mM HCP solution, the initial α-helix-rich conformation of Aβ40 monomer is kept under the action of HCP. The intra-peptide hydrophobic collapse and D23-K28 salt bridge are prevented by HCP. Moreover, it is indicated that the non-polar binding energy dominates the binding between HCP and Aβ40 monomer as evaluated by molecular mechanics Poisson-Boltzmann surface area method. And, the residues of F4, Y10, V12, L17 and L34 in Aβ40 might contribute to the binding energy in HCP-Aβ40 complex. All these results elucidate the molecular mechanism underlying the inhibitory effects of HCP against the conformational transformation of Aβ40, providing a support that HCP may be developed as a potential anti-Aβ compound for the treatment of Aβ-related diseases.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Huitu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Jingcheng Sang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Li Li
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Luying Jiang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Fuping Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, China
| | - Wei Cui
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaoqing Zhang
- Ningbo Key Laboratory of Behavioral Neuroscience, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, China
| | - Fufeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology; College of Biotechnology, Tianjin University of Science & Technology, Tianjin, P. R. China
| |
Collapse
|
34
|
Probing Surfaces in Dynamic Protein Interactions. J Mol Biol 2020; 432:2949-2972. [DOI: 10.1016/j.jmb.2020.02.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 01/09/2023]
|