1
|
Zhang Z, Wan J, Ye G, Wang Y, Bai Y, Yan Z. Effects of salinity and betaine addition on anaerobic granular sludge properties and microbial community succession patterns in organic saline wastewater. J Environ Sci (China) 2025; 147:310-321. [PMID: 39003049 DOI: 10.1016/j.jes.2023.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 07/15/2024]
Abstract
In this study, the effects of different salinity gradients and addition of compatible solutes on anaerobic treated effluent water qualities, sludge characteristics and microbial communities were investigated. The increase in salinity resulted in a decrease in particle size of the granular sludge, which was concentrated in the range of 0.5-1.0 mm. The content of EPS (extracellular polymeric substances) in the granular sludge gradually increased with increasing salinity and the addition of betaine (a typical compatible solute). Meanwhile, the microbial community structure was significantly affected by salinity, with high salinity reducing the diversity of bacteria. At higher salinity, Patescibacteria and Proteobacteria gradually became the dominant phylum, with relative abundance increasing to 13.53% and 12.16% at 20 g/L salinity. Desulfobacterota and its subordinate Desulfovibrio, which secrete EPS in large quantities, dominated significantly after betaine addition.Their relative abundance reached 13.65% and 7.86% at phylum level and genus level. The effect of these changes on the treated effluent was shown as the average chemical oxygen demand (COD) removal rate decreased from 82.10% to 79.71%, 78.01%, 68.51% and 64.55% when the salinity gradually increased from 2 g/L to 6, 10, 16 and 20 g/L. At the salinity of 20 g/L, average COD removal increased to 71.65% by the addition of 2 mmol/L betaine. The gradient elevated salinity and the exogenous addition of betaine played an important role in achieving stability of the anaerobic system in a highly saline environment, which provided a feasible strategy for anaerobic treatment of organic saline wastewater.
Collapse
Affiliation(s)
- Zhifei Zhang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinquan Wan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Gang Ye
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yan Wang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuwei Bai
- Shijiazhuang High Tech Industrial Development Zone Water Supply and Drainage Company, Shijiazhuang 050000, China
| | - Zhicheng Yan
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
García JE, Pagnussat LA, Amenta MB, Casanovas EM, Diaz PR, Labarthe MM, Martino MV, Groppa MD, Creus CM, Maroniche GA. Maize drought protection by Azospirillum argentinense Az19 requires bacterial trehalose accumulation. Appl Microbiol Biotechnol 2024; 108:543. [PMID: 39729258 DOI: 10.1007/s00253-024-13391-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Azospirillum argentinense Az19 is an osmotolerant plant growth-promoting bacterium that protects maize plants from drought. In this work, we explored the role of trehalose in the superior performance of Az19 under stress. The trehalase-coding gene treF was constitutively expressed in Az19 through a miniTn7 system. The resulting recombinant strain, Az19F, did not accumulate trehalose, was affected in its capacity to cope with salt-, osmotic-, and UV-stress, and showed higher reactive oxygen species levels. Physiological alterations were also observed under normal conditions, such as increased growth in biofilms, higher motility, and decreased auxin secretion. Even so, the capacity of Az19F to colonize maize roots was not affected, either under normal or drought conditions. When inoculated in maize, both Az19 and Az19F strains promoted plant growth similarly under normal irrigation. However, unlike Az19, the trehalose-deficient strain Az19F could not improve the height, aerial fresh weight, or relative water content of maize plants under drought. Notably, Az19F triggered an exacerbated oxidative response in the plants, resulting in higher levels of antioxidant and phenolic compounds. We conclude that the role of trehalose metabolism in A. argentinense Az19 transcends stress tolerance, being also important for normal bacterial physiology and its plant growth-promoting activity under drought. KEY POINTS: • Trehalose is required by Az19 for full tolerance to salt-, osmotic-, and UV-stress. • A restriction in trehalose accumulation alters Az19 normal cell physiology. • Trehalose contributes to Az19-induced maize growth promotion under drought.
Collapse
Affiliation(s)
- Julia E García
- Instituto de Microbiología y Zoología Agrícola, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y de los Reseros S/N, Hurlingham, B1713, Buenos Aires, Argentina
| | - Luciana A Pagnussat
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Vieytes 3103, B7602, Mar del Plata, Buenos Aires, Argentina
| | - Melina B Amenta
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - E Mabel Casanovas
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - Pablo R Diaz
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina
| | - María M Labarthe
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina
| | - María V Martino
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - María D Groppa
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET-Universidad de Buenos Aires (UBA), C1113, Junin 956, Buenos Aires, Argentina
| | - Cecilia M Creus
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina
| | - Guillermo A Maroniche
- Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata (UNMdP), Ruta Provincial 226 Km 73.5, B7620, Balcarce, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 2290 C1425, Godoy Cruz, CABA, Argentina.
| |
Collapse
|
3
|
Alijagic A, Russo R, Scuderi V, Ussia M, Scalese S, Taverna S, Engwall M, Pinsino A. Sea urchin immune cells and associated microbiota co-exposed to iron oxide nanoparticles activate cellular and molecular reprogramming that promotes physiological adaptation. JOURNAL OF HAZARDOUS MATERIALS 2024; 485:136808. [PMID: 39662349 DOI: 10.1016/j.jhazmat.2024.136808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
The innate immune system is the first player involved in the recognition/interaction with nanomaterials. Still, it is not the only system involved. The co-evolution of the microbiota with the innate immune system built an interdependence regulating immune homeostasis that is poorly studied. Herein, the simultaneous interaction of iron-oxide nanoparticles (Fe-oxide NPs), immune cells, and the microbiota associated with the blood of the sea urchin Paracentrotus lividus was explored by using a microbiota/immune cell model in vitro-ex vivo and a battery of complementary tools, including Raman spectroscopy, 16S Next-Generation Sequencing, high-content imaging, NanoString nCounter. Our findings highlight the P. lividus immune cells and microbiota dynamics in response to Fe-oxide NPs, including i) morphological rearrangement and immune cell health status maintenance (intracellular trafficking increasing, no phenotypic alterations or caspase 3/7 activation), ii) transcriptomic reprogramming in immune cells (Smad6, Lmo2, Univin, suPaxB, Frizzled-7, Fgfr2, Gp96 upregulation), iii) immune signaling unchanged (e.g., P-p38 MAPK, P-ERK, TLR4, IL-6 protein level unchanged), iv) enrichment in extracellular vesicle released in the co-culture medium, and v) a shift in the composition of microbial groups mainly in favor of Gram-positive bacteria (e.g., Firmicutes, Actinobacteria),. Our findings suggest that Fe-oxide NPs induce a multi-level immune cell-microbiota response restoring homeostasis.
Collapse
Affiliation(s)
- Andi Alijagic
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden.
| | - Roberta Russo
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Viviana Scuderi
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Ottava Strada n.5, Catania 95121, Italy
| | - Martina Ussia
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Ottava Strada n.5, Catania 95121, Italy
| | - Silvia Scalese
- Institute for Microelectronics and Microsystems (IMM), National Research Council (CNR), Ottava Strada n.5, Catania 95121, Italy
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo 90146, Italy
| | - Magnus Engwall
- Man-Technology-Environment Research Center (MTM), Örebro University, Örebro SE-701 82, Sweden
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, Palermo 90146, Italy.
| |
Collapse
|
4
|
Kim JA, Park YS, Kim JH, Choi CY. Hyposalinity elicits physiological responses and alters intestinal microbiota in Korean rockfish Sebastes schlegelii. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:2315-2326. [PMID: 39102012 DOI: 10.1007/s10695-024-01387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Global warming significantly impacts aquatic ecosystems, with changes in the salt environment negatively affecting the physiological responses of fish. We investigated the impact of hyposalinity on the physiological responses and intestinal microbiota of Sebastes schlegelii under the context of increased freshwater influx due to climate change. We focused on the osmoregulatory capacity, oxidative stress responses, and alterations in the intestinal microbiome of S. schlegelii under low-salinity conditions. Our findings revealed compromised osmoregulatory capacity in S. schlegelii under low-salinity conditions, accompanied by the activation of oxidative stress responses, indicating physiological adaptations to cope with environmental stress. Specifically, changes in Na+/K+-ATPase (NKA) activity in gill tissues were associated with decreased osmoregulatory capacity. Furthermore, the analysis of the intestinal microbiome led to significant changes in microbial diversity. Exposure to low-salinity environments led to dysbiosis, with notable decreases in the relative abundance of Gammaproteobacteria at the class level and specific genera such as Enterovibrio, and Photobacterium. Conversely, Bacilli classes, along with genera like Mycoplasma, exhibited increased proportions in fish exposed to low-salinity conditions. These findings underscore the potential impact of environmental salinity changes on the adaptive capacity of fish species, particularly in the context of aquaculture. Moreover, they highlight the importance of considering both physiological and microbial responses in understanding the resilience of aquatic organisms to environmental stress. Additionally, they highlight the importance of intestinal microbiota analyses in understanding the immune system and disease management in fish.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Convergence Study On the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, Korea
| | - Young-Su Park
- Department of Nursing, Catholic University of Pusan, Busan, 46252, Korea
| | - Jun-Hwan Kim
- Department of Aquatic Life Medicine, Jeju National University, Jeju, 63243, Korea.
| | - Cheol Young Choi
- Department of Convergence Study On the Ocean Science and Technology, Korea Maritime and Ocean University, Busan, 49112, Korea.
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan, 49112, Korea.
| |
Collapse
|
5
|
Galisteo C, Puente-Sánchez F, de la Haba RR, Bertilsson S, Sánchez-Porro C, Ventosa A. Metagenomic insights into the prokaryotic communities of heavy metal-contaminated hypersaline soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175497. [PMID: 39151617 DOI: 10.1016/j.scitotenv.2024.175497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Saline soils and their microbial communities have recently been studied in response to ongoing desertification of agricultural soils caused by anthropogenic impacts and climate change. Here we describe the prokaryotic microbiota of hypersaline soils in the Odiel Saltmarshes Natural Area of Southwest Spain. This region has been strongly affected by mining and industrial activity and feature high levels of certain heavy metals. We sequenced 18 shotgun metagenomes through Illumina NovaSeq from samples obtained from three different areas in 2020 and 2021. Taxogenomic analyses demonstrate that these soils harbored equal proportions of archaea and bacteria, with Methanobacteriota, Pseudomonadota, Bacteroidota, Gemmatimonadota, and Balneolota as most abundant phyla. Functions related to the transport of heavy metal outside the cytoplasm are among the most relevant features of the community (i.e., ZntA and CopA enzymes). They seem to be indispensable to avoid the increase of zinc and copper concentration inside the cell. Besides, the archaeal phylum Methanobacteriota is the main arsenic detoxifier within the microbiota although arsenic related genes are widely distributed in the community. Regarding the osmoregulation strategies, "salt-out" mechanism was identified in part of the bacterial population, whereas "salt-in" mechanism was present in both domains, Bacteria and Archaea. De novo biosynthesis of two of the most universal compatible solutes was detected, with predominance of glycine betaine biosynthesis (betAB genes) over ectoine (ectABC genes). Furthermore, doeABCD gene cluster related to the use of ectoine as carbon and energy source was solely identified in Pseudomonadota and Methanobacteriota.
Collapse
Affiliation(s)
- Cristina Galisteo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Fernando Puente-Sánchez
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Rafael R de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75651 Uppsala, Sweden
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|
6
|
Hädrich M, Schulze C, Hoff J, Blombach B. Vibrio natriegens: Application of a Fast-Growing Halophilic Bacterium. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39527262 DOI: 10.1007/10_2024_271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The fast growth accompanied with high substrate consumption rates and a versatile metabolism paved the way to exploit Vibrio natriegens as unconventional host for biotechnological applications. Meanwhile, a wealth of knowledge on the physiology, the metabolism, and the regulation in this halophilic marine bacterium has been gathered. Sophisticated genetic engineering tools and metabolic models are available and have been applied to engineer production strains and first chassis variants of V. natriegens. In this review, we update the current knowledge on the physiology and the progress in the development of synthetic biology tools and provide an overview of recent advances in metabolic engineering of this promising host. We further discuss future challenges to enhance the application range of V. natriegens.
Collapse
Affiliation(s)
- Maurice Hädrich
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
| | - Clarissa Schulze
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Josef Hoff
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany
| | - Bastian Blombach
- Microbial Biotechnology, Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
- SynBiofoundry@TUM, Technical University of Munich, Straubing, Germany.
- Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
7
|
Seok B, Kim MS, Kim BS. Genome-wide analysis of quorum sensing regulon in marine fish pathogen Vibrio scophthalmi. Sci Rep 2024; 14:27740. [PMID: 39533010 PMCID: PMC11558012 DOI: 10.1038/s41598-024-78803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Opportunistic fish pathogen Vibrio scophthalmi frequently infects olive flounder and turbot, which are primary marine species cultured for seafood production in Far East Asia. These infections cause substantial yield reductions and significant economic losses. Although quorum sensing (QS) genes were previously reported in V. scophthalmi, the impacts of QS on genome-wide gene expression and consequent behaviors and physiological traits have remained largely unexplored. In this study, we conducted genomic and transcriptomic analyses to uncover the global regulatory network governed by LuxRVs, a QS master regulator in V. scophthalmi. By comparing the wild-type strain and a luxRVs deletion mutant strain, we found that LuxRVs positively regulates biosynthetic genes for poly-hydroxyalkanoate (PHA) while negatively controlling genes for biofilm formation. Quantification of intracellular PHAs and biofilm biomass on borosilicate tubes confirmed these results. Gene set enrichment analyses further demonstrated that LuxRVs also governs genes related to osmoprotection and defense against reactive oxygen species. Overall, these findings indicate that LuxRVs acts as a global transcriptional regulator, controlling a wide range of physiological processes in V. scophthalmi. Targeting LuxRVs could therefore be a promising strategy for improving seafood production by disrupting diverse physiological and pathogenic traits in this fish pathogen.
Collapse
Affiliation(s)
- Bokyung Seok
- Department of Food Science and Biotechnology, College of Engineering, Ewha Womans University, Seoul, 03760, South Korea
| | - Myoung Sug Kim
- Pathology Research Division, National Institute of Fisheries Science, Busan, 46083, South Korea
| | - Byoung Sik Kim
- Department of Food Science and Biotechnology, College of Engineering, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
8
|
Balagurusamy R, Gopi L, Kumar DSS, Viswanathan K, Meganathan V, Sathiyamurthy K, Athmanathan B. Significance of Viable But Non-culturable (VBNC) State in Vibrios and Other Pathogenic Bacteria: Induction, Detection and the Role of Resuscitation Promoting Factors (Rpf). Curr Microbiol 2024; 81:417. [PMID: 39432128 DOI: 10.1007/s00284-024-03947-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Still, it remains a debate after four decades of research on surviving cells, several bacterial species were naturally inducted and found to exist in a viable but non-culturable (VBNC) state, an adaptive strategy executed by most bacterial species under different stressful conditions. VBNC state are generally attributed when the cells lose its culturability on standard culture media, diminish in conventional detection methods, but retaining its viability, virulence and antibiotic resistance over a period of years and may poses a risk to marine animals as well as public health and food safety. In this present review, we mainly focus the VBNC state of Vibrios and other human bacterial pathogens. Exposure to several factors like nutrient depletion, temperature fluctuation, changes in salinity and oxidative stress, antibiotic and other chemical stress can induce the cells to VBNC state. The transcriptomic and proteomic changes during VBNC, modification in detection techniques and the most significant role of Rpf in conversion of VBNC into culturable cells. Altogether, detection of unculturable VBNC forms has significant importance, since it may not only regain its culturability, but also reactivate its putative virulence determinants causing serious outbreaks and illness to the individual.
Collapse
Affiliation(s)
- Rakshana Balagurusamy
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Lekha Gopi
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Dhivya Shre Senthil Kumar
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Kamalalakshmi Viswanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Velmurugan Meganathan
- Department of Cellular and Molecular Biology Lab, University of Texas Health Science Center at Tyler, Tyler, USA
| | - Karuppanan Sathiyamurthy
- Department of Bio Medical Science, School of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India
| | - Baskaran Athmanathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, GST Road, Vandalur, Chennai, Tamil Nadu, 600048, India.
| |
Collapse
|
9
|
Shin J, Zielinski D, Palsson B. Modulating bacterial function utilizing A knowledge base of transcriptional regulatory modules. Nucleic Acids Res 2024; 52:11362-11377. [PMID: 39193902 PMCID: PMC11472167 DOI: 10.1093/nar/gkae742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Synthetic biology enables the reprogramming of cellular functions for various applications. However, challenges in scalability and predictability persist due to context-dependent performance and complex circuit-host interactions. This study introduces an iModulon-based engineering approach, utilizing machine learning-defined co-regulated gene groups (iModulons) as design parts containing essential genes for specific functions. This approach identifies the necessary components for genetic circuits across different contexts, enhancing genome engineering by improving target selection and predicting module behavior. We demonstrate several distinct uses of iModulons: (i) discovery of unknown iModulons to increase protein productivity, heat tolerance and fructose utilization; (ii) an iModulon boosting approach, which amplifies the activity of specific iModulons, improved cell growth under osmotic stress with minimal host regulation disruption; (iii) an iModulon rebalancing strategy, which adjusts the activity levels of iModulons to balance cellular functions, significantly increased oxidative stress tolerance while minimizing trade-offs and (iv) iModulon-based gene annotation enabled natural competence activation by predictably rewiring iModulons. Comparative experiments with traditional methods showed our approach offers advantages in efficiency and predictability of strain engineering. This study demonstrates the potential of iModulon-based strategies to systematically and predictably reprogram cellular functions, offering refined and adaptable control over complex regulatory networks.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Eghtesadi N, Olaifa K, Pham TT, Capriati V, Ajunwa OM, Marsili E. Osmoregulation by choline-based deep eutectic solvent induces electroactivity in Bacillus subtilis biofilms. Enzyme Microb Technol 2024; 180:110485. [PMID: 39059288 DOI: 10.1016/j.enzmictec.2024.110485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 06/23/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Gram-positive Bacillus subtilis is a model organism for the biotechnology industry and has recently been characterized as weakly electroactive in both planktonic cultures and biofilms. Increasing the extracellular electron transfer (EET) rate in B. subtilis biofilms will help to develop an efficient microbial electrochemical technology (MET) and improve the bioproduction of high-value metabolites under electrofermentative conditions. In our previous work, we have shown that the addition of compatible solute precursors such as choline chloride (ChCl) to the growth medium formulation increases current output and biofilm formation in B. subtilis. In this work, we utilized a low-carbon tryptone yeast extract medium with added salts to further expose B. subtilis to salt stress and observe the osmoregulatory and/or nutritional effects of a D-sorbitol/choline chloride (ChCl) (1:1 mol mol-1) deep eutectic solvents (DESs) on the electroactivity of the formed biofilm. The results show that ChCl and D-sorbitol alleviate the osmotic stress induced by the addition of NaH2PO4 and KH2PO4 salts and boost biofilm production. This is probably due to the osmoprotective effect of ChCl, a precursor of the osmoprotectant glycine betaine, and the induction of electroactive exopolymeric substances within the B. subtilis biofilm. Since high ionic strength media are commonly used in microbial biotechnology, the combination of ChCl-containing DESs and salt stress could enhance biofilm-based electrofermentation processes that bring significant benefits for biotechnological applications.
Collapse
Affiliation(s)
- Neda Eghtesadi
- Department of Chemical and Materials Engineering, School of Engineering and Digital, Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 01000, Kazakhstan
| | - Kayode Olaifa
- Department of Chemical and Materials Engineering, School of Engineering and Digital, Sciences, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 01000, Kazakhstan
| | - Tri T Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 01000, Kazakhstan
| | - Vito Capriati
- Dipartimento di Farmacia - Scienze del Farmaco, Consorzio CINMPIS, Università degli Studi di Bari Aldo Moro, Bari 70125, Italy
| | - Obinna M Ajunwa
- Interdisciplinary Nanoscience Center (iNANO), Faculty of Natural Sciences, Aarhus University, Aarhus, Denmark.
| | - Enrico Marsili
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China.
| |
Collapse
|
11
|
Obayori OS, Salam LB, Ashade AO, Oseni TD, Kalu MD, Mustapha FM. An animal charcoal contaminated cottage industry soil highlighted by halophilic archaea dominance and decimation of bacteria. World J Microbiol Biotechnol 2024; 40:327. [PMID: 39299940 DOI: 10.1007/s11274-024-04136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
An animal charcoal contaminated cottage industry soil in Lagos, Nigeria (ACGT) was compared in an ex post facto study with a nearby unimpacted soil (ACGC). Hydrocarbon content was higher than regulatory limits in ACGT (180.2 mg/kg) but lower in ACGC (19.28 mg/kg). Heavy metals like nickel, cadmium, chromium and lead were below detection limit in ACGC. However, all these metals, except cadmium, were detected in ACGT, but at concentrations below regulatory limits. Furthermore, copper (253.205 mg/kg) and zinc (422.630 mg/kg) were above regulatory limits in ACGT. Next generation sequencing revealed that the procaryotic community was dominated by bacteria in ACGC (62%) while in ACGT archaea dominated (76%). Dominant phyla in ACGC were Euryarchaeota (37%), Pseudomonadota (16%) and Actinomycetota (12%). In ACGT it was Euryarchaeota (76%), Bacillota (9%), Pseudomonadota (7%) and Candidatus Nanohaloarchaeota (5%). Dominant Halobacteria genera in ACGT were Halobacterium (16%), Halorientalis (16%), unranked halophilic archaeon (13%) Salarchaeum (6%) and Candidatus Nanohalobium (5%), whereas ACGC showed greater diversity dominated by bacterial genera Salimicrobium (7%) and Halomonas (3%). Heavy metals homeostasis genes, especially for copper, were fairly represented in both soils but with bacterial taxonomic affiliations. Sites like ACGT, hitherto poorly studied and understood, could be sources of novel bioresources.
Collapse
Affiliation(s)
| | - Lateef Babatunde Salam
- Microbiology Unit, Department of Biological Sciences, Elizade University, Ilara-Mokin, Ondo State, Nigeria
| | - Ahmeed Olalekan Ashade
- Department of Microbiology, Faculty of Science, Lagos State University, Ojo, Lagos, Nigeria
| | | | - Mandy Divine Kalu
- Department of Microbiology, Faculty of Science, Lagos State University, Ojo, Lagos, Nigeria
| | | |
Collapse
|
12
|
Fan Y, Zhou Z, Liu F, Qian L, Yu X, Huang F, Hu R, Su H, Gu H, Yan Q, He Z, Wang C. The vertical partitioning between denitrification and dissimilatory nitrate reduction to ammonium of coastal mangrove sediment microbiomes. WATER RESEARCH 2024; 262:122113. [PMID: 39032335 DOI: 10.1016/j.watres.2024.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Mangrove aquatic ecosystems receive substantial nitrogen (N) inputs from both land and sea, playing critical roles in modulating coastal N fluxes. The microbially-mediated competition between denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in mangrove sediments significantly impacts the N fate and transformation processes. Despite their recognized role in N loss or retention in surface sediments, how these two processes vary with sediment depths and their influential factors remain elusive. Here, we employed a comprehensive approach combining 15N isotope tracer, quantitative PCR (qPCR) and metagenomics to verify the vertical dynamics of denitrification and DNRA across five 100-cm mangrove sediment cores. Our results revealed a clear vertical partitioning, with denitrification dominated in 0-30 cm sediments, while DNRA played a greater role with increasing depths. Quantification of denitrification and DNRA functional genes further explained this phenomenon. Taxonomic analysis identified Pseudomonadota as the primary denitrification group, while Planctomycetota and Pseudomonadota exhibited high proportion in DNRA group. Furthermore, genome-resolved metagenomics revealed multiple salt-tolerance strategies and aromatic compound utilization potential in denitrification assemblages. This allowed denitrification to dominate in oxygen-fluctuating and higher-salinity surface sediments. However, the elevated C/N in anaerobic deep sediments favored DNRA, tending to generate biologically available NH4+. Together, our results uncover the depth-related variations in the microbially-mediated competition between denitrification and DNRA, regulating N dynamics in mangrove ecosystems.
Collapse
Affiliation(s)
- Yijun Fan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhengyuan Zhou
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fei Liu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Qian
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaoli Yu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Fangjuan Huang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hualong Su
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Gu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| | - Cheng Wang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory of Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
13
|
Wu F, Chen Z, Xu X, Xue X, Zhang Y, Sui N. Halotolerant Bacillus sp. strain RA coordinates myo-inositol metabolism to confer salt tolerance to tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1871-1885. [PMID: 38967265 DOI: 10.1111/jipb.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024]
Abstract
Soil salinity is a worldwide problem threatening crop yields. Some plant growth-promoting rhizobacteria (PGPR) could survive in high salt environment and assist plant adaptation to stress. Nevertheless, the genomic and metabolic features, as well as the regulatory mechanisms promoting salt tolerance in plants by these bacteria remain largely unknown. In the current work, a novel halotolerant PGPR strain, namely, Bacillus sp. strain RA can enhance tomato tolerance to salt stress. Comparative genomic analysis of strain RA with its closely related species indicated a high level of evolutionary plasticity exhibited by strain-specific genes and evolutionary constraints driven by purifying selection, which facilitated its genomic adaptation to salt-affected soils. The transcriptome further showed that strain RA could tolerate salt stress by balancing energy metabolism via the reprogramming of biosynthetic pathways. Plants exude a plethora of metabolites that can strongly influence plant fitness. The accumulation of myo-inositol in leaves under salt stress was observed, leading to the promotion of plant growth triggered by Bacillus sp. strain RA. Importantly, myo-inositol serves as a selective force in the assembly of the phyllosphere microbiome and the recruitment of plant-beneficial species. It promotes destabilizing properties in phyllosphere bacterial co-occurrence networks, but not in fungal networks. Furthermore, interdomain interactions between bacteria and fungi were strengthened by myo-inositol in response to salt stress. This work highlights the genetic adaptation of RA to salt-affected soils and its ability to impact phyllosphere microorganisms through the adjustment of myo-inositol metabolites, thereby imparting enduring resistance against salt stress in tomato.
Collapse
Affiliation(s)
- Fenghui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Zengting Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Xiaotong Xu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Key Laboratory of Salt Tolerance Mechanism and Application of Halophytes, Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China
| | - Xin Xue
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yanling Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
14
|
Huang Q, Zhang Y, Zhang M, Li X, Wang Q, Ji X, Chen R, Luo X, Ji S, Lu R. Assessment of Vibrionaceae prevalence in seafood from Qidong market and analysis of Vibrio parahaemolyticus strains. PLoS One 2024; 19:e0309304. [PMID: 39173020 PMCID: PMC11341049 DOI: 10.1371/journal.pone.0309304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
The aim of this study was to investigate the prevalence of Vibrionaceae family in retail seafood products available in the Qidong market during the summer of 2023 and to characterize Vibrio parahaemolyticus isolates, given that this bacterium is the leading cause of seafood-associated food poisoning. We successfully isolated a total of 240 Vibrionaceae strains from a pool of 718 seafood samples. The breakdown of the isolates included 146 Photobacterium damselae, 59 V. parahaemolyticus, 18 V. campbellii, and 11 V. alginolyticus. Among these, P. damselae and V. parahaemolyticus were the predominant species, with respective prevalence rates of 20.3% and 8.2%. Interestingly, all 59 isolates of V. parahaemolyticus were identified as non-pathogenic. They demonstrated proficiency in swimming and swarming motility and were capable of forming biofilms across a range of temperatures. In terms of antibiotic resistance, the V. parahaemolyticus isolates showed high resistance to ampicillin, intermediate resistance to cefuroxime and cefazolin, and were sensitive to the other antibiotics evaluated. The findings of this study may offer valuable insights and theoretical support for enhancing seafood safety measures in Qidong City.
Collapse
Affiliation(s)
- Qinglian Huang
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Yiquan Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Miaomiao Zhang
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Xue Li
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinjun Wang
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xianyi Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Rongrong Chen
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Xi Luo
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shenjie Ji
- Department of Clinical Laboratory, Qidong People’s Hospital, Qidong, Jiangsu, China
| | - Renfei Lu
- School of Medicine, Nantong University, Nantong, Jiangsu, China
- Department of Clinical Laboratory, Nantong Third People’s Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
15
|
Yang T, Nian Y, Lin H, Li J, Lin X, Li T, Wang R, Wang L, Beattie GA, Zhang J, Fan M. Structure and mechanism of the osmoregulated choline transporter BetT. SCIENCE ADVANCES 2024; 10:eado6229. [PMID: 39141726 PMCID: PMC11323884 DOI: 10.1126/sciadv.ado6229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Abstract
The choline-glycine betaine pathway plays an important role in bacterial survival in hyperosmotic environments. Osmotic activation of the choline transporter BetT promotes the uptake of external choline for synthesizing the osmoprotective glycine betaine. Here, we report the cryo-electron microscopy structures of Pseudomonas syringae BetT in the apo and choline-bound states. Our structure shows that BetT forms a domain-swapped trimer with the C-terminal domain (CTD) of one protomer interacting with the transmembrane domain (TMD) of a neighboring protomer. The substrate choline is bound within a tryptophan prism at the central part of TMD. Together with functional characterization, our results suggest that in Pseudomonas species, including the plant pathogen P. syringae and the human pathogen Pseudomonas aeruginosa, BetT is locked at a low-activity state through CTD-mediated autoinhibition in the absence of osmotic stress, and its hyperosmotic activation involves the release of this autoinhibition.
Collapse
Affiliation(s)
- Tianjiao Yang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuwei Nian
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Huajian Lin
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jing Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiang Lin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tianming Li
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruiying Wang
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Longfei Wang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Gwyn A. Beattie
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Jinru Zhang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Minrui Fan
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
16
|
Zahra ST, Tariq M, Abdullah M, Ullah MK, Rafiq AR, Siddique A, Shahid MS, Ahmed T, Jamil I. Salt-Tolerant Plant Growth-Promoting Bacteria (ST-PGPB): An Effective Strategy for Sustainable Food Production. Curr Microbiol 2024; 81:304. [PMID: 39133243 DOI: 10.1007/s00284-024-03830-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
Soil is the backbone of the agricultural economy of any country. Soil salinity refers to the higher concentration of soluble salts in the soil. Soil salinity is a ruinous abiotic stress that has emerged as a threatening issue for food security. High salt concentration causes an ionic imbalance that hampers water uptake, affecting photosynthesis and other metabolic processes, ultimately resulting in inferior seed germination and stunted plant growth. A wide range of strategies have been adopted to mitigate the harmful effects of salinity such as efficient irrigation techniques, soil reclamation, habitat restoration, flushing, leaching or using salt-tolerant crops, but all the methods have one or more limitations. An alternative and effective strategy is the exploitation of salt-tolerant plant growth-promoting bacteria (ST-PGPB) to mitigate salt stress and improve crop productivity. ST-PGPB can survive in salinity-tainted environments and perform their inherent plant growth-promoting and biocontrol functions effectively. Additionally, ST-PGPB can rescue plants via stress-responsive mechanisms including production of growth regulators, maintenance of osmotic balance, aminocyclopropane-1-carboxylate (ACC) deaminase activity, exopolysaccharides (EPS) activity, improvement in photosynthesis activity, synthesis of compatible solutes, antioxidant activity and regulation of salt overly sensitive (SOS) signaling pathway. Several well-known ST-PGPB, specifically Azospirillum, Bacillus, Burkholderia, Enterobacter, Pseudomonas and Pantoea, are used as bioinoculants to improve the growth of different crops. The application of ST-PGPB allows plants to cope with salt stress by boosting their defense mechanisms. This review highlights the impact of salinity stress on plant growth and the potential of ST-PGPB as a biofertilizer to improve crop productivity under salt stress.
Collapse
Affiliation(s)
- Syeda Tahseen Zahra
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Abdullah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Kaleem Ullah
- Institute of Agricultural Extension, Education and Rural Development, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Abdul Rafay Rafiq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Aisha Siddique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Muscat, Oman
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Department of Life Sciences, Western Caspian University, Baku, Azerbaijan
- MEU Research Unit, Middle East University, Amman, Jordan
| | - Imrana Jamil
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
17
|
Naufal M, Wu JH. Chemomixoautotrophy and stress adaptation of anammox bacteria: A review. WATER RESEARCH 2024; 257:121663. [PMID: 38669739 DOI: 10.1016/j.watres.2024.121663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/16/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Anaerobic ammonium oxidizing (anammox) bacteria, which were first discovered nearly three decades ago, are crucial for treating ammonium-containing wastewater. Studies have reported on the biochemical nitrogen conversion process and the physiological, phylogenic, and ecological features of anammox bacteria. For a long time, anammox bacteria were assumed to have a lithoautotrophic lifestyle. However, recent studies have suggested the functional versatility of anammox bacteria. Genome-based analysis and experiments with enrichment cultures have demonstrated the association of the metabolic activities of anammox bacteria with different stress conditions, revealing the importance of utilizing specific organic substances, including organoautotrophy, for growth and adaptation to stress conditions. Our understanding regarding the utilization and metabolism of organic substances and their associations with anammox reactions in anammox bacteria is growing but still incomplete. In this review, we summarize the effect of the utilization of organic substances by anammox bacteria under environmental stress conditions, emphasizing their potential organoautotrophic activity and metabolic flexibility. Although most anammox bacteria may utilize specific organic substances, Ca. Brocadia exhibited the highest level of mixoautotrophic activity. The environmental factors that substantially affect the organoautotrophic activities of anammox bacteria were also examined. This review provides a new perspective on the organoautotrophic capacity of anammox bacteria.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No.1, University Road, East District, Tainan City 70101, Taiwan.
| |
Collapse
|
18
|
Se J, Xie Y, Ma Q, Zhu L, Fu Y, Xu X, Shen C, Nannipieri P. Drying-wetting cycle enhances stress resistance of Escherichia coli O157:H7 in a model soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123988. [PMID: 38648967 DOI: 10.1016/j.envpol.2024.123988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Outbreaks of Escherichia coli (E. coli) O157:H7 in farms are often triggered by heavy rains and flooding. Most cells die with the decreasing of soil moisture, while few cells enter a dormant state and then resuscitate after rewetting. The resistance of dormant cells to stress has been extensively studied, whereas the molecular mechanisms of the cross-resistance development of the resuscitated cells are poorly known. We performed a comparative proteomic analysis on O157:H7 before and after undergoing soil dry-wet alternation. A differential expression of 820 proteins was identified in resuscitated cells compared to exponential-phase cells, as determined by proteomics analysis. The GO and KEGG pathway enrichment analyses revealed that up-regulated proteins were associated with oxidative phosphorylation, glycolysis/gluconeogenesis, the citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, ribosome activity, and transmembrane transporters, indicating increased energy production and protein synthesis in resuscitated O157:H7. Moreover, proteins related to acid, osmotic, heat, oxidative, antibiotic stress and horizontal gene transfer efficiency were up-regulated, suggesting a potential improvement in stress resistance. Subsequent validation experiments demonstrated that the survival rates of the resuscitated cells were 476.54 and 7786.34 times higher than the exponential-phase cells, with pH levels of 1.5 and 2.5, respectively. Similarly, resuscitated cells showed higher survival rates under osmotic stress, with 7.5%, 15%, and 30% NaCl resulting in survival rates that were 460.58, 1974.55, and 3475.31 times higher. Resuscitated cells also exhibited increased resistance to heat stress, with survival rates 69.64 and 139.72 times higher at 55 °C and 90 °C, respectively. Furthermore, the horizontal gene transfer (HGT) efficiency of resuscitated cells was significantly higher (153.12-fold) compared to exponential phase cells. This study provides new insights into bacteria behavior under changing soil moisture and this may explain O157:H7 outbreaks following rainfall and flooding, as the dry-wet cycle promotes stress cross-resistance development.
Collapse
Affiliation(s)
- Jing Se
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Yinan Xie
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingxu Ma
- Ministry of Education Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lin Zhu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Xin Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| | - Paolo Nannipieri
- Emeritus Professor, University of Firenze, Firenze, 50144, Italy
| |
Collapse
|
19
|
Van Gray JB, Ayayee P. Examining the impacts of salt specificity on freshwater microbial community and functional potential following salinization. Environ Microbiol 2024; 26:e16628. [PMID: 38757470 DOI: 10.1111/1462-2920.16628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
The degradation of freshwater systems by salt pollution is a threat to global freshwater resources. Salinization is commonly identified by increased specific conductance (conductivity), a proxy for salt concentrations. However, conductivity fails to account for the diversity of salts entering freshwaters and the potential implications this has on microbial communities and functions. We tested 4 types of salt pollution-MgCl2, MgSO4, NaCl, and Na2SO4-on bacterial taxonomic and functional α-, β-diversity of communities originating from streams in two distinct localities (Nebraska [NE] and Ohio [OH], USA). Community responses depended on the site of origin, with NE and OH exhibiting more pronounced decreases in community diversity in response to Na2SO4 and MgCl2 than other salt amendments. A closer examination of taxonomic and functional diversity metrics suggests that core features of communities are more resistant to induced salt stress and that marginal features at both a population and functional level are more likely to exhibit significant structural shifts based on salt specificity. The lack of uniformity in community response highlights the need to consider the compositional complexities of salinization to accurately identify the ecological consequences of instances of salt pollution.
Collapse
Affiliation(s)
- Jonathon B Van Gray
- The Ohio State University CFAES Wooster, Agriculture Technical Institute, Wooster, Ohio, USA
| | - Paul Ayayee
- Department of Biology, University of Nebraska at Omaha, Omaha, Nebraska, USA
| |
Collapse
|
20
|
Goehlich H, Roth O, Sieber M, Chibani CM, Poehlein A, Rajkov J, Liesegang H, Wendling CC. Suboptimal environmental conditions prolong phage epidemics in bacterial populations. Mol Ecol 2024; 33:e17050. [PMID: 37337348 DOI: 10.1111/mec.17050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023]
Abstract
Infections by filamentous phages, which are usually nonlethal to the bacterial cells, influence bacterial fitness in various ways. While phage-encoded accessory genes, for example virulence genes, can be highly beneficial, the production of viral particles is energetically costly and often reduces bacterial growth. Consequently, if costs outweigh benefits, bacteria evolve resistance, which can shorten phage epidemics. Abiotic conditions are known to influence the net-fitness effect for infected bacteria. Their impact on the dynamics and trajectories of host resistance evolution, however, remains yet unknown. To address this, we experimentally evolved the bacterium Vibrio alginolyticus in the presence of a filamentous phage at three different salinity levels, that is (1) ambient, (2) 50% reduction and (3) fluctuations between reduced and ambient. In all three salinities, bacteria rapidly acquired resistance through super infection exclusion (SIE), whereby phage-infected cells acquired immunity at the cost of reduced growth. Over time, SIE was gradually replaced by evolutionary fitter surface receptor mutants (SRM). This replacement was significantly faster at ambient and fluctuating conditions compared with the low saline environment. Our experimentally parameterized mathematical model explains that suboptimal environmental conditions, in which bacterial growth is slower, slow down phage resistance evolution ultimately prolonging phage epidemics. Our results may explain the high prevalence of filamentous phages in natural environments where bacteria are frequently exposed to suboptimal conditions and constantly shifting selections regimes. Thus, our future ocean may favour the emergence of phage-born pathogenic bacteria and impose a greater risk for disease outbreaks, impacting not only marine animals but also humans.
Collapse
Affiliation(s)
- Henry Goehlich
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Kiel, Germany
| | - Olivia Roth
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Kiel, Germany
- Marine Evolutionary Biology, Zoological Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Michael Sieber
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Cynthia M Chibani
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology, Georg-August University Göttingen, Göttingen, Germany
| | - Jelena Rajkov
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Kiel, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology, Georg-August University Göttingen, Göttingen, Germany
| | - Carolin C Wendling
- GEOMAR, Helmholtz Centre for Ocean Research, Marine Evolutionary Ecology, Kiel, Germany
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| |
Collapse
|
21
|
Sunithakumari VS, Menon RR, Suresh GG, Krishnan R, Rameshkumar N. Characterization of a novel root-associated diazotrophic rare PGPR taxa, Aquabacter pokkalii sp. nov., isolated from pokkali rice: new insights into the plant-associated lifestyle and brackish adaptation. BMC Genomics 2024; 25:424. [PMID: 38684959 PMCID: PMC11059613 DOI: 10.1186/s12864-024-10332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Salinity impacts crop growth and productivity and lowers the activities of rhizosphere microbiota. The identification and utilization of habitat-specific salinity-adapted plant growth-promoting rhizobacteria (PGPR) are considered alternative strategies to improve the growth and yields of crops in salinity-affected coastal agricultural fields. In this study, we characterize strain L1I39T, the first Aquabacter species with PGPR traits isolated from a salt-tolerant pokkali rice cultivated in brackish environments. L1I39T is positive for 1-aminocyclopropane-1-carboxylate deaminase activity and nitrogen fixation and can promote pokkali rice growth by supplying fixed nitrogen under a nitrogen-deficient seawater condition. Importantly, enhanced plant growth and efficient root colonization were evident in L1I39T-inoculated plants grown under 20% seawater but not in zero-seawater conditions, identifying brackish conditions as a key local environmental factor critical for L1I39T-pokkali rice symbiosis. Detailed physiological studies revealed that L1I39T is well-adapted to brackish environments. In-depth genome analysis of L1I39T identified multiple gene systems contributing to its plant-associated lifestyle and brackish adaptations. The 16S rRNA-based metagenomic study identified L1I39T as an important rare PGPR taxon. Based on the polyphasic taxonomy analysis, we established strain L1I39T as a novel Aquabacter species and proposed Aquabacter pokkalii sp nov. Overall, this study provides a better understanding of a marine-adapted PGPR strain L1I39T that may perform a substantial role in host growth and health in nitrogen-poor brackish environments.
Collapse
Affiliation(s)
- V S Sunithakumari
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rahul R Menon
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gayathri G Suresh
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramya Krishnan
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India
- Athmic Biotech Solutions Pvt. Ltd. R&D Lab, Thiruvananthapuram, Kerala, India
| | - N Rameshkumar
- Microbial Processes and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR), Thiruvananthapuram-695 019, Thiruvananthapuram, Kerala, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
22
|
Wang R, You H, Xie B, Zhang G, Zhu J, Li W, Dong X, Qin Q, Wang M, Ding Y, Tan H, Jia Y, Li Z. Performance analysis of microbial fuel cell - membrane bioreactor with reduced graphene oxide enhanced polypyrrole conductive ceramic membrane: Wastewater treatment, membrane fouling and microbial community under high salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167827. [PMID: 37839487 DOI: 10.1016/j.scitotenv.2023.167827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
The application of membrane bioreactor (MBR) in high salinity wastewater treatment was mainly hindered by membrane fouling. Microbial fuel cell (MFC)-MBR coupling system was established to alleviate membrane fouling and save energy. Reduced graphene oxide/polypyrrole ceramic membrane (rGO/PPy CM) with high conductivity and stability was innovatively placed in MFC-MBRs as both cathode and filter, with PPy CM, rGO/PPy CM and CM placed in other reactors. MFC-MBR (rGO/PPy) and MFC-MBR (PPy) achieved higher pollutant removal efficiencies (90.73 % and 90.45 % for TOC, 87.22 % and 86.56 % for NH4+-N, respectively) and superior anti-fouling performance (1.86 and 1.93 kPa/d for average membrane fouling rates) than both conventional MBRs (CMBRs). The stable voltage generation was around 287 and 242 mV, respectively. Through high throughput sequencing, electric field showed a positive correlation with the abundance and activity of most dominant phylum (Bacteroidetes, Chloroflexi, Actinobacteria, and Firmicutes) and functional genes (amoA, hao, narG, napA, nirK, norB, and nosZ), thereby improving pollutant removal efficiency. The higher conductivity of rGO/PPy CM resulted in enhanced electric field intensity, leading to superior performance of anti-fouling and pollutant removal. This study inventively explored the effects of conductive membrane property on electricity generation performance, microbial community, pollutant removal and membrane fouling, providing theoretical support for the selection of electrode materials in MFC-MBR.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Binghan Xie
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Guoyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Jing Zhu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| | - Weirun Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinan Dong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Qiqing Qin
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Mengying Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yi Ding
- Marine College, Shandong University, Weihai 264209, China
| | - Haili Tan
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Yuhong Jia
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China
| | - Zhipeng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, China.
| |
Collapse
|
23
|
Echeveste Medrano MJ, Leu AO, Pabst M, Lin Y, McIlroy SJ, Tyson GW, van Ede J, Sánchez-Andrea I, Jetten MSM, Jansen R, Welte CU. Osmoregulation in freshwater anaerobic methane-oxidizing archaea under salt stress. THE ISME JOURNAL 2024; 18:wrae137. [PMID: 39030685 PMCID: PMC11337218 DOI: 10.1093/ismejo/wrae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 07/21/2024]
Abstract
Climate change-driven sea level rise threatens freshwater ecosystems and elicits salinity stress in microbiomes. Methane emissions in these systems are largely mitigated by methane-oxidizing microorganisms. Here, we characterized the physiological and metabolic response of freshwater methanotrophic archaea to salt stress. In our microcosm experiments, inhibition of methanotrophic archaea started at 1%. However, during gradual increase of salt up to 3% in a reactor over 12 weeks, the culture continued to oxidize methane. Using gene expression profiles and metabolomics, we identified a pathway for salt-stress response that produces the osmolyte of anaerobic methanotrophic archaea: N(ε)-acetyl-β-L-lysine. An extensive phylogenomic analysis on N(ε)-acetyl-β-L-lysine-producing enzymes revealed that they are widespread across both bacteria and archaea, indicating a potential horizontal gene transfer and a link to BORG extrachromosomal elements. Physicochemical analysis of bioreactor biomass further indicated the presence of sialic acids and the consumption of intracellular polyhydroxyalkanoates in anaerobic methanotrophs during salt stress.
Collapse
Affiliation(s)
- Maider J Echeveste Medrano
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Andy O Leu
- Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Martin Pabst
- Department of Environmental Biotechnology, TU-Delft University, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Yuemei Lin
- Department of Environmental Biotechnology, TU-Delft University, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Simon J McIlroy
- Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Gene W Tyson
- Centre for Microbiome Research (CMR), School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute (TRI), 37 Kent Street, Woolloongabba, QLD 4102, Australia
| | - Jitske van Ede
- Department of Environmental Biotechnology, TU-Delft University, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Irene Sánchez-Andrea
- Department of Environmental Sciences for Sustainability, IE University, C. Cardenal Zúñiga 12, 40003 Segovia, Spain
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Robert Jansen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| |
Collapse
|
24
|
Chowdhury N, Naorem RS, Hazarika DJ, Goswami G, Dasgupta A, Bora SS, Boro RC, Barooah M. An oxalate decarboxylase-like cupin domain containing protein is involved in imparting acid stress tolerance in Bacillus amyloliquefaciens MBNC. World J Microbiol Biotechnol 2024; 40:64. [PMID: 38189984 DOI: 10.1007/s11274-023-03870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
We report here the structural and functional properties of an oxalate decarboxylase (OxDC)-like cupin domain-containing protein of Bacillus amyloliquefaciens MBNC and its role in imparting tolerance to acid stress conditions. Quantitative real-time PCR (qPCR) analysis revealed 32-fold and 20-fold upregulation of the target gene [(OxDC')cupin] under acetic acid stress and hydrochloric acid stress, respectively, indicating its association with the acid stress response. Bacterial cells with targeted inactivation of the (OxDC')cupin gene using the pMUTIN4 vector system showed decreased growth and survival rate in acidic pH, with drastically reduced exopolysaccharide production. In Silico protein-protein interaction studies revealed seven genes (viz. glmS, nagA, nagB, tuaF, tuaF, gcvT, and ykgA) related to cell wall biosynthesis and biofilm production to interact with OxDC-like cupin domain containing protein. While all these seven genes were upregulated in B. amyloliquefaciens MBNC after 6 h of exposure to pH 4.5, the mutant cells containing the inactivated (OxDC')cupin gene displayed significantly lower expression (RQ: 0.001-0.02) (compared to the wild-type cells) in both neutral and acidic pH. Our results indicate that the OxDC-like cupin domain containing protein is necessary for cell wall biosynthesis and biofilm production in Bacillus amyloliquefaciens MBNC for survival in acid-stress conditions.
Collapse
Affiliation(s)
- Naimisha Chowdhury
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Romen Singh Naorem
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Dibya Jyoti Hazarika
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Gunajit Goswami
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Abhisek Dasgupta
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Sudipta Sankar Bora
- DBT - North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
25
|
Onat-Taşdelen KA, Öztürkel-Kabakaş H, Yüksektepe E, Çatav ŞS, Güzel G, Çöl B, Kim H, Chae YK, Elgin ES. Functional groups matter: metabolomics analysis of Escherichia coli exposed to trans-cinnamic acid and its derivatives unveils common and unique targets. World J Microbiol Biotechnol 2023; 40:47. [PMID: 38114822 DOI: 10.1007/s11274-023-03841-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Phenolic acids are derivatives of benzoic and cinnamic acids, which possess important biological activities at certain concentrations. Trans-cinnamic acid (t-CA) and its derivatives, such as p-coumaric acid (p-CA) and ferulic acid (FA) have been shown to have antibacterial activity against various Gram-positive and -negative bacteria. However, there is limited information available concerning the antibacterial mode of action of these phenolic acids. In this study, we aimed to ascertain metabolic alterations associated with exposure to t-CA, p-CA, and FA in Escherichia coli BW25113 using a nuclear magnetic resonance (NMR)-based metabolomics approach. The results showed that t-CA, p-CA, and FA treatments led to significant changes (p < 0.05) in the concentration of 42, 55, and 74% of the identified metabolites in E. coli, respectively. Partial least-squares discriminant analysis (PLS-DA) revealed a clear separation between control and phenolic acid groups with regard to metabolic response. Moreover, it was found that FA and p-CA treatment groups were clustered closely together but separated from the t-CA treatment group. Arginine, putrescine, cadaverine, galactose, and sucrose had the greatest impact on group differentiation. Quantitative pathway analysis demonstrated that arginine and proline, pyrimidine, glutathione, and galactose metabolisms, as well as aminoacyl-tRNA and arginine biosyntheses, were markedly affected by all phenolic acids. Finally, the H2O2 content of E. coli cells was significantly increased in response to t-CA and p-CA whereas all phenolic acids caused a dramatic increase in the number of apurinic/apyrimidinic sites. Overall, this study suggests that the metabolic response of E. coli cells to t-CA is relatively different from that to p-CA and FA. However, all phenolic acids had a certain impact on oxidative/antioxidant status, genomic stability, arginine-related pathways, and nucleic acid metabolism.
Collapse
Affiliation(s)
| | - Hatice Öztürkel-Kabakaş
- Graduate School of Natural and Applied Sciences, Biology Program, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Ecem Yüksektepe
- Vocational School of Health Services, Pathology Laboratory Techniques Program, Fenerbahçe University, İstanbul, Türkiye
| | - Şükrü Serter Çatav
- College of Sciences, Department of Biology, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Gülnur Güzel
- Graduate School of Natural and Applied Sciences, Chemistry Program, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Bekir Çöl
- College of Sciences, Department of Biology, Muğla Sıtkı Koçman University, Muğla, Türkiye
- Biotechnology Research Center, Muğla Sıtkı Koçman University, Muğla, Türkiye
| | - Hakbeom Kim
- College of Natural Sciences, Department of Chemistry, Sejong University, Seoul, South Korea
| | - Young Kee Chae
- College of Natural Sciences, Department of Chemistry, Sejong University, Seoul, South Korea
| | - Emine Sonay Elgin
- College of Sciences, Department of Chemistry, Muğla Sıtkı Koçman University, Muğla, Türkiye.
- Research Laboratories Center, Metabolism Laboratory, Muğla Sıtkı Koçman University, Muğla, Türkiye.
| |
Collapse
|
26
|
Hernández-Soto LM, Martínez-Abarca F, Ramírez-Saad H, López-Pérez M, Aguirre-Garrido JF. Genome analysis of haloalkaline isolates from the soda saline crater lake of Isabel Island; comparative genomics and potential metabolic analysis within the genus Halomonas. BMC Genomics 2023; 24:696. [PMID: 37986038 PMCID: PMC10662389 DOI: 10.1186/s12864-023-09800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Isabel Island is a Mexican volcanic island primarily composed of basaltic stones. It features a maar known as Laguna Fragatas, which is classified as a meromictic thalassohaline lake. The constant deposition of guano in this maar results in increased levels of phosphorus, nitrogen, and carbon. The aim of this study was to utilize high-quality genomes from the genus Halomonas found in specialized databases as a reference for genome mining of moderately halophilic bacteria isolated from Laguna Fragatas. This research involved genomic comparisons employing phylogenetic, pangenomic, and metabolic-inference approaches. RESULTS The Halomonas genus exhibited a large open pangenome, but several genes associated with salt metabolism and homeostatic regulation (ectABC and betABC), nitrogen intake through nitrate and nitrite transporters (nasA, and narGI), and phosphorus uptake (pstABCS) were shared among the Halomonas isolates. CONCLUSIONS The isolated bacteria demonstrate consistent adaptation to high salt concentrations, and their nitrogen and phosphorus uptake mechanisms are highly optimized. This optimization is expected in an extremophile environment characterized by minimal disturbances or abrupt seasonal variations. The primary significance of this study lies in the dearth of genomic information available for this saline and low-disturbance environment. This makes it important for ecosystem conservation and enabling an exploration of its biotechnological potential. Additionally, the study presents the first two draft genomes of H. janggokensis.
Collapse
Affiliation(s)
- Luis Mario Hernández-Soto
- Doctorado en Ciencias Biológicas y de La Salud, Universidad Autónoma Metropolitana, Mexico City, Mexico
| | - Francisco Martínez-Abarca
- Estructura, Dinámica y Función de Genomas de Rizobacterias, Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín-CSIC, Granada, Spain
| | - Hugo Ramírez-Saad
- Departamento Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de Mexico, México
| | - Marcos López-Pérez
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Estado de México, Lerma, México
| | - José Félix Aguirre-Garrido
- Departamento de Ciencias Ambientales, Universidad Autónoma Metropolitana-Lerma, Estado de México, Lerma, México.
| |
Collapse
|
27
|
Abdulaziz A, Vikraman HK, Raj D, Menon N, George G, Soman R, Mony DP, Mary A, Krishna K, Raju GKT, Kuttan SP, Tharakan B, Chekidhenkuzhiyil J, Platt T, Sathyendranath S. Distribution and antibiotic resistance of vibrio population in an urbanized tropical lake-the Vembanad-in the southwest coast of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:116066-116077. [PMID: 37906329 DOI: 10.1007/s11356-023-30565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023]
Abstract
Among the diverse Vibrio spp. autochthonous to coastal ecosystems, V. cholerae, V. fluvialis, V. vulnificus and V. parahaemolyticus are pathogenic to humans. Increasing sea-surface temperature, sea-level rise and water-related disasters associated with climate change have been shown to influence the proliferation of these bacteria and change their geographic distribution. We investigated the spatio-temporal distribution of Vibrio spp. in a tropical lake for 1 year at a 20-day interval. The abundance of Vibrio spp. was much higher during the south-west monsoon in 2018, when the lake experienced a once-in-a-century flood. The distribution of Vibrio spp. was influenced by salinity (r = 0.3, p < 0.001), phosphate (r = 0.18, p < 0.01) and nitrite (r = 0.16, p < 0.02) in the water. We isolated 470 colonies of Vibrio-like organisms and 341 could be revived further and identified using 16S rRNA gene sequencing. Functional annotations showed that all the 16 Vibrio spp. found in the lake could grow in association with animals. More than 60% of the isolates had multiple antibiotic resistance (MAR) index greater than 0.5. All isolates were resistant to erythromycin and cefepime. The proliferation of multiple antibiotic-resistant Vibrio spp. is a threat to human health. Our observations suggest that the presence of a diverse range of Vibrio spp. is favoured by the low-saline conditions brought about by heavy precipitation. Furthermore, infections caused by contact with Vibrio-contaminated waters may be difficult to cure due to their multiple antibiotic resistances. Therefore, continuous monitoring of bacterial pollution in the lakes is essential, as is the generation of risk maps of vibrio-infested waters to avoid public contact with contaminated waters and associated disease outbreaks.
Collapse
Affiliation(s)
- Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India.
| | | | - Devika Raj
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Nandini Menon
- Nansen Environmental Research Centre India, KUFOS Amenity Centre, Kochi, 682506, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Grinson George
- ICAR-Central Marine Fisheries Research Institute, Kochi, 682018, India
| | - Reshma Soman
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | | | - Ann Mary
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Kiran Krishna
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | | | | - Balu Tharakan
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
| | - Jasmin Chekidhenkuzhiyil
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Kochi, 682018, India
- Trevor Platt Science Foundation, Kochi, 682018, India
| | - Trevor Platt
- Plymouth Marine Laboratory, Plymouth, PL1 3DH, Devon, UK
| | | |
Collapse
|
28
|
Sepúlveda-Correa A, Monsalve L, Polania J, Mestanza O, Vanegas J. Effect of salinity on genes involved in the stress response in mangrove soils. Antonie Van Leeuwenhoek 2023; 116:1171-1184. [PMID: 37682363 DOI: 10.1007/s10482-023-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/02/2023] [Indexed: 09/09/2023]
Abstract
Mangroves are a challenging ecosystem for the microorganisms that inhabit them, considering they are subjected to stressful conditions such as high and fluctuating salinity. Metagenomic analysis of mangrove soils under contrasting salinity conditions was performed at the mouth of the Ranchera River to the Caribbean Sea in La Guajira, Colombia, using shotgun sequencing and the Illumina Hiseq 2500 platform. Functional gene analysis demonstrated that salinity could influence the abundance of microbial genes involved in osmoprotectant transport, DNA repair, heat shock proteins (HSP), and Quorum Sensing, among others. In total, 135 genes were discovered to be linked to 12 pathways. Thirty-four genes out of 10 pathways had statistical differences for a p-value and FDR < 0.05. UvrA and uvrB (nucleotide excision repair), groEL (HSP), and secA (bacterial secretion system) genes were the most abundant and were enriched by high salinity. The results of this study showed the prevalence of diverse genetic mechanisms that bacteria use as a response to survive in the challenging mangrove, as well as the presence of various genes that are recruited in order to maintain bacterial homeostasis under conditions of high salinity.
Collapse
Affiliation(s)
- Alejandro Sepúlveda-Correa
- Natural Sciences Department, Université du Québec en Outaouais, 58 Rue Principale, Ripon, QC, J0V 1V0, Canada
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | | | - Jaime Polania
- Universidad Nacional de Colombia Sede Medellín, Cra. 65 #59a-110, Medellín, Colombia
| | - Orson Mestanza
- Instituto Nacional de Salud, Cápac Yupanqui 1400 - Jesus María, Lima, Perú
| | - Javier Vanegas
- Universidad Antonio Nariño, Sede Circunvalar, Cra 3 Este No. 47 A 15, Bogotá, Colombia.
| |
Collapse
|
29
|
Cutugno L, O'Byrne C, Pané‐Farré J, Boyd A. Rifampicin-resistant RpoB S522L Vibrio vulnificus exhibits disturbed stress response and hypervirulence traits. Microbiologyopen 2023; 12:e1379. [PMID: 37877661 PMCID: PMC10493491 DOI: 10.1002/mbo3.1379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 10/26/2023] Open
Abstract
Rifampicin resistance, which is genetically linked to mutations in the RNA polymerase β-subunit gene rpoB, has a global impact on bacterial transcription and cell physiology. Previously, we identified a substitution of serine 522 in RpoB (i.e., RpoBS522L ) conferring rifampicin resistance to Vibrio vulnificus, a human food-borne and wound-infecting pathogen associated with a high mortality rate. Transcriptional and physiological analysis of V. vulnificus expressing RpoBS522L showed increased basal transcription of stress-related genes and global virulence regulators. Phenotypically these transcriptional changes manifest as disturbed osmo-stress responses and toxin-associated hypervirulence as shown by reduced hypoosmotic-stress resistance and enhanced cytotoxicity of the RpoBS522L strain. These results suggest that RpoB-linked rifampicin resistance has a significant impact on V. vulnificus survival in the environment and during infection.
Collapse
Affiliation(s)
- Laura Cutugno
- School of Natural SciencesUniversity of GalwayGalwayIreland
| | - Conor O'Byrne
- School of Biological and Chemical SciencesUniversity of GalwayGalwayIreland
| | - Jan Pané‐Farré
- Centre for Synthetic Microbiology (SYNMIKRO) & Department of ChemistryPhilipps‐University MarburgMarburgGermany
| | - Aoife Boyd
- School of Natural SciencesUniversity of GalwayGalwayIreland
| |
Collapse
|
30
|
Boas Lichty KE, Gregory GJ, Boyd EF. NhaR, LeuO, and H-NS Are Part of an Expanded Regulatory Network for Ectoine Biosynthesis Expression. Appl Environ Microbiol 2023; 89:e0047923. [PMID: 37278653 PMCID: PMC10304999 DOI: 10.1128/aem.00479-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
Bacteria accumulate compatible solutes to maintain cellular turgor pressure when exposed to high salinity. In the marine halophile Vibrio parahaemolyticus, the compatible solute ectoine is biosynthesized de novo, which is energetically more costly than uptake; therefore, tight regulation is required. To uncover novel regulators of the ectoine biosynthesis ectABC-asp_ect operon, a DNA affinity pulldown of proteins interacting with the ectABC-asp_ect regulatory region was performed. Mass spectrometry analysis identified, among others, 3 regulators: LeuO, NhaR, and the nucleoid associated protein H-NS. In-frame non-polar deletions were made for each gene and PectA-gfp promoter reporter assays were performed in exponential and stationary phase cells. PectA-gfp expression was significantly repressed in the ΔleuO mutant and significantly induced in the ΔnhaR mutant compared to wild type, suggesting positive and negative regulation, respectively. In the Δhns mutant, PectA-gfp showed increased expression in exponential phase cells, but no change compared to wild type in stationary phase cells. To examine whether H-NS interacts with LeuO or NhaR at the ectoine regulatory region, double deletion mutants were created. In a ΔleuO/Δhns mutant, PectA-gfp showed reduced expression, but significantly more than ΔleuO, suggesting H-NS and LeuO interact to regulate ectoine expression. However, ΔnhaR/Δhns had no additional effect compared to ΔnhaR, suggesting NhaR regulation is independent of H-NS. To examine leuO regulation further, a PleuO-gfp reporter analysis was examined that showed significantly increased expression in the ΔleuO, Δhns, and ΔleuO/Δhns mutants compared to wild type, indicating both are repressors. Growth pattern analysis of the mutants in M9G 6%NaCl showed growth defects compared to wild type, indicating that these regulators play an important physiological role in salinity stress tolerance outside of regulating ectoine biosynthesis gene expression. IMPORTANCE Ectoine is a commercially used compatible solute that acts as a biomolecule stabilizer because of its additional role as a chemical chaperone. A better understanding of how the ectoine biosynthetic pathway is regulated in natural bacterial producers can be used to increase efficient industrial production. The de novo biosynthesis of ectoine is essential for bacteria to survive osmotic stress when exogenous compatible solutes are absent. This study identified LeuO as a positive regulator and NhaR as a negative regulator of ectoine biosynthesis and showed that, similar to enteric species, LeuO is an anti-silencer of H-NS. In addition, defects in growth in high salinity among all the mutants suggest that these regulators play a broader role in the osmotic stress response beyond ectoine biosynthesis regulation.
Collapse
Affiliation(s)
| | - Gwendolyn J. Gregory
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
31
|
Li J, Xu X, Chen C, Xu L, Du Z, Gu L, Xiang P, Shi D, Huangfu X, Liu F. Conductive materials enhance microbial salt-tolerance in anaerobic digestion of food waste: Microbial response and metagenomics analysis. ENVIRONMENTAL RESEARCH 2023; 227:115779. [PMID: 36967003 DOI: 10.1016/j.envres.2023.115779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
Previous studies have shown that high salinity environments can inhibit anaerobic digestion (AD) of food waste (FW). Finding ways to alleviate salt inhibition is important for the disposal of the growing amount of FW. We selected three common conductive materials (powdered activated carbon, magnetite, and graphite) to understand their performance and individual mechanisms that relieve salinity inhibition. Digester performances and related enzyme parameters were compared. Our data revealed that under normal and low salinity stress conditions, the anaerobic digester ran steady without significant inhibitions. Further, the presence of conductive materials promoted conversion rate of methanogenesis. This promotion effect was highest from magnetite > powdered activated carbon (PAC) > graphite. At 1.5% salinity, PAC and magnetite are beneficial in maintaining high methane production efficiency while control and the graphite added digester acidified and failed rapidly. Additionally, metagenomics and binning were used to analyze the metabolic capacity of the microorganisms. Some species enriched by PAC and magnetite possessed higher cation transport capacities and were to accumulate compatible solutes. PAC and magnetite promoted direct interspecies electron transference (DIET) and syntrophic oxidation of butyrate and propionate. Also, the microorganisms had more energy available to cope with salt inhibition in the PAC and magnetite added digesters. Our data imply that the promotion of Na+/H+ antiporter, K+ uptake, and osmoprotectant synthesis or transport by conductive materials may be crucial for their proliferation in highly stressful environments. These findings will help to understand the mechanisms of alleviate salt inhibition by conductive materials and help to recover methane from high-salinity FW.
Collapse
Affiliation(s)
- Jianhao Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaofeng Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Cong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Linji Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Zexuan Du
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Ping Xiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China.
| | - Dezhi Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Xiaoliu Huangfu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environments, Ministry of Education, Institute of Environment and Ecology, Chongqing University, 174 Shapingba Road, 400045, PR China
| | - Feng Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, PR China
| |
Collapse
|
32
|
Waldrop MP, Chabot CL, Liebner S, Holm S, Snyder MW, Dillon M, Dudgeon SR, Douglas TA, Leewis MC, Walter Anthony KM, McFarland JW, Arp CD, Bondurant AC, Taş N, Mackelprang R. Permafrost microbial communities and functional genes are structured by latitudinal and soil geochemical gradients. THE ISME JOURNAL 2023:10.1038/s41396-023-01429-6. [PMID: 37217592 DOI: 10.1038/s41396-023-01429-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Permafrost underlies approximately one quarter of Northern Hemisphere terrestrial surfaces and contains 25-50% of the global soil carbon (C) pool. Permafrost soils and the C stocks within are vulnerable to ongoing and future projected climate warming. The biogeography of microbial communities inhabiting permafrost has not been examined beyond a small number of sites focused on local-scale variation. Permafrost is different from other soils. Perennially frozen conditions in permafrost dictate that microbial communities do not turn over quickly, thus possibly providing strong linkages to past environments. Thus, the factors structuring the composition and function of microbial communities may differ from patterns observed in other terrestrial environments. Here, we analyzed 133 permafrost metagenomes from North America, Europe, and Asia. Permafrost biodiversity and taxonomic distribution varied in relation to pH, latitude and soil depth. The distribution of genes differed by latitude, soil depth, age, and pH. Genes that were the most highly variable across all sites were associated with energy metabolism and C-assimilation. Specifically, methanogenesis, fermentation, nitrate reduction, and replenishment of citric acid cycle intermediates. This suggests that adaptations to energy acquisition and substrate availability are among some of the strongest selective pressures shaping permafrost microbial communities. The spatial variation in metabolic potential has primed communities for specific biogeochemical processes as soils thaw due to climate change, which could cause regional- to global- scale variation in C and nitrogen processing and greenhouse gas emissions.
Collapse
Affiliation(s)
- Mark P Waldrop
- Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, Menlo Park, CA, 94025, USA.
| | - Christopher L Chabot
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
- University of Potsdam, Institute of Biochemistry and Biology, 14476, Potsdam, Germany
| | - Stine Holm
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, 14473, Potsdam, Germany
| | - Michael W Snyder
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Megan Dillon
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Steven R Dudgeon
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA
| | - Thomas A Douglas
- U.S. Army Cold Regions Research and Engineering Laboratory 9th Avenue, Building 4070 Fort, Wainwright, AK, 99703, USA
| | - Mary-Cathrine Leewis
- Agriculture and Agri-Food Canada, 2560 Boulevard Hochelaga, Québec, QC, G1V 2J3, Canada
| | - Katey M Walter Anthony
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Jack W McFarland
- Geology, Minerals, Energy, and Geophysics Science Center, United States Geological Survey, Menlo Park, CA, 94025, USA
| | - Christopher D Arp
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Allen C Bondurant
- Water and Environmental Research Center, University Alaska Fairbanks, Fairbanks, AK, 99775, USA
| | - Neslihan Taş
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rachel Mackelprang
- California State University Northridge, 18111 Nordhoff St., Northridge, CA, 91330, USA.
| |
Collapse
|
33
|
Leitão AL, Enguita FJ. Editorial: Secondary metabolism: an unlimited foundation for synthetic biology, volume II. Front Microbiol 2023; 14:1200928. [PMID: 37266013 PMCID: PMC10230052 DOI: 10.3389/fmicb.2023.1200928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Affiliation(s)
- Ana Lúcia Leitão
- MEtRICs, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Francisco J. Enguita
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
34
|
Galisteo C, de la Haba RR, Sánchez-Porro C, Ventosa A. A step into the rare biosphere: genomic features of the new genus Terrihalobacillus and the new species Aquibacillus salsiterrae from hypersaline soils. Front Microbiol 2023; 14:1192059. [PMID: 37228371 PMCID: PMC10203224 DOI: 10.3389/fmicb.2023.1192059] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Hypersaline soils are a source of prokaryotic diversity that has been overlooked until very recently. The phylum Bacillota, which includes the genus Aquibacillus, is one of the 26 phyla that inhabit the heavy metal contaminated soils of the Odiel Saltmarshers Natural Area (Southwest Spain), according to previous research. In this study, we isolated a total of 32 strains closely related to the genus Aquibacillus by the traditional dilution-plating technique. Phylogenetic studies clustered them into two groups, and comparative genomic analyses revealed that one of them represents a new species within the genus Aquibacillus, whereas the other cluster constitutes a novel genus of the family Bacillaceae. We propose the designations Aquibacillus salsiterrae sp. nov. and Terrihalobacillus insolitus gen. nov., sp. nov., respectively, for these two new taxa. Genome mining analysis revealed dissimilitude in the metabolic traits of the isolates and their closest related genera, remarkably the distinctive presence of the well-conserved pathway for the biosynthesis of molybdenum cofactor in the species of the genera Aquibacillus and Terrihalobacillus, along with genes that encode molybdoenzymes and molybdate transporters, scarcely found in metagenomic dataset from this area. In-silico studies of the osmoregulatory strategy revealed a salt-out mechanism in the new species, which harbor the genes for biosynthesis and transport of the compatible solutes ectoine and glycine betaine. Comparative genomics showed genes related to heavy metal resistance, which seem required due to the contamination in the sampling area. The low values in the genome recruitment analysis indicate that the new species of the two genera, Terrihalobacillus and Aquibacillus, belong to the rare biosphere of representative hypersaline environments.
Collapse
|
35
|
Adams JD, Sander KB, Criddle CS, Arkin AP, Clark DS. Engineering osmolysis susceptibility in Cupriavidus necator and Escherichia coli for recovery of intracellular products. Microb Cell Fact 2023; 22:69. [PMID: 37046248 PMCID: PMC10091555 DOI: 10.1186/s12934-023-02064-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Intracellular biomacromolecules, such as industrial enzymes and biopolymers, represent an important class of bio-derived products obtained from bacterial hosts. A common key step in the downstream separation of these biomolecules is lysis of the bacterial cell wall to effect release of cytoplasmic contents. Cell lysis is typically achieved either through mechanical disruption or reagent-based methods, which introduce issues of energy demand, material needs, high costs, and scaling problems. Osmolysis, a cell lysis method that relies on hypoosmotic downshock upon resuspension of cells in distilled water, has been applied for bioseparation of intracellular products from extreme halophiles and mammalian cells. However, most industrial bacterial strains are non-halotolerant and relatively resistant to hypoosmotic cell lysis. RESULTS To overcome this limitation, we developed two strategies to increase the susceptibility of non-halotolerant hosts to osmolysis using Cupriavidus necator, a strain often used in electromicrobial production, as a prototypical strain. In one strategy, C. necator was evolved to increase its halotolerance from 1.5% to 3.25% (w/v) NaCl through adaptive laboratory evolution, and genes potentially responsible for this phenotypic change were identified by whole genome sequencing. The evolved halotolerant strain experienced an osmolytic efficiency of 47% in distilled water following growth in 3% (w/v) NaCl. In a second strategy, the cells were made susceptible to osmolysis by knocking out the large-conductance mechanosensitive channel (mscL) gene in C. necator. When these strategies were combined by knocking out the mscL gene from the evolved halotolerant strain, greater than 90% osmolytic efficiency was observed upon osmotic downshock. A modified version of this strategy was applied to E. coli BL21 by deleting the mscL and mscS (small-conductance mechanosensitive channel) genes. When grown in medium with 4% NaCl and subsequently resuspended in distilled water, this engineered strain experienced 75% cell lysis, although decreases in cell growth rate due to higher salt concentrations were observed. CONCLUSIONS Our strategy is shown to be a simple and effective way to lyse cells for the purification of intracellular biomacromolecules and may be applicable in many bacteria used for bioproduction.
Collapse
Affiliation(s)
- Jeremy David Adams
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA
| | - Kyle B Sander
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
| |
Collapse
|
36
|
Stress Responses in Pathogenic Vibrios and Their Role in Host and Environmental Survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:213-232. [PMID: 36792878 DOI: 10.1007/978-3-031-22997-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Vibrio is a genus of bacteria commonly found in estuarine, marine, and freshwater environments. Vibrio species have evolved to occupy diverse niches in the aquatic ecosystem, with some having complex lifestyles. About a dozen of the described Vibrio species have been reported to cause human disease, while many other species cause disease in other organisms. Vibrio cholerae causes epidemic cholera, a severe dehydrating diarrheal disease associated with the consumption of contaminated food or water. The human pathogenic non-cholera Vibrio species, Vibrio parahaemolyticus and Vibrio vulnificus, cause gastroenteritis, septicemia, and other extra-intestinal infections. Infections caused by V. parahaemolyticus and V. vulnificus are normally acquired through exposure to sea water or through consumption of raw or undercooked contaminated seafood. The human pathogenic Vibrios are exposed to numerous different stress-inducing agents and conditions in the aquatic environment and when colonizing a human host. Therefore, they have evolved a variety of mechanisms to survive in the presence of these stressors. Here we discuss what is known about important stress responses in pathogenic Vibrio species and their role in bacterial survival.
Collapse
|
37
|
Zhang L, Huang W, Ning W, Song B, Osman G, Zhu J, Wang W. Radiobacillus kanasensis sp. nov., a halotolerant bacterium isolated from woodland soil. Int J Syst Evol Microbiol 2023; 73. [PMID: 36821360 DOI: 10.1099/ijsem.0.005718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
A novel Gram-positive, aerobic, rod-shaped, non-motile, endospore-forming salt-tolerant bacterium strain (80T), was isolated from woodland soil collected near Kanas lake in the Altay region of Xinjiang, PR China. The strain grew at 15-45 °C, pH6.0-9.0 and with 0-14 % (w/v) NaCl. The complete genome size of the novel strain was 4 031 766 bp including a circle chromosome and a circle plasmid. The genomic DNA G+C content was 38.99 mol %. Phylogenetic analysis based on 16S rRNA gene sequence and genome showed that strain 80T has the highest similarity to Radiobacillus deserti TKL69T. However, the novel strain showed an average nucleotide identity value of 78.65 % (lower than 95 %) and a digital DNA-DNA hybridization value of 22.30 % with R. deserti TKL69T based on the genome sequences. The major fatty acids were anteiso-C15 : 0, iso-C15 : 0, anteiso-C17:0 and C16 : 1 ω7c alcohol. The only respiratory quinone was MK-7. The cell wall peptidoglycan was meso-diaminopimelic acid. Diphosphatidylglycerol, phosphatidylglycerol, one unidentified phospholipid, one unidentified aminophospholipid and two unidentified glycolipids were identified as the major polar lipids. The phylogenetic, phenotypic and chemotaxonomic analyses showed that strain 80T represents a novel species of the genus Radiobacillus and the name Radiobacillus kanasensis sp. nov. is proposed. The type strain is 80T (=GDMCC 1.2844T=JCM 35077T).
Collapse
Affiliation(s)
- Lijuan Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Wei Huang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Wang Ning
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Bo Song
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Ghenijan Osman
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Jing Zhu
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| | - Wei Wang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China.,Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, 830091, PR China
| |
Collapse
|
38
|
Delgadillo-Ordoñez N, Raimundo I, Barno AR, Osman EO, Villela H, Bennett-Smith M, Voolstra CR, Benzoni F, Peixoto RS. Red Sea Atlas of Coral-Associated Bacteria Highlights Common Microbiome Members and Their Distribution across Environmental Gradients-A Systematic Review. Microorganisms 2022; 10:microorganisms10122340. [PMID: 36557593 PMCID: PMC9787610 DOI: 10.3390/microorganisms10122340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022] Open
Abstract
The Red Sea is a suitable model for studying coral reefs under climate change due to its strong environmental gradient that provides a window into future global warming scenarios. For instance, corals in the southern Red Sea thrive at temperatures predicted to occur at the end of the century in other biogeographic regions. Corals in the Red Sea thrive under contrasting thermal and environmental regimes along their latitudinal gradient. Because microbial communities associated with corals contribute to host physiology, we conducted a systematic review of the known diversity of Red Sea coral-associated bacteria, considering geographic location and host species. Our assessment comprises 54 studies of 67 coral host species employing cultivation-dependent and cultivation-independent techniques. Most studies have been conducted in the central and northern Red Sea, while the southern and western regions remain largely unexplored. Our data also show that, despite the high diversity of corals in the Red Sea, the most studied corals were Pocillopora verrucosa, Dipsastraea spp., Pleuractis granulosa, and Stylophora pistillata. Microbial diversity was dominated by bacteria from the class Gammaproteobacteria, while the most frequently occurring bacterial families included Rhodobacteraceae and Vibrionaceae. We also identified bacterial families exclusively associated with each of the studied coral orders: Scleractinia (n = 125), Alcyonacea (n = 7), and Capitata (n = 2). This review encompasses 20 years of research in the Red Sea, providing a baseline compendium for coral-associated bacterial diversity.
Collapse
Affiliation(s)
- Nathalia Delgadillo-Ordoñez
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Inês Raimundo
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Adam R. Barno
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Eslam O. Osman
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Helena Villela
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Morgan Bennett-Smith
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Christian R. Voolstra
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Francesca Benzoni
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Raquel S. Peixoto
- Marine Microbiomes Laboratory, Red Sea Research Center (RSRC), Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- Correspondence:
| |
Collapse
|
39
|
Azizah M, Pohnert G. Orchestrated Response of Intracellular Zwitterionic Metabolites in Stress Adaptation of the Halophilic Heterotrophic Bacterium Pelagibaca bermudensis. Mar Drugs 2022; 20:727. [PMID: 36422005 PMCID: PMC9695272 DOI: 10.3390/md20110727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023] Open
Abstract
Osmolytes are naturally occurring organic compounds that protect cells against various forms of stress. Highly polar, zwitterionic osmolytes are often used by marine algae and bacteria to counteract salinity or temperature stress. We investigated the effect of several stress conditions including different salinities, temperatures, and exposure to organic metabolites released by the alga Tetraselmis striata on the halophilic heterotrophic bacterium Pelagibaca bermudensis. Using ultra-high-performance liquid chromatography (UHPLC) on a ZIC-HILIC column and high-resolution electrospray ionization mass spectrometry, we simultaneously detected and quantified the eleven highly polar compounds dimethylsulfoxonium propionate (DMSOP), dimethylsulfoniopropionate (DMSP), gonyol, cysteinolic acid, ectoine, glycine betaine (GBT), carnitine, sarcosine, choline, proline, and 4-hydroxyproline. All compounds are newly described in P. bermudensis and potentially involved in physiological functions essential for bacterial survival under variable environmental conditions. We report that adaptation to various forms of stress is accomplished by adjusting the pattern and amount of the zwitterionic metabolites.
Collapse
Affiliation(s)
- Muhaiminatul Azizah
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany
| | - Georg Pohnert
- Bioorganic Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University, Lessingstrasse 8, D-07743 Jena, Germany
- MPG Fellow Group, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
40
|
Lascu I, Tănase AM, Jablonski P, Chiciudean I, Preda MI, Avramescu S, Irgum K, Stoica I. Revealing the Phenotypic and Genomic Background for PHA Production from Rapeseed-Biodiesel Crude Glycerol Using Photobacterium ganghwense C2.2. Int J Mol Sci 2022; 23:13754. [PMID: 36430242 PMCID: PMC9697146 DOI: 10.3390/ijms232213754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are promising biodegradable and biocompatible bioplastics, and extensive knowledge of the employed bacterial strain's metabolic capabilities is necessary in choosing economically feasible production conditions. This study aimed to create an in-depth view of the utilization of Photobacterium ganghwense C2.2 for PHA production by linking a wide array of characterization methods: metabolic pathway annotation from the strain's complete genome, high-throughput phenotypic tests, and biomass analyses through plate-based assays and flask and bioreactor cultivations. We confirmed, in PHA production conditions, urea catabolization, fatty acid degradation and synthesis, and high pH variation and osmotic stress tolerance. With urea as a nitrogen source, pure and rapeseed-biodiesel crude glycerol were analyzed comparatively as carbon sources for fermentation at 20 °C. Flask cultivations yielded 2.2 g/L and 2 g/L PHA at 120 h, respectively, with molecular weights of 428,629 g/mol and 81,515 g/mol. Bioreactor batch cultivation doubled biomass accumulation (10 g/L and 13.2 g/L) in 48 h, with a PHA productivity of 0.133 g/(L·h) and 0.05 g/(L·h). Thus, phenotypic and genomic analyses determined the successful use of Photobacterium ganghwense C2.2 for PHA production using urea and crude glycerol and 20 g/L NaCl, without pH adjustment, providing the basis for a viable fermentation process.
Collapse
Affiliation(s)
- Irina Lascu
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Ana Maria Tănase
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Piotr Jablonski
- Department of Chemistry, Faculty of Science and Technology, Umeå University, S-90187 Umeå, Sweden
| | - Iulia Chiciudean
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Maria Irina Preda
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Sorin Avramescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 030018 Bucharest, Romania
| | - Knut Irgum
- Department of Chemistry, Faculty of Science and Technology, Umeå University, S-90187 Umeå, Sweden
| | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
41
|
Song D, Zhu S, Chen L, Zhang T, Zhang L. The strategy of arsenic metabolism in an arsenic-resistant bacterium Stenotrophomonas maltophilia SCSIOOM isolated from fish gut. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120085. [PMID: 36058313 DOI: 10.1016/j.envpol.2022.120085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are candidates for the biotransformation of environmental arsenic (As), while As metabolism in bacteria is not yet fully understood. In this study, we sequenced the genome of an As-resistant bacterium strain Stenotrophomonas maltophilia SCSIOOM isolated from the fish gut. After arsenate (As(V)) exposure, S. maltophilia transformed As(V) to organoarsenicals, along with the significant change of the expression of 40 genes, including the upregulation of arsH, arsRBC and betIBA. The heterogeneous expression of arsH and arsRBC increased As resistance of E. coli AW3110 by increasing As efflux and transformation. E. coli AW3110 (pET-betIBA) could transform inorganic As into dimethylarsinate (DMA) and nontoxic arsenobetaine (AsB), which suggested that AsB could be synthesized through the synthetic pathway of its analog-glycine betaine. In addition, the existence of arsRBC, betIBA and arsH reduced the reactive oxygen species (ROS) induced by As exposure. In total, these results demonstrated that S. maltophilia adopted an As metabolism strategy by reducing As accumulation and synthesizing less toxic As species. We first reported the production and potential synthetic pathway of AsB in bacteria, which improved our knowledge of As toxicology in microorganisms.
Collapse
Affiliation(s)
- Dongdong Song
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siqi Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lizhao Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Ting Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China; Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
42
|
Kingkaew E, Yiamsombut S, Poothong S, Shi W, Wu L, Ma J, Tanasupawat S. Draft genome sequencing data of the moderately halophilic bacterium, Allobacillus halotolerans SKP2-8 from shrimp paste ( ka-pi). Data Brief 2022; 44:108549. [PMID: 36091474 PMCID: PMC9459419 DOI: 10.1016/j.dib.2022.108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
A moderately halophilic, Gram-stain-positive, spore-forming rod-shaped bacterium, designated SKP2-8 was isolated from a traditional fermented shrimp paste (Ka-pi) collected from the market in Samut Sakhon province, Thailand. This isolate SKP2-8 was closely related to Allobacillus halotolerans LMG 24826T with 99.56% similarity based on 16S rRNA gene sequence. The draft genome of SKP2-8 was 2.53 Mb with 2,515 coding sequences with an average G+C content of 39.5 mol%. The ANIb, ANIm, AAI and the digital DNA-DNA hybridization values of isolate SKP2-8 were 97.22%, 97.64%, 97.75% and 78.0%, respectively, compared with A. halotolerans LMG 24826T. Based on the phenotypic characteristics, DNA-DNA relatedness and phylogenomic analysis, it was identified as Allobacillus halotolerans. The genome sequence data of this isolate provide information for further analysis of the potential biotechnological use of this microorganism and guide the characterization. The draft genome was deposited at DDBJ/ EMBL/GenBank (DNA Databank of Japan/European Molecular Biology Laboratory/Genbank) (VMHF00000000).
Collapse
Affiliation(s)
- Engkarat Kingkaew
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supalurk Yiamsombut
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Saranporn Poothong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wenyu Shi
- World Data Center for Microorganisms (WDCM), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Linhuan Wu
- World Data Center for Microorganisms (WDCM), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Juncai Ma
- World Data Center for Microorganisms (WDCM), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
43
|
Czech L, Gertzen C, Smits SHJ, Bremer E. Guilty by association: importers, exporters and
MscS
‐type mechanosensitive channels encoded in biosynthetic gene clusters for the stress‐protectant ectoine. Environ Microbiol 2022; 24:5306-5331. [DOI: 10.1111/1462-2920.16203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Czech
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
- Department of Chemistry and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Christoph Gertzen
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Pharmaceutical and Medicinal Chemistry Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
| | - Sander H. J. Smits
- Center for Structural Studies (CSS) Heinrich‐Heine‐University Düsseldorf Düsseldorf Germany
- Institute of Biochemistry Heinrich Heine University Düsseldorf Düsseldorf Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| |
Collapse
|
44
|
Zhou D, Yin Z, Li X, Cui Y, Cheng Q, Du B, Liu K, Wang C, Ding Y. Complete Genome Sequence of Pseudomonas chloritidismutans 6L11 with Plant Growth-Promoting and Salt-Tolerant Properties. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:870-874. [PMID: 36104310 DOI: 10.1094/mpmi-01-22-0029-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Dandan Zhou
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Zhiqiu Yin
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
- College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, China
| | - Xujian Li
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Yanru Cui
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Qi Cheng
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Binghai Du
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Kai Liu
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
| | - Chengqiang Wang
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-alkali Land, Shandong Agricultural University, Tai'an 271018, China
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
45
|
Naufal M, Wu JH, Shao YH. Glutamate Enhances Osmoadaptation of Anammox Bacteria under High Salinity: Genomic Analysis and Experimental Evidence. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11310-11322. [PMID: 35913201 DOI: 10.1021/acs.est.2c01104] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
An osmoprotectant that alleviates the bacterial osmotic stress can improve the bioreactor treatment of saline wastewater. However, proposed candidates are expensive, and osmoprotectants of anammox bacteria and their ecophysiological roles are not fully understood. In this study, a comparative analysis of 34 high-quality public metagenome-assembled genomes from anammox bacteria revealed two distinct groups of osmoadaptation. Candidatus Scalindua and Kuenenia share a close phylogenomic relation and osmoadaptation gene profile and have pathways for glutamate transport and metabolisms for enhanced osmoadaptation. The batch assay results demonstrated that the reduced Ca. Kuenenia activity in saline conditions was substantially alleviated with the addition and subsequent synergistic effects of potassium and glutamate. The operational test of two reactors demonstrated that the reduced anammox performance under brine conditions rapidly recovered by 35.7-43.1% as a result of glutamate treatment. The Ca. Kuenenia 16S rRNA and hydrazine gene expressions were upregulated significantly (p < 0.05), and the abundance increased by approximately 19.9%, with a decrease in dominant heterotrophs. These data demonstrated the effectiveness of glutamate in alleviating the osmotic stress of Ca. Kuenenia. This study provides genomic insight into group-specific osmoadaptation of anammox bacteria and can facilitate the precision management of anammox reactors under high salinity.
Collapse
Affiliation(s)
- Muhammad Naufal
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Jer-Horng Wu
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| | - Yung-Hsien Shao
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, East District, Tainan City 70101, Taiwan
| |
Collapse
|
46
|
Liu X, Wang Z, Xiao J, Zhou X, Xu Y. Osmotic stress tolerance and transcriptome analysis of Gluconobacter oxydans to extra-high titers of glucose. Front Microbiol 2022; 13:977024. [PMID: 36033857 PMCID: PMC9412170 DOI: 10.3389/fmicb.2022.977024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Gluconobacter oxydans has been widely acknowledged as an ideal strain for industrial bio-oxidations with fantastic yield and productivity. Even 600 g/L xylose can be catalyzed efficiently in a sealed and compressed oxygen-supplying bioreactor. Therefore, the present study seeks to explore the osmotic stress tolerance against extra-high titer of representative lignocellulosic sugars like glucose. Gluconobacter oxydans can well adapted and fermented with initial 600 g/L glucose, exhibiting the highest bio-tolerance in prokaryotic strains and the comparability to the eukaryotic strain of Saccharomyces cerevisiae. 1,432 differentially expressed genes corresponding to osmotic pressure are detected through transcriptome analysis, involving several genes related to the probable compatible solutes (trehalose and arginine). Gluconobacter oxydans obtains more energy by enhancing the substrate-level phosphorylation, resulting in the increased glucose consumption rate after fermentation adaption phase. This study will provide insights into further investigation of biological tolerance and response to extra-high titers of glucose of G. oxydans.
Collapse
Affiliation(s)
- Xinlu Liu
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Zhiwei Wang
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Jianjian Xiao
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
| | - Yong Xu
- Key Laboratory of Forestry Genetics and Biotechnology, Ministry of Education, Nanjing Forestry University, Nanjing, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, China
- *Correspondence: Yong Xu,
| |
Collapse
|
47
|
Srivastava AK, Srivastava R, Sharma A, Bharati AP, Yadav J, Singh AK, Tiwari PK, Srivatava AK, Chakdar H, Kashyap PL, Saxena AK. Transcriptome Analysis to Understand Salt Stress Regulation Mechanism of Chromohalobacter salexigens ANJ207. Front Microbiol 2022; 13:909276. [PMID: 35847097 PMCID: PMC9279137 DOI: 10.3389/fmicb.2022.909276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/08/2022] [Indexed: 11/21/2022] Open
Abstract
Soil salinity is one of the major global issues affecting soil quality and agricultural productivity. The plant growth-promoting halophilic bacteria that can thrive in regions of high salt (NaCl) concentration have the ability to promote the growth of plants in salty environments. In this study, attempts have been made to understand the salinity adaptation of plant growth-promoting moderately halophilic bacteria Chromohalobacter salexigens ANJ207 at the genetic level through transcriptome analysis. In order to identify the stress-responsive genes, the transcriptome sequencing of C. salexigens ANJ207 under different salt concentrations was carried out. Among the 8,936 transcripts obtained, 93 were upregulated while 1,149 were downregulated when the NaCl concentration was increased from 5 to 10%. At 10% NaCl concentration, genes coding for lactate dehydrogenase, catalase, and OsmC-like protein were upregulated. On the other hand, when salinity was increased from 10 to 25%, 1,954 genes were upregulated, while 1,287 were downregulated. At 25% NaCl, genes coding for PNPase, potassium transporter, aconitase, excinuclease subunit ABC, and transposase were found to be upregulated. The quantitative real-time PCR analysis showed an increase in the transcript of genes related to the biosynthesis of glycine betaine coline genes (gbcA, gbcB, and L-pro) and in the transcript of genes related to the uptake of glycine betaine (OpuAC, OpuAA, and OpuAB). The transcription of the genes involved in the biosynthesis of L-hydroxyproline (proD and proS) and one stress response proteolysis gene for periplasmic membrane stress sensing (serP) were also found to be increased. The presence of genes for various compatible solutes and their increase in expression at the high salt concentration indicated that a coordinated contribution by various compatible solutes might be responsible for salinity adaptation in ANJ207. The investigation provides new insights into the functional roles of various genes involved in salt stress tolerance and oxidative stress tolerance produced by high salt concentration in ANJ207 and further support the notion regarding the utilization of bacterium and their gene(s) in ameliorating salinity problem in agriculture.
Collapse
Affiliation(s)
- Alok Kumar Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Ruchi Srivastava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anjney Sharma
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Akhilendra Pratap Bharati
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India.,Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, India
| | - Jagriti Yadav
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Alok Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Praveen Kumar Tiwari
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Anchal Kumar Srivatava
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Hillol Chakdar
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| | - Prem Lal Kashyap
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Anil Kumar Saxena
- Indian Council of Agricultural Research-National Bureau of Agriculturally Important Microorganisms, Mau, India
| |
Collapse
|
48
|
Optimization of a Method for Detecting Intracellular Sulfane Sulfur Levels and Evaluation of Reagents That Affect the Levels in Escherichia coli. Antioxidants (Basel) 2022; 11:antiox11071292. [PMID: 35883783 PMCID: PMC9311597 DOI: 10.3390/antiox11071292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
Sulfane sulfur is a class of compounds containing zero-valent sulfur. Most sulfane sulfur compounds are reactive and play important signaling roles. Key enzymes involved in the production and metabolism of sulfane sulfur have been characterized; however, little is known about how to change intracellular sulfane sulfur (iSS) levels. To accurately measure iSS, we optimized a previously reported method, in which reactive iSS reacts with sulfite to produce thiosulfate, a stable sulfane sulfur compound, before detection. With the improved method, several factors were tested to influence iSS in Escherichia coli. Temperature, pH, and osmotic pressure showed little effect. At commonly used concentrations, most tested oxidants, including hydrogen peroxide, tert-butyl hydroperoxide, hypochlorous acid, and diamide, did not affect iSS, but carbonyl cyanide m-chlorophenyl hydrazone increased iSS. For reductants, 10 mM dithiothreitol significantly decreased iSS, but tris(2-carboxyethyl)phosphine did not. Among different sulfur-bearing compounds, NaHS, cysteine, S2O32− and diallyl disulfide increased iSS, of which only S2O32− did not inhibit E. coli growth at 10 mM or less. Thus, with the improved method, we have identified reagents that may be used to change iSS in E. coli and other organisms, providing tools to further study the physiological functions of iSS.
Collapse
|
49
|
Abstract
Members of candidate Asgardarchaeota superphylum appear to share numerous eukaryotic-like attributes thus being broadly explored for their relevance to eukaryogenesis. On the contrast, the ecological roles of Asgard archaea remains understudied. Asgard archaea have been frequently associated to low-oxygen aquatic sedimentary environments worldwide spanning a broad but not extreme salinity range. To date, the available information on diversity and potential biogeochemical roles of Asgardarchaeota mostly sourced from marine habitats and to a much lesser extend from true saline environments (i.e., > 3% w/v total salinity). Here, we provide an overview on diversity and ecological implications of Asgard archaea distributed across saline environments and briefly explore their metagenome-resolved potential for osmoadaptation. Loki-, Thor- and Heimdallarchaeota are the dominant Asgard clades in saline habitats where they might employ anaerobic/microaerophilic organic matter degradation and autotrophic carbon fixation. Homologs of primary solute uptake ABC transporters seemingly prevail in Thorarchaeota, whereas those putatively involved in trehalose and ectoine biosynthesis were mostly inferred in Lokiarchaeota. We speculate that Asgardarchaeota might adopt compatible solute-accumulating ('salt-out') strategy as response to salt stress. Our current understanding on the distribution, ecology and salt-adaptive strategies of Asgardarchaeota in saline environments are, however, limited by insufficient sampling and incompleteness of the available metagenome-assembled genomes. Extensive sampling combined with 'omics'- and cultivation-based approaches seem, therefore, crucial to gain deeper knowledge on this particularly intriguing archaeal lineage.
Collapse
|
50
|
Designing a Waste-Based Culture Medium for the Production of Plant Growth Promoting Microorganisms Based on Cladodes Juice from Opuntia ficus-indica Pruning. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The production of beneficial microorganisms is the first step to obtain a commercial-based product for application in agriculture. In this study, prickly pear (Opuntia ficus-indica) pruning waste was evaluated as a raw material for the production of large amounts of Plant Growth Promoting Microorganisms (PGPMs) reducing the number of generated wastes. Specifically, five PGPMs constituting a synthetic microbial consortium with complementing plant growth-promoting traits were grown on a laboratory scale and, subsequently, on a pilot scale using a 21-L bioreactor. Primarily, the physical-chemical characterization of the culture medium obtained from the juice of Opuntia cladodes was carried out, revealing the presence of sugars and organic acids with different molar ratios. Compared to conventional media, the waste medium did not show significant differences in bacterial growth efficiency. Instead, the survival rates of the bacteria grown in cladodes juice media, after air-drying on zeolite or freeze-drying, were significantly higher than those observed when they were grown in conventional media. The present work is the first conducted on a pilot-scale that maximizes the production of PGPMs in submerged fermentation using cladodes juice from Opuntia, reducing both economic and environmental impacts associated with the generation of wastes.
Collapse
|