1
|
Tamayo E, Nada B, Hafermann I, Benz JP. Correlating sugar transporter expression and activities to identify transporters for an orphan sugar substrate. Appl Microbiol Biotechnol 2024; 108:83. [PMID: 38189952 PMCID: PMC10774165 DOI: 10.1007/s00253-023-12907-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024]
Abstract
Filamentous fungi like Neurospora crassa are able to take up and metabolize important sugars present, for example, in agricultural and human food wastes. However, only a fraction of all putative sugar transporters in filamentous fungi has been characterized to date, and for many sugar substrates, the corresponding transporters are unknown. In N. crassa, only 14 out of the 42 putative major facilitator superfamily (MFS)-type sugar transporters have been characterized so far. To uncover this hidden potential for biotechnology, it is therefore necessary to find new strategies. By correlation of the uptake profile of sugars of interest after different induction conditions with the expression profiles of all 44 genes encoding predicted sugar transporters in N. crassa, together with an exhaustive phylogenetic analysis using sequences of characterized fungal sugar transporters, we aimed to identify transporter candidates for the tested sugars. Following this approach, we found a high correlation of uptake rates and expression strengths for many sugars with dedicated transporters, like galacturonic acid and arabinose, while the correlation is loose for sugars that are transported by several transporters due to functional redundancy. Nevertheless, this combinatorial approach allowed us to elucidate the uptake system for the disaccharide lactose, a by-product of the dairy industry, which consists of the two main cellodextrin transporters CDT-1 and CDT-2 with a minor contribution of the related transporter NCU00809. Moreover, a non-MFS transporter involved in glycerol transport was also identified. Deorphanization of sugar transporters or identification of transporters for orphan sugar substrates by correlation of uptake kinetics with transporter expression and phylogenetic information can thus provide a way to optimize the reuse of food industry by-products and agricultural wastes by filamentous fungi in order to create economic value and reduce their environmental impact. KEY POINTS: • The Neurospora crassa genome contains 30 uncharacterized putative sugar transporter genes. • Correlation of transporter expression and sugar uptake profiles can help to identify transporters for orphan sugar substrates. • CDT-1, CDT-2, and NCU00809 are key players in the transport of the dairy by-product lactose in N. crassa.
Collapse
Affiliation(s)
- Elisabeth Tamayo
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Basant Nada
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Isabell Hafermann
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Philipp Benz
- Fungal Biotechnology in Wood Science, Holzforschung München, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
Andronis CE, Jacques S, Lopez-Ruiz FJ, Lipscombe R, Tan KC. Proteomic analysis revealed that the oomyceticide phosphite exhibits multi-modal action in an oomycete pathosystem. J Proteomics 2024; 301:105181. [PMID: 38670258 DOI: 10.1016/j.jprot.2024.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Phytopathogenic oomycetes constitute some of the most devastating plant pathogens and cause significant crop and horticultural yield and economic losses. The phytopathogen Phytophthora cinnamomi causes dieback disease in native vegetation and several crops. The most commonly used chemical to control P. cinnamomi is the oomyceticide phosphite. Despite its widespread use, the mode of action of phosphite is not well understood and it is unclear whether it targets the pathogen, the host, or both. Resistance to phosphite is emerging in P. cinnamomi isolates and other oomycete phytopathogens. The mode of action of phosphite on phosphite-sensitive and resistant isolates of the pathogen and through a model host was investigated using label-free quantitative proteomics. In vitro treatment of sensitive P. cinnamomi isolates with phosphite hinders growth by interfering with metabolism, signalling and gene expression; traits that are not observed in the resistant isolate. When the model host Lupinus angustifolius was treated with phosphite, proteins associated with photosynthesis, carbon fixation and lipid metabolism in the host were enriched. Increased production of defence-related proteins was also observed in the plant. We hypothesise the multi-modal action of phosphite and present two models constructed using comparative proteomics that demonstrate mechanisms of pathogen and host responses to phosphite. SIGNIFICANCE: Phytophthora cinnamomi is a significant phytopathogenic oomycete that causes root rot (dieback) in a number of horticultural crops and a vast range of native vegetation. Historically, areas infected with phosphite have been treated with the oomyceticide phosphite despite its unknown mode of action. Additionally, overuse of phosphite has driven the emergence of phosphite-resistant isolates of the pathogen. We conducted a comparative proteomic study of a sensitive and resistant isolate of P. cinnamomi in response to treatment with phosphite, and the response of a model host, Lupinus angustifolius, to phosphite and its implications on infection. The present study has allowed for a deeper understanding of the bimodal action of phosphite, suggested potential biochemical factors contributing to chemical resistance in P. cinnamomi, and unveiled possible drivers of phosphite-induced host plant immunity to the pathogen.
Collapse
Affiliation(s)
- Christina E Andronis
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia; Proteomics International, Nedlands, WA, Australia.
| | - Silke Jacques
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia
| | | | | | - Kar-Chun Tan
- Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.
| |
Collapse
|
3
|
Feng X, He S, Chen Y, Zhang L. Deubiquitinase BRCC3 promotes the migration, invasion and EMT progression of colon adenocarcinoma by stabilizing MET expression. Genes Genomics 2024; 46:637-646. [PMID: 38470543 DOI: 10.1007/s13258-024-01508-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Breast cancer type 1 susceptibility protein/breast cancer type 2 susceptibility protein-containing complex subunit 3 (BRCC3), a deubiquitinase (DUBs), is overexpressed in various cancers. However, the underlying biological roles of BRCC3 in adenocarcinoma colon (COAD) have yet to be decrypted. OBJECTIVE In this work, we explored the potential biological function of BRCC3 in the natural process of COAD cells. METHODS The expression levels of BRCC3 in COAD tissues and cell lines were investigated via quantitative real time polymerase chain reaction and western blotting analyses. Meanwhile, short hairpin RNAs targeting BRCC3 (sh-BRCC3) or mesenchymal-epithelial transition factor (MET) (sh-MET) were used to investigate the biological function, including proliferation, apoptosis, migration, invasion, and epithelial-mesenchymal transition (EMT) progression in COAD cells. Furthermore, the expression levels of EMT-related biomarkers were detected with western blotting analysis. Furthermore, we also performed Co-IP assay to identify the correlation between BRCC3 and MET. RESULTS BRCC3 expression was increased in COAD tissues and cell lines. ShRNA-mediated downmodulation of BRCC3 in COAD cell lines induced EMT progression. BRCC3 knockdown resulted in decreased migration as well as invasion and increased apoptosis of SW480 and Lovo cells. Besides, MET was regulated by BRCC3 and involved in the migration, invasion, and EMT in SW480 and Lovo cells. Finally, we uncovered that the overexpressed MET reversed the effects of BRCC3 knockdown in COAD cell development. CONCLUSIONS BRCC3 acted as a critical factor in the development of COAD by deubiquitinating and stabilizing MET, which might provide an emerging biomarker for the therapeutic and diagnosis strategy of COAD.
Collapse
Affiliation(s)
- Xiu Feng
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Shengnan He
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Chongchuan District, Nantong, 226000, Jiangsu, China
| | - Ying Chen
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Chongchuan District, Nantong, 226000, Jiangsu, China.
| | - Liang Zhang
- Department of Oncology, Nantong First People's Hospital and Affiliated Hospital 2 of Nantong University, No.666 Shengli Road, Chongchuan District, Nantong, 226000, Jiangsu, China.
| |
Collapse
|
4
|
Tanaka M. Transcriptional and post-transcriptional regulation of genes encoding secretory proteins in Aspergillus oryzae. Biosci Biotechnol Biochem 2024; 88:381-388. [PMID: 38211972 DOI: 10.1093/bbb/zbae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
Aspergillus oryzae, also known as the yellow koji mold, produces various hydrolytic enzymes that are widely used in different industries. Its high capacity to produce secretory proteins makes this filamentous fungus a suitable host for heterologous protein production. Amylolytic gene promoter is widely used to express heterologous genes in A. oryzae. The expression of this promoter is strictly regulated by several transcription factors, whose activation involves various factors. Furthermore, the expression levels of amylolytic and heterologous genes are post-transcriptionally regulated by mRNA degradation mechanisms in response to aberrant transcriptional termination or endoplasmic reticulum stress. This review discusses the transcriptional and post-transcriptional regulatory mechanisms controlling the expression of genes encoding secretory proteins in A. oryzae.
Collapse
Affiliation(s)
- Mizuki Tanaka
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
5
|
Andika IB, Tian M, Bian R, Cao X, Luo M, Kondo H, Sun L. Cross-Kingdom Interactions Between Plant and Fungal Viruses. Annu Rev Virol 2023; 10:119-138. [PMID: 37406341 DOI: 10.1146/annurev-virology-111821-122539] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The large genetic and structural divergences between plants and fungi may hinder the transmission of viruses between these two kingdoms to some extent. However, recent accumulating evidence from virus phylogenetic analyses and the discovery of naturally occurring virus cross-infection suggest the occurrence of past and current transmissions of viruses between plants and plant-associated fungi. Moreover, artificial virus inoculation experiments showed that diverse plant viruses can multiply in fungi and vice versa. Thus, virus cross-infection between plants and fungi may play an important role in the spread, emergence, and evolution of both plant and fungal viruses and facilitate the interaction between them. In this review, we summarize current knowledge related to cross-kingdom virus infection in plants and fungi and further discuss the relevance of this new virological topic in the context of understanding virus spread and transmission in nature as well as developing control strategies for crop plant diseases.
Collapse
Affiliation(s)
- Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Mengyuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Ruiling Bian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
| | - Xinran Cao
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China;
| | - Ming Luo
- College of Agronomy, Xinjiang Agricultural University, Urumqi, China
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China;
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan;
| |
Collapse
|
6
|
Zhang J, Hao R, Shan B, Ye Y, Li J, Lu A. Effect of amino acids on biomineralization of lead ions by Aspergillus niger. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10924. [PMID: 37650371 DOI: 10.1002/wer.10924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/30/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
This study investigates the biomineralization of lead ions by Aspergillus niger from aqueous environments, focusing on the dynamic effects of fungal metabolism and biological components. Three biomolecules (glutamate, methionine, and lysine) were used to induce lead oxalate mineralization under lead stress. Comparative experiments were conducted to analyze the growth characteristics and Pb (II) removal ability of A. niger, as well as the morphological and structural properties of the resulting lead oxalate minerals using inductively coupled plasma atomic emission spectroscopy, X-ray powder diffraction, and scanning electron microscopy-energy dispersive spectroscopy techniques. The findings reveal that A. niger plays a crucial role in controlling the mineralization process of Pb (II), with biomineralization experiments demonstrating the specific morphogenesis of lead oxalate over time. Additionally, the inclusion of the three biomolecules in the system indirectly influenced the rate of Pb (II) removal and mineral morphology. These results contribute to a better understanding of A. niger-mediated biomineralization process of lead oxalate and suggest its potential application in the removal of Pb (II) from aqueous environments, particularly in combination with amino acids for enhanced immobilization and mineral recovery. PRACTITIONER POINTS: Fungal activity and amino acids play a crucial role in shaping lead oxalate crystals during water treatment processes. Specific amino acids can effectively delay lead oxalate recrystallization, enhancing the stability and removal efficiency of the crystals. Biomineralization mediated by fungi offers a promising and eco-friendly approach for lead removal and recovery in wastewater treatment. Exploring the influence of organic additives and fungal metabolism on crystal growth provides valuable insights for developing efficient remediation strategies. Further research on the utilization of fungi and amino acids can help with innovative and sustainable wastewater treatment technologies.
Collapse
Affiliation(s)
- Junman Zhang
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Ruixia Hao
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Bing Shan
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Yubo Ye
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Jiani Li
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| | - Anhuai Lu
- Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Askari F, Vasavi B, Kaur R. Phosphatidylinositol 3-phosphate regulates iron transport via PI3P-binding CgPil1 protein. Cell Rep 2023; 42:112855. [PMID: 37490387 DOI: 10.1016/j.celrep.2023.112855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Iron homeostasis, which is pivotal to virulence, is regulated by the phosphatidylinositol 3-kinase CgVps34 in the human fungal pathogen Candida glabrata. Here, we identify CgPil1 as a phosphatidylinositol 3-phosphate (PI3P)-binding protein and unveil its role in retaining the high-affinity iron transporter CgFtr1 at the plasma membrane (PM), with PI3P negatively regulating CgFtr1-CgPil1 interaction. PI3P production and its PM localization are elevated in the high-iron environment. Surplus iron also leads to intracellular distribution and vacuolar delivery of CgPil1 and CgFtr1, respectively, from the PM. Loss of CgPil1 or CgFtr1 ubiquitination at lysines 391 and 401 results in CgFtr1 trafficking to the endoplasmic reticulum and a decrease in vacuole-localized CgFtr1. The E3-ubiquitin ligase CgRsp5 interacts with CgFtr1 and forms distinct CgRsp5-CgFtr1 puncta at the PM, with high iron resulting in their internalization. Finally, PI3P controls retrograde transport of many PM proteins. Altogether, we establish PI3P as a key regulator of membrane transport in C. glabrata.
Collapse
Affiliation(s)
- Fizza Askari
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India; Graduate Studies, Regional Centre for Biotechnology, Faridabad 121001, Haryana, India
| | - Bhogadi Vasavi
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India.
| |
Collapse
|
8
|
Dagdeviren S, Hoang MF, Sarikhani M, Meier V, Benoit JC, Okawa MC, Melnik VY, Ricci-Blair EM, Foot N, Friedline RH, Hu X, Tauer LA, Srinivasan A, Prigozhin MB, Shenoy SK, Kumar S, Kim JK, Lee RT. An insulin-regulated arrestin domain protein controls hepatic glucagon action. J Biol Chem 2023; 299:105045. [PMID: 37451484 PMCID: PMC10413355 DOI: 10.1016/j.jbc.2023.105045] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/16/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023] Open
Abstract
Glucagon signaling is essential for maintaining normoglycemia in mammals. The arrestin fold superfamily of proteins controls the trafficking, turnover, and signaling of transmembrane receptors as well as other intracellular signaling functions. Further investigation is needed to understand the in vivo functions of the arrestin domain-containing 4 (ARRDC4) protein family member and whether it is involved in mammalian glucose metabolism. Here, we show that mice with a global deletion of the ARRDC4 protein have impaired glucagon responses and gluconeogenesis at a systemic and molecular level. Mice lacking ARRDC4 exhibited lower glucose levels after fasting and could not suppress gluconeogenesis at the refed state. We also show that ARRDC4 coimmunoprecipitates with the glucagon receptor, and ARRDC4 expression is suppressed by insulin. These results define ARRDC4 as a critical regulator of glucagon signaling and glucose homeostasis and reveal a novel intersection of insulin and glucagon pathways in the liver.
Collapse
Affiliation(s)
- Sezin Dagdeviren
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Megan F Hoang
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Mohsen Sarikhani
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Vanessa Meier
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Jake C Benoit
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Marinna C Okawa
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Veronika Y Melnik
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Elisabeth M Ricci-Blair
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Natalie Foot
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Randall H Friedline
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Xiaodi Hu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lauren A Tauer
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Arvind Srinivasan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Maxim B Prigozhin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Jason K Kim
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA; Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Richard T Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA.
| |
Collapse
|
9
|
Carreras-Villaseñor N, Martínez-Rodríguez LA, Ibarra-Laclette E, Monribot-Villanueva JL, Rodríguez-Haas B, Guerrero-Analco JA, Sánchez-Rangel D. The biological relevance of the FspTF transcription factor, homologous of Bqt4, in Fusarium sp. associated with the ambrosia beetle Xylosandrus morigerus. Front Microbiol 2023; 14:1224096. [PMID: 37520351 PMCID: PMC10375492 DOI: 10.3389/fmicb.2023.1224096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Transcription factors in phytopathogenic fungi are key players due to their gene expression regulation leading to fungal growth and pathogenicity. The KilA-N family encompasses transcription factors unique to fungi, and the Bqt4 subfamily is included in it and is poorly understood in filamentous fungi. In this study, we evaluated the role in growth and pathogenesis of the homologous of Bqt4, FspTF, in Fusarium sp. isolated from the ambrosia beetle Xylosandrus morigerus through the characterization of a CRISPR/Cas9 edited strain in Fsptf. The phenotypic analysis revealed that TF65-6, the edited strain, modified its mycelia growth and conidia production, exhibited affectation in mycelia and culture pigmentation, and in the response to certain stress conditions. In addition, the plant infection process was compromised. Untargeted metabolomic and transcriptomic analysis, clearly showed that FspTF may regulate secondary metabolism, transmembrane transport, virulence, and diverse metabolic pathways such as lipid metabolism, and signal transduction. These data highlight for the first time the biological relevance of an orthologue of Bqt4 in Fusarium sp. associated with an ambrosia beetle.
Collapse
Affiliation(s)
- Nohemí Carreras-Villaseñor
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Luis A. Martínez-Rodríguez
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Laboratorio de Genómica y Transcriptómica, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Juan L. Monribot-Villanueva
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Benjamín Rodríguez-Haas
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - José A. Guerrero-Analco
- Laboratorio de Química de Productos Naturales, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
| | - Diana Sánchez-Rangel
- Laboratorios de Biología Molecular y Fitopatología, Instituto de Ecología A.C. (INECOL), Red de Estudios Moleculares Avanzados (REMAv), Xalapa, Mexico
- Investigadora Por Mexico-CONAHCyT, Xalapa, Mexico
| |
Collapse
|
10
|
Berlin I, Sapmaz A, Stévenin V, Neefjes J. Ubiquitin and its relatives as wizards of the endolysosomal system. J Cell Sci 2023; 136:288517. [PMID: 36825571 PMCID: PMC10022685 DOI: 10.1242/jcs.260101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
The endolysosomal system comprises a dynamic constellation of vesicles working together to sense and interpret environmental cues and facilitate homeostasis. Integrating extracellular information with the internal affairs of the cell requires endosomes and lysosomes to be proficient in decision-making: fusion or fission; recycling or degradation; fast transport or contacts with other organelles. To effectively discriminate between these options, the endolysosomal system employs complex regulatory strategies that crucially rely on reversible post-translational modifications (PTMs) with ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. The cycle of conjugation, recognition and removal of different Ub- and Ubl-modified states informs cellular protein stability and behavior at spatial and temporal resolution and is thus well suited to finetune macromolecular complex assembly and function on endolysosomal membranes. Here, we discuss how ubiquitylation (also known as ubiquitination) and its biochemical relatives orchestrate endocytic traffic and designate cargo fate, influence membrane identity transitions and support formation of membrane contact sites (MCSs). Finally, we explore the opportunistic hijacking of Ub and Ubl modification cascades by intracellular bacteria that remodel host trafficking pathways to invade and prosper inside cells.
Collapse
Affiliation(s)
- Ilana Berlin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Virginie Stévenin
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| | - Jacques Neefjes
- Oncode Institute, Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, Einthovenweg 20, 2300RC Leiden, The Netherlands
| |
Collapse
|
11
|
Isabelle G, Mohammad FK, Evi Z, Fabienne V, Martine R, Evelyne D. Glutamine transport as a possible regulator of nitrogen catabolite repression in Saccharomyces cerevisiae. Yeast 2022; 39:493-507. [PMID: 35942513 DOI: 10.1002/yea.3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Nitrogen Catabolite Repression (NCR) is a major transcriptional control pathway governing nitrogen use in yeast, with several hundred of target genes identified to date. Early and extensive studies on NCR led to the identification of the 4 GATA zinc finger transcription factors, but the primary mechanism initiating NCR is still unclear up till now. To identify novel players of NCR, we have undertaken a genetic screen in an NCR-relieved gdh1Δ mutant, which led to the identification of four genes directly linked to protein ubiquitylation. Ubiquitylation is an important way of regulating amino acid transporters and our observations being specifically observed in glutamine-containing media, we hypothesized that glutamine transport could be involved in establishing NCR. Stabilization of Gap1 at the plasma membrane restored NCR in gdh1Δ cells and AGP1 (but not GAP1) deletion could relieve repression in the ubiquitylation mutants isolated during the screen. Altogether, our results suggest that deregulated glutamine transporter function in all three weak nitrogen derepressed (wnd) mutants restores the repression of NCR-sensitive genes consecutive to GDH1 deletion. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Fayyad-Kazan Mohammad
- Université Libre de Bruxelles, Belgium.,Biotechnology Department, American International University (AIU), Saad Al Abdullah, Al Jahra, Kuwait
| | - Zaremba Evi
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| | | | | | - Dubois Evelyne
- Labiris, Brussels, Belgium.,Université Libre de Bruxelles, Belgium
| |
Collapse
|
12
|
Comparative transcriptome analysis revealed candidate genes involved in fruiting body development and sporulation in Ganoderma lucidum. Arch Microbiol 2022; 204:514. [PMID: 35867171 DOI: 10.1007/s00203-022-03088-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/20/2022] [Indexed: 11/02/2022]
Abstract
Ganoderma lucidum is an edible mushroom highly regarded in the traditional Chinese medicine. To better understand the molecular mechanisms underlying fruiting body development in G. lucidum, transcriptome analysis based on RNA sequencing was carried out on different developmental stages: mycelium (G1); primordium (G2); young fruiting body (G3); mature fruiting body (G4); fruiting body in post-sporulation stage (G5). In total, 26,137 unigenes with an average length of 1078 bp were de novo assembled. Functional annotation of transcriptomes matched 72.49% of the unigenes to known proteins available in at least one database. Differentially expressed genes (DEGs) were identified between the evaluated stages: 3135 DEGs in G1 versus G2; 120 in G2 versus G3; 3919 in G3 versus G4; and 1012 in G4 versus G5. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of DEGs identified in G1 versus G2 revealed that, in addition to global and overview maps, enriched pathways were related to amino acid metabolism and carbohydrate metabolism. In contrast, DEGs identified in G2 versus G3 were mainly assigned to the category of metabolism of amino acids and their derivatives, comprising mostly upregulated unigenes. In addition, highly expressed unigenes associated with the transition between different developmental stages were identified, including those encoding hydrophobins, cytochrome P450s, extracellular proteases, and several transcription factors. Meanwhile, highly expressed unigenes related to meiosis such as DMC1, MSH4, HOP1, and Mek1 were also analyzed. Our study provides important insights into the molecular mechanisms underlying fruiting body development and sporulation in G. lucidum.
Collapse
|
13
|
Nishimura A, Nakagami K, Kan K, Morita F, Takagi H. Arginine inhibits Saccharomyces cerevisiae biofilm formation by inducing endocytosis of the arginine transporter Can1. Biosci Biotechnol Biochem 2022; 86:1300-1307. [PMID: 35749478 DOI: 10.1093/bbb/zbac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022]
Abstract
Biofilms are formed by the aggregation of microorganisms into multicellular structures that adhere to surfaces. Biofilm formation by yeast is a critical issue in clinical and industrial fields because of the strong adhesion of yeast biofilm to abiotic surfaces and tissues. Here, we clarified the arginine-mediated inhibition of biofilm formation by yeast. First, we showed that arginine inhibits biofilm formation in fungi such as Saccharomyces cerevisiae, Candida glabrata, and Cladosporium cladosporioides, but not in bacteria. In regard to the underlying mechanism, biochemical analysis indicated that arginine inhibits biofilm formation by suppressing Flo11-dependent flocculation. Intriguingly, a strain with deletion of the arginine transporter-encoding CAN1 was insensitive to arginine-mediated inhibition of biofilm formation. Finally, Can1 endocytosis appeared to be required for the inhibitory mechanism of biofilm formation by arginine. The present results could help to elucidate the molecular mechanism of yeast biofilm formation and its control.
Collapse
Affiliation(s)
- Akira Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Kazuki Nakagami
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Kyoyuki Kan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Fumika Morita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| |
Collapse
|
14
|
Nakamura M, Nakamura J, Mochizuki C, Kuroda C, Kato S, Haruta T, Kakefuda M, Sato S, Tamanoi F, Sugino N. Analysis of cell-nanoparticle interactions and imaging of in vitro labeled cells showing barcorded endosomes using fluorescent thiol-organosilica nanoparticles surface-functionalized with polyethyleneimine. NANOSCALE ADVANCES 2022; 4:2682-2703. [PMID: 36132282 PMCID: PMC9417756 DOI: 10.1039/d1na00839k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Biomedical imaging using cell labeling is an important technique to visualize cell dynamics in the body. To label cells, thiol-organosilica nanoparticles (thiol-OS) containing fluorescein (thiol-OS/Flu) and rhodamine B (thiol-OS/Rho) were surface-functionalized with polyethyleneimine (PEI) (OS/Flu-PEI and OS/Rho-PEI) with 4 molecular weights (MWs). We hypothesized PEI structures such as brush, bent brush, bent lie-down, and coiled types on the surface depending on MWs based on dynamic light scattering and thermal gravimetric analyses. The labeling efficacy of OS/Flu-PEIs was dependent on the PEI MW and the cell type. A dual-particle administration study using thiol-OS and OS-PEIs revealed differential endosomal sorting of the particles depending on the surface of the NPs. The endosomes in the labeled cells using OS/Flu-PEI and thiol-OS/Rho revealed various patterns of fluorescence termed barcoded endosomes. The cells labeled with OS-PEI in vitro were administrated to mice intraperitoneally after in situ labeling of peritoneal cells using thiol-OS/Rho. The in vitro labeled cells were detected and identified in cell aggregates in vivo seamlessly. The labeled cells with barcoded endosomes were also identified in cell aggregates. Biomedical imaging of in vitro OS-PEI-labeled cells combined with in situ labeled cells showed high potential for observation of cell dynamics.
Collapse
Affiliation(s)
- Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Chika Kuroda
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Shigeki Kato
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | | | - Mayu Kakefuda
- EM Application Group, EM Business Unit, JEOL Ltd. Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles CA 90095 USA
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501 Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Yamaguchi University 1-1-1 Minami-Kogushi Ube Yamaguchi 755-8505 Japan
| |
Collapse
|
15
|
Barata-Antunes C, Talaia G, Broutzakis G, Ribas D, De Beule P, Casal M, Stefan CJ, Diallinas G, Paiva S. Interactions of cytosolic tails in the Jen1 carboxylate transporter are critical for trafficking and transport activity. J Cell Sci 2022; 135:275079. [PMID: 35437607 DOI: 10.1242/jcs.260059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 12/26/2022] Open
Abstract
Plasma membrane (PM) transporters of the major facilitator superfamily (MFS) are essential for cell metabolism, growth and response to stress or drugs. In Saccharomyces cerevisiae, Jen1 is a monocarboxylate/H+ symporter that provides a model to dissect the molecular details underlying cellular expression, transport mechanism and turnover of MFS transporters. Here, we present evidence revealing novel roles of the cytosolic N- and C-termini of Jen1 in its biogenesis, PM stability and transport activity, using functional analyses of Jen1 truncations and chimeric constructs with UapA, an endocytosis-insensitive transporter of Aspergillus nidulans. Our results show that both N- and C-termini are critical for Jen1 trafficking to the PM, transport activity and endocytosis. Importantly, we provide evidence that Jen1 N- and C-termini undergo transport-dependent dynamic intramolecular interactions, which affect the transport activity and turnover of Jen1. Our results support an emerging concept where the cytoplasmic termini of PM transporters control transporter cell surface stability and function through flexible intramolecular interactions with each other. These findings might be extended to other MFS members to understand conserved and evolving mechanisms underlying transporter structure-function relationships. This article has an associated First Person interview with the first authors of the paper.
Collapse
Affiliation(s)
- Cláudia Barata-Antunes
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057, Braga, Portugal
| | - Gabriel Talaia
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - George Broutzakis
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis 15784, Athens, Greece
| | - David Ribas
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal
| | - Pieter De Beule
- International Iberian Nanotechnology Laboratory, Avenida Mestre José Veiga s/n, Braga, Portugal
| | - Margarida Casal
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057, Braga, Portugal
| | - Christopher J Stefan
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis 15784, Athens, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013, Heraklion, Greece
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal.,Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057, Braga, Portugal
| |
Collapse
|
16
|
Ishii R, Fukui A, Sakihama Y, Kitsukawa S, Futami A, Mochizuki T, Nagano M, Toshima J, Abe F. Substrate-induced differential degradation and partitioning of the two tryptophan permeases Tat1 and Tat2 into eisosomes in Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183858. [PMID: 35031272 DOI: 10.1016/j.bbamem.2021.183858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Tryptophan is a relatively rare amino acid whose influx is strictly controlled to meet cellular demands. The yeast Saccharomyces cerevisiae has two tryptophan permeases, namely Tat1 (low-affinity type) and Tat2 (high-affinity type). These permeases are differentially regulated through ubiquitination based on inducible conditions and dependence on arrestin-related trafficking adaptors, although the physiological significance of their degradation remain unclear. Here, we demonstrated that Tat2 was rapidly degraded in an Rsp5-Bul1-dependent manner upon the addition of tryptophan, phenylalanine, or tyrosine, whereas Tat1 was unaffected. The expression of the ubiquitination-deficient variant Tat25K>R led to a reduction in cell yield at 4 μg/mL tryptophan, suggesting the occurrence of an uncontrolled, excessive consumption of tryptophan at low tryptophan concentrations. Eisosomes are membrane furrows that are thought to be storage compartments for some nutrient permeases. Tryptophan addition caused rapid Tat2 dissociation from eisosomes, whereas Tat1 distribution was unaffected. The 5 K > R mutation had no marked effect on Tat2 dissociation, suggesting that dissociation is independent of ubiquitination. Interestingly, the D74R mutation, which was created within the N-terminal acidic patch, stabilized Tat2 while reducing the degree of partitioning into eisosomes. Moreover, the hyperactive I285V mutation in Tat2, which increases Vmax/Km for tryptophan import by 2-fold, reduced the degree of segregation into eisosomes. Our findings illustrate the coordinated activity of Tat1 and Tat2 in the regulation of tryptophan transport at various tryptophan concentrations and suggest the positive role of substrates in inducing a conformational transition in Tat2, resulting in its dissociation from eisosomes and subsequent ubiquitination-dependent degradation.
Collapse
Affiliation(s)
- Ryoga Ishii
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ayu Fukui
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Yuri Sakihama
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Shoko Kitsukawa
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Ayami Futami
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Takahiro Mochizuki
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan; Division of Medical Biochemistry, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 1-15-1, Fukumuro, Miyagino-ku, Sendai, Miyagi 983-8536, Japan
| | - Makoto Nagano
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Jiro Toshima
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Fumiyoshi Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
17
|
Knychala MM, dos Santos AA, Kretzer LG, Gelsleichter F, Leandro MJ, Fonseca C, Stambuk BU. Strategies for Efficient Expression of Heterologous Monosaccharide Transporters in Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8010084. [PMID: 35050024 PMCID: PMC8778384 DOI: 10.3390/jof8010084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/09/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
In previous work, we developed a Saccharomyces cerevisiae strain (DLG-K1) lacking the main monosaccharide transporters (hxt-null) and displaying high xylose reductase, xylitol dehydrogenase and xylulokinase activities. This strain proved to be a useful chassis strain to study new glucose/xylose transporters, as SsXUT1 from Scheffersomyces stipitis. Proteins with high amino acid sequence similarity (78–80%) to SsXUT1 were identified from Spathaspora passalidarum and Spathaspora arborariae genomes. The characterization of these putative transporter genes (SpXUT1 and SaXUT1, respectively) was performed in the same chassis strain. Surprisingly, the cloned genes could not restore the ability to grow in several monosaccharides tested (including glucose and xylose), but after being grown in maltose, the uptake of 14C-glucose and 14C-xylose was detected. While SsXUT1 lacks lysine residues with high ubiquitinylation potential in its N-terminal domain and displays only one in its C-terminal domain, both SpXUT1 and SaXUT1 transporters have several such residues in their C-terminal domains. A truncated version of SpXUT1 gene, deprived of the respective 3′-end, was cloned in DLG-K1 and allowed growth and fermentation in glucose or xylose. In another approach, two arrestins known to be involved in the ubiquitinylation and endocytosis of sugar transporters (ROD1 and ROG3) were knocked out, but only the rog3 mutant allowed a significant improvement of growth and fermentation in glucose when either of the XUT permeases were expressed. Therefore, for the efficient heterologous expression of monosaccharide (e.g., glucose/xylose) transporters in S. cerevisiae, we propose either the removal of lysines involved in ubiquitinylation and endocytosis or the use of chassis strains hampered in the specific mechanism of membrane protein turnover.
Collapse
Affiliation(s)
- Marilia M. Knychala
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal
| | - Angela A. dos Santos
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Leonardo G. Kretzer
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Fernanda Gelsleichter
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
| | - Maria José Leandro
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Av. da República, 2780-157 Oeiras, Portugal
| | - César Fonseca
- Laboratório Nacional de Energia e Geologia, I.P., Unidade de Bioenergia, Estrada do Paço do Lumiar 22, 1649-038 Lisboa, Portugal; (M.J.L.); (C.F.)
- Discovery, R&D, Chr. Hansen A/S, 2970 Hørsholm, Denmark
| | - Boris U. Stambuk
- Center of Biological Sciences, Department of Biochemistry, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil; (M.M.K.); (A.A.d.S.); (L.G.K.); (F.G.)
- Correspondence: ; Tel.: +55-48-3721-4449
| |
Collapse
|
18
|
Claus S, Jezierska S, Elbourne LDH, Van Bogaert I. Exploring the transportome of the biosurfactant producing yeast Starmerella bombicola. BMC Genomics 2022; 23:22. [PMID: 34998388 PMCID: PMC8742932 DOI: 10.1186/s12864-021-08177-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Starmerella bombicola is a non-conventional yeast mainly known for its capacity to produce high amounts of the glycolipids 'sophorolipids'. Although its product has been used as biological detergent for a couple of decades, the genetics of S. bombicola are still largely unknown. Computational analysis of the yeast's genome enabled us to identify 254 putative transporter genes that make up the entire transportome. For each of them, a potential substrate was predicted using homology analysis, subcellular localization prediction and RNA sequencing in different stages of growth. One transporter family is of exceptional importance to this yeast: the ATP Binding Cassette (ABC) transporter Superfamily, because it harbors the main driver behind the highly efficient sophorolipid export. Furthermore, members of this superfamily translocate a variety of compounds ranging from antibiotics to hydrophobic molecules. We conducted an analysis of this family by creating deletion mutants to understand their role in the export of hydrophobic compounds, antibiotics and sophorolipids. Doing this, we could experimentally confirm the transporters participating in the efflux of medium chain fatty alcohols, particularly decanol and undecanol, and identify a second sophorolipid transporter that is located outside the sophorolipid biosynthetic gene cluster.
Collapse
Affiliation(s)
- Silke Claus
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Sylwia Jezierska
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Liam D H Elbourne
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia
| | - Inge Van Bogaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
19
|
Megarioti AH, Primo C, Kapetanakis GC, Athanasopoulos A, Sophianopoulou V, André B, Gournas C. The Bul1/2 Alpha-Arrestins Promote Ubiquitylation and Endocytosis of the Can1 Permease upon Cycloheximide-Induced TORC1-Hyperactivation. Int J Mol Sci 2021; 22:10208. [PMID: 34638549 PMCID: PMC8508209 DOI: 10.3390/ijms221910208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Selective endocytosis followed by degradation is a major mechanism for downregulating plasma membrane transporters in response to specific environmental cues. In Saccharomyces cerevisiae, this endocytosis is promoted by ubiquitylation catalyzed by the Rsp5 ubiquitin-ligase, targeted to transporters via adaptors of the alpha-arrestin family. However, the molecular mechanisms of this targeting and their control according to conditions remain incompletely understood. In this work, we dissect the molecular mechanisms eliciting the endocytosis of Can1, the arginine permease, in response to cycloheximide-induced TORC1 hyperactivation. We show that cycloheximide promotes Rsp5-dependent Can1 ubiquitylation and endocytosis in a manner dependent on the Bul1/2 alpha-arrestins. Also crucial for this downregulation is a short acidic patch sequence in the N-terminus of Can1 likely acting as a binding site for Bul1/2. The previously reported inhibition by cycloheximide of transporter recycling, from the trans-Golgi network to the plasma membrane, seems to additionally contribute to efficient Can1 downregulation. Our results also indicate that, contrary to the previously described substrate-transport elicited Can1 endocytosis mediated by the Art1 alpha-arrestin, Bul1/2-mediated Can1 ubiquitylation occurs independently of the conformation of the transporter. This study provides further insights into how distinct alpha-arrestins control the ubiquitin-dependent downregulation of a specific amino acid transporter under different conditions.
Collapse
Affiliation(s)
- Amalia H. Megarioti
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| | - Cecilia Primo
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium; (C.P.); (G.C.K.)
| | - George C. Kapetanakis
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium; (C.P.); (G.C.K.)
| | - Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| | - Bruno André
- Molecular Physiology of the Cell Laboratory, Université Libre de Bruxelles (ULB), IBMM, 6041 Gosselies, Belgium; (C.P.); (G.C.K.)
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Patr. Grigoriou E & 27 Neapoleos St., 15341 Agia Paraskevi, Greece; (A.H.M.); (A.A.); (V.S.)
| |
Collapse
|
20
|
Dimou S, Georgiou X, Sarantidi E, Diallinas G, Anagnostopoulos AK. Profile of Membrane Cargo Trafficking Proteins and Transporters Expressed under N Source Derepressing Conditions in Aspergillus nidulans. J Fungi (Basel) 2021; 7:jof7070560. [PMID: 34356937 PMCID: PMC8306328 DOI: 10.3390/jof7070560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/05/2021] [Accepted: 07/12/2021] [Indexed: 02/02/2023] Open
Abstract
Solute and ion transporters are proteins essential for cell nutrition, detoxification, signaling, homeostasis and drug resistance. Being polytopic transmembrane proteins, they are co-translationally inserted and folded into the endoplasmic reticulum (ER) of eukaryotic cells and subsequently sorted to their final membrane destination via vesicular secretion. During their trafficking and in response to physiological/stress signals or prolonged activity, transporters undergo multiple quality control processes and regulated turnover. Consequently, transporters interact dynamically and transiently with multiple proteins. To further dissect the trafficking and turnover mechanisms underlying transporter subcellular biology, we herein describe a novel mass spectrometry-based proteomic protocol adapted to conditions allowing for maximal identification of proteins related to N source uptake in A. nidulans. Our analysis led to identification of 5690 proteins, which to our knowledge constitutes the largest protein dataset identified by omics-based approaches in Aspergilli. Importantly, we detected possibly all major proteins involved in basic cellular functions, giving particular emphasis to factors essential for membrane cargo trafficking and turnover. Our protocol is easily reproducible and highly efficient for unearthing the full A. nidulans proteome. The protein list delivered herein will form the basis for downstream systematic approaches and identification of protein–protein interactions in living fungal cells.
Collapse
Affiliation(s)
- Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece; (S.D.); (X.G.)
| | - Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece; (S.D.); (X.G.)
- Division of Biotechnology, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - Eleana Sarantidi
- Division of Biotechnology, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece; (S.D.); (X.G.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece
- Correspondence: (G.D.); (A.K.A.)
| | - Athanasios K. Anagnostopoulos
- Division of Biotechnology, Biomedical Research Foundation of the Academy of Athens (BRFAA), 11527 Athens, Greece;
- Correspondence: (G.D.); (A.K.A.)
| |
Collapse
|