1
|
Istifli ES, Okumus N, Sarikurkcu C, Kuhn ER, Netz PA, Tepe AS. Comparative docking and molecular dynamics studies of molnupiravir (EIDD-2801): implications for novel mechanisms of action on influenza and SARS-CoV-2 protein targets. J Biomol Struct Dyn 2024; 42:8202-8214. [PMID: 37811782 DOI: 10.1080/07391102.2023.2267696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023]
Abstract
Molnupiravir (EIDD-2801) (MLN) is an oral antiviral drug for COVID-19 treatment, being integrated into viral RNA through RNA-dependent RNA polymerase (RdRp). Upon ingestion, MLN is transformed into two active metabolites: β-d-N4-hydroxycytidine (NHC) (EIDD-1931) in the host plasma, and EIDD-1931-triphosphate (MTP) within the host cells. However, recent studies provide increasing evidence of MLN's interactions with off-target proteins beyond the viral genome, suggesting that the complete mechanisms of action of MLN remain unclear. The aim of this study was therefore to investigate the molecular interactions of MLN in the form of NHC and MTP with the non-RNA structural components of avian influenza (hemagglutinin, neuraminidase) and SARS-CoV-2 (spike glycoprotein, Mpro, and RdRp) viruses and to elucidate whether these two metabolites possess the ability to form stable complexes with these major viral components. Molecular docking of NHC and MTP was performed using AutoDock 4.2.6 and the obtained protein-drug complexes were submitted to 200-ns molecular dynamics simulations in triplicate with subsequent free energy calculations using GROMACS. Docking scores, molecular dynamics and MM/GBSA results showed that MTP was tightly bound within the active site of SARS-CoV-2 RdRp and remained highly stable throughout the 200-ns simulations. Besides, it was also shown that NHC and MTP formed moderately-to-highly stable molecular complexes with off-target receptors hemagglutinin, neuraminidase and Mpro, but rather weak interactions with spike glycoprotein. Our computational findings suggest that NHC and MTP may directly inhibit these receptors, and propose that additional studies on the off-target effects of MLN, i.e. real-time protein binding assays, should be performed.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Erman Salih Istifli
- Faculty of Science and Literature, Department of Biology, Cukurova University, Adana, Turkey
| | - Nurullah Okumus
- Faculty of Medicine, Department of Pediatrics, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Cengiz Sarikurkcu
- Faculty of Pharmacy, Department of Analytical Chemistry, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| | - Eduardo Ramires Kuhn
- Theoretical Chemistry Group, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Paulo A Netz
- Theoretical Chemistry Group, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Arzuhan Sihoglu Tepe
- Department of Pharmacy Services, Kilis 7 Aralik University, Vocational High School of Health Services, Kilis, Turkey
| |
Collapse
|
2
|
Yaghoobizadeh F, Roayaei Ardakani M, Ranjbar MM, Khosravi M, Galehdari H. Development of a potent recombinant scFv antibody against the SARS-CoV-2 by in-depth bioinformatics study: Paving the way for vaccine/diagnostics development. Comput Biol Med 2024; 170:108091. [PMID: 38295473 DOI: 10.1016/j.compbiomed.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/02/2024]
Abstract
BACKGROUND The SARS-CoV-2 has led to a worldwide disaster. Thus, developing prophylactics/therapeutics is required to overcome this public health issue. Among these, producing the anti-SARS-CoV-2 single-chain variable fragment (scFv) antibodies has attracted a significant attention. Accordingly, this study aims to address this question: Is it possible to bioinformatics-based design of a potent anti-SARS-CoV-2 scFv as an alternative to current production approaches? METHOD Using the complexed SARS-CoV-2 spike-antibodies, two sets analyses were performed: (1) B-cell epitopes (BCEs) prediction in the spike receptor-binding domain (RBD) region as a parameter for antibody screening; (2) the computational analysis of antibodies variable domains (VH/VL). Based on these primary screenings, and docking/binding affinity rating, one antibody was selected. The protein-protein interactions (PPIs) among the selected antibody-epitope complex were predicted and its epitope conservancy was also evaluated. Thereafter, some elements were added to the final scFv: (1) the PelB signal peptide; (2) a GSGGGGS linker to connect the VH-VL. Finally, this scFv was analyzed/optimized using various web servers. RESULTS Among the antibody library, only one met the various criteria for being an efficient scFv candidate. Moreover, no interaction was predicted between its paratope and RBD hot-spot residues of SARS-CoV-2 variants-of-Concern (VOCs). CONCLUSIONS Herein, a step-by-step bioinformatics platform has been introduced to bypass some barriers of traditional antibody production approaches. Based on existing literature, the current study is one of the pioneer works in the field of bioinformatics-based scFv production. This scFv may be a good candidate for diagnostics/therapeutics design against the SARS-CoV-2 as an emerging aggressive pathogen.
Collapse
Affiliation(s)
- Fatemeh Yaghoobizadeh
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, 6135783151, Iran.
| | - Mohammad Roayaei Ardakani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, 6135783151, Iran.
| | | | - Mohammad Khosravi
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, 6135783151, Iran.
| | - Hamid Galehdari
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, 6135783151, Iran.
| |
Collapse
|
3
|
Nam Y, Lucas A, Yun JS, Lee SM, Park JW, Chen Z, Lee B, Ning X, Shen L, Verma A, Kim D. Development of complemented comprehensive networks for rapid screening of repurposable drugs applicable to new emerging disease outbreaks. J Transl Med 2023; 21:415. [PMID: 37365631 DOI: 10.1186/s12967-023-04223-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Computational drug repurposing is crucial for identifying candidate therapeutic medications to address the urgent need for developing treatments for newly emerging infectious diseases. The recent COVID-19 pandemic has taught us the importance of rapidly discovering candidate drugs and providing them to medical and pharmaceutical experts for further investigation. Network-based approaches can provide repurposable drugs quickly by leveraging comprehensive relationships among biological components. However, in a case of newly emerging disease, applying a repurposing methods with only pre-existing knowledge networks may prove inadequate due to the insufficiency of information flow caused by the novel nature of the disease. METHODS We proposed a network-based complementary linkage method for drug repurposing to solve the lack of incoming new disease-specific information in knowledge networks. We simulate our method under the controlled repurposing scenario that we faced in the early stage of the COVID-19 pandemic. First, the disease-gene-drug multi-layered network was constructed as the backbone network by fusing comprehensive knowledge database. Then, complementary information for COVID-19, containing data on 18 comorbid diseases and 17 relevant proteins, was collected from publications or preprint servers as of May 2020. We estimated connections between the novel COVID-19 node and the backbone network to construct a complemented network. Network-based drug scoring for COVID-19 was performed by applying graph-based semi-supervised learning, and the resulting scores were used to validate prioritized drugs for population-scale electronic health records-based medication analyses. RESULTS The backbone networks consisted of 591 diseases, 26,681 proteins, and 2,173 drug nodes based on pre-pandemic knowledge. After incorporating the 35 entities comprised of complemented information into the backbone network, drug scoring screened top 30 potential repurposable drugs for COVID-19. The prioritized drugs were subsequently analyzed in electronic health records obtained from patients in the Penn Medicine COVID-19 Registry as of October 2021 and 8 of these were found to be statistically associated with a COVID-19 phenotype. CONCLUSION We found that 8 of the 30 drugs identified by graph-based scoring on complemented networks as potential candidates for COVID-19 repurposing were additionally supported by real-world patient data in follow-up analyses. These results show that our network-based complementary linkage method and drug scoring algorithm are promising strategies for identifying candidate repurposable drugs when new emerging disease outbreaks.
Collapse
Affiliation(s)
- Yonghyun Nam
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
| | - Anastasia Lucas
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jae-Seung Yun
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Mi Lee
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ji Won Park
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Ziqi Chen
- Computer Science and Engineering Department, College of Engineering, The Ohio State University, Columbus, USA
| | - Brian Lee
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
| | - Xia Ning
- Computer Science and Engineering Department, College of Engineering, The Ohio State University, Columbus, USA
- Biomedical Informatics Department, College of Medicine, The Ohio State University, Columbus, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, USA
| | - Li Shen
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA
| | - Anurag Verma
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Dokyoon Kim
- Department of Biostatistics, Epidemiology & Informatics, The Perelman School of Medicine, University of Pennsylvania, B304 Richards Building, 3700 Hamilton Walk, Philadelphia, PA, 19104-6116, USA.
- Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
4
|
Yaghoobizadeh F, Ardakani MR, Ranjbar MM, Galehdari H, Khosravi M. Expression, purification, and study on the efficiency of a new potent recombinant scFv antibody against the SARS-CoV-2 spike RBD in E. coli BL21. Protein Expr Purif 2023; 203:106210. [PMID: 36473692 PMCID: PMC9719605 DOI: 10.1016/j.pep.2022.106210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/19/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Many efforts have been made around the world to combat SARS-CoV-2. Among these are recombinant antibodies considered to be suitable as an alternative for some diagnostics/therapeutics. Based on their importance, this study aimed to investigate the expression, purification, and efficiency of a new potent recombinant scFv in the E. coli BL21 (DE3) system. The expression studies were performed after confirming the scFv cloning into the pET28a vector using specific PCRs. After comprehensive expression studies, a suitable strategy was adopted to extract and purify periplasmic proteins using Ni2+-NTA resin. Besides the purified scFv, the crude bacterial lysate was also used to develop a sandwich ELISA (S-ELISA) for the detection of SARS-CoV-2. The use of PCR, E. coli expression system, western blotting (WB), and S-ELISA confirmed the functionality of this potent scFv. Moreover, the crude bacterial lysate also showed good potential for detecting SARS-CoV-2. This could be decreasing the costs and ease its utilization for large-scale applications. The production of high-quality recombinant proteins is essential for humankind. Moreover, with attention to the more aggressive nature of SARS-CoV-2 than other coronaviruses, the development of an effective detection method is urgent. Based on our knowledge, this study is one of the limited investigations in two fields: (1) The production of anti-SARS-CoV-2 scFv using E. coli [as a cheap heterologous host] in relatively high amounts and with good stability, and (2) Designing a sensitive S-ELISA for its detection. It may also be utilized as potent therapeutics after further investigations.
Collapse
Affiliation(s)
| | | | | | - Hamid Galehdari
- Department of Biology, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| | - Mohammad Khosravi
- Department of Pathobiology, Shahid Chamran University of Ahvaz, Ahvaz, Khouzestan, Iran
| |
Collapse
|
5
|
Combination Therapy of Ledipasvir and Itraconazole in the Treatment of COVID-19 Patients Coinfected with Black Fungus: An In Silico Statement. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5904261. [PMID: 35463967 PMCID: PMC9020143 DOI: 10.1155/2022/5904261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
Abstract
The manuscript mainly aimed at providing clues on improving the innate immunity of coronavirus patients and safeguarding them from both new mutant strains and black fungus infections. Coronavirus is readily mutating from one variant to another. Among the several variants, we selected SARS-CoV-2 B.1.1.7 in this study. Upon infection of any virus, ideally, the phagocytic cells of the host engulf and destroy the virus by a mechanism called phagocytosis. However, compromised immunity impairs phagocytosis, and thus, restoring the immune system is crucial for a speedy recovery of infected patients. The autophagy and activation of Toll-like receptor-4 are the only ways to restore innate immunity. Recently, immunocompromised COVID-19 patients have been suffering from the coinfection of black fungus. Rhizomucor, a black fungus species, causes more than 75% of cases of mucormycosis. Here, we present the results of molecular docking studies of sixty approved antiviral drugs targeting receptors associated with the SARS-CoV-2 B 1.1.7 variant (PDB id: 7NEH), activating the innate immune system (PDB id: 5YEC and 5IJC). We also studied the twenty approved antifungal drugs with Rhizomucor miehei lipase propeptide (PDB id: 6QPR) to identify the possible combination therapy for patients coinfected with coronavirus and black fungus. The ledipasvir showed excellent docking interactions with the 7NEH, 5YEC, and 5IJC, indicating that it is a perfect candidate for the treatment of COVID-19 patients. Itraconazole showed significant interaction with 6QPR of Rhizomucor miehei, suggesting that itraconazole can treat black fungus infections. In conclusion, the combination therapy of ledipasvir and itraconazole can be a better alternative for treating COVID-19 patients coinfected with black fungus.
Collapse
|
6
|
Hok L, Rimac H, Mavri J, Vianello R. COVID-19 infection and neurodegeneration: Computational evidence for interactions between the SARS-CoV-2 spike protein and monoamine oxidase enzymes. Comput Struct Biotechnol J 2022; 20:1254-1263. [PMID: 35228857 PMCID: PMC8868002 DOI: 10.1016/j.csbj.2022.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Although COVID-19 has been primarily associated with pneumonia, recent data show that its causative agent, the SARS-CoV-2 coronavirus, can infect many vital organs beyond the lungs, including the heart, kidneys and the brain. The literature agrees that COVID-19 is likely to have long-term mental health effects on infected individuals, which signifies a need to understand the role of the virus in the pathophysiology of brain disorders that is currently unknown and widely debated. Our docking and molecular dynamics simulations show that the affinity of the spike protein from the wild type (WT) and the South African B.1.351 (SA) variant towards MAO enzymes is comparable to that for its ACE2 receptor. This allows for the WT/SA⋅⋅⋅MAO complex formation, which changes MAO affinities for their neurotransmitter substrates, thereby impacting their metabolic conversion and misbalancing their levels. Knowing that this fine regulation is strongly linked with the etiology of various brain pathologies, these results are the first to highlight the possibility that the interference with the brain MAO catalytic activity is responsible for the increased neurodegenerative illnesses following a COVID-19 infection, thus placing a neurobiological link between these two conditions in the spotlight. Since the obtained insight suggests that a more contagious SA variant causes even larger disturbances, and with new and more problematic strains likely emerging in the near future, we firmly advise that the presented prospect of the SARS-CoV-2 induced neurological complications should not be ignored, but rather requires further clinical investigations to achieve an early diagnosis and timely therapeutic interventions.
Collapse
Affiliation(s)
- Lucija Hok
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Hrvoje Rimac
- Department of Medicinal Chemistry, University of Zagreb Faculty of Pharmacy and Biochemistry, Zagreb, Croatia
| | - Janez Mavri
- National Institute of Chemistry, Ljubljana, Slovenia
| | - Robert Vianello
- Laboratory for the Computational Design and Synthesis of Functional Materials, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
7
|
Sencanski M, Perovic V, Milicevic J, Todorovic T, Prodanovic R, Veljkovic V, Paessler S, Glisic S. Identification of SARS-CoV-2 Papain-like Protease (PLpro) Inhibitors Using Combined Computational Approach. ChemistryOpen 2022; 11:e202100248. [PMID: 35103413 PMCID: PMC8805381 DOI: 10.1002/open.202100248] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
In the current pandemic, finding an effective drug to prevent or treat the infection is the highest priority. A rapid and safe approach to counteract COVID-19 is in silico drug repurposing. The SARS-CoV-2 PLpro promotes viral replication and modulates the host immune system, resulting in inhibition of the host antiviral innate immune response, and therefore is an attractive drug target. In this study, we used a combined in silico virtual screening for candidates for SARS-CoV-2 PLpro protease inhibitors. We used the Informational spectrum method applied for Small Molecules for searching the Drugbank database followed by molecular docking. After in silico screening of drug space, we identified 44 drugs as potential SARS-CoV-2 PLpro inhibitors that we propose for further experimental testing.
Collapse
Affiliation(s)
- Milan Sencanski
- National Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–1411000BelgradeSerbia
| | - Vladimir Perovic
- National Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–1411000BelgradeSerbia
| | - Jelena Milicevic
- National Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–1411000BelgradeSerbia
| | - Tamara Todorovic
- Faculty of ChemistryUniversity of BelgradeStudentski Trg 12–1611000BelgradeSerbia
| | - Radivoje Prodanovic
- Faculty of ChemistryUniversity of BelgradeStudentski Trg 12–1611000BelgradeSerbia
| | | | - Slobodan Paessler
- Department of PathologyUniversity of Texas Medical BranchGalvestonTX 77550USA
- Institute for Human Infections and ImmunityUniversity of Texas Medical BranchGalvestonTX 77555USA
| | - Sanja Glisic
- National Institute of the Republic of SerbiaUniversity of BelgradeMike Petrovica Alasa 12–1411000BelgradeSerbia
| |
Collapse
|
8
|
Sugiyama MG, Cui H, Redka DS, Karimzadeh M, Rujas E, Maan H, Hayat S, Cheung K, Misra R, McPhee JB, Viirre RD, Haller A, Botelho RJ, Karshafian R, Sabatinos SA, Fairn GD, Madani Tonekaboni SA, Windemuth A, Julien JP, Shahani V, MacKinnon SS, Wang B, Antonescu CN. Multiscale interactome analysis coupled with off-target drug predictions reveals drug repurposing candidates for human coronavirus disease. Sci Rep 2021; 11:23315. [PMID: 34857794 PMCID: PMC8640055 DOI: 10.1038/s41598-021-02432-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
The COVID-19 pandemic has highlighted the urgent need for the identification of new antiviral drug therapies for a variety of diseases. COVID-19 is caused by infection with the human coronavirus SARS-CoV-2, while other related human coronaviruses cause diseases ranging from severe respiratory infections to the common cold. We developed a computational approach to identify new antiviral drug targets and repurpose clinically-relevant drug compounds for the treatment of a range of human coronavirus diseases. Our approach is based on graph convolutional networks (GCN) and involves multiscale host-virus interactome analysis coupled to off-target drug predictions. Cell-based experimental assessment reveals several clinically-relevant drug repurposing candidates predicted by the in silico analyses to have antiviral activity against human coronavirus infection. In particular, we identify the MET inhibitor capmatinib as having potent and broad antiviral activity against several coronaviruses in a MET-independent manner, as well as novel roles for host cell proteins such as IRAK1/4 in supporting human coronavirus infection, which can inform further drug discovery studies.
Collapse
Affiliation(s)
- Michael G Sugiyama
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Haotian Cui
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
| | | | | | - Edurne Rujas
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Hassaan Maan
- Vector Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Centre, Toronto, ON, Canada
| | - Sikander Hayat
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Aachen, Germany
| | - Kyle Cheung
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Rahul Misra
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
| | - Joseph B McPhee
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Russell D Viirre
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Andrew Haller
- Phoenox Pharma, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Roberto J Botelho
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Raffi Karshafian
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), a partnership between Ryerson University and St. Michael's Hospital, Toronto, ON, Canada
- Department of Physics, Ryerson University, Toronto, ON, Canada
| | - Sarah A Sabatinos
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | | | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Department of Immunology, Toronto, ON, Canada
| | | | | | - Bo Wang
- Department of Computer Science, University of Toronto, Toronto, ON, Canada.
- Vector Institute, Toronto, ON, Canada.
- Peter Munk Cardiac Centre, University Health Centre, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada.
- Graduate Program in Molecular Science, Ryerson University, Toronto, ON, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
9
|
Wang Z, Guo K, Gao P, Pu Q, Li C, Hur J, Wu M. Repurposable drugs for SARS-CoV-2 and influenza sepsis with scRNA-seq data targeting post-transcription modifications. PRECISION CLINICAL MEDICINE 2021; 4:215-230. [PMID: 34993416 PMCID: PMC8694063 DOI: 10.1093/pcmedi/pbab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/04/2021] [Accepted: 08/22/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has impacted almost every part of human life worldwide, posing a massive threat to human health. The lack of time for new drug discovery and the urgent need for rapid disease control to reduce mortality have led to a search for quick and effective alternatives to novel therapeutics, for example drug repurposing. To identify potentially repurposable drugs, we employed a systematic approach to mine candidates from U.S. FDA-approved drugs and preclinical small-molecule compounds by integrating gene expression perturbation data for chemicals from the Library of Integrated Network-Based Cellular Signatures project with a publicly available single-cell RNA sequencing dataset from patients with mild and severe COVID-19 (GEO: GSE145926, public data available and accessed on 22 April 2020). We identified 281 FDA-approved drugs that have the potential to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, 16 of which are currently undergoing clinical trials to evaluate their efficacy against COVID-19. We experimentally tested and demonstrated the inhibitory effects of tyrphostin-AG-1478 and brefeldin-a, two chemical inhibitors of glycosylation (a post-translational modification) on the replication of the single-stranded ribonucleic acid (ssRNA) virus influenza A virus as well as on the transcription and translation of host cell cytokines and their regulators (IFNs and ISGs). In conclusion, we have identified and experimentally validated repurposable anti-SARS-CoV-2 and IAV drugs using a systems biology approach, which may have the potential for treating these viral infections and their complications (sepsis).
Collapse
Affiliation(s)
- Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Kai Guo
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
- Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Changlong Li
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58202, USA
| |
Collapse
|
10
|
Chakraborty C, Sharma AR, Bhattacharya M, Agoramoorthy G, Lee SS. The Drug Repurposing for COVID-19 Clinical Trials Provide Very Effective Therapeutic Combinations: Lessons Learned From Major Clinical Studies. Front Pharmacol 2021; 12:704205. [PMID: 34867318 PMCID: PMC8636940 DOI: 10.3389/fphar.2021.704205] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 has spread across the globe in no time. In the beginning, people suffered due to the absence of efficacious drugs required to treat severely ill patients. Nevertheless, still, there are no established therapeutic molecules against the SARS-CoV-2. Therefore, repurposing of the drugs started against SARS-CoV-2, due to which several drugs were approved for the treatment of COVID-19 patients. This paper reviewed the treatment regime for COVID-19 through drug repurposing from December 8, 2019 (the day when WHO recognized COVID-19 as a pandemic) until today. We have reviewed all the clinical trials from RECOVERY trials, ACTT-1 and ACTT-2 study group, and other major clinical trial platforms published in highly reputed journals such as NEJM, Lancet, etc. In addition to single-molecule therapy, several combination therapies were also evaluated to understand the treatment of COVID-19 from these significant clinical trials. To date, several lessons have been learned on the therapeutic outcomes for COVID-19. The paper also outlines the experiences gained during the repurposing of therapeutic molecules (hydroxychloroquine, ritonavir/ lopinavir, favipiravir, remdesivir, ivermectin, dexamethasone, camostatmesylate, and heparin), immunotherapeutic molecules (tocilizumab, mavrilimumab, baricitinib, and interferons), combination therapy, and convalescent plasma therapy to treat COVID-19 patients. We summarized that anti-viral therapeutic (remdesivir) and immunotherapeutic (tocilizumab, dexamethasone, and baricitinib) therapy showed some beneficial outcomes. Until March 2021, 4952 clinical trials have been registered in ClinicalTrials.gov toward the drug and vaccine development for COVID-19. More than 100 countries have participated in contributing to these clinical trials. Other than the registered clinical trials (medium to large-size), several small-size clinical trials have also been conducted from time to time to evaluate the treatment of COVID-19. Four molecules showed beneficial therapeutic to treat COVID-19 patients. The short-term repurposing of the existing drug may provide a successful outcome for COVID-19 patients. Therefore, more clinical trials can be initiated using potential anti-viral molecules by evaluating in different phases of clinical trials.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | | | | | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
11
|
Jain S, Talley DC, Baljinnyam B, Choe J, Hanson Q, Zhu W, Xu M, Chen CZ, Zheng W, Hu X, Shen M, Rai G, Hall MD, Simeonov A, Zakharov AV. Hybrid In Silico Approach Reveals Novel Inhibitors of Multiple SARS-CoV-2 Variants. ACS Pharmacol Transl Sci 2021; 4:1675-1688. [PMID: 34608449 PMCID: PMC8482323 DOI: 10.1021/acsptsci.1c00176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/30/2022]
Abstract
The National Center for Advancing Translational Sciences (NCATS) has been actively generating SARS-CoV-2 high-throughput screening data and disseminates it through the OpenData Portal (https://opendata.ncats.nih.gov/covid19/). Here, we provide a hybrid approach that utilizes NCATS screening data from the SARS-CoV-2 cytopathic effect reduction assay to build predictive models, using both machine learning and pharmacophore-based modeling. Optimized models were used to perform two iterative rounds of virtual screening to predict small molecules active against SARS-CoV-2. Experimental testing with live virus provided 100 (∼16% of predicted hits) active compounds (efficacy > 30%, IC50 ≤ 15 μM). Systematic clustering analysis of active compounds revealed three promising chemotypes which have not been previously identified as inhibitors of SARS-CoV-2 infection. Further investigation resulted in the identification of allosteric binders to host receptor angiotensin-converting enzyme 2; these compounds were then shown to inhibit the entry of pseudoparticles bearing spike protein of wild-type SARS-CoV-2, as well as South African B.1.351 and UK B.1.1.7 variants.
Collapse
Affiliation(s)
- Sankalp Jain
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Daniel C. Talley
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Jun Choe
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Quinlin Hanson
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zhu
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Miao Xu
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Catherine Z. Chen
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Wei Zheng
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Xin Hu
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Min Shen
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ganesha Rai
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Matthew D. Hall
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Anton Simeonov
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Alexey V. Zakharov
- National Center for Advancing
Translational Sciences (NCATS), National
Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| |
Collapse
|
12
|
Wang Z, Yang L, Zhao XE. Co-crystallization and structure determination: An effective direction for anti-SARS-CoV-2 drug discovery. Comput Struct Biotechnol J 2021; 19:4684-4701. [PMID: 34426762 PMCID: PMC8373586 DOI: 10.1016/j.csbj.2021.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/29/2021] [Accepted: 08/17/2021] [Indexed: 01/18/2023] Open
Abstract
Safer and more-effective drugs are urgently needed to counter infections with the highly pathogenic SARS-CoV-2, cause of the COVID-19 pandemic. Identification of efficient inhibitors to treat and prevent SARS-CoV-2 infection is a predominant focus. Encouragingly, using X-ray crystal structures of therapeutically relevant drug targets (PLpro, Mpro, RdRp, and S glycoprotein) offers a valuable direction for anti-SARS-CoV-2 drug discovery and lead optimization through direct visualization of interactions. Computational analyses based primarily on MMPBSA calculations have also been proposed for assessing the binding stability of biomolecular structures involving the ligand and receptor. In this study, we focused on state-of-the-art X-ray co-crystal structures of the abovementioned targets complexed with newly identified small-molecule inhibitors (natural products, FDA-approved drugs, candidate drugs, and their analogues) with the assistance of computational analyses to support the precision design and screening of anti-SARS-CoV-2 drugs.
Collapse
Key Words
- 3CLpro, 3C-Like protease
- ACE2, angiotensin-converting enzyme 2
- COVID-19, coronavirus disease 2019
- Candidate drugs
- Co-crystal structures
- DyKAT, dynamic kinetic asymmetric transformation
- EBOV, Ebola virus
- EC50, half maximal effective concentration
- EMD, Electron Microscopy Data
- FDA, U.S. Food and Drug Administration
- FDA-approved drugs
- HCoV-229E, human coronavirus 229E
- HPLC, high-performance liquid chromatography
- IC50, half maximal inhibitory concentration
- MD, molecular dynamics
- MERS-CoV, Middle East respiratory syndrome coronavirus
- MMPBSA, molecular mechanics Poisson-Boltzmann surface area
- MTase, methyltransferase
- Mpro, main protease
- Natural products
- Nsp, nonstructural protein
- PDB, Protein Data Bank
- PLpro, papain-like protease
- RTP, ribonucleoside triphosphate
- RdRp, RNA-dependent RNA polymerase
- SAM, S-adenosylmethionine
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SI, selectivity index
- Ugi-4CR, Ugi four-component reaction
- cryo-EM, cryo-electron microscopy
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, PR China
| | - Liyan Yang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, PR China
| | - Xian-En Zhao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|