1
|
Huang C, Luo MY, Wen NQ, Chen YM, Zhang LZ, Cao Y. The prognostic implications and oncogenic role of NSUN5 in clear cell renal cell carcinoma. Clin Exp Med 2024; 25:8. [PMID: 39549185 PMCID: PMC11568983 DOI: 10.1007/s10238-024-01507-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/16/2024] [Indexed: 11/18/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC), a predominant form of urinary malignancy, requires the identification of reliable biomarkers to enhance both prognostic outcomes and therapeutic developments specific to ccRCC. NSUN5, a member of the NOL1/NOP2/SUN domain (NSUN) family, plays a critical role in RNA stabilization and exhibits widespread expression across various tumor types. However, the exact function of NSUN5 in ccRCC remains insufficiently understood. Data were collated from cohorts of ccRCC patients who underwent nephrectomy, including those from the Cancer Genome Atlas (TCGA) and the Sun Yat-sen University Cancer Center (SYSUCC), to evaluate the clinical relevance of NSUN5. Integrative models based on NSUN5 expression were subsequently developed to predict the prognosis of ccRCC within the TCGA and SYSUCC cohorts. Furthermore, the impact of NSUN5 on RCC cells and its association with cellular senescence were corroborated through in vitro experimental analyses. NSUN5 exhibited elevated expression in both ccRCC patients and renal cancer cell lines, whose upregulation significantly correlated with age, tumor size, TNM stage, WHO/International Society of Urological Pathology (ISUP) grade, presence of necrosis, and a poor prognosis. An accessible nomogram, incorporating NSUN5 along with various clinicopathological parameters, was adept at predicting outcomes for ccRCC patients. Additionally, in vitro findings indicated that reduced expression of NSUN5 enhanced tumor cell senescence and simultaneously inhibiting cell proliferation and migration. These observations suggest that elevated NSUN5 expression is linked to poorer overall survival (OS) and progression-free survival (PFS), positioning NSUN5 as a viable diagnostic and prognostic biomarker in ccRCC.
Collapse
Affiliation(s)
- Chan Huang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Mu-Yang Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, People's Republic of China
| | - Neng-Qiao Wen
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Yu-Man Chen
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China
| | - Li-Zhen Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510062, People's Republic of China.
| | - Yun Cao
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Choueiri TK, Donahue AC, Braun DA, Rini BI, Powles T, Haanen JB, Larkin J, Mu XJ, Pu J, Teresi RE, di Pietro A, Robbins PB, Motzer RJ. Integrative Analyses of Tumor and Peripheral Biomarkers in the Treatment of Advanced Renal Cell Carcinoma. Cancer Discov 2024; 14:406-423. [PMID: 38385846 PMCID: PMC10905671 DOI: 10.1158/2159-8290.cd-23-0680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 12/21/2023] [Indexed: 02/23/2024]
Abstract
The phase III JAVELIN Renal 101 trial demonstrated prolonged progression-free survival (PFS) in patients (N = 886) with advanced renal cell carcinoma treated with first-line avelumab + axitinib (A+Ax) versus sunitinib. We report novel findings from integrated analyses of longitudinal blood samples and baseline tumor tissue. PFS was associated with elevated lymphocyte levels in the sunitinib arm and an abundance of innate immune subsets in the A+Ax arm. Treatment with A+Ax led to greater T-cell repertoire modulation and less change in T-cell numbers versus sunitinib. In the A+Ax arm, patients with tumors harboring mutations in ≥2 of 10 previously identified PFS-associated genes (double mutants) had distinct circulating and tumor-infiltrating immunologic profiles versus those with wild-type or single-mutant tumors, suggesting a role for non-T-cell-mediated and non-natural killer cell-mediated mechanisms in double-mutant tumors. We provide evidence for different immunomodulatory mechanisms based on treatment (A+Ax vs. sunitinib) and tumor molecular subtypes. SIGNIFICANCE Our findings provide novel insights into the different immunomodulatory mechanisms governing responses in patients treated with avelumab (PD-L1 inhibitor) + axitinib or sunitinib (both VEGF inhibitors), highlighting the contribution of tumor biology to the complexity of the roles and interactions of infiltrating immune cells in response to these treatment regimens. This article is featured in Selected Articles from This Issue, p. 384.
Collapse
Affiliation(s)
- Toni K. Choueiri
- The Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - David A. Braun
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Brian I. Rini
- Hematology Oncology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee
| | - Thomas Powles
- Department of Genitourinary Oncology, Barts Cancer Institute, Experimental Cancer Medicine Centre, Queen Mary University of London, St Bartholomew's Hospital, London, United Kingdom
| | - John B.A.G. Haanen
- Department of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - James Larkin
- Department of Medical Oncology, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | | | - Jie Pu
- Pfizer, La Jolla, California
| | | | | | | | - Robert J. Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Sofia D, Zhou Q, Shahriyari L. Mathematical and Machine Learning Models of Renal Cell Carcinoma: A Review. Bioengineering (Basel) 2023; 10:1320. [PMID: 38002445 PMCID: PMC10669004 DOI: 10.3390/bioengineering10111320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
This review explores the multifaceted landscape of renal cell carcinoma (RCC) by delving into both mechanistic and machine learning models. While machine learning models leverage patients' gene expression and clinical data through a variety of techniques to predict patients' outcomes, mechanistic models focus on investigating cells' and molecules' interactions within RCC tumors. These interactions are notably centered around immune cells, cytokines, tumor cells, and the development of lung metastases. The insights gained from both machine learning and mechanistic models encompass critical aspects such as signature gene identification, sensitive interactions in the tumors' microenvironments, metastasis development in other organs, and the assessment of survival probabilities. By reviewing the models of RCC, this study aims to shed light on opportunities for the integration of machine learning and mechanistic modeling approaches for treatment optimization and the identification of specific targets, all of which are essential for enhancing patient outcomes.
Collapse
Affiliation(s)
| | | | - Leili Shahriyari
- Department of Mathematics and Statistics, University of Massachusetts Amherst, Amherst, MA 01003, USA; (D.S.); (Q.Z.)
| |
Collapse
|
4
|
Dani KA, Rich JM, Kumar SS, Cen H, Duddalwar VA, D’Souza A. Comprehensive Systematic Review of Biomarkers in Metastatic Renal Cell Carcinoma: Predictors, Prognostics, and Therapeutic Monitoring. Cancers (Basel) 2023; 15:4934. [PMID: 37894301 PMCID: PMC10605584 DOI: 10.3390/cancers15204934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Challenges remain in determining the most effective treatment strategies and identifying patients who would benefit from adjuvant or neoadjuvant therapy in renal cell carcinoma. The objective of this review is to provide a comprehensive overview of biomarkers in metastatic renal cell carcinoma (mRCC) and their utility in prediction of treatment response, prognosis, and therapeutic monitoring in patients receiving systemic therapy for metastatic disease. METHODS A systematic literature search was conducted using the PubMed database for relevant studies published between January 2017 and December 2022. The search focused on biomarkers associated with mRCC and their relationship to immune checkpoint inhibitors, targeted therapy, and VEGF inhibitors in the adjuvant, neoadjuvant, and metastatic settings. RESULTS The review identified various biomarkers with predictive, prognostic, and therapeutic monitoring potential in mRCC. The review also discussed the challenges associated with anti-angiogenic and immune-checkpoint monotherapy trials and highlighted the need for personalized therapy based on molecular signatures. CONCLUSION This comprehensive review provides valuable insights into the landscape of biomarkers in mRCC and their potential applications in prediction of treatment response, prognosis, and therapeutic monitoring. The findings underscore the importance of incorporating biomarker assessment into clinical practice to guide treatment decisions and improve patient outcomes in mRCC.
Collapse
Affiliation(s)
- Komal A. Dani
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Joseph M. Rich
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Sean S. Kumar
- Eastern Virginia Medical School, Norfolk, VA 23507, USA;
- Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Harmony Cen
- University of Southern California, Los Angeles, CA 90033, USA;
| | - Vinay A. Duddalwar
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Institute of Urology, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Anishka D’Souza
- Department of Medical Oncology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Schuster C, Akslen LA, Straume O. β2-adrenergic receptor expression in patients receiving bevacizumab therapy for metastatic melanoma. Cancer Med 2023; 12:17891-17900. [PMID: 37551424 PMCID: PMC10524038 DOI: 10.1002/cam4.6424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/01/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) was initially known as vascular permeability factor and identified as a driver of tumour angiogenesis. Recently, its role in supporting an immunosuppressive tumour microenvironment was demonstrated, and anti-VEGF treatment combined with immune checkpoint blockade is currently investigated. Further, beta-adrenergic signalling as a modifier of cancer hallmarks like immune response, angiogenesis and metastasis gained increased attention during past years. METHODS Focusing on the aspect of immunosuppression in upregulated beta-adrenergic signalling, we investigated predictive markers in patients with metastatic melanoma who received bevacizumab monotherapy, a specific VEGF-A binding antibody. We explored the expression of beta-2 adrenergic receptor (β2-AR), interleukin 6-receptor (IL6-R), cyclooxygenase 2 (COX2) and VEGF-A by immunohistochemistry in melanoma to assess the correlation between these proteins in melanoma cells and response to treatment. RESULTS Strong β2-AR expression in metastases was associated with clinical benefit of bevacizumab. Furthermore, expression of the latter was positively linked to expression of VEGF-A and COX2. β2-AR expression in melanoma metastasis appears to distinguish a subgroup of patients that might benefit from anti-VEGF treatment. CONCLUSION Our results strengthen further exploration of anti-VEGF therapy in combination with immune checkpoint blockade in clinical studies and the investigation of β2-AR as predictive marker.
Collapse
Affiliation(s)
- Cornelia Schuster
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| | - Lars A. Akslen
- Department of Clinical Medicine, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of PathologyHaukeland University HospitalBergenNorway
| | - Oddbjørn Straume
- Department of Clinical Science, Centre for Cancer Biomarkers CCBIOUniversity of BergenBergenNorway
- Department of Oncology and Medical PhysicsHaukeland University HospitalBergenNorway
| |
Collapse
|
6
|
High Serum Levels of IL-6 Predict Poor Responses in Patients Treated with Pembrolizumab plus Axitinib for Advanced Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14235985. [PMID: 36497467 PMCID: PMC9738341 DOI: 10.3390/cancers14235985] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney malignancy worldwide with Pembrolizumab and axitinib treatment (Pembro/Axi) amongst the most effective first-line immunotherapies for advanced RCC. However, it remains difficult to predict treatment response and early resistance. Therefore, we evaluated whether baseline serum interleukin-6 (IL-6) could be a predictive biomarker. Between November 2019 and December 2021, 58 patients with advanced RCC were enrolled, administered first-line Pembro/Axi, and baseline blood samples were analyzed using flow cytometry. The mean baseline serum IL-6 concentration was 8.6 pg/mL in responders and 84.1 pg/mL in patients with progressive disease. The IL-6 cut-off value was set at 6.5 pg/mL using time-dependent receiver operating characteristic curves, with 37.9% of patients having high baseline serum IL-6 levels and 62.1% having low levels. Objective response rates were 58.3% and 36.4% in low and high IL-6 groups, respectively. Overall survival and progression-free survival were longer in patients with low IL-6 levels than in those with high levels. High IL-6 levels were related to reduced interferon-γ and tumor necrosis factor-α production from CD8+ T cells. Overall, high baseline serum IL-6 levels were associated with worse survival outcomes and reduced T-cell responses in Pembro/Axi-treated advanced RCC patients.
Collapse
|
7
|
Sekino Y, Teishima J, Liang G, Hinata N. Molecular mechanisms of resistance to tyrosine kinase inhibitor in clear cell renal cell carcinoma. Int J Urol 2022; 29:1419-1428. [PMID: 36122306 PMCID: PMC10087189 DOI: 10.1111/iju.15042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Loss of von Hippel-Lindau tumor suppressor gene is frequently observed in ccRCC and increases the expression of hypoxia-inducible factors and their targets, including epidermal growth factor, vascular endothelial growth factor, and platelet-derived growth factor. Tyrosine kinase inhibitors (TKIs) offer a survival benefit in metastatic renal cell carcinoma (mRCC). Recently, immune checkpoint inhibitors have been introduced in mRCC. Combination therapy with TKIs and immune checkpoint inhibitors significantly improved patient outcomes. Therefore, TKIs still play an essential role in mRCC treatment. However, the clinical utility of TKIs is compromised when primary and acquired resistance are encountered. The mechanism of resistance to TKI is not fully elucidated. Here, we comprehensively reviewed the molecular mechanisms of resistance to TKIs and a potential strategy to overcome this resistance. We outlined the involvement of angiogenesis, non-angiogenesis, epithelial-mesenchymal transition, activating bypass pathways, lysosomal sequestration, non-coding RNAs, epigenetic modifications and tumor microenvironment factors in the resistance to TKIs. Deep insight into the molecular mechanisms of resistance to TKIs will help to better understand the biology of RCC and can ultimately help in the development of more effective therapies.
Collapse
Affiliation(s)
- Yohei Sekino
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.,Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Jun Teishima
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Nobuyuki Hinata
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Kamli H, Owens EP, Vesey DA, Prasanna R, Li L, Gobe GC, Morais C. Overcoming sunitinib resistance with tocilizumab in renal cell carcinoma: Discordance between in vitro and in vivo effects. Biochem Biophys Res Commun 2022; 586:42-48. [PMID: 34826699 DOI: 10.1016/j.bbrc.2021.11.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022]
Abstract
Sunitinib is one of the first-line multi-tyrosine kinase inhibitors for metastatic renal cell carcinoma, and resistance to sunitinib continues to be a limiting factor for the successful treatment. As interleukin-6 (IL-6) is overexpressed in sunitinib-resistant cells, the purpose of this study was to explore the potential of IL-6 inhibition with tocilizumab, an IL-6 receptor inhibitor, to overcome resistance. In vitro, two sunitinib-resistant renal cell carcinoma cell lines (Caki-1 and SN12K1) were treated with tocilizumab. A mouse subcutaneous xenograft model was also used. Cell viability was studied by MTT assay, and apoptosis by morphology and ApopTag. Expression of IL-6, vascular endothelial growth factor (VEGF), and Bcl-2 was analyzed by qPCR. In vitro, tocilizumab induced significant cell death, and reduced the expression of IL-6, VEGF, and Bcl-2 in sunitinib-resistant cells. However, the in vitro findings could not be successfully translated in vivo, as tocilizumab did not decrease the growth of the tumors.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Humanized/pharmacology
- Antineoplastic Agents/pharmacology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Survival/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Humans
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Male
- Mice, Nude
- Neoplasm Metastasis
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Signal Transduction
- Sunitinib/pharmacology
- Tumor Burden/drug effects
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Xenograft Model Antitumor Assays
- Mice
Collapse
Affiliation(s)
- Hossam Kamli
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Evan P Owens
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - David A Vesey
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia; Department of Nephrology, Princess Alexandra Hospital, Brisbane, Australia
| | - Rajagopalan Prasanna
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Li Li
- Institute for Translational Research, Ochsner Clinical School, University Queensland School of Medicine, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Glenda C Gobe
- Centre for Kidney Disease Research, The University of Queensland, Translational Research Institute, Brisbane, Australia.
| | - Christudas Morais
- Department of Urology, Princess Alexandra Hospital, Brisbane, Australia; School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
9
|
The Role of Circulating Biomarkers in the Oncological Management of Metastatic Renal Cell Carcinoma: Where Do We Stand Now? Biomedicines 2021; 10:biomedicines10010090. [PMID: 35052770 PMCID: PMC8773056 DOI: 10.3390/biomedicines10010090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 01/08/2023] Open
Abstract
Renal cell carcinoma (RCC) is an increasingly common malignancy that can progress to metastatic renal cell carcinoma (mRCC) in approximately one-third of RCC patients. The 5-year survival rate for mRCC is abysmally low, and, at the present time, there are sparingly few if any effective treatments. Current surgical and pharmacological treatments can have a long-lasting impact on renal function, as well. Thus, there is a compelling unmet need to discover novel biomarkers and surveillance methods to improve patient outcomes with more targeted therapies earlier in the course of the disease. Circulating biomarkers, such as circulating tumor DNA, noncoding RNA, proteins, extracellular vesicles, or cancer cells themselves potentially represent a minimally invasive tool to fill this gap and accelerate both diagnosis and treatment. Here, we discuss the clinical relevance of different circulating biomarkers in metastatic renal cell carcinoma by clarifying their potential role as novel biomarkers of response or resistance to treatments but also by guiding clinicians in novel therapeutic approaches.
Collapse
|
10
|
Bassanelli M, Borro M, Roberto M, Giannarelli D, Giacinti S, Di Martino S, Ceribelli A, Russo A, Aschelter A, Scarpino S, Montori A, Pescarmona E, Tomao S, Simmaco M, Cognetti F, Milella M, Marchetti P. A 17-Gene Expression Signature for Early Identification of Poor Prognosis in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2021; 14:178. [PMID: 35008342 PMCID: PMC8750239 DOI: 10.3390/cancers14010178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022] Open
Abstract
The Identification of reliable Biomarkers able to predict the outcome after nephrectomy of patients with clear cell renal cell carcinoma (ccRCC) is an unmet need. The gene expression analysis in tumor tissues represents a promising tool for better stratification of ccRCC subtypes and patients' evaluation. METHODS In our study we retrospectively analyzed using Next-Generation expression analysis (NanoString), the expression of a gene panel in tumor tissue from 46 consecutive patients treated with nephrectomy for non-metastatic ccRCC at two Italian Oncological Centres. Significant differences in expression levels of selected genes was sought. Additionally, we performed a univariate and a multivariate analysis on overall survival according to Cox regression model. RESULTS A 17-gene expression signature of patients with a recurrence-free survival (RFS) < 1 year (unfavorable genomic signature (UGS)) and of patients with a RFS > 5 years (favorable genomic signature (FGS)) was identified and resulted in being significantly correlated with overall survival of the patients included in this analysis (HR 51.37, p < 0.0001). CONCLUSIONS The identified Genomic Signatures may serve as potential biomarkers for prognosis prediction of non-metastatic RCC and could drive both follow-up and treatment personalization in RCC management.
Collapse
Affiliation(s)
- Maria Bassanelli
- Department of Medical and Surgical Sciences and Translational Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00100 Rome, Italy;
| | - Marina Borro
- (DIMA) Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, 00187 Rome, Italy;
| | - Michela Roberto
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Medical Oncology Unit, Umberto I University Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Diana Giannarelli
- Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy;
| | - Silvana Giacinti
- Department of Oncology, Sant’Andrea Hospital, 00187 Rome, Italy; (S.G.); (A.A.)
| | - Simona Di Martino
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy; (S.D.M.); (A.R.); (E.P.)
| | - Anna Ceribelli
- Department of Oncology, San Camillo de Lellis Hospital, Viale Kennedy, 12100 Rieti, Italy;
| | - Andrea Russo
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy; (S.D.M.); (A.R.); (E.P.)
| | - Annamaria Aschelter
- Department of Oncology, Sant’Andrea Hospital, 00187 Rome, Italy; (S.G.); (A.A.)
| | - Stefania Scarpino
- Department of Clinical and Molecular Medicine, Pathology Unit, St. Andrea University Hospital, University of Rome La Sapienza, 00187 Rome, Italy; (S.S.); (A.M.)
| | - Andrea Montori
- Department of Clinical and Molecular Medicine, Pathology Unit, St. Andrea University Hospital, University of Rome La Sapienza, 00187 Rome, Italy; (S.S.); (A.M.)
| | - Edoardo Pescarmona
- Department of Pathology, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy; (S.D.M.); (A.R.); (E.P.)
| | - Silverio Tomao
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Medical Oncology Unit, Umberto I University Hospital, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maurizio Simmaco
- Department of Neurosciences, Mental Health and Sensory Organs (NESMOS), Advanced Molecular Diagnostic Unit (Dima), Sapienza University, Sant’Andrea Hospital, 00187 Rome, Italy;
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy;
| | - Michele Milella
- Division of Oncology, Integrated University Hospital of Verona, Via S. Francesco 22, 37129 Verona, Italy;
| | - Paolo Marchetti
- Department of Clinical and Molecular Medicine, Oncology Unit, Sant’ Andrea Hospital, Sapienza University of Rome, 00187 Rome, Italy;
| |
Collapse
|
11
|
George DJ, Lee CH, Heng D. New approaches to first-line treatment of advanced renal cell carcinoma. Ther Adv Med Oncol 2021; 13:17588359211034708. [PMID: 34527080 PMCID: PMC8435931 DOI: 10.1177/17588359211034708] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of patients with renal cell carcinoma (RCC) is evolving rapidly, with promising new regimens being developed and approved for patients with advanced disease, particularly the combination of tyrosine kinase inhibitors with immune checkpoint inhibitors. Within the last 6 months, favorable first-line setting results for patients with clear cell RCC have been reported for the combination of cabozantinib plus nivolumab in the phase III CheckMate 9ER study, leading to its regulatory approval, and lenvatinib plus pembrolizumab in the phase III CLEAR study. Additional systemic first-line treatments for clear cell RCC include axitinib plus pembrolizumab, pazopanib, and sunitinib for favorable-risk patients and ipilimumab plus nivolumab, axitinib plus pembrolizumab, axitinib plus avelumab, and cabozantinib for intermediate- or poor-risk patients. In this review of novel approaches for first-line treatment of advanced RCC, we present an overview of current treatment strategies, the basis behind emerging treatment approaches, a summary of key results from the pivotal studies using tyrosine kinase inhibitor and immune checkpoint inhibitor combination therapy, novel treatments and strategies under development, and efforts for identifying biomarkers to guide treatment decisions.
Collapse
Affiliation(s)
- Daniel J. George
- Duke Cancer Institute, Duke University Medical Center, Duke Box 103861, Durham, NC 27710, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY, USA
| | | |
Collapse
|
12
|
Kartikasari AER, Huertas CS, Mitchell A, Plebanski M. Tumor-Induced Inflammatory Cytokines and the Emerging Diagnostic Devices for Cancer Detection and Prognosis. Front Oncol 2021; 11:692142. [PMID: 34307156 PMCID: PMC8294036 DOI: 10.3389/fonc.2021.692142] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation generated by the tumor microenvironment is known to drive cancer initiation, proliferation, progression, metastasis, and therapeutic resistance. The tumor microenvironment promotes the secretion of diverse cytokines, in different types and stages of cancers. These cytokines may inhibit tumor development but alternatively may contribute to chronic inflammation that supports tumor growth in both autocrine and paracrine manners and have been linked to poor cancer outcomes. Such distinct sets of cytokines from the tumor microenvironment can be detected in the circulation and are thus potentially useful as biomarkers to detect cancers, predict disease outcomes and manage therapeutic choices. Indeed, analyses of circulating cytokines in combination with cancer-specific biomarkers have been proposed to simplify and improve cancer detection and prognosis, especially from minimally-invasive liquid biopsies, such as blood. Additionally, the cytokine signaling signatures of the peripheral immune cells, even from patients with localized tumors, are recently found altered in cancer, and may also prove applicable as cancer biomarkers. Here we review cytokines induced by the tumor microenvironment, their roles in various stages of cancer development, and their potential use in diagnostics and prognostics. We further discuss the established and emerging diagnostic approaches that can be used to detect cancers from liquid biopsies, and additionally the technological advancement required for their use in clinical settings.
Collapse
Affiliation(s)
- Apriliana E. R. Kartikasari
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Cesar S. Huertas
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Arnan Mitchell
- Integrated Photonics and Applications Centre (InPAC), School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Translational Immunology and Nanotechnology Research Program, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Biomarkers for Malignant Pleural Mesothelioma-A Novel View on Inflammation. Cancers (Basel) 2021; 13:cancers13040658. [PMID: 33562138 PMCID: PMC7916017 DOI: 10.3390/cancers13040658] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive disease with limited treatment response and devastating prognosis. Exposure to asbestos and chronic inflammation are acknowledged as main risk factors. Since immune therapy evolved as a promising novel treatment modality, we want to reevaluate and summarize the role of the inflammatory system in MPM. This review focuses on local tumor associated inflammation on the one hand and systemic inflammatory markers, and their impact on MPM outcome, on the other hand. Identification of new biomarkers helps to select optimal patient tailored therapy, avoid ineffective treatment with its related side effects and consequently improves patient's outcome in this rare disease. Additionally, a better understanding of the tumor promoting and tumor suppressing inflammatory processes, influencing MPM pathogenesis and progression, might also reveal possible new targets for MPM treatment. After reviewing the currently available literature and according to our own research, it is concluded that the suppression of the specific immune system and the activation of its innate counterpart are crucial drivers of MPM aggressiveness translating to poor patient outcome.
Collapse
|
14
|
Aarstad HH, Guðbrandsdottir G, Hjelle KM, Bostad L, Bruserud Ø, Tvedt THA, Beisland C. The Biological Context of C-Reactive Protein as a Prognostic Marker in Renal Cell Carcinoma: Studies on the Acute Phase Cytokine Profile. Cancers (Basel) 2020; 12:cancers12071961. [PMID: 32707675 PMCID: PMC7409073 DOI: 10.3390/cancers12071961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
High serum levels of the acute phase protein C-reactive protein (CRP) are associated with an adverse prognosis in renal cancer. The acute phase reaction is cytokine-driven and includes a wide range of inflammatory mediators. This overall profile of the response depends on the inducing event and can also differ between patients. We investigated an extended acute phase cytokine profile for 97 renal cancer patients. Initial studies showed that the serum CRP levels had an expected prognostic association together with tumor size, stage, nuclear grading, and Leibovich score. Interleukin (IL)6 family cytokines, IL1 subfamily mediators, and tumor necrosis factor (TNF)α can all be drivers of the acute phase response. Initial studies suggested that serum IL33Rα (the soluble IL33 receptor α chain) levels were also associated with prognosis, although the impact of IL33Rα is dependent on the overall cytokine profile, including seven IL6 family members (IL6, IL6Rα, gp130, IL27, IL31, CNTF, and OSM), two IL1 subfamily members (IL1RA and IL33Rα), and TNFα. We identified a patient subset characterized by particularly high levels of IL6, IL33Rα, and TNFα alongside an adverse prognosis. Thus, the acute phase cytokine reaction differs between renal cancer patients, and differences in the acute phase cytokine profile are associated with prognosis.
Collapse
Affiliation(s)
- Helene Hersvik Aarstad
- Department of Clinical Science, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway;
| | - Gigja Guðbrandsdottir
- Department of Urology, Haukeland University Hospital, N-5021 Bergen, Norway; (G.G.); (K.M.H.); (C.B.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Karin M. Hjelle
- Department of Urology, Haukeland University Hospital, N-5021 Bergen, Norway; (G.G.); (K.M.H.); (C.B.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| | - Leif Bostad
- Department of Pathology, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Øystein Bruserud
- Department of Clinical Science, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway;
- Department of Medicine, Section for Hematology, Haukeland University Hospital, N-5021 Bergen, Norway;
- Correspondence: ; Tel.: +47-5597-2997
| | - Tor Henrik Anderson Tvedt
- Department of Medicine, Section for Hematology, Haukeland University Hospital, N-5021 Bergen, Norway;
| | - Christian Beisland
- Department of Urology, Haukeland University Hospital, N-5021 Bergen, Norway; (G.G.); (K.M.H.); (C.B.)
- Department of Clinical Medicine, Faculty of Medicine, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|