1
|
Amini MR, Rasaei N, Jalalzadeh M, Pourreza S, Hekmatdoost A. The Effects of Bitter Melon (Mormordica charantia) on Lipid Profile: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phytother Res 2024. [PMID: 39444254 DOI: 10.1002/ptr.8357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
Research indicates that bitter melon could be useful in the management of dyslipidemia. Still, there is disagreement concerning the findings. This systematic study was undertaken to clarify the impact of consuming bitter melon on lipid profile. The databases Web of Science, Cochrane Library, PubMed, and Scopus were queried from inception until February 9, 2023. The study assessed triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) levels. The effect sizes were calculated using weighted mean differences (WMDs) and 95% confidence intervals (CIs). Eight randomized controlled trials (RCTs) with a total of 423 participants were included. Bitter melon consumption resulted in a significant decrease in plasma concentrations of TC (WMD; -9.71 mg/dL; CI: -17.69 to -1.74, p = 0.01) and TG (WMD; -10.24 mg/dL; CI: -19.92 to -0.56, p = 0.03), while bitter melon did not significantly lower blood LDL-C (WMD; -8.66 mg/dL; CI: -19.83 to 2.50, p = 0.12) and HDL-C concentrations (WMD; 0.54 mg/dL; CI: -2.38 to 3.45, p = 0.71). Subgroup analysis showed a significant decrease in TC and LDL-C and an increase in HDL-C at a dose of ≤ 2000 mg/day and an intervention period of ≤ 8 weeks. Also, the greatest impact of LDL-C and HDL-C was seen in diabetic and prediabetic people. Bitter melon supplementation positively impacts TC and TG levels. The limitations of this study were short-term trials (less than 3 months).
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Rasaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Moharam Jalalzadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Zou Y, Zou W, Jahangir M, Haedi A. The effects of bitter melon (Momordica charantia) on anthropometric indices in adults: A systematic review and meta-analysis of randomized controlled trials. Prostaglandins Other Lipid Mediat 2024; 174:106877. [PMID: 39079610 DOI: 10.1016/j.prostaglandins.2024.106877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
There is controversial data on the impacts of bitter melon (Momordica charantia) supplementations on anthropometric indices. Thus, we aimed to clarify this role of bitter melon through a systematic review, and meta-analysis of the trials. All clinical trials conducted on the impact of bitter melon on anthropometric indices were published until August 2023 in PubMed, Web of Sciences, Scopus, Embase, and Cochrane Library web databases included. Overall, 10 studies with 448 individuals were included in the meta-analysis. Meta-analysis of 10 trials with 448 participants revealed no significant reductions in body weight (BW) (WMD: 0.04 Kg; 95 %CI: -0.16-0.25; P =0.651), body mass index (BMI) (WMD: -0.18 kg/m2; 95 %CI: -0.43-0.07; P =0.171), waist circumference (WC) (WMD: -0.95 cm; 95 % CI: -3.05-1.16; p =0.372), and percentage of body fat (PBF) (WMD: -0.99; 95 % CI: -2.33-0.35; p =0.141) following bitter melon supplementation. There was no significant impact of bitter melon supplementation on BW, BMI, WC, and PBF. More large-scale and high-quality RCTs are necessary to confirm these results.
Collapse
Affiliation(s)
- Yi Zou
- Department of Endocrinology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province 330000, China.
| | - Wenjun Zou
- Department of General Surgery, The Third Hospital of Nanchang, Nanchang, Jiangxi Province 330000, China
| | - Melika Jahangir
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirreza Haedi
- Faculty of Nutrition and Food Science, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Gauttam VK, Munjal K, Chopra H, Ahmad A, Rana MK, Kamal MA. A Mechanistic Review on Therapeutic Potential of Medicinal Plants and their Pharmacologically Active Molecules for Targeting Metabolic Syndrome. Curr Pharm Des 2024; 30:10-30. [PMID: 38155468 DOI: 10.2174/0113816128274446231220113957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Metabolic syndrome (MetS) therapy with phytochemicals is an emerging field of study with therapeutic potential. Obesity, insulin resistance, high blood pressure, and abnormal lipid profiles are all components of metabolic syndrome, which is a major public health concern across the world. New research highlights the promise of phytochemicals found in foods, including fruits, vegetables, herbs, and spices, as a sustainable and innovative method of treating this illness. Anti-inflammatory, antioxidant, and insulin-sensitizing qualities are just a few of the many positive impacts shown by bioactive substances. Collectively, they alleviate the hallmark symptoms of metabolic syndrome by modulating critical metabolic pathways, boosting insulin sensitivity, decreasing oxidative stress, and calming chronic low-grade inflammation. In addition, phytochemicals provide a multimodal strategy by targeting not only adipose tissue but also the liver, skeletal muscle, and vascular endothelium, all of which have a role in the pathogenesis of MetS. Increasing evidence suggests that these natural chemicals may be useful in controlling metabolic syndrome as a complementary treatment to standard medication or lifestyle changes. This review article emphasizes the therapeutic potential of phytochemicals, illuminating their varied modes of action and their ability to alleviate the interconnected causes of metabolic syndrome. Phytochemical-based interventions show promise as a novel and sustainable approach to combating the rising global burden of metabolic syndrome, with the ultimate goal of bettering public health and quality of life.
Collapse
Affiliation(s)
- Vinod Kumar Gauttam
- Department of Pharmacognosy, Shiva Institute of Pharmacy, Bilaspur, Hmachal Pradesh, India
| | - Kavita Munjal
- Department of Pharmacognosy, Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Aftab Ahmad
- Department of Pharmacology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mahesh Kumar Rana
- Department of Agriculture, M.M. (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia
- Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| |
Collapse
|
4
|
Panchal K, Nihalani B, Oza U, Panchal A, Shah B. Exploring the mechanism of action bitter melon in the treatment of breast cancer by network pharmacology. World J Exp Med 2023; 13:142-155. [PMID: 38173546 PMCID: PMC10758660 DOI: 10.5493/wjem.v13.i5.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/04/2023] [Accepted: 10/30/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Bitter melon has been used to stop the growth of breast cancer (BRCA) cells. However, the underlying mechanism is still unclear. AIM To predict the therapeutic effect of bitter melon against BRCA using network pharmacology and to explore the underlying pharmacological mechanisms. METHODS The active ingredients of bitter melon and the related protein targets were taken from the Indian Medicinal Plants, Phytochemistry and Therapeutics and SuperPred databases, respectively. The GeneCards database has been searched for BRCA-related targets. Through an intersection of the drug's targets and the disease's objectives, prospective bitter melon anti-BRCA targets were discovered. Gene ontology and kyoto encyclopedia of genes and genomes enrichment analyses were carried out to comprehend the biological roles of the target proteins. The binding relationship between bitter melon's active ingredients and the suggested target proteins was verified using molecular docking techniques. RESULTS Three key substances, momordicoside K, kaempferol, and quercetin, were identified as being important in mediating the putative anti-BRCA effects of bitter melon through the active ingredient-anti-BRCA target network study. Heat shock protein 90 AA, proto-oncogene tyrosine-protein kinase, and signal transducer and activator of transcription 3 were found to be the top three proteins in the protein-protein interaction network study. The several pathways implicated in the anti-BRCA strategy for an active component include phosphatidylinositol 3-kinase/protein kinase B signaling, transcriptional dysregulation, axon guidance, calcium signaling, focal adhesion, janus kinase-signal transducer and activator of transcription signaling, cyclic adenosine monophosphate signaling, mammalian target of rapamycin signaling, and phospholipase D signaling. CONCLUSION Overall, the integration of network pharmacology, molecular docking, and functional enrichment analyses shed light on potential mechanisms underlying bitter melon's ability to fight BRCA, implicating active ingredients and protein targets, as well as highlighting the major signaling pathways that may be altered by this natural product for therapeutic benefit.
Collapse
Affiliation(s)
- Kavan Panchal
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| | - Bhavya Nihalani
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| | - Utsavi Oza
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| | - Aarti Panchal
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| | - Bhumi Shah
- Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Gujarat, Ahmedabad 382210, India
| |
Collapse
|
5
|
Li W, Yu L, Li W, Ge G, Ma Y, Xiao L, Qiao Y, Huang W, Huang W, Wei M, Wang Z, Bai J, Geng D. Prevention and treatment of inflammatory arthritis with traditional Chinese medicine: Underlying mechanisms based on cell and molecular targets. Ageing Res Rev 2023; 89:101981. [PMID: 37302756 DOI: 10.1016/j.arr.2023.101981] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Inflammatory arthritis, primarily including rheumatoid arthritis, osteoarthritis and ankylosing spondylitis, is a group of chronic inflammatory diseases, whose general feature is joint dysfunction with chronic pain and eventually causes disability in older people. To date, both Western medicine and traditional Chinese medicine (TCM) have developed a variety of therapeutic methods for inflammatory arthritis and achieved excellent results. But there is still a long way to totally cure these diseases. TCM has been used to treat various joint diseases for thousands of years in Asia. In this review, we summarize clinical efficacies of TCM in inflammatory arthritis treatment after reviewing the results demonstrated in meta-analyses, systematic reviews, and clinical trials. We pioneered taking inflammatory arthritis-related cell targets of TCM as the entry point and further elaborated the molecular targets inside the cells of TCM, especially the signaling pathways. In addition, we also briefly discussed the relationship between gut microbiota and TCM and described the role of drug delivery systems for using TCM more accurately and safely. We provide updated and comprehensive insights into the clinical application of TCM for inflammatory arthritis treatment. We hope this review can guide and inspire researchers to further explore mechanisms of the anti-arthritis activity of TCM and make a great leap forward in comprehending the science of TCM.
Collapse
Affiliation(s)
- Wenhao Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Lei Yu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wenming Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Gaoran Ge
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yong Ma
- Department of Integrated Chinese and Western Medicine, School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Long Xiao
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China
| | - Yusen Qiao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China
| | - Wenli Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230031, Anhui, China
| | - Minggang Wei
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang 215600, Jiangsu, China.
| | - Jiaxiang Bai
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230031, Anhui, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China; Orthopedic Institute, Medical College, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
6
|
Ravichandiran K, Parani M. Transcriptome analysis of five different tissues of bitter gourd (Momordica charantia L.) fruit identifies full-length genes involved in seed oil biosynthesis. Sci Rep 2022; 12:15374. [PMID: 36100691 PMCID: PMC9470707 DOI: 10.1038/s41598-022-19686-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/01/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractThe bitter gourd seed oil, rich in conjugated fatty acids, has therapeutic value to treat cancer, obesity, and aging. It also has an industrial application as a drying agent. Despite its significance, genomics studies are limited, and the genes for seed oil biosynthesis are not fully understood. In this study, we assembled the fruit transcriptome of bitter gourd using 254.5 million reads (Phred score > 30) from the green rind, white rind, pulp, immature seeds, and mature seeds. It consisted of 125,566 transcripts with N50 value 2,751 bp, mean length 960 bp, and 84% completeness. Transcript assembly was validated by RT-PCR and qRT-PCR analysis of a few selected transcripts. The transcripts were annotated against the NCBI non-redundant database using the BLASTX tool (E-value < 1E−05). In gene ontology terms, 99,443, 86,681, and 82,954 transcripts were classified under biological process, molecular function, and cellular component. From the fruit transcriptome, we identified 26, 3, and 10 full-length genes coding for all the enzymes required for synthesizing fatty acids, conjugated fatty acids, and triacylglycerol. The transcriptome, transcripts with tissue-specific expression patterns, and the full-length identified from this study will serve as an important genomics resource for this important medicinal plant.
Collapse
|
7
|
Cortez-Navarrete M, Méndez-Del Villar M, Martínez-Abundis E, López-Murillo LD, Escobedo-Gutiérrez MDJ, Rosales-Rivera LY, Pérez-Rubio KG. Effect of Momordica charantia Administration on Anthropometric Measures and Metabolic Profile in Patients with Obesity: A Pilot Clinical Trial. J Med Food 2022; 25:645-651. [PMID: 35507955 DOI: 10.1089/jmf.2021.0164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to evaluate the effect of Momordica charantia (MC) administration on anthropometric measures in patients with obesity. A randomized, double-blind, placebo-controlled pilot clinical trial was carried out in 24 patients with obesity. Twelve patients randomly received MC (2000 mg/day) for 12 weeks, and 12 patients received placebo. Body weight (BW), body mass index (BMI), waist circumference (WC), body fat percentage, as well as clinical and laboratory determinations, were evaluated before and after the intervention. Results showed that while reductions in BW, BMI, WC, and body fat percentage were observed in the MC group, these differences did not reach statistical significance. Significant decreases in triglycerides (TG) (1.9 ± 0.6 mM vs. 1.7 ± 0.7 mM, P ≤ .05) and very low-density lipoprotein (VLDL) (0.4 ± 0.1 mM vs. 0.3 ± 0.1 mM, P ≤ .05) levels were found after the intervention with MC. In contrast, significant increases in BW (83.0 ± 10.7 kg vs. 84.6 ± 9.1 kg, P ≤ .05) and BMI (31.9 ± 1.5 kg/m2 vs. 33.0 ± 1.3 kg/m2, P ≤ .05) were observed in the placebo group. In conclusion, no significant reductions in BW, BMI, WC, and body fat percentage were observed after MC administration; however, MC significantly decreased TG and VLDL levels. The protocol was registered at ClinicalTrials.gov with the identifier NCT04916379.
Collapse
Affiliation(s)
- Marisol Cortez-Navarrete
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Miriam Méndez-Del Villar
- Multidisciplinary Health Research Center, Biomedical Sciences Department, University Center of Tonala, University of Guadalajara, Tonala, Jalisco, Mexico
| | - Esperanza Martínez-Abundis
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Luis D López-Murillo
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Miriam de J Escobedo-Gutiérrez
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Lizet Y Rosales-Rivera
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| | - Karina G Pérez-Rubio
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, Health Science University Center, University of Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
8
|
Mathieu S, Soubrier M, Peirs C, Monfoulet LE, Boirie Y, Tournadre A. A Meta-Analysis of the Impact of Nutritional Supplementation on Osteoarthritis Symptoms. Nutrients 2022; 14:1607. [PMID: 35458170 PMCID: PMC9025331 DOI: 10.3390/nu14081607] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Conflicting evidence exists concerning the effects of nutrient intake in osteoarthritis (OA). A systematic literature review and meta-analysis were performed using PubMed, EMBASE, and Cochrane Library up to November 2021 to assess the effects of nutrients on pain, stiffness, function, quality of life, and inflammation markers. We obtained 52 references including 50 on knee OA. Twelve studies compared 724 curcumin patients and 714 controls. Using the standardized mean difference, improvement was significant with regard to pain and function in the curcumin group compared to placebo, but not with active treatment (i.e., nonsteroidal anti-inflammatory drugs, chondroitin, or paracetamol). Three studies assessed the effects of ginger on OA symptoms in 166 patients compared to 164 placebo controls. Pain was the only clinical parameter that significantly decreased. Vitamin D supplementation caused a significant decrease in pain and function. Omega-3 and vitamin E caused no changes in OA parameters. Herbal formulations effects were significant only for stiffness compared to placebo, but not with active treatment. A significant decrease in inflammatory markers was found, especially with ginger. Thus, curcumin and ginger supplementation can have a favorable impact on knee OA symptoms. Other studies are needed to better assess the effects of omega-3 and vitamin D.
Collapse
Affiliation(s)
- Sylvain Mathieu
- Service de Rhumatologie, Centre Hospitalier Universitaire Gabriel Montpied, F-63000 Clermont-Ferrand, France; (M.S.); (A.T.)
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Martin Soubrier
- Service de Rhumatologie, Centre Hospitalier Universitaire Gabriel Montpied, F-63000 Clermont-Ferrand, France; (M.S.); (A.T.)
| | - Cedric Peirs
- Neuro-Dol, Inserm, CHU Clermont-Ferrand, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - Laurent-Emmanuel Monfoulet
- CRNH Auvergne, Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.-E.M.); (Y.B.)
| | - Yves Boirie
- CRNH Auvergne, Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.-E.M.); (Y.B.)
- Service de Nutrition Clinique, CHU Gabriel Montpied, F-63000 Clermont-Ferrand, France
| | - Anne Tournadre
- Service de Rhumatologie, Centre Hospitalier Universitaire Gabriel Montpied, F-63000 Clermont-Ferrand, France; (M.S.); (A.T.)
- CRNH Auvergne, Unité de Nutrition Humaine, INRAE, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; (L.-E.M.); (Y.B.)
| |
Collapse
|
9
|
Paul AK, Jahan R, Paul A, Mahboob T, Bondhon TA, Jannat K, Hasan A, Nissapatorn V, Wilairatana P, de Lourdes Pereira M, Wiart C, Rahmatullah M. The Role of Medicinal and Aromatic Plants against Obesity and Arthritis: A Review. Nutrients 2022; 14:nu14050985. [PMID: 35267958 PMCID: PMC8912584 DOI: 10.3390/nu14050985] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a significant health concern, as it causes a massive cascade of chronic inflammations and multiple morbidities. Rheumatoid arthritis and osteoarthritis are chronic inflammatory conditions and often manifest as comorbidities of obesity. Adipose tissues serve as a reservoir of energy as well as releasing several inflammatory cytokines (including IL-6, IFN-γ, and TNF-α) that stimulate low-grade chronic inflammatory conditions such as rheumatoid arthritis, osteoarthritis, diabetes, hypertension, cardiovascular disorders, fatty liver disease, oxidative stress, and chronic kidney diseases. Dietary intake, low physical activity, unhealthy lifestyle, smoking, alcohol consumption, and genetic and environmental factors can influence obesity and arthritis. Current arthritis management using modern medicines produces various adverse reactions. Medicinal plants have been a significant part of traditional medicine, and various plants and phytochemicals have shown effectiveness against arthritis and obesity; however, scientifically, this traditional plant-based treatment option needs validation through proper clinical trials and toxicity tests. In addition, essential oils obtained from aromatic plants are being widely used as for complementary therapy (e.g., aromatherapy, smelling, spicing, and consumption with food) against arthritis and obesity; scientific evidence is necessary to support their effectiveness. This review is an attempt to understand the pathophysiological connections between obesity and arthritis, and describes treatment options derived from medicinal, spice, and aromatic plants.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Private Bag 26, Hobart, TAS 7001, Australia
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
- Correspondence: (A.K.P.); (P.W.); (M.R.)
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
| | - Anita Paul
- Department of Pharmacy, University of Development Alternative, Dhanmondi, Dhaka 1207, Bangladesh;
| | - Tooba Mahboob
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.M.); (V.N.)
| | - Tohmina A. Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD) and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand; (T.M.); (V.N.)
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Correspondence: (A.K.P.); (P.W.); (M.R.)
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Christophe Wiart
- The Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu 88400, Sabah, Malaysia;
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh; (R.J.); (T.A.B.); (K.J.); (A.H.)
- Correspondence: (A.K.P.); (P.W.); (M.R.)
| |
Collapse
|
10
|
Cortez-Navarrete M, Méndez-Del Villar M, Ramos-González EJ, Pérez-Rubio KG. Momordica Charantia: A Review of Its Effects on Metabolic Diseases and Mechanisms of Action. J Med Food 2021; 24:1017-1027. [PMID: 33733863 DOI: 10.1089/jmf.2020.0206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The global rise in the prevalence of metabolic diseases such as diabetes, obesity, and dyslipidemia is a serious public health issue. The search for safe and effective complementary and alternative therapies to treat metabolic disorders is a key field of research. Momordica charantia (MC) is a tropical and subtropical vine of the Cucurbitaceae family used as a medicinal plant since ancient times. Although MC has been widely studied for its hypoglycemic potential, hypolipidemic and antiobesity effects have also been reported in preclinical studies and clinical trials. This study aims to review the metabolic effects of MC reported in clinical trials as well as its mechanisms of action.
Collapse
Affiliation(s)
- Marisol Cortez-Navarrete
- Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Miriam Méndez-Del Villar
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Guadalajara, Tonalá, Jalisco, México
| | - Elsy Janeth Ramos-González
- Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, México
| | - Karina G Pérez-Rubio
- Instituto de Terapéutica Experimental y Clínica, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
11
|
The triterpenoids of the bitter gourd (Momordica Charantia) and their pharmacological activities: A review. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2020.103726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Hatefi M, Parvizi R, Borji M, Tarjoman A. Effect of Self-Management Program on Pain and Disability Index in Elderly Men with Osteoarthritis. Anesth Pain Med 2019; 9:e92672. [PMID: 31750095 PMCID: PMC6820295 DOI: 10.5812/aapm.92672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/29/2019] [Accepted: 06/09/2019] [Indexed: 12/23/2022] Open
Abstract
Background Osteoarthritis (OA) is a progressive disease of the joints, leading to decreased function and disability. Objectives The study aimed to investigate the effect of self-management (SM) program on disability index and pain in aging men with knee OA. Methods The study included an SM group and a control group. Given the sample size of the previous studies, 83 patients were recruited. The study tools included a demographic profile questionnaire, visual analogue scale (VAS), and HAQ 8-item DI. The intervention included 10 SM sessions for patients in the SM group (8 sessions of in-person intervention and 2 sessions of telephone intervention). Patients were placed in groups of 7, and the sessions were held weekly each for a period of 45 to 60 minutes. Data were analyzed using descriptive and analytical tests by SPSS V. 16 software. Results The two groups(SM and control group) were homogeneous in terms of demographic characteristics (P > 0.05). The mean (SD) disability score was 19.12 (1.92) in the SM group before the intervention, which reduced to 14.70 (1.63) after the intervention (P = 0.000, T = 10.02). The mean (SD) pain score, was 9.19 (0.71) in the SM group before the intervention, which reduced to 6.48 (0.84) after the intervention (P = 0.000, T = 18.15). Conclusions Training can help patients perform SM measures and improve their health status by enhancing the information needed for the disease.
Collapse
Affiliation(s)
- Masoud Hatefi
- School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Reza Parvizi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Milad Borji
- Department of Nursing, Faculty of Nursing and Midwifery, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Asma Tarjoman
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Corresponding Author: Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran. Tel: +98-9183404704,
| |
Collapse
|
13
|
Khan MF, Abutaha N, Nasr FA, Alqahtani AS, Noman OM, Wadaan MAM. Bitter gourd (Momordica charantia) possess developmental toxicity as revealed by screening the seeds and fruit extracts in zebrafish embryos. Altern Ther Health Med 2019; 19:184. [PMID: 31340810 PMCID: PMC6657154 DOI: 10.1186/s12906-019-2599-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/16/2019] [Indexed: 01/17/2023]
Abstract
Background Bitter gourd (Momordica charantia) has attracted the focus of researchers owing to its excellent anti-diabetic action. The beneficial effect of Momordica charantia on heart has been reported by in vitro and in vivo studies. However the developmental toxicity or potential risk of M. charantia on fetus heart development is largely unknown. Hence this study was designed to find out the developmental toxicity of M. charantia using zebrafish (Danio rerio) embryos. Methods The crude extracts were prepared from fruit and seeds of M. charantia. The Zebrafish embryos were exposed to serial dilution of each of the crude extract. The biologically active fractions were fractionated by C18 column using high pressure liquid chromatography. Fourier-transform infrared spectroscopy and gas chromatography coupled with mass spectrophotometry was done to identify chemical constituents in fruit and seed extract of M. charantia. Results The seed extract of M. charantia was lethal with LD50 values of 50 μg/ml to zebrafish embryos and multiple anomalies were observed in zebrafish embryos at sub-lethal concentration. However, the fruit extract was much safe and exposing the zebrafish embryos even to 200 μg/ml did not result any lethality. The fruit extract induced severe cardiac hypertrophy in treated embryos. The time window treatment showed that M. charantia perturbed the cardiac myoblast specification process in treated zebrafish embryos. The Fourier-transform infrared spectroscopy analyses revealed diverse chemical group in the active fruit fraction and five new type of compounds were identified in the crude seeds extract of M. charantia by gas chromatography and mass spectrophotometry. Conclusion The teratogenicity of seeds extract and cardiac toxicity by the fruit extract of M. charantia warned that the supplementation made from the fruit and seeds of M. charantia should be used with much care in pregnant diabetic patients to avoid possible damage to developing fetus. Electronic supplementary material The online version of this article (10.1186/s12906-019-2599-0) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Bortolotti M, Mercatelli D, Polito L. Momordica charantia, a Nutraceutical Approach for Inflammatory Related Diseases. Front Pharmacol 2019; 10:486. [PMID: 31139079 PMCID: PMC6517695 DOI: 10.3389/fphar.2019.00486] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/17/2019] [Indexed: 01/24/2023] Open
Abstract
Momordica charantia, commonly called bitter melon, is a plant belonging to Cucurbitaceae family known for centuries for its pharmacological activities, and nutritional properties. Due to the presence of many bioactive compounds, some of which possess potent biological actions, this plant is used in folk medicine all over the world for the treatment of different pathologies, mainly diabetes, but also cancer, and other inflammation-associated diseases. It is widely demonstrated that M. charantia extracts contribute in lowering glycaemia in patients affected by type 2 diabetes. However, the majority of existing studies on M. charantia bioactive compounds were performed only on cell lines and in animal models. Therefore, because the real impact of bitter melon on human health has not been thoroughly demonstrated, systematic clinical studies are needed to establish its efficacy and safety in patients. Besides, both in vitro and in vivo studies have demonstrated that bitter melon may also elicit toxic or adverse effects under different conditions. The aim of this review is to provide an overview of anti-inflammatory and anti-neoplastic properties of bitter melon, discussing its pharmacological activity as well as the potential adverse effects. Even if a lot of literature is available about bitter melon as antidiabetic drug, few papers discuss the anti-inflammatory and anti-cancer properties of this plant.
Collapse
Affiliation(s)
- Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Daniele Mercatelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Georgiev T, Angelov AK. Modifiable risk factors in knee osteoarthritis: treatment implications. Rheumatol Int 2019; 39:1145-1157. [DOI: 10.1007/s00296-019-04290-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/19/2019] [Indexed: 12/23/2022]
|