1
|
Walls GM, Bergom C, Mitchell JD, Rentschler SL, Hugo GD, Samson PP, Robinson CG. Cardiotoxicity following thoracic radiotherapy for lung cancer. Br J Cancer 2024:10.1038/s41416-024-02888-0. [PMID: 39506136 DOI: 10.1038/s41416-024-02888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Radiotherapy is the standard of care treatment for unresectable NSCLC, combined with concurrent chemotherapy and adjuvant immunotherapy. Despite technological advances in radiotherapy planning and delivery, the risk of damage to surrounding thoracic tissues remains high. Cardiac problems, including arrhythmia, heart failure and ischaemic events, occur in 20% of patients with lung cancer who undergo radiotherapy. As survival rates improve incrementally for this cohort, minimising the cardiovascular morbidity of RT is increasingly important. Problematically, the reporting of cardiac endpoints has been poor in thoracic radiotherapy clinical trials, and retrospective studies have been limited by the lack of standardisation of nomenclature and endpoints. How baseline cardiovascular profile and cardiac substructure radiation dose distribution impact the risk of cardiotoxicity is incompletely understood. As Thoracic Oncology departments seek to expand the indications for radiotherapy, and as the patient cohort becomes older and more comorbid, there is a pressing need for cardiotoxicity to be comprehensively characterised with sophisticated oncology, physics and cardio-oncology evaluations. This review synthesises the evidence base for cardiotoxicity in conventional radiotherapy, focusing on lung cancer, including current data, unmet clinical needs, and future scientific directions.
Collapse
Affiliation(s)
- Gerard M Walls
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA.
- Patrick Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland, USA.
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University Medical Campus, Saint Louis, MO, USA
| | - Joshua D Mitchell
- Cardio-Oncology Center of Excellence, Washington University in St Louis, St Louis, MO, USA
| | - Stacey L Rentschler
- Department of Developmental Biology, Washington University in St Louis, St. Louis, MO, USA
- Center for Cardiovascular Research, Department of Medicine, Cardiovascular Division, Washington University in St Louis, St. Louis, MO, USA
| | - Geoffrey D Hugo
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University Medical Campus, Saint Louis, MO, USA
| | - Pamela P Samson
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University Medical Campus, Saint Louis, MO, USA
| | - Clifford G Robinson
- Department of Radiation Oncology, Washington University in St Louis, Saint Louis, MO, USA
- Siteman Cancer Center, Washington University Medical Campus, Saint Louis, MO, USA
| |
Collapse
|
2
|
Gu D, Wang T, Guo Y, Liu Y, Fang Y, Chen W, Wang Q, Zhang R, Shi H, Wu D, Zhang Z, Zhou G, Ye J. Radiotherapy with S-1 for the treatment of esophageal squamous cell carcinoma 75 years or older. Radiat Oncol 2024; 19:112. [PMID: 39210445 PMCID: PMC11360844 DOI: 10.1186/s13014-024-02509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Explore the efficacy and safety of involved-field irradiation (IFI) combined with S-1 as definitive concurrent chemoradiotherapy (dCRT) for locally advanced elderly esophageal squamous cell carcinoma (ESCC), under the premise of intensity-modulated radiotherapy (IMRT). METHODS We designed a prospective single-arm phase II study. The study enrolled 91 patients aged 75 to 92 years. Eligible participants had histologically confirmed squamous cell carcinoma, stage II to IV disease based on the 8th edition of the American Joint Committee on Cancer (AJCC). All elderly patients (EPs) received dCRT with S-1. which was administered orally twice daily for 28 days. The radiotherapy dose was 61.2 Gy delivered in 34 fractions or 50.4 Gy delivered in 28 fractions. The primary endpoint was 2-year overall survival (OS), and the secondary endpoints were progression-free survival (PFS), local control rate (LCR), and safety. RESULTS From July 2017 to July 2021, we enrolled EPs with ESCC who were treated at the Jiangsu Cancer hospital. As of August 1, 2023, the median follow-up of surviving EPs was 31.4 months (IQR: 25.2 to 72.6 months). 83 patients (91.2%) completed the whole course of treatment. The 2-year OS rate was 59.2%, and the PFS rate was 43.7%. The most common grade 1 to 2 adverse effects (AEs) were radiation esophagitis (79.1%), and then were radiation pneumonia (46.2%). Anemia (41.8%) was the most common of grade 1 to 2 hematologic toxicity. The incidence of grade 3 or above AEs was 24.2%, and the incidence of leukopenia was the highest (11.0%). There was not one death due to treatment-related toxicity. In a subgroup analysis of radiotherapy doses, we found no statistically significant differences in PFS (P = 0.465) and OS (P = 0.345) in EPs with ESCC who received 50.4 Gy and 61.2 Gy, and that patients in the 50.4 Gy group had lower dermatitis (P = 0.045) and anemia (P = 0.004). CONCLUSIONS IF-IMRT combined with S-1 is a promising regimen for elderly ESCC. And the radiotherapy dose of 50.4 Gy remains the standard dose for EPs with ESCC undergoing CCRT.
Collapse
Affiliation(s)
- Dayong Gu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baizitng, Xuanwu District, Nanjing, 210009, China
| | - Tian Wang
- Xuzhou Cancer Hospital, Xuzhou, China
| | - Yiyu Guo
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baizitng, Xuanwu District, Nanjing, 210009, China
| | - Ying Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baizitng, Xuanwu District, Nanjing, 210009, China
| | - Ying Fang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baizitng, Xuanwu District, Nanjing, 210009, China
| | - Wei Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baizitng, Xuanwu District, Nanjing, 210009, China
| | - Qiang Wang
- Jiangyan Hospital, Nanjing University of Chinese Medicine, Jiangyan, China
| | - Rongrong Zhang
- Jiangyan Hospital, Nanjing University of Chinese Medicine, Jiangyan, China
| | - Haifeng Shi
- Sheyang County People's Hospital, Yancheng, China
| | - Daguang Wu
- Funing County People's Hospital, Yancheng, China
| | - Zhi Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baizitng, Xuanwu District, Nanjing, 210009, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baizitng, Xuanwu District, Nanjing, 210009, China
| | - Jinjun Ye
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, No. 42, Baizitng, Xuanwu District, Nanjing, 210009, China.
| |
Collapse
|
3
|
Alger E, Minchom A, Lee Aiyegbusi O, Schipper M, Yap C. Statistical methods and data visualisation of patient-reported outcomes in early phase dose-finding oncology trials: a methodological review. EClinicalMedicine 2023; 64:102228. [PMID: 37781154 PMCID: PMC10541462 DOI: 10.1016/j.eclinm.2023.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023] Open
Abstract
Background Traditionally, within dose-finding clinical trials, treatment toxicity and tolerability are assessed by clinicians. Research has shown that clinician reporting may have inadequate inter-rater reliability, poor correlation with patient reported outcomes, and under capture the true toxicity burden. The introduction of patient-reported outcomes (PROs), where the patient can assess their own symptomatic adverse events or quality of life, has potential to complement current practice to aid dose optimisation. There are no international recommendations offering guidance for the inclusion of PROs in dose-finding trial design and analysis. Our review aimed to identify and describe current statistical methods and data visualisation techniques employed to analyse and visualise PRO data in published early phase dose-finding oncology trials (DFOTs). Methods DFOTs published from June 2016-December 2022, which presented PRO analysis methods, were included in this methodological review. We extracted 35 eligible papers indexed in PubMed. Study characteristics extracted included: PRO objectives, PRO measures, statistical analysis and visualisation techniques, and whether the PRO was involved in interim and final dose selection decisions. Findings Most papers (30, 85.7%) did not include clear PRO objectives. 20 (57.1%) papers used inferential statistical techniques to analyse PROs, including survival analysis and mixed-effect models. One trial used PROs to classify a clinicians' assessed dose-limiting toxicities (DLTs). Three (8.6%) trials used PROs to confirm the tolerability of the recommended dose. 25 trial reports visually presented PRO data within a figure or table within their publication, of which 12 papers presented PRO score longitudinally. Interpretation This review highlighted that the statistical methods and reporting of PRO analysis in DFOTs are often poorly described and inconsistent. Many trials had PRO objectives which were not clearly described, making it challenging to evaluate the appropriateness of the statistical techniques used. Drawing conclusions based on DFOTs which are not powered for PROs may be misleading. With no guidance and standardisation of analysis methods for PROs in early phase DFOTs, it is challenging to compare study findings across trials. Therefore, there is a crucial need to establish international guidance to enhance statistical methods and graphical presentation for PRO analysis in the dose-finding setting. Funding EA has been supported to undertake this work as part of a PhD studentship from the Institute of Cancer Research within the MRC/NIHR Trials Methodology Research Partnership. AM is supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at the Royal Marsden NHS Foundation Trust, the Institute of Cancer Research and Imperial College.
Collapse
Affiliation(s)
- Emily Alger
- Clinical Trial and Statistics Unit, Institute of Cancer Research, London, UK
| | - Anna Minchom
- Drug Development Unit, Royal Marsden/Institute of Cancer Research, London, UK
| | - Olalekan Lee Aiyegbusi
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, College of Medical and Dental Sciences, University of Birmingham, UK
- National Institute for Health and Care Research (NIHR) Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
| | - Matthew Schipper
- Departments of Radiation Oncology and Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Christina Yap
- Clinical Trial and Statistics Unit, Institute of Cancer Research, London, UK
| |
Collapse
|
4
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
5
|
Pitre T, Cheng S, Cusano E, Khan N, Mikhail D, Leung G, Vernooij RWM, Yarnell CJ, Goligher E, Murthy S, Heath A, Mah J, Rochwerg B, Zeraatkar D. Methodology and design of platform trials: a meta-epidemiological study. J Clin Epidemiol 2023; 157:1-12. [PMID: 36893990 PMCID: PMC9991927 DOI: 10.1016/j.jclinepi.2023.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 03/11/2023]
Abstract
OBJECTIVES Adaptive platforms allow for the evaluation of multiple interventions at a lower cost and have been growing in popularity, especially during the COVID-19 pandemic. The objective of this review is to summarize published platform trials, examine specific methodological design features among these studies, and hopefully aid readers in the evaluation and interpretation of platform trial results. METHODS We performed a systematic review of EMBASE, MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), and clinicaltrials.gov from January 2015 to January 2022 for protocols or results of platform trials. Pairs of reviewers, working independently and in duplicate, collected data on trial characteristics of trial registrations, protocols, and publications of platform trials. We reported our results using total numbers and percentages, as well as medians with interquartile range (IQR) when appropriate. RESULTS We identified 15,277 unique search records and screened 14,403 titles and abstracts after duplicates were removed. We identified 98 unique randomized platform trials. Sixteen platform trials were sourced from a systematic review completed in 2019, which included platform trials reported prior to 2015. Most platform trials (n = 67, 68.3%) were registered between 2020 and 2022, coinciding with the COVID-19 pandemic. The included platform trials primarily recruited or plan to recruit patients from North America or Europe, with most subjects being recruited from the United States (n = 39, 39.7%) and the United Kingdom (n = 31, 31.6%). Bayesian methods were used in 28.6% (n = 28) of platform RCTs and frequentist methods in 66.3% (n = 65) of trials, including 1 (1%) that used methods from both paradigms. Out of the twenty-five trials with peer-reviewed publication of results, seven trials used Bayesian methods (28%), and of those, two (8%) used a predefined sample size calculation while the remainder used pre-specified probabilities of futility, harm, or benefit calculated at (pre-specified) intervals to inform decisions about stopping interventions or the entire trial. Seventeen (68%) peer-reviewed publications used frequentist methods. Out of the seven published Bayesian trials, seven (100%) reported thresholds for benefit. The threshold for benefit ranged from 80% to >99%. CONCLUSION We identified and summarized key components of platform trials, including the basics of the methodological and statistical considerations. Ultimately, improving standardization and reporting in platform trials require an understanding of the current landscape. We provide the most updated and rigorous review of platform trials to date.
Collapse
Affiliation(s)
- Tyler Pitre
- Division of Internal Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Samantha Cheng
- Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ellen Cusano
- Division of Hematology and Hematologic Malignancies, Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nadia Khan
- Schulich School of Medicine and Dentistry, London, Ontario, Canada
| | - David Mikhail
- Faculty of Health Sciences, McMaster University, Canada
| | - Gareth Leung
- Faculty of Medicine, University of Ottawa, Canada
| | - Robin W M Vernooij
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Christopher J Yarnell
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; University Health Network and Sinai Health System, Toronto, Canada; Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Canada
| | - Ewan Goligher
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, Toronto, Canada; Department of Physiology, University of Toronto, Toronto, Canada
| | - Srinivas Murthy
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Heath
- Child Health Evaluative Science, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Department of Statistical Science, University College London, London, UK
| | - Jasmine Mah
- Department of medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Bram Rochwerg
- Department of Critical Care, Juravinski Hospital, Hamilton, Ontario, Canada; Department of Health Research Methods Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Dena Zeraatkar
- Department of Anesthesiology, McMaster University, Hamilton, Ontario, Canada; Department of Health Research Methods Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Matias-Barrios VM, Dong X. The Implication of Topoisomerase II Inhibitors in Synthetic Lethality for Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:94. [PMID: 36678591 PMCID: PMC9866718 DOI: 10.3390/ph16010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
DNA topoisomerase II (Top2) is essential for all eukaryotic cells in the regulation of DNA topology through the generation of temporary double-strand breaks. Cancer cells acquire enhanced Top2 functions to cope with the stress generated by transcription and DNA replication during rapid cell division since cancer driver genes such as Myc and EZH2 hijack Top2 in order to realize their oncogenic transcriptomes for cell growth and tumor progression. Inhibitors of Top2 are therefore designed to target Top2 to trap it on DNA, subsequently causing protein-linked DNA breaks, a halt to the cell cycle, and ultimately cell death. Despite the effectiveness of these inhibitors, cancer cells can develop resistance to them, thereby limiting their therapeutic utility. To maximize the therapeutic potential of Top2 inhibitors, combination therapies to co-target Top2 with DNA damage repair (DDR) machinery and oncogenic pathways have been proposed to induce synthetic lethality for more thorough tumor suppression. In this review, we will discuss the mode of action of Top2 inhibitors and their potential applications in cancer treatments.
Collapse
Affiliation(s)
- Victor M. Matias-Barrios
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
- School of Medicine and Health Sciences, Tecnologico de Monterrey, Avenida Eugenio Garza Sada 2501, Monterrey 64849, Mexico
| | - Xuesen Dong
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada
| |
Collapse
|
7
|
Walker K, Hinsley S, Phillip R, Oughton JB, Murden G, Chalmers AJ, Faivre-Finn C, Greystoke A, Brown SR. Implementation of the Time-to-Event Continuous Reassessment Method Design in a Phase I Platform Trial Testing Novel Radiotherapy-Drug Combinations-CONCORDE. JCO Precis Oncol 2022; 6:e2200133. [PMID: 36446040 PMCID: PMC9812638 DOI: 10.1200/po.22.00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE CONCORDE is the first phase I drug-radiotherapy (RT) combination platform in non-small-cell lung cancer, designed to assess multiple different DNA damage response inhibitors in combination with radical thoracic RT. Time-to-event continuous reassessment method (TiTE-CRM) methodology will inform dose escalation individually for each different DNA damage response inhibitor-RT combination and a randomized calibration arm will aid attribution of toxicities. We report in detail the novel statistical design and implementation of the TiTE-CRM in the CONCORDE trial. METHODS Statistical parameters were calibrated following recommendations by Lee and Cheung. Simulations were performed to assess the operating characteristics of the chosen models and were written using modified code from the R package dfcrm. RESULTS The results of the simulation work showed that the proposed statistical model setup can answer the research questions under a wide range of potential scenarios. The proposed models work well under varying levels of recruitment and with multiple adaptations to the original methodology. CONCLUSION The results demonstrate how TiTE-CRM methodology may be used in practice in a complex dose-finding platform study. We propose that this novel phase I design has potential to overcome some of the logistical barriers that for many years have prevented timely development of novel drug-RT combinations.
Collapse
Affiliation(s)
- Katrina Walker
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| | - Samantha Hinsley
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
- Cancer Research UK Glasgow Clinical Trials Unit, Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
| | - Rachel Phillip
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| | - Jamie B. Oughton
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| | - Geraldine Murden
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| | - Anthony J. Chalmers
- Institute of Cancer Sciences, University of Glasgow, Scotland, United Kingdom
| | - Corinne Faivre-Finn
- The Christie NHS Foundation Trust/University of Manchester, Manchester, United Kingdom
| | | | - Sarah R. Brown
- Clinical Trials Research Unit, Leeds Institute of Clinical Trials Research, University of Leeds, England, United Kingdom
| |
Collapse
|
8
|
Thippu Jayaprakash K, Hanna GG, Hatton MQ. Lung Cancer in 2022 and Beyond! Clin Oncol (R Coll Radiol) 2022; 34:695-697. [PMID: 36153212 DOI: 10.1016/j.clon.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/02/2022] [Indexed: 01/31/2023]
Affiliation(s)
- K Thippu Jayaprakash
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, UK.
| | - G G Hanna
- Cancer Centre, Belfast City Hospital, Belfast, UK; Queen's University Belfast, Belfast, UK
| | | |
Collapse
|
9
|
Brown SR, Hinsley S, Hall E, Hurt C, Baird RD, Forster M, Scarsbrook AF, Adams RA. A Road Map for Designing Phase I Clinical Trials of Radiotherapy-Novel Agent Combinations. Clin Cancer Res 2022; 28:3639-3651. [PMID: 35552622 PMCID: PMC9433953 DOI: 10.1158/1078-0432.ccr-21-4087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/26/2022] [Accepted: 04/28/2022] [Indexed: 01/07/2023]
Abstract
Radiotherapy has proven efficacy in a wide range of cancers. There is growing interest in evaluating radiotherapy-novel agent combinations and a drive to initiate this earlier in the clinical development of the novel agent, where the scientific rationale and preclinical evidence for a radiotherapy combination approach are high. Optimal design, delivery, and interpretation of studies are essential. In particular, the design of phase I studies to determine safety and dosing is critical to an efficient development strategy. There is significant interest in early-phase research among scientific and clinical communities over recent years, at a time when the scrutiny of the trial methodology has significantly increased. To enhance trial design, optimize safety, and promote efficient trial conduct, this position paper reviews the current phase I trial design landscape. Key design characteristics extracted from 37 methodology papers were used to define a road map and a design selection process for phase I radiotherapy-novel agent trials. Design selection is based on single- or dual-therapy dose escalation, dose-limiting toxicity categorization, maximum tolerated dose determination, subgroup evaluation, software availability, and design performance. Fifteen of the 37 designs were identified as being immediately accessible and relevant to radiotherapy-novel agent phase I trials. Applied examples of using the road map are presented. Developing these studies is intensive, highlighting the need for funding and statistical input early in the trial development to ensure appropriate design and implementation from the outset. The application of this road map will improve the design of phase I radiotherapy-novel agent combination trials, enabling a more efficient development pathway.
Collapse
Affiliation(s)
- Sarah R. Brown
- Leeds Cancer Research UK Clinical Trials Unit, Leeds Institute of Clinical Trials Research, University of Leeds, Leeds, United Kingdom
| | - Samantha Hinsley
- Clinical Trials Unit Glasgow, University of Glasgow, Glasgow, United Kingdom
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Chris Hurt
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | | | | | - Andrew F. Scarsbrook
- Radiotherapy Research Group, Leeds Institute of Medical Research at St James's, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
| | - Richard A. Adams
- Centre for Trials Research, Cardiff University and Velindre Cancer Centre, Cardiff, United Kingdom
| |
Collapse
|
10
|
McAleavey PG, Walls GM, Chalmers AJ. Radiotherapy-drug combinations in the treatment of glioblastoma: a brief review. CNS Oncol 2022; 11:CNS86. [PMID: 35603818 PMCID: PMC9134931 DOI: 10.2217/cns-2021-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) accounts for over 50% of gliomas and carries the worst prognosis of all solid tumors. Owing to the limited local control afforded by surgery alone, efficacious adjuvant treatments such as radiotherapy (RT) and chemotherapy are fundamental in achieving durable disease control. The best clinical outcomes are achieved with tri-modality treatment consisting of surgery, RT and systemic therapy. While RT-chemotherapy combination regimens are well established in oncology, this approach was largely unsuccessful in GBM until the introduction of temozolomide. The success of this combination has stimulated the search for other candidate drugs for concomitant use with RT in GBM. This review seeks to collate the current evidence for these agents and synthesize possible future directions for the field.
Collapse
Affiliation(s)
- Patrick G McAleavey
- School of Medicine, Dentistry & Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, N. Ireland
| | - Gerard M Walls
- Cancer Centre Belfast City Hospital, Lisburn Road, Belfast, BT9 7AB, N. Ireland
- Patrick G Johnston Centre for Cancer Research, Jubilee Road, Belfast, BT9 7AE, N. Ireland
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, G61 1QH, Scotland
| |
Collapse
|
11
|
Brown KH, Ghita M, Dubois LJ, de Ruysscher D, Prise KM, Verhaegen F, Butterworth KT. A scoping review of small animal image-guided radiotherapy research: Advances, impact and future opportunities in translational radiobiology. Clin Transl Radiat Oncol 2022; 34:112-119. [PMID: 35496817 PMCID: PMC9046563 DOI: 10.1016/j.ctro.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/18/2022] Open
Abstract
Background and purpose To provide a scoping review of published studies using small animal irradiators and highlight the progress in preclinical radiotherapy (RT) studies enabled by these platforms since their development and commercialization in 2007. Materials and methods PubMed searches and manufacturer records were used to identify 907 studies that were screened with 359 small animal RT studies included in the analyses. These articles were classified as biology or physics contributions and into subgroups based on research aims, experimental models and other parameters to identify trends in the preclinical RT research landscape. Results From 2007 to 2021, most published articles were biology contributions (62%) whilst physics contributions accounted for 38% of the publications. The main research areas of physics articles were in dosimetry and calibration (24%), treatment planning and simulation (22%), and imaging (22%) and the studies predominantly used phantoms (41%) or in vivo models (34%). The majority of biology contributions were tumor studies (69%) with brain being the most commonly investigated site. The most frequently investigated areas of tumor biology were evaluating radiosensitizers (33%), model development (30%) and imaging (21%) with cell-line derived xenografts the most common model (82%). 31% of studies focused on normal tissue radiobiology and the lung was the most investigated site. Conclusions This study captures the trends in preclinical RT research using small animal irradiators from 2007 to 2021. Our data show the increased uptake and outputs from preclinical RT studies in important areas of biology and physics research that could inform translation to clinical trials.
Collapse
Affiliation(s)
- Kathryn H. Brown
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
- Corresponding author at: Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7AE, United Kingdom.
| | - Mihaela Ghita
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Ludwig J. Dubois
- The M-Lab, Department of Precision Medicine, GROW – School for Oncology, Maastricht University, Maastricht, The Netherlands
| | - Dirk de Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Kevin M. Prise
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Karl T. Butterworth
- Patrick G. Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
12
|
Willers H, Krause M, Faivre-Finn C, Chalmers AJ. Targeting PARP for Chemoradiosensitization: Opportunities, Challenges, and the Road Ahead. Int J Radiat Oncol Biol Phys 2022; 112:265-270. [PMID: 34998527 PMCID: PMC9074417 DOI: 10.1016/j.ijrobp.2021.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Affiliation(s)
- Henning Willers
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| | - Mechthild Krause
- OncoRay - National Center for Radiation Research in Oncology and Dept. of Radiotherapy & Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden; Helmholtz-Zentrum Dresden - Rossendorf, German Cancer Consortium (DKTK), Partner Site Dresden; National Center for Tumor Diseases (NCT), Partner Site Dresden; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Corinne Faivre-Finn
- University of Manchester, Manchester Academic Health Science Centre, The Christie NHS Foundation Trust, United Kingdom
| | - Anthony J Chalmers
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
13
|
Magné N, Bouleftour W, Daguenet E, Natier E, Maison M, Tinquaut F, Suchaud JP, Rancoule C, Guy JB. Assessing toxicities of curative radiotherapy combined with concomitant non anti-cancer drugs: A sub-analysis of the prospective epidemiological RIT trial. Radiother Oncol 2022; 168:23-27. [DOI: 10.1016/j.radonc.2022.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/16/2022]
|
14
|
Crockett C, Salem A, Thippu Jayaprakash K. Shooting the Star: Mitigating Respiratory Motion in Lung Cancer Radiotherapy. Clin Oncol (R Coll Radiol) 2021; 34:160-163. [PMID: 34893390 DOI: 10.1016/j.clon.2021.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/18/2021] [Indexed: 11/30/2022]
Affiliation(s)
- C Crockett
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK.
| | - A Salem
- Radiotherapy Related Research, The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - K Thippu Jayaprakash
- Oncology Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, UK
| |
Collapse
|
15
|
Couwenberg A, van der Heide U, Janssen T, van Triest B, Remeijer P, Marijnen C, Sonke JJ, Nowee M. Master protocol trial design for technical feasibility of MR-guided radiotherapy. Radiother Oncol 2021; 166:33-36. [PMID: 34785244 DOI: 10.1016/j.radonc.2021.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/20/2021] [Accepted: 11/07/2021] [Indexed: 11/15/2022]
Abstract
The master protocol trial design aims to increase efficiency in terms of trial infrastructure and protocol administration which may accelerate development of (technical) innovations in radiation oncology. A master protocol to study feasibility of techniques/software for MR-guided adaptive radiotherapy with the MR-Linac is described and discussed.
Collapse
Affiliation(s)
- Alice Couwenberg
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Uulke van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Baukelien van Triest
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Peter Remeijer
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Corrie Marijnen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jan-Jakob Sonke
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marlies Nowee
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Mladenova V, Mladenov E, Scholz M, Stuschke M, Iliakis G. Strong Shift to ATR-Dependent Regulation of the G 2-Checkpoint after Exposure to High-LET Radiation. Life (Basel) 2021; 11:life11060560. [PMID: 34198619 PMCID: PMC8232161 DOI: 10.3390/life11060560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022] Open
Abstract
The utilization of high linear-energy-transfer (LET) ionizing radiation (IR) modalities is rapidly growing worldwide, causing excitement but also raising concerns, because our understanding of their biological effects is incomplete. Charged particles such as protons and heavy ions have increasing potential in cancer therapy, due to their advantageous physical properties over X-rays (photons), but are also present in the space environment, adding to the health risks of space missions. Therapy improvements and the protection of humans during space travel will benefit from a better understanding of the mechanisms underpinning the biological effects of high-LET IR. There is evidence that high-LET IR induces DNA double-strand breaks (DSBs) of increasing complexity, causing enhanced cell killing, owing, at least partly, to the frequent engagement of a low-fidelity DSB-repair pathway: alternative end-joining (alt-EJ), which is known to frequently induce severe structural chromosomal abnormalities (SCAs). Here, we evaluate the radiosensitivity of A549 lung adenocarcinoma cells to X-rays, α-particles and 56Fe ions, as well as of HCT116 colorectal cancer cells to X-rays and α-particles. We observe the expected increase in cell killing following high-LET irradiation that correlates with the increased formation of SCAs as detected by mFISH. Furthermore, we report that cells exposed to low doses of α-particles and 56Fe ions show an enhanced G2-checkpoint response which is mainly regulated by ATR, rather than the coordinated ATM/ATR-dependent regulation observed after exposure to low doses of X-rays. These observations advance our understanding of the mechanisms underpinning high-LET IR effects, and suggest the potential utility for ATR inhibitors in high-LET radiation therapy.
Collapse
Affiliation(s)
- Veronika Mladenova
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (E.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Emil Mladenov
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (E.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
| | - Michael Scholz
- Biophysics Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany;
| | - Martin Stuschke
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (E.M.); (M.S.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45122 Essen, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - George Iliakis
- Department of Radiation Therapy, Division of Experimental Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany; (V.M.); (E.M.); (M.S.)
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Correspondence:
| |
Collapse
|
17
|
Haslett K, Koh P, Hudson A, Ryder W, Falk S, Mullan D, Taylor B, Califano R, Blackhall F, Faivre-Finn C. Phase I trial of the MEK inhibitor selumetinib in combination with thoracic radiotherapy in non-small cell lung cancer. Clin Transl Radiat Oncol 2021; 28:24-31. [PMID: 33748440 PMCID: PMC7970011 DOI: 10.1016/j.ctro.2021.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/25/2022] Open
Abstract
Background The RAS/RAF/MEK/ERK signalling pathway has a pivotal role in cancer proliferation and modulating treatment response. Selumetinib inhibits MEK and enhances effects of radiotherapy in preclinical studies. Patients and methods Single-arm, single-centre, open-label phase I trial. Patients with stage III NSCLC unsuitable for concurrent chemo-radiotherapy, or stage IV with dominant thoracic symptoms, were recruited to a dose-finding stage (Fibonacci 3 + 3 design; maximum number = 18) then an expanded cohort (n = 15). Oral selumetinib was administered twice daily (starting dose 50 mg) commencing 7 days prior to thoracic radiotherapy, then with radiotherapy (6-6.5 weeks; 60-66 Gy/30-33 fractions). The primary objective was to determine the recommended phase II dose (RP2D) of selumetinib in combination with thoracic radiotherapy. Results 21 patients were enrolled (06/2010-02/2015). Median age: 62y (range 50-73). M:F ratio 12(57%):9(43%). ECOG PS 0:1, 7(33%):14(67%). Stage III 16(76%); IV 5(24%). Median GTV 64 cm3 (range 1-224 cm3). 15 patients comprised the expanded cohort at starting dose. All 21 patients completed thoracic radiotherapy as planned and received induction chemotherapy. 13 (62%) patients received the full dose of selumetinib.In the starting cohort no enhanced radiotherapy-related toxicity was seen. Two patients had dose-limiting toxicity (1x grade 3 diarrhoea/fatigue and 1x pulmonary embolism). Commonest grade 3-4 adverse events: lymphopaenia (19/21 patients) and hypertension (7/21 patients). One patient developed grade 3 oesophagitis. No patients developed grade ≥3 radiation pneumonitis. Two patients were alive at the time of analysis (24 and 26 months follow-up, respectively). Main cause of first disease progression: distant metastases ± locoregional progression (12/21 [57.1%] patients). Six patients had confirmed/suspected pneumocystis jiroveci pneumonia. Conclusion We report poor outcome and severe lymphopenia in most patients treated with thoracic radiotherapy and selumetinib at RP2D in combination, contributing to confirmed/clinically suspected pneumocystis jiroveci pneumonia. These results suggest that this combination should not be pursued in a phase II trial.ClinicalTrials.gov reference: NCT01146756.
Collapse
Affiliation(s)
- K. Haslett
- The Christie NHS Foundation Trust, United Kingdom
| | - P. Koh
- University of Manchester, United Kingdom
- New Cross Hospital, United Kingdom
| | - A. Hudson
- The Christie NHS Foundation Trust, United Kingdom
| | - W.D. Ryder
- University of Manchester, United Kingdom
| | - S. Falk
- The Christie NHS Foundation Trust, United Kingdom
| | - D. Mullan
- The Christie NHS Foundation Trust, United Kingdom
| | - B. Taylor
- The Christie NHS Foundation Trust, United Kingdom
| | - R. Califano
- The Christie NHS Foundation Trust, United Kingdom
- University of Manchester, United Kingdom
| | - F. Blackhall
- The Christie NHS Foundation Trust, United Kingdom
- University of Manchester, United Kingdom
| | - C. Faivre-Finn
- The Christie NHS Foundation Trust, United Kingdom
- University of Manchester, United Kingdom
- Corresponding author at: The Christie NHS Foundation Trust, United Kingdom.
| |
Collapse
|