1
|
Dean J, Anderson N, Halkett GKB, Lye J, Tacey M, Foroudi F, Chao M, Wright C. Study protocol: Optimising patient positioning for the planning of accelerated partial breast radiotherapy for the integrated magnetic resonance linear accelerator: OPRAH MRL. Radiat Oncol 2024; 19:123. [PMID: 39289753 PMCID: PMC11409614 DOI: 10.1186/s13014-024-02517-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Accelerated partial breast irradiation (APBI) is an accepted treatment option for early breast cancer. Treatment delivered on the Magnetic Resonance integrated Linear Accelerator (MRL) provides the added assurance of improved soft tissue visibility, important in the delivery of APBI. This technique can be delivered in both the supine and prone positions, however current literature suggests that prone treatment on the MRL is infeasible due to physical limitations with bore size. This study aims to investigate the feasibility of positioning patients on a custom designed prone breast board compared with supine positioning on a personalised vacuum bag. Geometric distortion, the relative position of Organs at Risk (OAR) to the tumour bed and breathing motion (intrafraction motion) will be compared between the supine and prone positions. The study will also investigate the positional impact on dosimetry, patient experience, and position preference. METHODS Up to 30 patients will be recruited over a 12-month period for participation in this Human Research Ethics Committee approved exploratory cohort study. Patients will be scanned on the magnetic resonance imaging (MRI) Simulator in both the supine and prone positions as per current standard of care for APBI simulation. Supine and prone positioning comparisons will all be assessed on de-identified MRI image pairs, acquired using appropriate software. Patient experience will be explored through completion of a short, anonymous electronic survey. Descriptive statistics will be used for reporting of results with categorical, parametric/non-parametric tests applied (data format dependent). Survey results will be interpreted by comparison of percentage frequencies across the Likert scales. Thematic content analysis will be used to interpret qualitative data from the open-ended survey questions. DISCUSSION The results of this study will be used to assess the feasibility of treating patients with APBI in the prone position on a custom designed board on the MRL. It may also be used to assist with identification of patients who would benefit from this position over supine without the need to perform both scans. Patient experience and technical considerations will be utilised to develop a tool to assist in this process. Trial registration Australian New Zealand Clinical Trials Registry (ANZCTR): ACTRN1262400067583. Registered 28th of May 2024. https://www.anzctr.org.au/ACTRN12624000679583.aspx.
Collapse
Affiliation(s)
- Jenna Dean
- Radiation Oncology, Olivia Newton John Cancer Wellness and Research Centre, Austin Health, PO Box 5555, Heidelberg, VIC, 3084, Australia.
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia.
| | - Nigel Anderson
- Radiation Oncology, Olivia Newton John Cancer Wellness and Research Centre, Austin Health, PO Box 5555, Heidelberg, VIC, 3084, Australia
| | - Georgia K B Halkett
- Curtin School of Nursing/Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Jessica Lye
- Radiation Oncology, Olivia Newton John Cancer Wellness and Research Centre, Austin Health, PO Box 5555, Heidelberg, VIC, 3084, Australia
- School of Health and Biomedical Science, RMIT University, 124 La Trobe St, Melbourne, VIC, 3000, Australia
| | - Mark Tacey
- Radiation Oncology, Olivia Newton John Cancer Wellness and Research Centre, Austin Health, PO Box 5555, Heidelberg, VIC, 3084, Australia
| | - Farshad Foroudi
- Radiation Oncology, Olivia Newton John Cancer Wellness and Research Centre, Austin Health, PO Box 5555, Heidelberg, VIC, 3084, Australia
| | - Michael Chao
- Radiation Oncology, Olivia Newton John Cancer Wellness and Research Centre, Austin Health, PO Box 5555, Heidelberg, VIC, 3084, Australia
| | - Caroline Wright
- Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Wellington Rd, Clayton, VIC, 3800, Australia
| |
Collapse
|
2
|
Westerhoff JM, Borman PT, Rutgers RH, Raaymakers BW, Winchester N, Verkooijen HM, Fast MF. On Patient Experience and Anxiety During Treatment With Magnetic Resonance-Guided Radiation Therapy. Adv Radiat Oncol 2024; 9:101537. [PMID: 39035171 PMCID: PMC11259694 DOI: 10.1016/j.adro.2024.101537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/29/2024] [Indexed: 07/23/2024] Open
Abstract
Purpose To assess patient experience and anxiety during magnetic resonance (MR)-guided radiation therapy (MRgRT) using a hybrid 1.5Tesla (T) MR-guided linear accelerator (MR-Linac) when offered calming video content. Methods and Materials A single-center study was conducted within the Multi-Outcome Evaluation of Radiation Therapy Using the MR-Linac (MOMENTUM) cohort. Patients were offered to watch calming video content on a video monitor during treatment. Questionnaires were used to assess patient experience (MR-Linac patient-reported experience) and anxiety (State-Trait Anxiety Inventory, STAI) at first treatment fraction (M1) and at third, fourth, or fifth treatment fraction (M2). Paired t tests were used to test for significant differences, and effect sizes (ESs) were used to estimate the magnitude of the difference. Results Between November 2021 and November 2022, 66 patients were included. The majority were men (n = 59, 89%). MRgRT was most frequently delivered to prostate cancer (n = 45, 68%) followed by a lesion in the pancreas (n = 8, 12%). At M1 and M2, 24 of 59 patients (41%) preferred to watch calming video content. One patient was not able to look at the video monitor comfortably at M1. Patient experience was generally favorable or neutral; tingling sensations were reported by 17% of patients. Anxiety levels were high (16%), moderate (18%), or low to none (67%) prior to M1. STAI scores were 33 (SD, 9) prior to M1 and 29 (SD, 7) after M1 (ES, 0.7; P < .001). STAI scores were 32 (SD, 9) prior to M2 and 31 (SD, 8) after M2 (ES, 0.4; P = .009). Conclusions Patients were able to comfortably view the video monitor during MRgRT. Consequently, this setup could be used for future applications, such as biofeedback. A sizable minority of patients preferred to watch calming videos that distracted them during treatment. Although the patients' experience was overall excellent, anxiety was reported. Anxiety levels were highest prior to treatment and decreased after treatment.
Collapse
Affiliation(s)
- Jasmijn M. Westerhoff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pim T.S. Borman
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Reijer H.A. Rutgers
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bas W. Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Helena M. Verkooijen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Martin F. Fast
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
3
|
Westley RL, Alexander SE, Goodwin E, Dunlop A, Nill S, Oelfke U, McNair HA, Tree AC. Magnetic resonance image-guided adaptive radiotherapy enables safe CTV-to-PTV margin reduction in prostate cancer: a cine MRI motion study. Front Oncol 2024; 14:1379596. [PMID: 38894866 PMCID: PMC11183304 DOI: 10.3389/fonc.2024.1379596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction We aimed to establish if stereotactic body radiotherapy to the prostate can be delivered safely using reduced clinical target volume (CTV) to planning target volume (PTV) margins on the 1.5T MR-Linac (MRL) (Elekta, Stockholm, Sweden), in the absence of gating. Methods Cine images taken in 3 orthogonal planes during the delivery of prostate SBRT with 36.25 Gray (Gy) in 5 fractions on the MRL were analysed. Using the data from 20 patients, the percentage of radiotherapy (RT) delivery time where the prostate position moved beyond 1, 2, 3, 4 and 5 mm in the left-right (LR), superior-inferior (SI), anterior-posterior (AP) and any direction was calculated. Results The prostate moved less than 3 mm in any direction for 90% of the monitoring period in 95% of patients. On a per-fraction basis, 93% of fractions displayed motion in all directions within 3 mm for 90% of the fraction delivery time. Recurring motion patterns were observed showing that the prostate moved with shallow drift (most common), transient excursions and persistent excursions during treatment. Conclusion A 3 mm CTV-PTV margin is safe to use for the treatment of 5 fraction prostate SBRT on the MRL, without gating. In the context of gating this work suggests that treatment time will not be extensively lengthened when an appropriate gating window is applied.
Collapse
Affiliation(s)
- Rosalyne L. Westley
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - Sophie E. Alexander
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - Edmund Goodwin
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Alex Dunlop
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Simeon Nill
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Helen A. McNair
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| | - Alison C. Tree
- Department of Radiotherapy, The Royal Marsden NHS Foundation Trust, London, United Kingdom
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, United Kingdom
| |
Collapse
|
4
|
de Mol van Otterloo S, Westerhoff J, Leer T, Rutgers R, Meijers L, Daamen L, Intven M, Verkooijen H. Patient expectation and experience of MR-guided radiotherapy using a 1.5T MR-Linac. Tech Innov Patient Support Radiat Oncol 2024; 29:100224. [PMID: 38162695 PMCID: PMC10755768 DOI: 10.1016/j.tipsro.2023.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background and Purpose Online adaptive MR-guided radiotherapy (MRgRT) is a relatively new form of radiotherapy treatment, delivered using a MR-Linac. It is unknown what patients expect from this treatment and whether these expectations are met. This study evaluates whether patients' pre-treatment expectations of MRgRT are met and reports patients' on-table experience on a 1.5 T MR-Linac. Materials and methods All patients treated on the MR-Linac from November 2020 until April 2021, were eligible for inclusion. Patient expectation and experience were captured through questionnaires before, during, and three months after treatment. The on-table experience questionnaire included patient' physical and psychological coping. Patient-expected side effects, participation in daily and social activity, disease outcome and, disease related symptoms were compared to post-treatment experience. Results We included 113 patients who were primarily male (n = 100, 89 %), with a median age of 69 years (range 52-90). For on-table experience, ninety percent of patients (strongly) agreed to feeling calm during their treatment. Six and eight percent of patients found the treatment position or bed uncomfortable respectively. Twenty-eight percent of patients felt tingling sensations during treatment. After treatment, 79 % of patients' expectations were met. Most patients experienced an (better than) expected level of side effects (75 %), participation in daily- (83 %) and social activity (86 %) and symptoms (78 %). However, 33 % expected more treatment efficacy than experienced. Conclusion Treatment on the 1.5 T MR-Linac is well tolerated and meets patient expectations. Despite the fact that some patients expected greater treatment efficacy and the frequent occurrence of tingling sensations during treatment, most patient experiences were comparable or better than previously expected.
Collapse
Affiliation(s)
- S.R. de Mol van Otterloo
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - J.M. Westerhoff
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - T. Leer
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - R.H.A. Rutgers
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - L.T.C. Meijers
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - L.A. Daamen
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - M.P.W. Intven
- Department of Radiation Oncology, University Medical Center Utrecht, Heidelberglaan 100, 3508 GA Utrecht, the Netherlands
| | - H.M. Verkooijen
- Division of Imaging, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
5
|
Moreira A, Li W, Berlin A, Carpino-Rocca C, Chung P, Conroy L, Dang J, Dawson LA, Glicksman RM, Hosni A, Keller H, Kong V, Lindsay P, Shessel A, Stanescu T, Taylor E, Winter J, Yan M, Letourneau D, Milosevic M, Velec M. Prospective evaluation of patient-reported anxiety and experiences with adaptive radiation therapy on an MR-linac. Tech Innov Patient Support Radiat Oncol 2024; 29:100240. [PMID: 38445180 PMCID: PMC10912905 DOI: 10.1016/j.tipsro.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Purpose An integrated magnetic resonance scanner and linear accelerator (MR-linac) was implemented with daily online adaptive radiation therapy (ART). This study evaluated patient-reported experiences with their overall hospital care as well as treatment in the MR-linac environment. Methods Patients pre-screened for MR eligibility and claustrophobia were referred to simulation on a 1.5 T MR-linac. Patient-reported experience measures were captured using two validated surveys. The 15-item MR-anxiety questionnaire (MR-AQ) was administered immediately after the first treatment to rate MR-related anxiety and relaxation. The 40-item satisfaction with cancer care questionnaire rating doctors, radiation therapists, the services and care organization and their outpatient experience was administered immediately after the last treatment using five-point Likert responses. Results were analyzed using descriptive statistics. Results 205 patients were included in this analysis. Multiple sites were treated across the pelvis and abdomen with a median treatment time per fraction of 46 and 66 min respectively. Patients rated MR-related anxiety as "not at all" (87%), "somewhat" (11%), "moderately" (1%) and "very much so" (1%). Positive satisfaction responses ranged from 78 to 100% (median 93%) across all items. All radiation therapist-specific items were rated positively as 96-100%. The five lowest rated items (range 78-85%) were related to general provision of information, coordination, and communication. Overall hospital care was rated positively at 99%. Conclusion In this large, single-institution prospective cohort, all patients had low MR-related anxiety and completed treatment as planned despite lengthy ART treatments with the MR-linac. Patients overall were highly satisfied with their cancer care involving ART using an MR-linac.
Collapse
Affiliation(s)
- Amanda Moreira
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Winnie Li
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Alejandro Berlin
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Cathy Carpino-Rocca
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Leigh Conroy
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jennifer Dang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Laura A. Dawson
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Rachel M. Glicksman
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Ali Hosni
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Harald Keller
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Vickie Kong
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Patricia Lindsay
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Andrea Shessel
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Teo Stanescu
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Edward Taylor
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Jeff Winter
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Michael Yan
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Daniel Letourneau
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Michael Milosevic
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Michael Velec
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Uder L, Nachbar M, Butzer S, Boldt J, Baumeister S, Bitzer M, Königsrainer A, Seufferlein T, Hoffmann R, Gatidis S, Nikolaou K, Zips D, Thorwarth D, Gani C, Boeke S. Local control and patient reported outcomes after online MR guided stereotactic body radiotherapy of liver metastases. Front Oncol 2023; 12:1095633. [PMID: 36727060 PMCID: PMC9885175 DOI: 10.3389/fonc.2022.1095633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/14/2022] [Indexed: 01/18/2023] Open
Abstract
Introduction Stereotactic body radiotherapy (SBRT) is used to treat liver metastases with the intention of ablation. High local control rates were shown. Magnetic resonance imaging guided radiotherapy (MRgRT) provides the opportunity of a marker-less liver SBRT treatment due to the high soft tissue contrast. We report herein on one of the largest cohorts of patients treated with online MRgRT of liver metastases focusing on oncological outcome, toxicity, patient reported outcome measures (PROMs), quality of life. Material and methods Patients treated for liver metastases with online MR-guided SBRT at a 1,5 T MR-Linac (Unity, Elekta, Crawley, UK) between March 2019 and December 2021 were included in this prospective study. UK SABR guidelines were used for organs at risk constraints. Oncological endpoints such as survival parameters (overall survival, progression-free survival) and local control as well as patient reported acceptance and quality of life data (EORTC QLQ-C30 questionnaire) were assessed. For toxicity scoring the Common Toxicity Criteria Version 5 were used. Results A total of 51 patients with 74 metastases were treated with a median of five fractions. The median applied BED GTV D98 was 84,1 Gy. Median follow-up was 15 months. Local control of the irradiated liver metastasis after 12 months was 89,6%, local control of the liver was 40,3%. Overall survival (OS) after 12 months was 85.1%. Progression free survival (PFS) after 12 months was 22,4%. Local control of the irradiated liver lesion was 100% after three years when a BED ≥100 Gy was reached. The number of treated lesions did not impact local control neither of the treated or of the hepatic control. Patient acceptance of online MRgSBRT was high. There were no acute grade ≥ 3 toxicities. Quality of life data showed no significant difference comparing baseline and follow-up data. Conclusion Online MR guided radiotherapy is a noninvasive, well-tolerated and effective treatment for liver metastases. Further prospective trials with the goal to define patients who actually benefit most from an online adaptive workflow are currently ongoing.
Collapse
Affiliation(s)
- Laura Uder
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,*Correspondence: Laura Uder,
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sarah Butzer
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Sabrina Baumeister
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Michael Bitzer
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University Hospital Medical Center, Ulm, Germany
| | - Rüdiger Hoffmann
- Department of Diagnostic and Interventional Radiology , University of Tübingen, Tübingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology , University of Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology , University of Tübingen, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany,Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany,German Cancer Consortium (DKTK), partner site Tübingen; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
7
|
Goodburn RJ, Philippens MEP, Lefebvre TL, Khalifa A, Bruijnen T, Freedman JN, Waddington DEJ, Younus E, Aliotta E, Meliadò G, Stanescu T, Bano W, Fatemi‐Ardekani A, Wetscherek A, Oelfke U, van den Berg N, Mason RP, van Houdt PJ, Balter JM, Gurney‐Champion OJ. The future of MRI in radiation therapy: Challenges and opportunities for the MR community. Magn Reson Med 2022; 88:2592-2608. [PMID: 36128894 PMCID: PMC9529952 DOI: 10.1002/mrm.29450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 01/11/2023]
Abstract
Radiation therapy is a major component of cancer treatment pathways worldwide. The main aim of this treatment is to achieve tumor control through the delivery of ionizing radiation while preserving healthy tissues for minimal radiation toxicity. Because radiation therapy relies on accurate localization of the target and surrounding tissues, imaging plays a crucial role throughout the treatment chain. In the treatment planning phase, radiological images are essential for defining target volumes and organs-at-risk, as well as providing elemental composition (e.g., electron density) information for radiation dose calculations. At treatment, onboard imaging informs patient setup and could be used to guide radiation dose placement for sites affected by motion. Imaging is also an important tool for treatment response assessment and treatment plan adaptation. MRI, with its excellent soft tissue contrast and capacity to probe functional tissue properties, holds great untapped potential for transforming treatment paradigms in radiation therapy. The MR in Radiation Therapy ISMRM Study Group was established to provide a forum within the MR community to discuss the unmet needs and fuel opportunities for further advancement of MRI for radiation therapy applications. During the summer of 2021, the study group organized its first virtual workshop, attended by a diverse international group of clinicians, scientists, and clinical physicists, to explore our predictions for the future of MRI in radiation therapy for the next 25 years. This article reviews the main findings from the event and considers the opportunities and challenges of reaching our vision for the future in this expanding field.
Collapse
Affiliation(s)
- Rosie J. Goodburn
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | | | - Thierry L. Lefebvre
- Department of PhysicsUniversity of CambridgeCambridgeUnited Kingdom
- Cancer Research UK Cambridge Research InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Aly Khalifa
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Tom Bruijnen
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtNetherlands
| | | | - David E. J. Waddington
- Faculty of Medicine and Health, Sydney School of Health Sciences, ACRF Image X InstituteThe University of SydneySydneyNew South WalesAustralia
| | - Eyesha Younus
- Department of Medical Physics, Odette Cancer CentreSunnybrook Health Sciences CentreTorontoOntarioCanada
| | - Eric Aliotta
- Department of Medical PhysicsMemorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
| | - Gabriele Meliadò
- Unità Operativa Complessa di Fisica SanitariaAzienda Ospedaliera Universitaria Integrata VeronaVeronaItaly
| | - Teo Stanescu
- Department of Radiation Oncology, University of Toronto and Medical Physics, Princess Margaret Cancer CentreUniversity Health NetworkTorontoOntarioCanada
| | - Wajiha Bano
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Ali Fatemi‐Ardekani
- Department of PhysicsJackson State University (JSU)JacksonMississippiUSA
- SpinTecxJacksonMississippiUSA
- Department of Radiation OncologyCommunity Health Systems (CHS) Cancer NetworkJacksonMississippiUSA
| | - Andreas Wetscherek
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Uwe Oelfke
- Joint Department of PhysicsInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUnited Kingdom
| | - Nico van den Berg
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtNetherlands
| | - Ralph P. Mason
- Department of RadiologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Petra J. van Houdt
- Department of Radiation OncologyNetherlands Cancer InstituteAmsterdamNetherlands
| | - James M. Balter
- Department of Radiation OncologyUniversity of MichiganAnn ArborMichiganUSA
| | - Oliver J. Gurney‐Champion
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam UMCUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
8
|
Boeke S, Uder L, Ehlers J, Butzer S, Baumeister S, Boldt J, Nachbar M, Lo Russo M, Mönnich D, Nikolaou K, Zips D, Thorwarth D, Gani C. Online MR guided dose escalated radiotherapy for organ preservation in distal rectal cancer. Clin Transl Radiat Oncol 2022; 37:153-156. [DOI: 10.1016/j.ctro.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
|
9
|
Wegener D, Thome A, Paulsen F, Gani C, Boldt J, Butzer S, Thorwarth D, Moennich D, Nachbar M, Müller AC, Zips D, Boeke S. First Experience and Prospective Evaluation on Feasibility and Acute Toxicity of Online Adaptive Radiotherapy of the Prostate Bed as Salvage Treatment in Patients with Biochemically Recurrent Prostate Cancer on a 1.5T MR-Linac. J Clin Med 2022; 11:jcm11164651. [PMID: 36012885 PMCID: PMC9410121 DOI: 10.3390/jcm11164651] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction: Novel MRI-linear accelerator hybrids (MR-Linacs, MRL) promise an optimization of radiotherapy (RT) through daily MRI imaging with enhanced soft tissue contrast and plan adaptation on the anatomy of the day. These features might potentially improve salvage RT of prostate cancer (SRT), where the clinical target volume is confined by the mobile organs at risk (OAR) rectum and bladder. So far, no data exist about the feasibility of the MRL technology for SRT. In this study, we prospectively examined patients treated with SRT on a 1.5 T MRL and report on workflow, feasibility and acute toxicity. Patients and Methods: Sixteen patients were prospectively enrolled within the MRL-01 study (NCT: NCT04172753). All patients were staged and had an indication for SRT after radical prostatectomy according to national guidelines. RT consisted of 66 Gy in 33 fractions or 66.5/70 Gy in 35 fractions in case of a defined high-risk region. On the 1.5 T MRL, daily plan adaption was performed using one of two workflows: adapt to shape (ATS, using contour adaptation and replanning) or adapt to position (ATP, rigid replanning onto the online anatomy with virtual couch shift). Duration of treatment steps, choice of workflow and treatment failure were recorded for each fraction of each patient. Patient-reported questionnaires about patient comfort were evaluated as well as extensive reporting of acute toxicity (patient reported and clinician scored). Results: A total of 524/554 (94.6%) of fractions were successfully treated on the MRL. No patient-sided treatment failures occurred. In total, ATP was chosen in 45.7% and ATS in 54.3% of fractions. In eight cases, ATP was performed on top of the initial ATS workflow. Mean (range) duration of all fractions (on-table time until end of treatment) was 25.1 (17.6–44.8) minutes. Mean duration of the ATP workflow was 20.60 (17.6–25.2) minutes and of the ATS workflow 31.3 (28.2–34.1) minutes. Patient-reported treatment experience questionnaires revealed high rates of tolerability of the treatment procedure. Acute toxicity (RTOG, CTC as well as patient-reported CTC, IPSS and ICIQ) during RT and 3 months after was mild to moderate with a tendency of recovery to baseline levels at 3 months post RT. No G3+ toxicity was scored for any item. Conclusions: In this first report on SRT of prostate cancer patients on a 1.5 T MRL, we could demonstrate the feasibility of both available workflows. Daily MR-guided adaptive SRT of mean 25.1 min per fraction was well tolerated in this pretreated collective, and we report low rates of acute toxicity for this treatment. This study suggests that SRT on a 1.5 T MRL can be performed in clinical routine and it serves as a benchmark for future analyses.
Collapse
Affiliation(s)
- Daniel Wegener
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- Correspondence:
| | - Alexandra Thome
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Frank Paulsen
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Cihan Gani
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Sarah Butzer
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - David Moennich
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| | - Arndt-Christian Müller
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- Department of Radiation Oncology, Klinikum Ludwigsburg, 71640 Ludwigsburg, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
- German Cancer Consortium (DKTK), Partner Site Tübingen and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Radiation Oncology, Charité Berlin, 10117 Berlin, Germany
| | - Simon Boeke
- Department of Radiation Oncology, Eberhard Karls University, 72076 Tuebingen, Germany
| |
Collapse
|
10
|
Comparing patient acceptability of MR-guided radiotherapy to conventional CBCT on two Elekta systems: a questionnaire-based survey. JOURNAL OF RADIOTHERAPY IN PRACTICE 2022. [DOI: 10.1017/s1460396922000206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Background and Purpose:
The magnetic resonance linear accelerator system (MR Linac) is a novel piece of radiotherapy (RT) equipment allowing the routine application of daily MR-guided treatment adaptation. The hardware design required for such technical capabilities and the increased complexity of the treatment workflow entails a notable departure from cone beam computed tomography (CBCT)-based RT. Patient tolerability of treatment is paramount to RT practice where high compliance is required. Presented is a comparative analysis of how such modality specific characteristics may ultimately impact the patient experience of treatment.
Materials and Methods:
Forty patients undergoing RT for prostate cancer (PCa) on either the MR Linac (n = 20) or a CBCT-based linac (n = 20) were provided with a validated patient reported outcomes measures (PROM’s) questionnaire at fraction 1 and fraction 20. The 18-item questionnaire provided patient responses recorded using a 4-point Likert scale, 0 denoting a response of ‘Not at all’, 1 ‘Slightly’, 2 ‘Moderately’ and 3 signifying ‘Very’. The analysis provided insight into both comparisons between modalities at singular time points (fractions 1 and 20), as well as a temporal analysis within a single modality, denoting changing patient experience.
Results:
Patients generally found the MR Linac treatment couch more comfortable, however, found the increase in treatment duration harder to tolerate. Responses for all items remained stable between first and last fraction across both cohorts, indicating minimal temporal variation within a single modality. None of the responses were statistically significant at the 0·01 level.
Conclusion:
Whether radiotherapy for PCa is delivered on a CBCT linac or the MR Linac, there is little difference in patient experience with minimal experiential variation within a single modality.
Collapse
|
11
|
Gani C, Lo Russo M, Boeke S, Wegener D, Gatidis S, Butzer S, Boldt J, Mönnich D, Thorwarth D, Nikolaou K, Zips D, Nachbar M. A novel approach for radiotherapy dose escalation in rectal cancer using online MR-guidance and rectal ultrasound gel filling - Rationale and first in human. Radiother Oncol 2021; 164:37-42. [PMID: 34534612 DOI: 10.1016/j.radonc.2021.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Dose escalated radiotherapy has previously been investigated as a strategy to increase complete response rates in rectal cancer. However large safety margins are required using cone-beam computed tomography guided radiotherapy leading to high doses to organs at risk or insufficient target volume coverage in order to keep dose constraints. We herein present the first clinical application of a new technique for dose escalation in rectal cancer using online magnetic resonance (MR)-guidance and rectal ultrasound gel filling. METHODS A 73-year-old patient with distal cT3a cN0 cM0 rectal cancer was referred for definitive radiochemotherapy with the goal of organ preservation after multidisciplinary discussion. A dose of 45 Gy in 25 fractions with a stereotactic integrated boost to the primary tumor of 50 Gy with concomitant 5-fluorouracil was prescribed. Furthermore, a boost to the primary tumor with 3 Gy per fraction using the adapt-to-shape workflow on a 1.5 T MR-Linac was planned once weekly. For the boost fractions 100 cc of ultrasound gel was applied rectally in order to improve tumor visibility and distancing of uninvolved rectal mucosa. In order to determine the required planning target volume margin diagnostic scans of ten rectal cancer patients conducted with rectal ultrasound gel filling were studied. RESULTS Based on the ten diagnostic scans an average isotropic margin of 4 mm was found to be sufficient to cover 95% of the target volume during an online adaptive workflow. Three boost fractions were applied, mean treatment duration was 22:34 min. Treatment was well tolerated by the patient with no more than PRO-CTCAE grade I° toxicity of any kind. The rectal ultrasound gel filling resulted in superior visibility of the tumor and reduced the dose to the involved mucosa especially in the high dose range compared with a boost plan calculated without any filling. A considerable tumor shrinkage was observed during treatment from 17.43 cc at baseline to 4 cc in week four. CONCLUSION This novel method appears to be a simple but effective strategy for dose escalated radiotherapy in rectal cancer. Based on the encouraging observation, a prospective trial is currently under preparation.
Collapse
Affiliation(s)
- Cihan Gani
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Monica Lo Russo
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - Simon Boeke
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - Daniel Wegener
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - Sergios Gatidis
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital, Eberhard Karls University, Tübingen, Germany
| | - Sarah Butzer
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - Jessica Boldt
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - David Mönnich
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - Daniela Thorwarth
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, Medical Faculty and University Hospital, Eberhard Karls University, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany; German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Nachbar
- Section for Biomedical Physics, Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|