1
|
Ohashi K, Kunitomi A, Chiba S, Mizuno K. Roles of the Dbl family of RhoGEFs in mechanotransduction - a review. Front Cell Dev Biol 2024; 12:1485725. [PMID: 39479515 PMCID: PMC11521908 DOI: 10.3389/fcell.2024.1485725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024] Open
Abstract
Rho guanine nucleotide exchange factors (RhoGEFs) comprise a wide range of proteins with a common domain responsible for the activation of the Rho family of small GTPases and various domains in other regions. The evolutionary divergence of RhoGEFs enables actin cytoskeletal reorganization, leading to complex cellular responses in higher organisms. In this review, we address the involvement of RhoGEFs in the mechanical stress response of mammalian cells. The cellular mechanical stress response is essential for the proper and orderly regulation of cell populations, including the maintenance of homeostasis, tissue morphogenesis, and adaptation to the mechanical environment. In particular, this review focuses on the recent findings regarding the Dbl family of RhoGEFs involved in mechanical stress responses at the cell-cell and cell-substrate adhesion sites, and their molecular mechanisms underlying actin cytoskeleton remodeling and signal transduction.
Collapse
Affiliation(s)
- Kazumasa Ohashi
- Department of Molecular and Chemical Life Sciences, Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | |
Collapse
|
2
|
Salisbury SJ, Daniels RR, Monaghan SJ, Bron JE, Villamayor PR, Gervais O, Fast MD, Sveen L, Houston RD, Robinson N, Robledo D. Keratinocytes drive the epithelial hyperplasia key to sea lice resistance in coho salmon. BMC Biol 2024; 22:160. [PMID: 39075472 PMCID: PMC11287951 DOI: 10.1186/s12915-024-01952-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Salmonid species have followed markedly divergent evolutionary trajectories in their interactions with sea lice. While sea lice parasitism poses significant economic, environmental, and animal welfare challenges for Atlantic salmon (Salmo salar) aquaculture, coho salmon (Oncorhynchus kisutch) exhibit near-complete resistance to sea lice, achieved through a potent epithelial hyperplasia response leading to rapid louse detachment. The molecular mechanisms underlying these divergent responses to sea lice are unknown. RESULTS We characterized the cellular and molecular responses of Atlantic salmon and coho salmon to sea lice using single-nuclei RNA sequencing. Juvenile fish were exposed to copepodid sea lice (Lepeophtheirus salmonis), and lice-attached pelvic fin and skin samples were collected 12 h, 24 h, 36 h, 48 h, and 60 h after exposure, along with control samples. Comparative analysis of control and treatment samples revealed an immune and wound-healing response that was common to both species, but attenuated in Atlantic salmon, potentially reflecting greater sea louse immunomodulation. Our results revealed unique but complementary roles of three layers of keratinocytes in the epithelial hyperplasia response leading to rapid sea lice rejection in coho salmon. Our results suggest that basal keratinocytes direct the expansion and mobility of intermediate and, especially, superficial keratinocytes, which eventually encapsulate the parasite. CONCLUSIONS Our results highlight the key role of keratinocytes in coho salmon's sea lice resistance and the diverged biological response of the two salmonid host species when interacting with this parasite. This study has identified key pathways and candidate genes that could be manipulated using various biotechnological solutions to improve Atlantic salmon sea lice resistance.
Collapse
Affiliation(s)
- S J Salisbury
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - R Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - S J Monaghan
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - J E Bron
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - P R Villamayor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - O Gervais
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - M D Fast
- Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Canada
| | | | - R D Houston
- Benchmark Genetics, 1 Pioneer BuildingMilton Bridge, Edinburgh TechnopolePenicuik, UK
| | - N Robinson
- Nofima AS, Tromsø, Norway.
- Sustainable Aquaculture Laboratory - Temperate and Tropical (SALTT), Deakin University, Melbourne, VIC, 3225, Australia.
| | - D Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
- Department of Genetics, University of Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
3
|
Chang NC, Wells JN, Wang AY, Schofield P, Huang YC, Truong VH, Simoes-Costa M, Feschotte C. Gag proteins encoded by endogenous retroviruses are required for zebrafish development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586437. [PMID: 38585793 PMCID: PMC10996621 DOI: 10.1101/2024.03.25.586437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Transposable elements (TEs) make up the bulk of eukaryotic genomes and examples abound of TE-derived sequences repurposed for organismal function. The process by which TEs become coopted remains obscure because most cases involve ancient, transpositionally inactive elements. Reports of active TEs serving beneficial functions are scarce and often contentious due to difficulties in manipulating repetitive sequences. Here we show that recently active TEs in zebrafish encode products critical for embryonic development. Knockdown and rescue experiments demonstrate that the endogenous retrovirus family BHIKHARI-1 (Bik-1) encodes a Gag protein essential for mesoderm development. Mechanistically, Bik-1 Gag associates with the cell membrane and its ectopic expression in chicken embryos alters cell migration. Similarly, depletion of BHIKHARI-2 Gag, a relative of Bik-1, causes defects in neural crest development in zebrafish. We propose an "addiction" model to explain how active TEs can be integrated into conserved developmental processes.
Collapse
Affiliation(s)
- Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Jonathan N Wells
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Andrew Y Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Phillip Schofield
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Yi-Chia Huang
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vinh H Truong
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Marcos Simoes-Costa
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
4
|
Devitt CC, Weng S, Bejar-Padilla VD, Alvarado J, Wallingford JB. PCP and Septins govern the polarized organization of the actin cytoskeleton during convergent extension. Curr Biol 2024; 34:615-622.e4. [PMID: 38199065 PMCID: PMC10887425 DOI: 10.1016/j.cub.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/25/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Convergent extension (CE) requires the coordinated action of the planar cell polarity (PCP) proteins1,2 and the actin cytoskeleton,3,4,5,6 but this relationship remains incompletely understood. For example, PCP signaling orients actomyosin contractions, yet actomyosin is also required for the polarized localization of PCP proteins.7,8 Moreover, the actin-regulating Septins play key roles in actin organization9 and are implicated in PCP and CE in frogs, mice, and fish5,6,10,11,12 but execute only a subset of PCP-dependent cell behaviors. Septin loss recapitulates the severe tissue-level CE defects seen after core PCP disruption yet leaves overt cell polarity intact.5 Together, these results highlight the general fact that cell movement requires coordinated action by distinct but integrated actin populations, such as lamella and lamellipodia in migrating cells13 or medial and junctional actin populations in cells engaged in apical constriction.14,15 In the context of Xenopus mesoderm CE, three such actin populations are important, a superficial meshwork known as the "node-and-cable" system,4,16,17,18 a contractile network at deep cell-cell junctions,6,19 and mediolaterally oriented actin-rich protrusions, which are present both superficially and deeply.4,19,20,21 Here, we exploited the amenability of the uniquely "two-dimensional" node and cable system to probe the relationship between PCP proteins, Septins, and the polarization of this actin network. We find that the PCP proteins Vangl2 and Prickle2 and Septins co-localize at nodes, and that the node and cable system displays a cryptic, PCP- and Septin-dependent anteroposterior (AP) polarity in its organization and dynamics.
Collapse
Affiliation(s)
- Caitlin C Devitt
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Shinuo Weng
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | | | - José Alvarado
- Department of Physics, University of Texas, Austin, TX 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Chen H, Chen J, Wu Y, Xie W, Jin L. A study on the mechanism of Indium phosphide/zinc sulfide core/shell quantum dots influencing embryo incubation of rare minnow (Gobiocypris rarus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106593. [PMID: 37327537 DOI: 10.1016/j.aquatox.2023.106593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
Quantum dots (QDs) inhibit fish hatching, but the mechanism is still unclear. In this study, the effect of Indium phosphide/zinc sulfide quantum dots (InP/ZnS QDs) on the embryo incubation of rare minnow was investigated. Five experimental concentration groups were set up according to the preliminary experimental results, which were 0, 50, 100, 200 and 400 nM. A direct exposure method was adopted to expose embryos to InP/ZnS QDs solution. The results showed that InP/ZnS QDs significantly inhibited the embryo hatching rate, delayed embryo emergence, affected the expression of genes associated with hatching gland cells and hatching enzymes. InP/ZnS QDs also destroy the structure of the embryo chorion. In addition, QDs can cause oxidative stress in embryos. Transcriptional sequencing analysis showed that InP/ZnS QDs InP/ZnS QDs may have induced the production of a hypoxic environment and triggered induce abnormal cardiac muscle contraction, inflammatory response and apoptosis process in embryos. In conclusion, QDs influences embryo hatchability largely through egg chorion mediation.
Collapse
Affiliation(s)
- Hang Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Juan Chen
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Yingyi Wu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Weiwei Xie
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing, 400715, China.
| |
Collapse
|
6
|
Gu J, Zhang X, Jiang G, Li Q, Wang E, Yu J. ARHGEF40 promotes non-small cell lung cancer proliferation and invasion via the AKT-Wnt axis by binding to RhoA. Mol Carcinog 2022; 61:1016-1030. [PMID: 36000254 DOI: 10.1002/mc.23457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Rho guanine nucleotide exchange factor 40 (ARHGEF40) is a member of the Dbl-family of guanine nucleotide factor proteins. However, its expression pattern and biological function in malignant tumors, notably in nonsmall cell lung cancer (NSCLC) are currently unknown. The present study demonstrated that ARHGEF40 was highly expressed in NSCLC specimens and that its expression was significantly associated with advanced TNM stage (p < 0.001), lymph node metastasis (p = 0.002), and poor prognosis (p = 0.0056). In addition, ARHGEF40 accelerated nuclear translocation of the key component β-catenin and increased the expression levels of the Wnt signaling pathway targets c-myc, cyclin D1 and MMP7. Moreover, it promoted lung cancer cell proliferation and invasion in vitro and in vivo. To elucidate the underlying molecular mechanism, the current study demonstrated that ARHGEF40 could induce activation of the Wnt signaling pathway by increasing the phosphorylation levels of AKT and GSK3β via interaction with RhoA. Moreover, the Dbl homology (DH)-pleckstrin homology (PH) domain of ARHGEF40 was responsible for this interaction. Its deletion abolished the binding, which blocked the activation of the Wnt signaling. Taken together, the data indicated that ARHGEF40 promoted the malignant phenotype of lung cancer cells by activating the AKT-Wnt axis. This was achieved by its interaction with RhoA via the DH-PH domain. ARHGEF40 may serve as a novel target for NSCLC treatment.
Collapse
Affiliation(s)
- Jian Gu
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiupeng Zhang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guiyang Jiang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Enhua Wang
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Juanhan Yu
- Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Banerjee DS, Banerjee S. Emergence and maintenance of variable-length actin filaments in a limiting pool of building blocks. Biophys J 2022; 121:2436-2448. [PMID: 35598045 DOI: 10.1016/j.bpj.2022.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 04/10/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Actin is one of the key structural components of the eukaryotic cytoskeleton that regulates cellular architecture and mechanical properties. Dynamic regulation of actin filament length and organization is essential for the control of many physiological processes including cell adhesion, motility and division. While previous studies have mostly focused on the mechanisms controlling the mean length of individual actin filaments, it remains poorly understood how distinct actin filament populations in cells maintain different lengths using the same set of molecular building blocks. Here we develop a theoretical model for the length regulation of multiple actin filaments by nucleation and growth rate modulation by actin binding proteins in a limiting pool of monomers. We first show that spontaneous nucleation of actin filaments naturally leads to heterogeneities in filament length distribution. We then investigate the effects of filament growth inhibition by capping proteins and growth promotion by formin proteins on filament length distribution. We find that filament length heterogeneity can be increased by growth inhibition, whereas growth promoters do not significantly affect length heterogeneity. Interestingly, a competition between filament growth inhibitors and growth promoters can give rise to bimodal filament length distribution as well as a highly heterogeneous length distribution with large statistical dispersion. We quantitatively predict how heterogeneity in actin filament length can be modulated by tuning F-actin nucleation and growth rates in order to create distinct filament subpopulations with different lengths. SIGNIFICANCE: Actin filaments organize into different functional network architectures within eukaryotic cells. To maintain distinct actin network architectures, it is essential to regulate the lengths of actin filaments. While the mechanisms controlling the lengths of individual actin filaments have been extensively studied, the regulation of length heterogeneity in actin filament populations is not well understood. Here we show that the modulation of actin filament growth and nucleation rates by actin binding proteins can regulate actin length distribution and create distinct sub-populations with different lengths. In particular, by tuning concentrations of formin, profilin and capping proteins, various aspects of actin filament length distribution can be controlled. Insights gained from our results may have significant implications for the regulation of actin filament length heterogeneity and architecture within a cell.
Collapse
Affiliation(s)
- Deb Sankar Banerjee
- Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213, USA
| | - Shiladitya Banerjee
- Carnegie Mellon University, Department of Physics, Pittsburgh, PA 15213, USA
| |
Collapse
|
8
|
Devitt CC, Lee C, Cox RM, Papoulas O, Alvarado J, Shekhar S, Marcotte EM, Wallingford JB. Twinfilin1 controls lamellipodial protrusive activity and actin turnover during vertebrate gastrulation. J Cell Sci 2021; 134:jcs254011. [PMID: 34060614 PMCID: PMC8325956 DOI: 10.1242/jcs.254011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 05/12/2021] [Indexed: 11/20/2022] Open
Abstract
The dynamic control of the actin cytoskeleton is a key aspect of essentially all animal cell movements. Experiments in single migrating cells and in vitro systems have provided an exceptionally deep understanding of actin dynamics. However, we still know relatively little of how these systems are tuned in cell-type-specific ways, for example in the context of collective cell movements that sculpt the early embryo. Here, we provide an analysis of the actin-severing and depolymerization machinery during vertebrate gastrulation, with a focus on Twinfilin1 (Twf1) in Xenopus. We find that Twf1 is essential for convergent extension, and loss of Twf1 results in a disruption of lamellipodial dynamics and polarity. Moreover, Twf1 loss results in a failure to assemble polarized cytoplasmic actin cables, which are essential for convergent extension. These data provide an in vivo complement to our more-extensive understanding of Twf1 action in vitro and provide new links between the core machinery of actin regulation and the specialized cell behaviors of embryonic morphogenesis.
Collapse
Affiliation(s)
- Caitlin C. Devitt
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Chanjae Lee
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Rachael M. Cox
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - José Alvarado
- Department of Physics, University of Texas, Austin, TX 78712, USA
| | - Shashank Shekhar
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
9
|
Wu Q, Li G, Huo T, Du X, Yang Q, Hung TC, Yan W. Mechanisms of parental co-exposure to polystyrene nanoplastics and microcystin-LR aggravated hatching inhibition of zebrafish offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145766. [PMID: 33610984 DOI: 10.1016/j.scitotenv.2021.145766] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
The combined toxicity effects of microcystins-LR (MCLR) and polystyrene nanoplastics (PSNPs) on the hatching of F1 zebrafish (Danio rerio) embryos were investigated in this study due to the increasing concerns of both plastic pollution and eutrophication in aquatic environments. Three-month-old zebrafish were used to explore the molecular mechanisms underlying the combined effect of MCLR (0, 0.9, 4.5, and 22.5 μg/L) on egg hatching in the existence of PSNPs (100 μg/L). The results demonstrated the existence of PSNPs further increased the accumulation of MCLR in F1 embryos. The hatching rates of F1 embryos were inhibited after exposure to 22.5 μg/L MCLR, and the presence of PSNPs aggravated the hatching inhibition induced by MCLR. The decrease of hatching enzyme activity and the abnormality of spontaneous movement were observed. We examined the altered expression levels of the genes associated with the hatching enzyme (tox16, foxp1, ctslb, xpb1, klf4, cap1, bmp4, cd63, He1.2, zhe1, and prl), cholinergic system (ache and chrnα7), and muscle development (Wnt, MyoD, Myf5, Myogenin, and MRF4). The results suggested the existence of PSNPs exacerbated the hatching inhibition of F1 embryos through decreasing the activity of enzyme, interfering with the cholinergic system, and affecting the muscle development.
Collapse
Affiliation(s)
- Qin Wu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, Hubei province 435002, China; Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, Huangshi 435002, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Tangbin Huo
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Xue Du
- Heilongjiang River Fishery Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
| | - Qing Yang
- Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydro-ecology, Ministry of Water Resources and Chinese Academy of Sciences, Wuhan 430079, China
| | - Tien-Chieh Hung
- Department of Biological and Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA
| | - Wei Yan
- Institute of Quality Standard & Testing Technology for Agro-Products, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; Hubei Key Laboratory of Nutritional Quality and Safety of Agro-Products, Wuhan 430064, Hubei, China.
| |
Collapse
|
10
|
Fujiwara S, Matsui TS, Ohashi K, Mizuno K, Deguchi S. Keratin‐binding ability of the N‐terminal Solo domain of Solo is critical for its function in cellular mechanotransduction. Genes Cells 2019; 24:390-402. [DOI: 10.1111/gtc.12682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 03/11/2019] [Accepted: 03/26/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Sachiko Fujiwara
- Division of Bioengineering, Graduate School of Engineering Science Osaka University Toyonaka Japan
- Japanese Society for the Promotion of Science Tokyo Japan
| | - Tsubasa S. Matsui
- Division of Bioengineering, Graduate School of Engineering Science Osaka University Toyonaka Japan
| | - Kazumasa Ohashi
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences Tohoku University Sendai Japan
| | - Kensaku Mizuno
- Laboratory of Molecular and Cellular Biology, Graduate School of Life Sciences Tohoku University Sendai Japan
- Institute of Liberal Arts and Sciences Tohoku University Sendai Japan
| | - Shinji Deguchi
- Division of Bioengineering, Graduate School of Engineering Science Osaka University Toyonaka Japan
| |
Collapse
|
11
|
Akthar IST, Pichiah PBT, Arunachalam S, Raja S. Adriamycin inhibits embryonic development in zebrafish through downregulation of Kruppel-like factor4. J Biochem Mol Toxicol 2018; 33:e22235. [PMID: 30286259 DOI: 10.1002/jbt.22235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 07/21/2018] [Accepted: 08/09/2018] [Indexed: 12/11/2022]
Abstract
Adriamycin is an effective anticancer drug used in a wide range of cancers. Anticancer drugs modulate oncogenes and nodal regulatory molecules that affect cell differentiation and organismal development. In this study, we explore the effect of adriamycin on Kruppel-like factor4 (Klf4), an essential pluripotent factor by choosing zebrafish embryos as a model system. Klf4 is involved in the regulation of cellular growth, proliferation, and differentiation. In zebrafish embryogenesis, Klf4 is a major regulator of differentiation of polster in the anterior mesendoderm region of cells into hatching gland cells. The importance of this study is to check the effect of adriamycin on embryonic development. We found, adriamycin dose dependently altered the gene expression level of Klf4 that occurs in parallel to its detrimental effect on hatching. Supportively, cathepsin L and cyclase-associated protein1 are the other two markers of hatching that are altered along with Klf4.
Collapse
Affiliation(s)
- I Syeda Thabassum Akthar
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamilnadu, India
| | - P B Tirupathi Pichiah
- Department of Animal Sciences, Bharathidasan University, Tiruchirappalli, Tamilnadu, India
| | - Sankarganesh Arunachalam
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, Tamilnadu, India
| | - Sudhakaran Raja
- Department of Integrative Biology, School of Biosciences and Technology, VIT, Vellore, Tamilnadu, India
| |
Collapse
|
12
|
Nishimura R, Kato K, Fujiwara S, Ohashi K, Mizuno K. Solo and Keratin Filaments Regulate Epithelial Tubule Morphology. Cell Struct Funct 2018; 43:95-105. [DOI: 10.1247/csf.18010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Ryosuke Nishimura
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University
- Department of Cell Biology, Graduate School of Medical Sciences, Tokushima University
| | - Kagayaki Kato
- Bioimage Informatics Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences (NINS)
- Department of Imaging Science, Center for Novel Science Initiatives (CNSI), National Institutes of Natural Sciences (NINS)
- Division of Evolutionary Biology Biodiversity, National Institute for Basic Biology (NIBB)
| | - Sachiko Fujiwara
- Division of Bioengineering, Graduate School of Engineering Science, Osaka University
| | - Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University
| |
Collapse
|
13
|
Fujiwara S, Ohashi K, Mashiko T, Kondo H, Mizuno K. Interplay between Solo and keratin filaments is crucial for mechanical force-induced stress fiber reinforcement. Mol Biol Cell 2016; 27:954-66. [PMID: 26823019 PMCID: PMC4791139 DOI: 10.1091/mbc.e15-06-0417] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/15/2016] [Indexed: 11/11/2022] Open
Abstract
Mechanical force-induced cytoskeletal reorganization is essential for cell and tissue remodeling and homeostasis; however, the underlying cellular mechanisms remain elusive. Solo (ARHGEF40) is a RhoA-targeting guanine nucleotide exchange factor (GEF) involved in cyclical stretch-induced human endothelial cell reorientation and convergent extension cell movement in zebrafish gastrula. In this study, we show that Solo binds to keratin-8/keratin-18 (K8/K18) intermediate filaments through multiple sites. Solo overexpression promotes the formation of thick actin stress fibers and keratin bundles, whereas knockdown of Solo, expression of a GEF-inactive mutant of Solo, or inhibition of ROCK suppresses stress fiber formation and leads to disorganized keratin networks, indicating that the Solo-RhoA-ROCK pathway serves to precisely organize keratin networks, as well as to promote stress fibers. Of importance, knockdown of Solo or K18 or overexpression of GEF-inactive or deletion mutants of Solo suppresses tensile force-induced stress fiber reinforcement. Furthermore, knockdown of Solo or K18 suppresses tensile force-induced RhoA activation. These results strongly suggest that the interplay between Solo and K8/K18 filaments plays a crucial role in tensile force-induced RhoA activation and consequent actin cytoskeletal reinforcement.
Collapse
Affiliation(s)
- Sachiko Fujiwara
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Toshiya Mashiko
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Hiroshi Kondo
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
14
|
Stark BC, Cooper JA. Differential expression of CARMIL-family genes during zebrafish development. Cytoskeleton (Hoboken) 2015; 72:534-41. [PMID: 26426389 DOI: 10.1002/cm.21257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 12/19/2022]
Abstract
CARMILs are a conserved family of large multidomain proteins that regulate and target actin assembly by interacting with actin capping protein (CP). Vertebrates contain three highly conserved CARMIL isoforms encoded by three genes, whereas lower organisms contain only one isoform and gene. In order to investigate the functions of vertebrate CARMILs, we identified and characterized the three CARMIL genes in zebrafish (Danio rerio). We isolated and sequenced complete and partial cDNAs from embryos. The three genes display distinct spatial and temporal expression patterns during development. Sequence and phylogenetic analyses of cDNAs and predicted protein sequences reveal that the three zebrafish genes fall into the three conserved isoform groups previously defined for other vertebrates, which have isoform-specific and overlapping functions in human cultured cells. These results provide new tools and offer insight into understanding the role of the regulation of actin assembly dynamics during embryonic development and tissue morphogenesis.
Collapse
Affiliation(s)
- Benjamin C Stark
- Departments of Biochemistry & Molecular Biophysics and Cell Biology & Physiology, Washington University in St. Louis, St. Louis, Missouri
| | - John A Cooper
- Departments of Biochemistry & Molecular Biophysics and Cell Biology & Physiology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
15
|
Abiko H, Fujiwara S, Ohashi K, Hiatari R, Mashiko T, Sakamoto N, Sato M, Mizuno K. Rho guanine nucleotide exchange factors involved in cyclic-stretch-induced reorientation of vascular endothelial cells. J Cell Sci 2015; 128:1683-95. [PMID: 25795300 DOI: 10.1242/jcs.157503] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022] Open
Abstract
Cyclic stretch is an artificial model of mechanical force loading, which induces the reorientation of vascular endothelial cells and their stress fibers in a direction perpendicular to the stretch axis. Rho family GTPases are crucial for cyclic-stretch-induced endothelial cell reorientation; however, the mechanism underlying stretch-induced activation of Rho family GTPases is unknown. A screen of short hairpin RNAs targeting 63 Rho guanine nucleotide exchange factors (Rho-GEFs) revealed that at least 11 Rho-GEFs – Abr, alsin, ARHGEF10, Bcr, GEF-H1 (also known as ARHGEF2), LARG (also known as ARHGEF12), p190RhoGEF (also known as ARHGEF28), PLEKHG1, P-REX2, Solo (also known as ARHGEF40) and α-PIX (also known as ARHGEF6) – which specifically or broadly target RhoA, Rac1 and/or Cdc42, are involved in cyclic-stretch-induced perpendicular reorientation of endothelial cells. Overexpression of Solo induced RhoA activation and F-actin accumulation at cell-cell and cell-substrate adhesion sites. Knockdown of Solo suppressed cyclic-stretch- or tensile-force-induced RhoA activation. Moreover, knockdown of Solo significantly reduced cyclic-stretch-induced perpendicular reorientation of endothelial cells when cells were cultured at high density, but not when they were cultured at low density or pretreated with EGTA or VE-cadherin-targeting small interfering RNAs. These results suggest that Solo is involved in cell-cell-adhesion-mediated mechanical signal transduction during cyclic-stretch-induced endothelial cell reorientation.
Collapse
Affiliation(s)
- Hiyori Abiko
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Sachiko Fujiwara
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Kazumasa Ohashi
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Ryuichi Hiatari
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Toshiya Mashiko
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Naoya Sakamoto
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Masaaki Sato
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Kensaku Mizuno
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
16
|
Dumortier JG, David NB. The TORC2 component, Sin1, controls migration of anterior mesendoderm during zebrafish gastrulation. PLoS One 2015; 10:e0118474. [PMID: 25710382 PMCID: PMC4339552 DOI: 10.1371/journal.pone.0118474] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/18/2015] [Indexed: 12/19/2022] Open
Abstract
TORC2 is a serine-threonine kinase complex conserved through evolution that recently emerged as a new regulator of actin dynamics and cell migration. However, knockout in mice of its core components Sin1 and Rictor is embryonic lethal, which has limited in vivo analyses. Here, we analysed TORC2 function during early zebrafish development, using a morpholino-mediated loss of function of sin1. Sin1 appears required during gastrulation for migration of the prechordal plate, the anterior most mesoderm. In absence of Sin1, cells migrate both slower and less persistently, which can be correlated to a reduction in actin-rich protrusions and a randomisation of the remaining protrusions. These results demonstrate that, as established in vitro, the TORC2 component Sin1 controls actin dynamics and cell migration in vivo. We furthermore establish that Sin1 is required for protrusion formation downstream of PI3K, and is acting upstream of the GTPase Rac1, since expression of an activated form of Rac1 is sufficient to rescue sin1 loss of function.
Collapse
Affiliation(s)
- Julien G. Dumortier
- INSERM U1024, Paris, France
- CNRS UMR 8197, Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, Paris, France
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United-Kingdom
| | - Nicolas B. David
- INSERM U1024, Paris, France
- CNRS UMR 8197, Paris, France
- IBENS, Institut de Biologie de l’Ecole Normale Supérieure, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Yu XF, Ni QC, Chen JP, Xu JF, Jiang Y, Yang SY, Ma J, Gu XL, Wang H, Wang YY. Knocking down the expression of adenylate cyclase-associated protein 1 inhibits the proliferation and migration of breast cancer cells. Exp Mol Pathol 2014; 96:188-94. [PMID: 24509166 DOI: 10.1016/j.yexmp.2014.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/03/2014] [Indexed: 01/05/2023]
Abstract
Adenylate cyclase-associated protein 1 (CAP1) is a conserved protein that was found to be up-regulated in breast cancer and related to the migration of breast cancer. We verified its roles in breast cancer specimens and cell lines. In our results, 71 of 100 specimens of breast cancer showed high levels of CAP1 by immunohistochemistry. Associated with statistical analysis, we saw that CAP1 was related to the grade of breast cancer. In MDA-MB-231, the expression of CAP1 was the highest and by knocking down the expression of CAP1 in MDA-MB-231, its ability for proliferating and migrating apparently decreased and induced changes in morphology, which were related to the arrangement of F-actin. Therefore, CAP1 might be a potential molecular targeted therapy for surgery and immune treatment.
Collapse
Affiliation(s)
- Xia-Fei Yu
- Department of General Surgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Qi-Chao Ni
- Department of General Surgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Jin-Peng Chen
- Department of General Surgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Jun-Fei Xu
- Department of General Surgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Ying Jiang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Shu-Yun Yang
- Department of Pathology, Nantong University Cancer Hospital, Nantong 226363, Jiangsu, China
| | - Jing Ma
- Department of General Surgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China
| | - Xiao-Ling Gu
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China
| | - Hua Wang
- Department of General Surgery, The Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, Jiangsu, China.
| | - Ying-Ying Wang
- Department of Pathogen Biology, Medical College, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
18
|
Effendi K, Yamazaki K, Mori T, Masugi Y, Makino S, Sakamoto M. Involvement of hepatocellular carcinoma biomarker, cyclase-associated protein 2 in zebrafish body development and cancer progression. Exp Cell Res 2013; 319:35-44. [DOI: 10.1016/j.yexcr.2012.09.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/20/2012] [Accepted: 09/10/2012] [Indexed: 11/16/2022]
|
19
|
Goudevenou K, Martin P, Yeh YJ, Jones P, Sablitzky F. Def6 is required for convergent extension movements during zebrafish gastrulation downstream of Wnt5b signaling. PLoS One 2011; 6:e26548. [PMID: 22039507 PMCID: PMC3198796 DOI: 10.1371/journal.pone.0026548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
During gastrulation, convergent extension (CE) cell movements are regulated through the non-canonical Wnt signaling pathway. Wnt signaling results in downstream activation of Rho GTPases that in turn regulate actin cytoskeleton rearrangements essential for co-ordinated CE cell movement. Rho GTPases are bi-molecular switches that are inactive in their GDP-bound stage but can be activated to bind GTP through guanine nucleotide exchange factors (GEFs). Here we show that def6, a novel GEF, regulates CE cell movement during zebrafish gastrulation. Def6 morphants exhibit broadened and shortened body axis with normal cell fate specification, reminiscent of the zebrafish mutants silberblick and pipetail that lack Wnt11 or Wnt5b, respectively. Indeed, def6 morphants phenocopy Wnt5b mutants and ectopic overexpression of def6 essentially rescues Wnt5b morphants, indicating a novel role for def6 as a central GEF downstream of Wnt5b signaling. In addition, by knocking down both def6 and Wnt11, we show that def6 synergises with the Wnt11 signaling pathway.
Collapse
Affiliation(s)
- Katerina Goudevenou
- School of Biology, Centre for Genetics and Genomics, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Paul Martin
- School of Biology, Centre for Genetics and Genomics, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Yu-Jung Yeh
- School of Biology, Centre for Genetics and Genomics, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Peter Jones
- School of Biomedical Sciences, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
| | - Fred Sablitzky
- School of Biology, Centre for Genetics and Genomics, Queen's Medical Centre, The University of Nottingham, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Wu MY, Ramel MC, Howell M, Hill CS. SNW1 is a critical regulator of spatial BMP activity, neural plate border formation, and neural crest specification in vertebrate embryos. PLoS Biol 2011; 9:e1000593. [PMID: 21358802 PMCID: PMC3039673 DOI: 10.1371/journal.pbio.1000593] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/31/2010] [Indexed: 11/18/2022] Open
Abstract
Bone morphogenetic protein (BMP) gradients provide positional information to direct cell fate specification, such as patterning of the vertebrate ectoderm into neural, neural crest, and epidermal tissues, with precise borders segregating these domains. However, little is known about how BMP activity is regulated spatially and temporally during vertebrate development to contribute to embryonic patterning, and more specifically to neural crest formation. Through a large-scale in vivo functional screen in Xenopus for neural crest fate, we identified an essential regulator of BMP activity, SNW1. SNW1 is a nuclear protein known to regulate gene expression. Using antisense morpholinos to deplete SNW1 protein in both Xenopus and zebrafish embryos, we demonstrate that dorsally expressed SNW1 is required for neural crest specification, and this is independent of mesoderm formation and gastrulation morphogenetic movements. By exploiting a combination of immunostaining for phosphorylated Smad1 in Xenopus embryos and a BMP-dependent reporter transgenic zebrafish line, we show that SNW1 regulates a specific domain of BMP activity in the dorsal ectoderm at the neural plate border at post-gastrula stages. We use double in situ hybridizations and immunofluorescence to show how this domain of BMP activity is spatially positioned relative to the neural crest domain and that of SNW1 expression. Further in vivo and in vitro assays using cell culture and tissue explants allow us to conclude that SNW1 acts upstream of the BMP receptors. Finally, we show that the requirement of SNW1 for neural crest specification is through its ability to regulate BMP activity, as we demonstrate that targeted overexpression of BMP to the neural plate border is sufficient to restore neural crest formation in Xenopus SNW1 morphants. We conclude that through its ability to regulate a specific domain of BMP activity in the vertebrate embryo, SNW1 is a critical regulator of neural plate border formation and thus neural crest specification.
Collapse
Affiliation(s)
- Mary Y. Wu
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Marie-Christine Ramel
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
| | - Michael Howell
- High-Throughput Screening Facility, Cancer Research UK London Research Institute, London, United Kingdom
| | - Caroline S. Hill
- Laboratory of Developmental Signalling, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Hammerschmidt M, Wedlich D. Regulated adhesion as a driving force of gastrulation movements. Development 2009; 135:3625-41. [PMID: 18952908 DOI: 10.1242/dev.015701] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent data have reinforced the fundamental role of regulated cell adhesion as a force that drives morphogenesis during gastrulation. As we discuss, cell adhesion is required for all modes of gastrulation movements in all organisms. It can even be instructive in nature, but it must be tightly and dynamically regulated. The picture that emerges from the recent findings that we review here is that different modes of gastrulation movements use the same principles of adhesion regulation, while adhesion molecules themselves coordinate the intra- and extracellular changes required for directed cell locomotion.
Collapse
|
22
|
Krens SG, He S, Lamers GE, Meijer AH, Bakkers J, Schmidt T, Spaink HP, Snaar-Jagalska BE. Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation. Dev Biol 2008; 319:370-83. [DOI: 10.1016/j.ydbio.2008.04.032] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/11/2008] [Accepted: 04/28/2008] [Indexed: 11/28/2022]
|
23
|
Lemeer S, Jopling C, Gouw J, Mohammed S, Heck AJR, Slijper M, den Hertog J. Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Mol Cell Proteomics 2008; 7:2176-87. [PMID: 18550893 DOI: 10.1074/mcp.m800081-mcp200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coordinated movement of cells is indispensable for normal vertebrate gastrulation. Several important players and signaling pathways have been identified in convergence and extension (CE) cell movements during gastrulation, including non-canonical Wnt signaling. Fyn and Yes, members of the Src family of kinases, are key regulators of CE movements as well. Here we investigated signaling pathways in early development by comparison of the phosphoproteome of wild type zebrafish embryos with Fyn/Yes knockdown embryos that display specific CE cell movement defects. For quantitation we used differential stable isotope labeling by reductive amination of peptides. Equal amounts of labeled peptides from wild type and Fyn/Yes knockdown embryos were mixed and analyzed by on-line reversed phase TiO(2)-reversed phase LC-MS/MS. Phosphorylated and non-phosphorylated peptides were quantified, and significant changes in protein expression and/or phosphorylation were detected. We identified 348 phosphoproteins of which 69 showed a decrease in phosphorylation in Fyn/Yes knockdown embryos and 72 showed an increase in phosphorylation. Among these phosphoproteins were known regulators of cell movements, including Adducin and PDLIM5. Our results indicate that quantitative phosphoproteomics combined with morpholino-mediated knockdowns can be used to identify novel signaling pathways that act in zebrafish development in vivo.
Collapse
Affiliation(s)
- Simone Lemeer
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Krens SFG, Corredor-Adámez M, He S, Snaar-Jagalska BE, Spaink HP. ERK1 and ERK2 MAPK are key regulators of distinct gene sets in zebrafish embryogenesis. BMC Genomics 2008; 9:196. [PMID: 18442396 PMCID: PMC2390552 DOI: 10.1186/1471-2164-9-196] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/28/2008] [Indexed: 11/20/2022] Open
Abstract
Background The MAPK signaling proteins are involved in many eukaryotic cellular processes and signaling networks. However, specific functions of most of these proteins in vertebrate development remain elusive because of potential redundancies. For instance, the upstream activation pathways for ERK1 and ERK2 are highly similar, and also many of their known downstream targets are common. In contrast, mice and zebrafish studies indicate distinct roles for both ERKs in cellular proliferation, oncogenic transformation and development. A major bottleneck for further studies is that relatively little is known of in vivo downstream signaling specific for these kinases. Results Microarray based gene expression profiling of ERK1 and ERK2 knockdown zebrafish embryos at various stages of early embryogenesis resulted in specific gene expression signature sets that showed pronounced differences in gene ontology analyses. In order to predict functions of these genes, zebrafish specific in silico signaling pathways involved in early embryogenesis were constructed using the GenMAPP program. The obtained transcriptome signatures were analyzed in the BMP, FGF, Nodal and Wnt pathways. Predicted downstream effects of ERK1 and ERK2 knockdown treatments on key pathways responsible for mesendoderm development were confirmed by whole mount in situ hybridization experiments. Conclusion The gene ontology analyses showed that ERK1 and ERK2 target common and distinct gene sets, confirming the difference in knockdown phenotypes and diverse roles for these kinases during embryogenesis. For ERK1 we identified specific genes involved in dorsal-ventral patterning and subsequent embryonic cell migration. For ERK2 we identified genes involved in cell-migration, mesendoderm differentiation and patterning. The specific function of ERK2 in the initiation, maintenance and patterning of mesoderm and endoderm formation was biologically confirmed.
Collapse
Affiliation(s)
- S F Gabby Krens
- Institute of Biology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
25
|
Protocadherin-18a has a role in cell adhesion, behavior and migration in zebrafish development. Dev Biol 2008; 318:335-46. [PMID: 18468594 DOI: 10.1016/j.ydbio.2008.03.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 03/21/2008] [Accepted: 03/26/2008] [Indexed: 11/20/2022]
Abstract
Protocadherin-18a (Pcdh18a) belongs to the delta 2-protocadherins, which constitute the largest subgroup within the cadherin superfamily. Here we present isolation of a full-length zebrafish cDNA that encodes a protein highly similar to human and mouse Pcdh18. Zebrafish pcdh18a is expressed in a complex and dynamic pattern in the nervous system from gastrula stages onward, with lesser expression in mesodermal derivatives. Pcdh18a-eGFP fusion protein is expressed in a punctate manner on the membranes between cells. Overexpression of pcdh18a in embryos caused cyclopia, mislocalization of hatching gland tissue, and duplication or splitting of the neural tube. Most neural markers tested were expressed in an approximately correct A-P pattern. By cell transplantation we showed that overexpression of pcdh18a causes diminished cell migration and reduced cell protrusions, resulting in a tendency of cells to stay more firmly aggregated, probably due to increased cell adhesion. In contrast, knockdown of pcdh18a by a morpholino oligonucleotide caused defects in epiboly, and led to reduced cell adhesion as shown by cell dissociation, sorting and transplantation experiments. These results suggest a role for Pcdh18a in cell adhesion, migration and behavior but not cell specification during gastrula and segmentation stages of development.
Collapse
|
26
|
WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation. EMBO J 2008; 27:606-17. [PMID: 18256687 DOI: 10.1038/emboj.2008.9] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 01/10/2008] [Indexed: 12/17/2022] Open
Abstract
The Wnt-PCP (planar cell polarity, PCP) pathway regulates cell polarity and convergent extension movements during axis formation in vertebrates by activation of Rho and Rac, leading to the re-organization of the actin cytoskeleton. Rho and Rac activation require guanine nucleotide-exchange factors (GEFs), but the identity of the GEF involved in Wnt-PCP-mediated convergent extension is unknown. Here we report the identification of the weak-similarity GEF (WGEF) gene by a microarray-based screen for notochord enriched genes, and show that WGEF is involved in Wnt-regulated convergent extension. Overexpression of WGEF activated RhoA and rescued the suppression of convergent extension by dominant-negative Wnt-11, whereas depletion of WGEF led to suppression of convergent extension that could be rescued by RhoA or Rho-associated kinase activation. WGEF protein preferentially localized at the plasma membrane, and Frizzled-7 induced colocalization of Dishevelled and WGEF. WGEF protein can bind to Dishevelled and Daam-1, and deletion of the Dishevelled-binding domain generates a hyperactive from of WGEF. These results indicate that WGEF is a component of the Wnt-PCP pathway that connects Dishevelled to Rho activation.
Collapse
|
27
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 1:305-11. [PMID: 18248239 DOI: 10.1089/zeb.2004.1.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
28
|
Weiser DC, Pyati UJ, Kimelman D. Gravin regulates mesodermal cell behavior changes required for axis elongation during zebrafish gastrulation. Genes Dev 2007; 21:1559-71. [PMID: 17575056 PMCID: PMC1891432 DOI: 10.1101/gad.1535007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Convergent extension of the mesoderm is the major driving force of vertebrate gastrulation. During this process, mesodermal cells move toward the future dorsal side of the embryo, then radically change behavior as they initiate extension of the body axis. How cells make this transition in behavior is unknown. We have identified the scaffolding protein and tumor suppressor Gravin as a key regulator of this process in zebrafish embryos. We show that Gravin is required for the conversion of mesodermal cells from a highly migratory behavior to the medio-laterally intercalative behavior required for body axis extension. In the absence of Gravin, paraxial mesodermal cells fail to shut down the protrusive activity mediated by the Rho/ROCK/Myosin II pathway, resulting in embryos with severe extension defects. We propose that Gravin functions as an essential scaffold for regulatory proteins that suppress the migratory behavior of the mesoderm during gastrulation, and suggest that this function also explains how Gravin inhibits invasive behaviors in metastatic cells.
Collapse
Affiliation(s)
- Douglas C. Weiser
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - Ujwal J. Pyati
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
| | - David Kimelman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA
- Corresponding author.E-MAIL ; FAX (206) 616-8676
| |
Collapse
|
29
|
Miyasaka KY, Kida YS, Sato T, Minami M, Ogura T. Csrp1 regulates dynamic cell movements of the mesendoderm and cardiac mesoderm through interactions with Dishevelled and Diversin. Proc Natl Acad Sci U S A 2007; 104:11274-9. [PMID: 17592114 PMCID: PMC2040889 DOI: 10.1073/pnas.0702000104] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zebrafish Csrp1 is a member of the cysteine- and glycine-rich protein (CSRP) family and is expressed in the mesendoderm and its derivatives. Csrp1 interacts with Dishevelled 2 (Dvl2) and Diversin (Div), which control cell morphology and other dynamic cell behaviors via the noncanonical Wnt and JNK pathways. When csrp1 message is knocked down, abnormal convergent extension cell movement is induced, resulting in severe deformities in midline structures. In addition, cardiac bifida is induced as a consequence of defects in cardiac mesoderm cell migration. Our data highlight Csrp1 as a key molecule of the noncanonical Wnt pathway, which orchestrates cell behaviors during dynamic morphogenetic movements of tissues and organs.
Collapse
Affiliation(s)
- Kota Y. Miyasaka
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Yasuyuki S. Kida
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Takayuki Sato
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Mari Minami
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Toshihiko Ogura
- Department of Developmental Neurobiology, Institute of Development, Aging, and Cancer, Tohoku University, 4-1 Seiryo, Aoba, Sendai 980-8575, Japan; and Graduate School of Biological Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
30
|
Daggett DF, Domingo CR, Currie PD, Amacher SL. Control of morphogenetic cell movements in the early zebrafish myotome. Dev Biol 2007; 309:169-79. [PMID: 17689522 PMCID: PMC2723113 DOI: 10.1016/j.ydbio.2007.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 06/07/2007] [Accepted: 06/11/2007] [Indexed: 12/11/2022]
Abstract
As the vertebrate myotome is generated, myogenic precursor cells undergo extensive and coordinated movements as they differentiate into properly positioned embryonic muscle fibers. In the zebrafish, the "adaxial" cells adjacent to the notochord are the first muscle precursors to be specified. After initially differentiating into slow-twitch myosin-expressing muscle fibers, these cells have been shown to undergo a remarkable radial migration through the lateral somite, to populate the superficial layer of slow-twitch muscle of the mature myotome. Here we characterize an earlier set of adaxial cell behaviors; the transition from a roughly 4x5 array of cuboidal cells to a 1x20 stack of elongated cells, prior to the migration event. We find that adaxial cells display a highly stereotypical series of behaviors as they undergo this rearrangement. Furthermore, we show that the actin regulatory molecule, Cap1, is specifically expressed in adaxial cells and is required for the progression of these behaviors. The requirement of Cap1 for a cellular apical constriction step is reminiscent of similar requirements of Cap during apical constriction in Drosophila development, suggesting a conservation of gene function for a cell biological event critical to many developmental processes.
Collapse
Affiliation(s)
- David F. Daggett
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, California 94720-3200
| | - Carmen R. Domingo
- Department of Biology, San Francisco State University, San Francisco, California 94132
| | - Peter D. Currie
- Developmental Biology Program, Victor Chang Cardiac Research Institute, Darlinghurst 2010, New South Wales, Australia
| | - Sharon L. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley Berkeley, California 94720-3200
| |
Collapse
|
31
|
Gardiner MR, Daggett DF, Zon LI, Perkins AC. Zebrafish KLF4 is essential for anterior mesendoderm/pre-polster differentiation and hatching. Dev Dyn 2006; 234:992-6. [PMID: 16222715 DOI: 10.1002/dvdy.20571] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Gene knockout studies of Krüppel-like factors (KLFs) in mice have shown essential roles in organogenesis. A screen for KLF family members in zebrafish identified many KLFs. One of these, zebrafish KLF4 (zKLF4) is the homologue of neptune, a Xenopus laevis KLF. zKLF4 is expressed from approximately 80% epiboly a patch of dorsal/anterior mesendodermal cells called the pre-polster and, subsequently, in the polster and hatching gland. Here we investigate the function of zKLF4 using morpholino-based antisense oligonucleotides. Knockdown of zKLF4 resulted in complete absence of hatching gland formation and subsequent hatching in zebrafish. In addition, there was early knockdown of expression of the pre-polster/anterior mesendoderm markers CatL, cap1, and BMP4. These results indicate zKLF4 is expressed within the pre-polster, an early mesendodermal site, and that it plays a critical role in the differentiation of these cells into hatching gland cells.
Collapse
Affiliation(s)
- Melissa R Gardiner
- Queensland Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | | | | |
Collapse
|
32
|
Hollway GE, Maule J, Gautier P, Evans TM, Keenan DG, Lohs C, Fischer D, Wicking C, Currie PD. Scube2 mediates Hedgehog signalling in the zebrafish embryo. Dev Biol 2006; 294:104-18. [PMID: 16626681 DOI: 10.1016/j.ydbio.2006.02.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Revised: 02/17/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
The Hedgehog family of secreted morphogens specifies the fate of a large number of different cell types within invertebrate and vertebrate embryos, including the muscle cell precursors of the embryonic myotome of zebrafish. Formation of Hedgehog-sensitive muscle fates is disrupted within homozygous zebrafish mutants of the "you"-type class, the majority of which disrupt components of the Hedgehog (HH) signal transduction pathway. We have undertaken a phenotypic and molecular characterisation of one of these mutants, you, which we show results from mutations within the zebrafish orthologue of the mammalian gene scube2. This gene encodes a member of the Scube family of proteins, which is characterised by several protein motifs including EGF and CUB domains. Epistatic and molecular analyses position Scube2 function upstream of Smoothened (Smoh), the signalling component of the HH receptor complex, suggesting that Scube2 may act during HH signal transduction prior to, or during, receipt of the HH signal at the plasma membrane. In support of this model we show that scube2 has homology to cubilin, which encodes an endocytic receptor involved in protein trafficking suggesting a possible mode of function for Scube2 during HH signal transduction.
Collapse
Affiliation(s)
- Georgina E Hollway
- Muscle Development Laboratory, The Victor Chang Cardiac Research Institute, 384 Victoria Street, Darlinghurst 2010, Sydney, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The basic vertebrate body plan of the zebrafish embryo is established in the first 10 hours of development. This period is characterized by the formation of the anterior-posterior and dorsal-ventral axes, the development of the three germ layers, the specification of organ progenitors, and the complex morphogenetic movements of cells. During the past 10 years a combination of genetic, embryological, and molecular analyses has provided detailed insights into the mechanisms underlying this process. Maternal determinants control the expression of transcription factors and the location of signaling centers that pattern the blastula and gastrula. Bmp, Nodal, FGF, canonical Wnt, and retinoic acid signals generate positional information that leads to the restricted expression of transcription factors that control cell type specification. Noncanonical Wnt signaling is required for the morphogenetic movements during gastrulation. We review how the coordinated interplay of these molecules determines the fate and movement of embryonic cells.
Collapse
Affiliation(s)
- Alexander F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| | | |
Collapse
|
34
|
Tse SW, Broderick JA, Wei ML, Luo MH, Smith D, McCaffery P, Stamm S, Andreadis A. Identification, expression analysis, genomic organization and cellular location of a novel protein with a RhoGEF domain. Gene 2005; 359:63-72. [PMID: 16143467 DOI: 10.1016/j.gene.2005.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/17/2005] [Accepted: 06/03/2005] [Indexed: 11/30/2022]
Abstract
In this study we describe the identification and characterization of a novel cytosolic protein of the guanine exchange factor (GEF) family. The human cDNA corresponds to predicted human protein FLJ00128/FLJ10357 located on chromosome 14q11.2. The deduced protein sequence contains in its C-terminus a RhoGEF domain followed by a pleckstrin domain. Its N-terminus, central region and RhoGEF/pleckstrin domain are homologous to the recently identified zebrafish Quattro protein, which is involved in morphogenetic movements mediated by the actin cytoskeleton. Based on the homology of our protein's RhoGEF domain to the RhoGEF domains of Trio, Duo and Duet and its homology with Quattro, we named it Solo. The Solo mRNA is ubiquitously expressed but enriched in brain, its expression peaks perinatally and it undergoes extensive alternative splicing. In both myoblasts and neuroblastoma cells, the Solo protein is concentrated around the nucleus.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blood Proteins/genetics
- Blood Proteins/metabolism
- Blotting, Northern
- Blotting, Western
- Brain/embryology
- Brain/growth & development
- Brain/metabolism
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Line
- Cell Line, Tumor
- Cloning, Molecular
- Cytoplasm/metabolism
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Gene Expression Profiling
- Guanine Nucleotide Exchange Factors/genetics
- Guanine Nucleotide Exchange Factors/metabolism
- Humans
- Immunohistochemistry
- Immunoprecipitation
- Introns
- Male
- Mice
- Molecular Sequence Data
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Protein Binding
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Reverse Transcriptase Polymerase Chain Reaction
- Rho Guanine Nucleotide Exchange Factors
- Saccharomyces cerevisiae/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Two-Hybrid System Techniques
- tau Proteins/genetics
- tau Proteins/metabolism
Collapse
Affiliation(s)
- Sze-Wah Tse
- Department of Biomedical Sciences, E.K. Shriver Center for Mental Retardation, Waltham, MA 02452, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Linker C, Lesbros C, Gros J, Burrus LW, Rawls A, Marcelle C. beta-Catenin-dependent Wnt signalling controls the epithelial organisation of somites through the activation of paraxis. Development 2005; 132:3895-905. [PMID: 16100089 DOI: 10.1242/dev.01961] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regulation of cell adhesion in epithelia is a fundamental process governing morphogenesis in embryos and a key step in the progression of invasive cancers. Here, we have analysed the molecular pathways controlling the epithelial organisation of somites. Somites are mesodermal epithelial structures of vertebrate embryos that undergo several changes in cell adhesion during early embryonic life. We show that Wnt6 in the ectoderm overlaying the somites, but not Wnt1 in the neighbouring neural tube, is the most likely candidate molecule responsible for the maintenance of the epithelial structure of the dorsal compartment of the somite: the dermomyotome. We characterised the signalling pathway that mediates Wnt6 activity. Our experiments suggest that the Wnt receptor molecule Frizzled7 probably transduces the Wnt6 signal. Intracellularly, this leads to the activation of the beta-catenin/LEF1-dependent pathway. Finally, we demonstrate that the bHLH transcription factor paraxis, which was previously shown to be a major player in the epithelial organisation of somites, is a target of the beta-catenin signal. We conclude that beta-catenin activity, initiated by Wnt6 and mediated by paraxis, is required for the maintenance of the epithelial structure of somites.
Collapse
Affiliation(s)
- Claudia Linker
- Laboratoire de Génétique et de Physiologie du Développement (LGPD (IBDM), CNRS UMR 6545. Université de la Méditerranée, Campus de Luminy, case 907, 13288 Marseille, Cedex 09, France.
| | | | | | | | | | | |
Collapse
|
36
|
Bardet PL, Horard B, Laudet V, Vanacker JM. The ERRalpha orphan nuclear receptor controls morphogenetic movements during zebrafish gastrulation. Dev Biol 2005; 281:102-11. [PMID: 15848392 DOI: 10.1016/j.ydbio.2005.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Revised: 02/11/2005] [Accepted: 02/14/2005] [Indexed: 10/25/2022]
Abstract
Gastrulation is a process involving cellular commitment and movements whereby the three fundamental germ layers are established in vertebrates embryos. Estrogen Receptor-Related (ERR) alpha is a nuclear receptor displaying high sequence identity to the Estrogen Receptors (ERs). However, ERRalpha is unable to bind and to be regulated by estrogens or any natural ligand to date. Whereas recent studies have suggested roles for ERRalpha in bone and adipose tissue metabolism in the mouse, little is known about its roles during embryonic development. In zebrafish embryos, ERRalpha is expressed from the beginning of gastrulation at the margin of the blastoderm that represents the presumptive mesendoderm. Using loss of function (morpholinos or a dominant-negative version of the protein) and gain of function (mRNA injection) strategies, we show here that ERRalpha is involved in epiboly and convergent-extension (CE) processes in the zebrafish. Altogether, these results propose ERRalpha as a new regulator of morphogenetic movement during gastrulation, independently of cell fate determination.
Collapse
Affiliation(s)
- Pierre-Luc Bardet
- Laboratoire de Biologie Moléculaire de la Cellule, CNRS UMR 5161, IFR 128 BioSciences Lyon-Gerland, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 LYON cedex 07, France
| | | | | | | |
Collapse
|
37
|
Abstract
Vertebrate embryogenesis entails an exquisitely coordinated combination of cell proliferation, fate specification and movement. After induction of the germ layers, the blastula is transformed by gastrulation movements into a multilayered embryo with head, trunk and tail rudiments. Gastrulation is heralded by formation of a blastopore, an opening in the blastula. The axial side of the blastopore is marked by the organizer, a signaling center that patterns the germ layers and regulates gastrulation movements. During internalization, endoderm and mesoderm cells move via the blastopore beneath the ectoderm. Epiboly movements expand and thin the nascent germ layers. Convergence movements narrow the germ layers from lateral to medial while extension movements elongate them from head to tail. Despite different morphology, parallels emerge with respect to the cellular and genetic mechanisms of gastrulation in different vertebrate groups. Patterns of gastrulation cell movements relative to the blastopore and the organizer are similar from fish to mammals, and conserved molecular pathways mediate gastrulation movements.
Collapse
|