1
|
Renner SS. Female heterogamety (ZW systems) in 22% of flowering plants with sex chromosomes: Theoretical expectations and correlates. AMERICAN JOURNAL OF BOTANY 2025:e70006. [PMID: 39980177 DOI: 10.1002/ajb2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 02/22/2025]
Affiliation(s)
- Susanne S Renner
- Department of Biology, Washington University in Saint Louis, MO, USA
| |
Collapse
|
2
|
Pšenička T, Augstenová B, Frynta D, Kornilios P, Kratochvíl L, Rovatsos M. Sex Chromosome Turnovers and Stability in Snakes. Mol Biol Evol 2025; 42:msae255. [PMID: 39671568 PMCID: PMC11721783 DOI: 10.1093/molbev/msae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 11/08/2024] [Accepted: 11/22/2024] [Indexed: 12/15/2024] Open
Abstract
For a long time, snakes were presented as a textbook example of a group with gradual differentiation of homologous ZZ/ZW sex chromosomes. However, recent advances revealed that the ZZ/ZW sex chromosomes characterize only caenophidian snakes and certain species of boas and pythons have nonhomologous XX/XY sex chromosomes. We used genome coverage analysis in four non-caenophidian species to identify their sex chromosomes, and we examined the homology of sex chromosomes across phylogenetically informative snake lineages. We identified sex chromosomes for the first time in 13 species of non-caenophidian snakes, providing much deeper insights into the evolutionary history of snake sex chromosomes. The evolution of sex chromosomes in snakes is more complex than previously thought. Snakes may have had ancestral XX/XY sex chromosomes, which are still present in a blind snake and some boas, and there were several transitions to derived XX/XY sex chromosomes with different gene content and two or even three transitions to ZZ/ZW sex chromosomes. However, we discuss more alternative scenarios. In any case, we document that (1) some genomic regions were likely repeatedly co-opted as sex chromosomes in phylogenetically distant lineages, even with opposite types of heterogamety; (2) snake lineages differ greatly in the rate of differentiation of sex chromosomes; (3) snakes likely originally possessed sex chromosomes prone to turnovers. The sex chromosomes became evolutionarily highly stable once their differentiation progressed in the megadiverse caenophidian snakes. Snakes thus provide an ideal system for studying the evolutionary factors that drive unequal rates of differentiation, turnovers and stability of sex chromosomes.
Collapse
Affiliation(s)
- Tomáš Pšenička
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Augstenová
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daniel Frynta
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
3
|
Renner SS. Unlocking Amborella's ZW sex chromosome system. NATURE PLANTS 2024; 10:1854-1856. [PMID: 39587313 DOI: 10.1038/s41477-024-01830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Affiliation(s)
- Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Wang J, Tao W, Kocher TD, Wang D. Sex chromosome turnover and biodiversity in fishes. J Genet Genomics 2024; 51:1351-1360. [PMID: 39233051 DOI: 10.1016/j.jgg.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The impact of sex chromosomes and their turnover in speciation remains a subject of ongoing debate in the field of evolutionary biology. Fishes are the largest group of vertebrates, and they exhibit unparalleled sexual plasticity, as well as diverse sex-determining (SD) genes, sex chromosomes, and sex-determination mechanisms. This diversity is hypothesized to be associated with the frequent turnover of sex chromosomes in fishes. Although it is evident that amh and amhr2 are repeatedly and independently recruited as SD genes, their relationship with the rapid turnover of sex chromosomes and the biodiversity of fishes remains unknown. We summarize the canonical models of sex chromosome turnover and highlight the vital roles of gene mutation and hybridization with empirical evidence. We revisit Haldane's rule and the large X-effect and propose the hypothesis that sex chromosomes accelerate speciation by multiplying genotypes via hybridization. By integrating recent findings on the turnover of SD genes, sex chromosomes, and sex-determination systems in fish species, this review provides insights into the relationship between sex chromosome evolution and biodiversity in fishes.
Collapse
Affiliation(s)
- Jingrong Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Wenjing Tao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
5
|
Luo H, Zhang Y, Liu F, Zhao Y, Peng J, Xu Y, Chen X, Huang Y, Ji C, Liu Q, He P, Feng P, Yang C, Wei P, Ma Z, Qin J, Zhou S, Dai S, Zhang Y, Zhao Z, Liu H, Zheng H, Zhang J, Lin Y, Chen X. The male and female genomes of golden pompano (Trachinotus ovatus) provide insights into the sex chromosome evolution and rapid growth. J Adv Res 2024; 65:1-17. [PMID: 38043610 PMCID: PMC11518962 DOI: 10.1016/j.jare.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023] Open
Abstract
INTRODUCTION Golden pompano (Trachinotus ovatus) is economically significant important for offshore cage aquaculture in China and Southeast Asian countries. Lack of high-quality genomic data and accurate gene annotations greatly restricts its genetic breeding progress. OBJECTIVES To decode the mechanisms of sex determination and rapid growth in golden pompano and facilitate the sex- and growth-aimed genetic breeding. METHODS Genome assemblies of male and female golden pompano were generated using Illumina, PacBio, BioNano, genetic maps and Hi-C sequencing data. Genomic comparisons, whole genome re-sequencing of 202 F1 individuals, QTL mapping and gonadal transcriptomes were used to analyze the sex determining region, sex chromosome evolution, SNP loci, and growth candidate genes. Zebrafish model was used to investigate the functions of growth candidate gene. RESULTS Female (644.45 Mb) and male (652.12 Mb) genomes of golden pompano were assembled and annotated at the chromosome level. Both genomes are highly conserved and no new or highly differentiated sex chromosomes occur. A 3.5 Mb sex determining region on LG15 was identified, where Hsd17b1, Micall2 and Lmx1a were putative candidates for sex determination. Three SNP loci significantly linked to growth were pinpointed, and a growth-linked gene gpsstr1 was identified by locus BSNP1369 (G → C, 17489695, Chr23). Loss of sstr1a (homologue of gpsstr1) in zebrafish caused growth retardation. CONCLUSION This study provides insights into sex chromosome evolution, sex determination and rapid growth of golden pompano.
Collapse
Affiliation(s)
- Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China; Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, China
| | - Yongde Zhang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Fuyan Liu
- Biomarker Technologies, Beijing 101300, China; BGI-Beijing, Beijing 102601, China
| | - Yongzhen Zhao
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Jinxia Peng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yuhui Xu
- Biomarker Technologies, Beijing 101300, China
| | - Xiuli Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Yin Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | | | - Qingyun Liu
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pingping He
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pengfei Feng
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Chunling Yang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Pinyuan Wei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China
| | - Zhenhua Ma
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Jianguang Qin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Shengjie Zhou
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Shiming Dai
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yaoyao Zhang
- The Pirbright Institute, Ash Road, Pirbright, Woking, Surrey GU24 0NF, UK
| | - Zhongquan Zhao
- College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400715, China
| | | | | | - Jisen Zhang
- Center for Genomics and Biotechnology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China; State Key Lab for Conservation and Utilization of Subtropical Agro-Biological Resources & Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, China.
| | - Yong Lin
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| | - Xiaohan Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning 530021, China.
| |
Collapse
|
6
|
Woo SJ, Han JY. Epigenetic programming of chicken germ cells: a comparative review. Poult Sci 2024; 103:103977. [PMID: 38970845 PMCID: PMC11269908 DOI: 10.1016/j.psj.2024.103977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/26/2024] [Accepted: 06/10/2024] [Indexed: 07/08/2024] Open
Abstract
Chicken embryos serve as an important model for investigating germ cells due to their ease of accessibility and manipulation within the egg. Understanding the development of germ cells is particularly crucial, as they are the only cell types capable of transmitting genetic information to the next generation. Therefore, gene expression regulation in germ cells is important for genomic function. Epigenetic programming is a crucial biological process for the regulation of gene expression without altering the genome sequence. Although epigenetic programming is evolutionarily conserved, several differences between chickens and mammals have been revealed. In this review, we compared the epigenetic regulation of germ cells in chickens and mammals (mainly mice as a representative species). In mammals, migrating primordial germ cells (precursors for germ cells [PGCs]) undergo global DNA demethylation and persist until sexual differentiation, while in chickens, DNA is demethylated until reaching the gonad but remethylated when sexually differentiated. Prospermatogonia is methylated at the onset of mitotic arrest in mammals, while DNA is demethylated at mitotic arrest in chickens. Furthermore, genomic imprinting and inactivation of sex chromosomes are differentially regulated through DNA methylation in chickens and mammals. Chickens and mammals exhibit different patterns of histone modifications during germ cell development, and non-coding RNA, which is not involved in PGC differentiation in mice, plays an important role in chicken PGC development. Additionally, several chicken-specific non-coding RNAs have been identified. In conclusion, we summarized current knowledge of epigenetic gene regulation of chicken germ cells, comparing that of mammals, and highlighted notable differences between them.
Collapse
Affiliation(s)
- Seung Je Woo
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
Shi J, Sheng D, Guo J, Zhou F, Wu S, Tang H. Identification of BiP as a temperature sensor mediating temperature-induced germline sex reversal in C. elegans. EMBO J 2024; 43:4020-4048. [PMID: 39134659 PMCID: PMC11405683 DOI: 10.1038/s44318-024-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 09/18/2024] Open
Abstract
Sex determination in animals is not only determined by karyotype but can also be modulated by environmental cues like temperature via unclear transduction mechanisms. Moreover, in contrast to earlier views that sex may exclusively be determined by either karyotype or temperature, recent observations suggest that these factors rather co-regulate sex, posing another mechanistic mystery. Here, we discovered that certain wild-isolated and mutant C. elegans strains displayed genotypic germline sex determination (GGSD), but with a temperature-override mechanism. Further, we found that BiP, an ER chaperone, transduces temperature information into a germline sex-governing signal, thereby enabling the coexistence of GGSD and temperature-dependent germline sex determination (TGSD). At the molecular level, increased ER protein-folding requirements upon increased temperatures lead to BiP sequestration, resulting in ERAD-dependent degradation of the oocyte fate-driving factor, TRA-2, thus promoting male germline fate. Remarkably, experimentally manipulating BiP or TRA-2 expression allows to switch between GGSD and TGSD. Physiologically, TGSD allows C. elegans hermaphrodites to maintain brood size at warmer temperatures. Moreover, BiP can also influence germline sex determination in a different, non-hermaphroditic nematode species. Collectively, our findings identify thermosensitive BiP as a conserved temperature sensor in TGSD, and provide mechanistic insights into the transition between GGSD and TGSD.
Collapse
Affiliation(s)
- Jing Shi
- Fudan University, 200433, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Danli Sheng
- Fudan University, 200433, Shanghai, China
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Jie Guo
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China
| | - Fangyuan Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Shaofeng Wu
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China
| | - Hongyun Tang
- Fudan University, 200433, Shanghai, China.
- Westlake Laboratory of Life Sciences and Biomedicine, 310024, Hangzhou, China.
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, 310024, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Xu L, Ren Y, Wu J, Cui T, Dong R, Huang C, Feng Z, Zhang T, Yang P, Yuan J, Xu X, Liu J, Wang J, Chen W, Mi D, Irwin DM, Yan Y, Xu L, Yu X, Li G. Evolution and expression patterns of the neo-sex chromosomes of the crested ibis. Nat Commun 2024; 15:1670. [PMID: 38395916 PMCID: PMC10891136 DOI: 10.1038/s41467-024-46052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Bird sex chromosomes play a unique role in sex-determination, and affect the sexual morphology and behavior of bird species. Core waterbirds, a major clade of birds, share the common characteristics of being sexually monomorphic and having lower levels of inter-sexual conflict, yet their sex chromosome evolution remains poorly understood. Here, by we analyse of a chromosome-level assembly of a female crested ibis (Nipponia nippon), a typical core waterbird. We identify neo-sex chromosomes resulting from fusion of microchromosomes with ancient sex chromosomes. These fusion events likely occurred following the divergence of Threskiornithidae and Ardeidae. The neo-W chromosome of the crested ibis exhibits the characteristics of slow degradation, which is reflected in its retention of abundant gametologous genes. Neo-W chromosome genes display an apparent ovary-biased gene expression, which is largely driven by genes that are retained on the crested ibis W chromosome but lost in other bird species. These results provide new insights into the evolutionary history and expression patterns for the sex chromosomes of bird species.
Collapse
Affiliation(s)
- Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yandong Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiahong Wu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China
| | - Tingting Cui
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Rong Dong
- Research Center for Qinling Giant Panda, Shaanxi Academy of Forestry, Xi'an, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Tianmin Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Peng Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Jiao Liu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wu Chen
- Guangzhou Wildlife Research Center, Guangzhou Zoo, Guangzhou, China
| | - Da Mi
- Xi'an Haorui Genomics Technology Co., LTD, Xi'an, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yaping Yan
- College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Luohao Xu
- MOE Key Laboratory of Freshwater Fish Reproduction and Development, School of Life Sciences, Southwest University, Chongqing, China.
| | - Xiaoping Yu
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi'an, China.
- Guangzhou Wildlife Research Center, Guangzhou Zoo, Guangzhou, China.
| |
Collapse
|
9
|
Akashi H, Hasui D, Ueda K, Ishikawa M, Takeda M, Miyagawa S. Understanding the role of environmental temperature on sex determination through comparative studies in reptiles and amphibians. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:48-59. [PMID: 37905472 DOI: 10.1002/jez.2760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 11/02/2023]
Abstract
In vertebrates, species exhibit phenotypic plasticity of sex determination that the sex can plastically be determined by the external environmental temperature through a mechanism, temperature-dependent sex determination (TSD). Temperature exerts influence over the direction of sexual differentiation pathways, resulting in distinct primary sex ratios in a temperature-dependent manner. This review provides a summary of the thermal sensitivities associated with sex determination in reptiles and amphibians, with a focus on the pattern of TSD, gonadal differentiation, temperature sensing, and the molecular basis underlying thermal sensitivity in sex determination. Comparative studies across diverse lineages offer valuable insights into comprehending the evolution of sex determination as a phenotypic plasticity. While evidence of molecular mechanisms governing sexual differentiation pathways continues to accumulate, the intracellular signaling linking temperature sensing and sexual differentiation pathways remains elusive. We emphasize that uncovering these links is a key for understanding species-specific thermal sensitivities in TSD and will contribute to a more comprehensive understanding of ecosystem and biodiversity conservations.
Collapse
Affiliation(s)
- Hiroshi Akashi
- Department of Integrated Biosciences, The University of Tokyo, Chiba, Japan
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Daiki Hasui
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Kai Ueda
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | - Momoka Ishikawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
| | | | - Shinichi Miyagawa
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo, Japan
- Research Institute for Science and Technology, Tokyo University of Science, Tokyo, Japan
| |
Collapse
|
10
|
Chu Z, Wang Z, Zheng Y, Xia Y, Guo X. Sex-Linked Loci on the W Chromosome in the Multi-Ocellated Racerunner ( Eremias multiocellata) Confirm Genetic Sex-Determination Stability in Lacertid Lizards. Animals (Basel) 2023; 13:2180. [PMID: 37443978 DOI: 10.3390/ani13132180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/18/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The multi-ocellated racerunner, Eremias multiocellata, was considered to have temperature-dependent sex determination (TSD), as its sex ratio can be influenced at different temperatures. However, such an observation contrasts with recent findings that suggest TSD is less common than previously thought. Here, a genotyping-by-sequencing (GBS) approach was employed to identify sex-linked markers in the E. multiocellata, for which the mechanism choice of TSD or GSD is still controversial. We preliminarily identified 119 sex-linked markers based on sex-associated sex-specific sequences, 97% of which indicated female heterogamety. After eliminating the false positives, 38 sex-linked markers were recognized, all of which showed the ZW/ZZ system. Then, eight of the novel markers were verified by PCR amplification from 15 populations of E. multiocellata, which support the GSD in E. multiocellata without geographic variation. To test the conservation of sex chromosome in Eremias, the eight markers were further cross-tested by PCR amplification in 10 individuals of the Mongolian racerunner (Eremias argus), two of which exhibited cross-utility. The novel sex-linked markers could be mapped on the W chromosome of the sand lizard (Lacerta agilis). Our finding that the sex-linked markers are shared in closely related species, along with a conserved synteny of the W chromosome, further supports the homology and conservation of sex chromosomes in the lacertid lizards.
Collapse
Affiliation(s)
- Zhangqing Chu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwen Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yun Xia
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xianguang Guo
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
11
|
Wang W, Yang Y, Tan S, Zhou T, Liu Y, Tian C, Bao L, Xing D, Su B, Wang J, Zhang Y, Liu S, Shi H, Gao D, Dunham R, Liu Z. Genomic imprinting-like monoallelic paternal expression determines sex of channel catfish. SCIENCE ADVANCES 2022; 8:eadc8786. [PMID: 36542716 PMCID: PMC9770954 DOI: 10.1126/sciadv.adc8786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
The X and Y chromosomes of channel catfish have the same gene contents. Here, we report allelic hypermethylation of the X chromosome within the sex determination region (SDR). Accordingly, the X-borne hydin-1 gene was silenced, whereas the Y-borne hydin-1 gene was expressed, making monoallelic expression of hydin-1 responsible for sex determination, much like genomic imprinting. Treatment with a methylation inhibitor, 5-aza-dC, erased the epigenetic marks within the SDR and caused sex reversal of genetic females into phenotypic males. After the treatment, hydin-1 and six other genes related to cell cycle control and proliferative growth were up-regulated, while three genes related to female sex differentiation were down-regulated in genetic females, providing additional support for epigenetic sex determination in catfish. This mechanism of sex determination provides insights into the plasticity of genetic sex determination in lower vertebrates and its connection with temperature sex determination where DNA methylation is broadly involved.
Collapse
Affiliation(s)
- Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Changxu Tian
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Lisui Bao
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - De Xing
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Baofeng Su
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Jinhai Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Yu Zhang
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
12
|
Sex-linked markers in an Australian frog Platyplectrum ornatum (Limnodynastidae) with a small genome and homomorphic sex chromosomes. Sci Rep 2022; 12:20934. [PMID: 36463309 PMCID: PMC9719524 DOI: 10.1038/s41598-022-25105-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Amphibians have highly diverse sex-determining modes leading to a notable interest in vertebrate sex determination and sex chromosome evolution. The identification of sex-determining systems in amphibians, however, is often difficult as a vast majority consist of homomorphic sex chromosomes making them hard to distinguish. In this study, we used Diversity Array Technology sequencing (DArTseq) to identify the sex-determining system in the ornate burrowing frog from Australia, Platyplectrum ornatum. We applied DArTseq to 44 individuals, 19 males and 25 females, collected from two locations to develop sex-linked markers. Unexpectedly, these 44 individuals were classified into two distinct population clusters based on our SNP analyses, 36 individuals in cluster 1, and 8 individuals in cluster 2. We then performed sex-linkage analyses separately in each cluster. We identified 35 sex-linked markers from cluster 1, which were all associated with maleness. Therefore, P. ornatum cluster 1 is utilising a male heterogametic (XX/XY) sex-determining system. On the other hand, we identified 210 sex-linked markers from cluster 2, of which 89 were male specific, i.e., identifying XX/XY sex determining system and 111 were female specific, i.e., identifying ZZ/ZW sex determining system, suggesting existence of either male or female heterogametic sex determining system in cluster 2. We also performed cytogenetic analyses in 1 male and 1 female from cluster 1; however, we did not detect any visible differentiation between the X and Y sex chromosomes. We also mapped sex-linked markers from the two clusters against the P. ornatum genome and our comparative analysis indicated that the sex chromosomes in both clusters shared homologies to chromosome 10 (autosome) of Rana temporaria and ZWY sex chromosome of Xenopus tropicalis. Our preliminary data suggest that it is plausible that the cluster 2 has a potential to be either male or female heterogamety in sex determination, requiring further investigation.
Collapse
|
13
|
Lai FY, Chang KC, Chang CS, Wang PH. Development of a Rapid Sex Identification Method for Newborn Pigeons Using Recombinase Polymerase Amplification and a Lateral-Flow Dipstick on Farm. Animals (Basel) 2022; 12:ani12212969. [PMID: 36359091 PMCID: PMC9656852 DOI: 10.3390/ani12212969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary The sex of a bird is important for aviculture, scientific research, and conservation. Sex identification is usually not easy, even if the bird’s appearances and sex organs are examined more closely. In monomorphic birds—or most birds during young, molecular sexing—there is a requirement for a fast and accurate identification method. We have designed a pair of DNA primers that is unique to the W chromosome of pigeon, which was unique to the female; further, RPA and LFD are combined for the purposes of a portable field detection for a sex identification method for birds (i.e., pigeons). The minimal-equipped on-farm approach was tested on pigeon sexing and the results have been 100% correct, so far. The concept of this study could spread to any kind of bird to meet the needs and achieve the goals of bird studies and businesses. Abstract According to pigeon racing rules in Taiwan, the pigeon raiser must decide which juveniles will be chosen as soon as possible. Differentiating the sex of young pigeons based on appearances, and other traditional methods, can be time-consuming and require several pieces of equipment. Recombinase polymerase amplification (RPA) combined with a lateral-flow dipstick (LFD) could further simplify the presentation of amplification results. A designed reverse primer and probe were labeled with biotin and FAM (fluorescein), respectively, to serve as ligands in the LFD. With the addition of a designed forward primer, the RPA-LFD can be used to perform sex identification of pigeon DNA. The optimal conditions were determined to require at least 6.3 pg of the DNA template, a temperature of 37 °C, and a reaction time of at least 20 min. Under these conditions, the test band area on the strip appeared as a dark color if the sample contained female template DNA, whereas the male DNA samples did not produce any test signal in any of the conditions. The results of random samples using RPA-LFD under the optimal conditions agreed with the results of the same samples determined by PCR-agarose gel electrophoresis. The approach in this study represents a rapid and accurate method for pigeon sexing.
Collapse
Affiliation(s)
- Fang-Yu Lai
- Key Laboratory of Animal Genetics, Breeding and Bioresources, Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 10672, Taiwan
| | - Kuang-Chih Chang
- Avance Technology Co., Ltd., 10F., No. 1, Ln. 83, Sec. 1, Guangfu Rd., Sanchong Dist., New Taipei City 24158, Taiwan
| | - Chi-Sheng Chang
- Department of Animal Science, Chinese Culture University, No. 55, Hwa-Kang Rd., Yang-Ming-Shan, Taipei City 11114, Taiwan
| | - Pei-Hwa Wang
- Key Laboratory of Animal Genetics, Breeding and Bioresources, Department of Animal Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei City 10672, Taiwan
- Correspondence: ; Tel.: +886-02-3366-4164; Fax: +886-02-2372-4070
| |
Collapse
|
14
|
Marín-Gual L, González-Rodelas L, M. Garcias M, Kratochvíl L, Valenzuela N, Georges A, Waters PD, Ruiz-Herrera A. Meiotic chromosome dynamics and double strand break formation in reptiles. Front Cell Dev Biol 2022; 10:1009776. [PMID: 36313577 PMCID: PMC9597255 DOI: 10.3389/fcell.2022.1009776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
During meiotic prophase I, tightly regulated processes take place, from pairing and synapsis of homologous chromosomes to recombination, which are essential for the generation of genetically variable haploid gametes. These processes have canonical meiotic features conserved across different phylogenetic groups. However, the dynamics of meiotic prophase I in non-mammalian vertebrates are poorly known. Here, we compare four species from Sauropsida to understand the regulation of meiotic prophase I in reptiles: the Australian central bearded dragon (Pogona vitticeps), two geckos (Paroedura picta and Coleonyx variegatus) and the painted turtle (Chrysemys picta). We first performed a histological characterization of the spermatogenesis process in both the bearded dragon and the painted turtle. We then analyzed prophase I dynamics, including chromosome pairing, synapsis and the formation of double strand breaks (DSBs). We show that meiosis progression is highly conserved in reptiles with telomeres clustering forming the bouquet, which we propose promotes homologous pairing and synapsis, along with facilitating the early pairing of micro-chromosomes during prophase I (i.e., early zygotene). Moreover, we detected low levels of meiotic DSB formation in all taxa. Our results provide new insights into reptile meiosis.
Collapse
Affiliation(s)
- Laia Marín-Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura González-Rodelas
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Maria M. Garcias
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Paul D. Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW, Sydney, NSW, Australia
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- *Correspondence: Aurora Ruiz-Herrera,
| |
Collapse
|
15
|
Katsumi T, Shams F, Yanagi H, Ohnishi T, Toda M, Lin S, Mawaribuchi S, Shimizu N, Ezaz T, Miura I. Highly rapid and diverse sex chromosome evolution in the Odorrana frog species complex. Dev Growth Differ 2022; 64:279-289. [PMID: 35881001 PMCID: PMC11520967 DOI: 10.1111/dgd.12800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/29/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
Sex chromosomes in poikilothermal vertebrates are characterized by rapid and diverse evolution at the species or population level. Our previous study revealed that the Taiwanese frog Odorrana swinhoana (2n = 26) has a unique system of multiple sex chromosomes created by three sequential translocations among chromosomes 1, 3, and 7. To reveal the evolutionary history of sex chromosomes in the Odorrana species complex, we first identified the original, homomorphic sex chromosomes, prior to the occurrence of translocations, in the ancestral-type population of O. swinhoana. Then, we extended the investigation to a closely related Japanese species, Odorrana utsunomiyaorum, which is distributed on two small islands. We used a high-throughput nuclear genomic approach to analyze single-nucleotide polymorphisms and identify the sex-linked markers. Those isolated from the O. swinhoana ancestral-type population were found to be aligned to chromosome 1 and showed male heterogamety. In contrast, almost all the sex-linked markers isolated from O. utsunomiyaorum were heterozygous in females and homozygous in males and were aligned to chromosome 9. Morphologically, we confirmed chromosome 9 to be heteromorphic in females, showing a ZZ-ZW sex determination system, in which the W chromosomes were heterochromatinized in a stripe pattern along the chromosome axis. These results indicated that after divergence of the two species, the ancestral homomorphic sex chromosome 1 underwent highly rapid and diverse evolution, i.e., sequential translocations with two autosomes in O. swinhoana, and turnover to chromosome 9 in O. utsunomiyaorum, with a transition from XY to ZW heterogamety and change to heteromorphy.
Collapse
Affiliation(s)
- Taito Katsumi
- School of ScienceHiroshima UniversityHigashi‐HiroshimaJapan
| | - Foyez Shams
- Institute for Applied EcologyUniversity of CanberraCanberraAustralia
| | - Hiroaki Yanagi
- Department of Zoology, Graduate School of ScienceKyoto UniversityKyotoJapan
| | | | - Mamoru Toda
- Tropical Biosphere Research CenterUniversity of the RyukyusOkinawaJapan
| | - Si‐Min Lin
- School of Life SciencesNational Taiwan Normal UniversityTaipeiTaiwan
| | - Shuuji Mawaribuchi
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | | | - Tariq Ezaz
- Institute for Applied EcologyUniversity of CanberraCanberraAustralia
| | - Ikuo Miura
- Institute for Applied EcologyUniversity of CanberraCanberraAustralia
- Amphibian Research CenterHiroshima UniversityHigashi‐HiroshimaJapan
| |
Collapse
|
16
|
Ruiz-Herrera A, Waters PD. Fragile, unfaithful and persistent Ys-on how meiosis can shape sex chromosome evolution. Heredity (Edinb) 2022; 129:22-30. [PMID: 35459933 PMCID: PMC9273583 DOI: 10.1038/s41437-022-00532-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Sex-linked inheritance is a stark exception to Mendel's Laws of Heredity. Here we discuss how the evolution of heteromorphic sex chromosomes (mainly the Y) has been shaped by the intricacies of the meiotic programme. We propose that persistence of Y chromosomes in distantly related mammalian phylogroups can be explained in the context of pseudoautosomal region (PAR) size, meiotic pairing strategies, and the presence of Y-borne executioner genes that regulate meiotic sex chromosome inactivation. We hypothesise that variation in PAR size can be an important driver for the evolution of recombination frequencies genome wide, imposing constraints on Y fate. If small PAR size compromises XY segregation during male meiosis, the stress of producing aneuploid gametes could drive function away from the Y (i.e., a fragile Y). The Y chromosome can avoid fragility either by acquiring an achiasmatic meiotic XY pairing strategy to reduce aneuploid gamete production, or gain meiotic executioner protection (a persistent Y). Persistent Ys will then be under strong pressure to maintain high recombination rates in the PAR (and subsequently genome wide), as improper segregation has fatal consequences for germ cells. In the event that executioner protection is lost, the Y chromosome can be maintained in the population by either PAR rejuvenation (extension by addition of autosome material) or gaining achiasmatic meiotic pairing, the alternative is Y loss. Under this dynamic cyclic evolutionary scenario, understanding the meiotic programme in vertebrate and invertebrate species will be crucial to further understand the plasticity of the rise and fall of heteromorphic sex chromosomes.
Collapse
Affiliation(s)
- Aurora Ruiz-Herrera
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain.
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193, Spain.
| | - Paul D Waters
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia.
| |
Collapse
|
17
|
Hill P, While GM, Burridge CP, Ezaz T, Munch KL, McVarish M, Wapstra E. Sex reversal explains some, but not all, climate-mediated sex ratio variation within a viviparous reptile. Proc Biol Sci 2022; 289:20220689. [PMID: 35642367 PMCID: PMC9156933 DOI: 10.1098/rspb.2022.0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Evolutionary transitions in sex-determining systems have occurred frequently yet understanding how they occur remains a major challenge. In reptiles, transitions from genetic to temperature-dependent sex determination can occur if the gene products that determine sex evolve thermal sensitivity, resulting in sex-reversed individuals. However, evidence of sex reversal is limited to oviparous reptiles. Here we used thermal experiments to test whether sex reversal is responsible for differences in sex determination in a viviparous reptile, Carinascincus ocellatus, a species with XY sex chromosomes and population-specific sex ratio response to temperature. We show that sex reversal is occurring and that its frequency is related to temperature. Sex reversal was unidirectional (phenotypic males with XX genotype) and observed in both high- and low-elevation populations. We propose that XX-biased genotypic sex ratios could produce either male- or female-biased phenotypic sex ratios as observed in low-elevation C. ocellatus under variable rates of XX sex reversal. We discuss reasons why sex reversal may not influence sex ratios at high elevation. Our results suggest that the mechanism responsible for evolutionary transitions from genotypic to temperature-dependent sex determination is more complex than can be explained by a single process such as sex reversal.
Collapse
Affiliation(s)
- Peta Hill
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Geoffrey M While
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Christopher P Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory 2601, Australia
| | - Kirke L Munch
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Mary McVarish
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| | - Erik Wapstra
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Hobart, Tasmania 7000, Australia
| |
Collapse
|
18
|
Nemesházi E, Bókony V. Asymmetrical sex reversal: Does the type of heterogamety predict propensity for sex reversal? Bioessays 2022; 44:e2200039. [PMID: 35543235 DOI: 10.1002/bies.202200039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 04/29/2022] [Indexed: 11/10/2022]
Abstract
Sex reversal, a mismatch between phenotypic and genetic sex, can be induced by chemical and thermal insults in ectotherms. Therefore, climate change and environmental pollution may increase sex-reversal frequency in wild populations, with wide-ranging implications for sex ratios, population dynamics, and the evolution of sex determination. We propose that reconsidering the half-century old theory "Witschi's rule" should facilitate understanding the differences between species in sex-reversal propensity and thereby predicting their vulnerability to anthropogenic environmental change. The idea is that sex reversal should be asymmetrical: more likely to occur in the homogametic sex, assuming that sex-reversed heterogametic individuals would produce new genotypes with reduced fitness. A review of the existing evidence shows that while sex reversal can be induced in both homogametic and heterogametic individuals, the latter seem to require stronger stimuli in several cases. We provide guidelines for future studies on sex reversal to facilitate data comparability and reliability.
Collapse
Affiliation(s)
- Edina Nemesházi
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Veronika Bókony
- Conservation Genetics Research Group, Department of Ecology, University of Veterinary Medicine Budapest, Budapest, Hungary.,Lendület Evolutionary Ecology Research Group, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| |
Collapse
|
19
|
Moore EC, Ciccotto PJ, Peterson EN, Lamm MS, Albertson RC, Roberts RB. Polygenic sex determination produces modular sex polymorphism in an African cichlid fish. Proc Natl Acad Sci U S A 2022; 119:e2118574119. [PMID: 35357968 PMCID: PMC9168840 DOI: 10.1073/pnas.2118574119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/02/2022] [Indexed: 11/18/2022] Open
Abstract
For many vertebrates, a single genetic locus initiates a cascade of developmental sex differences in the gonad and throughout the organism, resulting in adults with two phenotypically distinct sexes. Species with polygenic sex determination (PSD) have multiple interacting sex determination alleles segregating within a single species, allowing for more than two genotypic sexes and scenarios where sex genotype at a given locus can be decoupled from gonadal sex. Here we investigate the effects of PSD on secondary sexual characteristics in the cichlid fish Metriaclima mbenjii, where one female (W) and one male (Y) sex determination allele interact to produce siblings with four possible sex classes: ZZXX females, ZWXX females, ZWXY females, and ZZXY males. We find that PSD in M. mbenjii produces an interplay of sex linkage and sex limitation resulting in modular variation in morphological and behavioral traits. Further, the evolution or introgression of a newly acquired sex determiner creates additional axes of phenotypic variation for varied traits, including genital morphology, craniofacial morphology, gastrointestinal morphology, and home tank behaviors. In contrast to single-locus sex determination, which broadly results in sexual dimorphism, polygenic sex determination can induce higher-order sexual polymorphism. The modularity of secondary sexual characteristics produced by PSD provides context for understanding the evolutionary causes and consequences of maintenance, gain, or loss of sex determination alleles in populations.
Collapse
Affiliation(s)
- Emily C. Moore
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | | | - Erin N. Peterson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695
| | - Melissa S. Lamm
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695
| | | | - Reade B. Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
20
|
Evolution of the Degenerated Y-Chromosome of the Swamp Guppy, Micropoecilia picta. Cells 2022; 11:cells11071118. [PMID: 35406682 PMCID: PMC8997885 DOI: 10.3390/cells11071118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The conspicuous colour sexual dimorphism of guppies has made them paradigmatic study objects for sex-linked traits and sex chromosome evolution. Both the X- and Y-chromosomes of the common guppy (Poecilia reticulata) are genetically active and homomorphic, with a large homologous part and a small sex specific region. This feature is considered to emulate the initial stage of sex chromosome evolution. A similar situation has been documented in the related Endler’s and Oropuche guppies (P. wingei, P. obscura) indicating a common origin of the Y in this group. A recent molecular study in the swamp guppy (Micropoecilia. picta) reported a low SNP density on the Y, indicating Y-chromosome deterioration. We performed a series of cytological studies on M. picta to show that the Y-chromosome is quite small compared to the X and has accumulated a high content of heterochromatin. Furthermore, the Y-chromosome stands out in displaying CpG clusters around the centromeric region. These cytological findings evidently illustrate that the Y-chromosome in M. picta is indeed highly degenerated. Immunostaining for SYCP3 and MLH1 in pachytene meiocytes revealed that a substantial part of the Y remains associated with the X. A specific MLH1 hotspot site was persistently marked at the distal end of the associated XY structure. These results unveil a landmark of a recombining pseudoautosomal region on the otherwise strongly degenerated Y chromosome of M. picta. Hormone treatments of females revealed that, unexpectedly, no sexually antagonistic color gene is Y-linked in M. picta. All these differences to the Poecilia group of guppies indicate that the trajectories associated with the evolution of sex chromosomes are not in parallel.
Collapse
|
21
|
Okuno M, Mizushima S, Kuroiwa A, Itoh T. Analysis of Sex Chromosome Evolution in the Clade Palaeognathae from Phased Genome Assembly. Genome Biol Evol 2021; 13:6413640. [PMID: 34718546 PMCID: PMC8599748 DOI: 10.1093/gbe/evab242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Birds in the clade Palaeognathae, excluding Tinamiformes, have morphologically conserved karyotypes and less differentiated ZW sex chromosomes compared with those of other birds. In particular, the sex chromosomes of the ostrich and emu have exceptionally large recombining pseudoautosomal regions (PARs), whereas non-PARs are classified into two strata according to the date of their origins: stratum 0 and stratum 1 (S1). However, the construction and analysis of the genome sequences in these regions in the clade Palaeognathae can be challenging because assembling the S1 region is difficult owing to low sequence diversity between gametologs (Z-linked and W-linked sequences). We addressed this issue by applying the Platanus-allee assembler and successfully constructed the haplotype-resolved (phased) assembly for female emu, cassowary, and ostrich using only sequence read data derived from the Illumina platform. Comparative genomic and phylogenetic analyses based on assembled Z-linked and W-linked sequences confirmed that the S1 region of emu and cassowary formed in their common ancestor. Moreover, the interspersed repetitive sequence landscapes in the S1 regions of female emu showed an expansion of younger repetitive elements in the W-linked S1 region, suggesting an interruption in homologous recombination in the S1 region. These results provide novel insights into the trajectory of sex chromosome evolution in the clade Palaeognathae and suggest that the Illumina-based phased assembly method is an effective approach for elucidating the evolutionary process underlying the transition from homomorphic to differentiated sex chromosomes.
Collapse
Affiliation(s)
- Miki Okuno
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan.,Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Shusei Mizushima
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Asato Kuroiwa
- Division of Reproductive and Developmental Biology, Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takehiko Itoh
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| |
Collapse
|
22
|
Estermann MA, Major AT, Smith CA. Genetic Regulation of Avian Testis Development. Genes (Basel) 2021; 12:1459. [PMID: 34573441 PMCID: PMC8470383 DOI: 10.3390/genes12091459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
As in other vertebrates, avian testes are the site of spermatogenesis and androgen production. The paired testes of birds differentiate during embryogenesis, first marked by the development of pre-Sertoli cells in the gonadal primordium and their condensation into seminiferous cords. Germ cells become enclosed in these cords and enter mitotic arrest, while steroidogenic Leydig cells subsequently differentiate around the cords. This review describes our current understanding of avian testis development at the cell biology and genetic levels. Most of this knowledge has come from studies on the chicken embryo, though other species are increasingly being examined. In chicken, testis development is governed by the Z-chromosome-linked DMRT1 gene, which directly or indirectly activates the male factors, HEMGN, SOX9 and AMH. Recent single cell RNA-seq has defined cell lineage specification during chicken testis development, while comparative studies point to deep conservation of avian testis formation. Lastly, we identify areas of future research on the genetics of avian testis development.
Collapse
Affiliation(s)
| | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (M.A.E.); (A.T.M.)
| |
Collapse
|
23
|
Ogata M, Suzuki K, Yuasa Y, Miura I. Sex chromosome evolution from a heteromorphic to a homomorphic system by inter-population hybridization in a frog. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200105. [PMID: 34304590 DOI: 10.1098/rstb.2020.0105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sex chromosomes generally evolve from a homomorphic to heteromorphic state. Once a heteromorphic system is established, the sex chromosome system may remain stable for an extended period. Here, we show the opposite case of sex chromosome evolution from a heteromorphic to a homomorphic system in the Japanese frog Glandirana rugosa. One geographic group, Neo-ZW, has ZZ-ZW type heteromorphic sex chromosomes. We found that its western edge populations, which are geographically close to another West-Japan group with homomorphic sex chromosomes of XX-XY type, showed homozygous genotypes of sex-linked genes in both sexes. Karyologically, no heteromorphic sex chromosomes were identified. Sex-reversal experiments revealed that the males were heterogametic in sex determination. In addition, we identified another similar population around at the southwestern edge of the Neo-ZW group in the Kii Peninsula: the frogs had homomorphic sex chromosomes under male heterogamety, while shared mitochondrial haplotypes with the XY group, which is located in the east and bears heteromorphic sex chromosomes. In conclusion, our study revealed that the heteromorphic sex chromosome systems independently reversed back to or turned over to a homomorphic system around each of the western and southwestern edges of the Neo-ZW group through hybridization with the West-Japan group bearing homomorphic sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Mitsuaki Ogata
- Preservation and Research Center, City of Yokohama, 155-1 Asahi Ward, Yokohama 241-0804, Japan
| | - Kazuo Suzuki
- Hikiiwa Park Center, 1629 Inari-cho, Tanabe 646-0051, Japan
| | - Yoshiaki Yuasa
- Himeji City Aquarium, 440 Nishinobusue, 670-0971 Himeji, Japan
| | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.,Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
24
|
Weber C, Capel B. Sex determination without sex chromosomes. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200109. [PMID: 34247500 DOI: 10.1098/rstb.2020.0109] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With or without sex chromosomes, sex determination is a synthesis of many molecular events that drives a community of cells towards a coordinated tissue fate. In this review, we will consider how a sex determination pathway can be engaged and stabilized without an inherited genetic determinant. In many reptilian species, no sex chromosomes have been identified, yet a conserved network of gene expression is initiated. Recent studies propose that epigenetic regulation mediates the effects of temperature on these genes through dynamic post-transcriptional, post-translational and metabolic pathways. It is likely that there is no singular regulator of sex determination, but rather an accumulation of molecular events that shift the scales towards one fate over another until a threshold is reached sufficient to maintain and stabilize one pathway and repress the alternative pathway. Investigations into the mechanism underlying sex determination without sex chromosomes should focus on cellular processes that are frequently activated by multiple stimuli or can synthesize multiple inputs and drive a coordinated response. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Collapse
Affiliation(s)
- Ceri Weber
- Department of Cell Biology, Duke University Medical Center, 456 Nanaline Duke, 307 Research Drive, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, 456 Nanaline Duke, 307 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
25
|
Orr TJ, Burns M, Hawkes K, Holekamp KE, Hook KA, Josefson CC, Kimmitt AA, Lewis AK, Lipshutz SE, Lynch KS, Sirot LK, Stadtmauer DJ, Staub NL, Wolfner MF, Hayssen V. It Takes Two to Tango: Including a Female Perspective in Reproductive Biology. Integr Comp Biol 2021; 60:796-813. [PMID: 32702091 DOI: 10.1093/icb/icaa084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Like many scientific disciplines, the field of reproductive biology is subject to biases in terminology and research foci. For example, females are often described as coy and passive players in reproductive behaviors and are termed "promiscuous" if they engage in extra-pair copulations. Males on the other hand are viewed as actively holding territories and fighting with other males. Males are termed "multiply mating" if they mate with multiple females. Similarly, textbooks often illustrate meiosis as it occurs in males but not females. This edition of Integrative and Comparative Biology (ICB) includes a series of papers that focus on reproduction from the female perspective. These papers represent a subset of the work presented in our symposium and complementary sessions on female reproductive biology. In this round table discussion, we use a question and answer format to leverage the diverse perspectives and voices involved with the symposium in an exploration of theoretical, cultural, pedagogical, and scientific issues related to the study of female biology. We hope this dialog will provide a stepping-stone toward moving reproductive science and teaching to a more inclusive and objective framework.
Collapse
Affiliation(s)
- Teri J Orr
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | - Mercedes Burns
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Kristen Hawkes
- Department of Anthropology, University of Utah, Salt Lake City, UT 84112, USA
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Kristin A Hook
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Chloe C Josefson
- Department of Animal and Veterinary Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Abigail A Kimmitt
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - A Kelsey Lewis
- Center for Research on Gender and Women & Department of Urology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sara E Lipshutz
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kathleen S Lynch
- Biological Sciences, Hofstra University, Hempstead, NY 11549, USA
| | - Laura K Sirot
- Department of Biology, The College of Wooster, Wooster, OH 44691, USA
| | - Daniel J Stadtmauer
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Nancy L Staub
- Biology Department, Gonzaga University, Spokane, WA 99258, USA
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
26
|
Hill P, Wapstra E, Ezaz T, Burridge CP. Pleistocene divergence in the absence of gene flow among populations of a viviparous reptile with intraspecific variation in sex determination. Ecol Evol 2021; 11:5575-5583. [PMID: 34026030 PMCID: PMC8131762 DOI: 10.1002/ece3.7458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
Polymorphisms can lead to genetic isolation if there is differential mating success among conspecifics divergent for a trait. Polymorphism for sex-determining system may fall into this category, given strong selection for the production of viable males and females and the low success of heterogametic hybrids when sex chromosomes differ (Haldane's rule). Here we investigated whether populations exhibiting polymorphism for sex determination are genetically isolated, using the viviparous snow skink Carinascincus ocellatus. While a comparatively high elevation population has genotypic sex determination, in a lower elevation population there is an additional temperature component to sex determination. Based on 11,107 SNP markers, these populations appear genetically isolated. "Isolation with Migration" analysis also suggests these populations diverged in the absence of gene flow, across a period encompassing multiple Pleistocene glaciations and likely greater geographic proximity of populations. However, further experiments are required to establish whether genetic isolation may be a cause or consequence of differences in sex determination. Given the influence of temperature on sex in one lineage, we also discuss the implications for the persistence of this polymorphism under climate change.
Collapse
Affiliation(s)
- Peta Hill
- Discipline of Biological SciencesUniversity of TasmaniaSandy BayTas.Australia
| | - Erik Wapstra
- Discipline of Biological SciencesUniversity of TasmaniaSandy BayTas.Australia
| | - Tariq Ezaz
- Institute for Applied EcologyUniversity of CanberraBruceACTAustralia
| | | |
Collapse
|
27
|
Kuwana C, Fujita H, Tagami M, Matsuo T, Miura I. Evolution of Sex Chromosome Heteromorphy in Geographic Populations of the Japanese Tago's Brown Frog Complex. Cytogenet Genome Res 2021; 161:23-31. [PMID: 33735859 DOI: 10.1159/000512964] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/13/2020] [Indexed: 11/19/2022] Open
Abstract
The sex chromosomes of most anuran amphibians are characterized by homomorphy in both sexes, and evolution to heteromorphy rarely occurs at the species or geographic population level. Here, we report sex chromosome heteromorphy in geographic populations of the Japanese Tago's brown frog complex (2n = 26), comprising Rana sakuraii and R. tagoi. The sex chromosomes of R. sakuraii from the populations in western Japan were homomorphic in both sexes, whereas chromosome 7 from the populations in eastern Japan were heteromorphic in males. Chromosome 7 of R. tagoi, which is distributed close to R. sakuraii in eastern Japan, was highly similar in morphology to the Y chromosome of R. sakuraii. Based on this and on mitochondrial gene sequence analysis, we hypothesize that in the R. sakuraii populations from eastern Japan the XY heteromorphic sex chromosome system was established by the introduction of chromosome 7 from R. tagoi via interspecies hybridization. In contrast, chromosome 13 of R. tagoi from the 2 large islands in western Japan, Shikoku and Kyushu, showed a heteromorphic pattern of constitutive heterochromatin distribution in males, while this pattern was homomorphic in females. Our study reveals that sex chromosome heteromorphy evolved independently at the geographic lineage level in this species complex.
Collapse
Affiliation(s)
- Chiao Kuwana
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Hiroyuki Fujita
- Saitama Museum of Rivers, Yorii-Machi, Oosato-Gun, Saitama, Japan
| | | | | | - Ikuo Miura
- Amphibian Research Center, Hiroshima University, Higashi-Hiroshima, Japan,
| |
Collapse
|
28
|
Evolutionary and demographic consequences of temperature-induced masculinization under climate warming: the effects of mate choice. BMC Ecol Evol 2021; 21:16. [PMID: 33541263 PMCID: PMC7860201 DOI: 10.1186/s12862-021-01747-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 01/14/2021] [Indexed: 01/01/2023] Open
Abstract
Background One of the dangers of global climate change to wildlife is distorting sex ratios by temperature-induced sex reversals in populations where sex determination is not exclusively genetic, potentially leading to population collapse and/or sex-determination system transformation. Here we introduce a new concept on how these outcomes may be altered by mate choice if sex-chromosome-linked phenotypic traits allow females to choose between normal and sex-reversed (genetically female) males. Results We developed a theoretical model to investigate if an already existing autosomal allele encoding preference for sex-reversed males would spread and affect demographic and evolutionary processes under climate warming. We found that preference for sex-reversed males (1) more likely spread in ZW/ZZ than in XX/XY sex-determination systems, (2) in populations starting with ZW/ZZ system, it significantly hastened the transitions between different sex-determination systems and maintained more balanced adult sex ratio for longer compared to populations where all females preferred normal males; and (3) in ZW/ZZ systems with low but non-zero viability of WW individuals, a widespread preference for sex-reversed males saved the populations from early extinction. Conclusions Our results suggest that climate change may affect the evolution of mate choice, which in turn may influence the evolution of sex-determination systems, sex ratios, and thereby adaptive potential and population persistence. These findings show that preferences for sex-linked traits have special implications in species with sex reversal, highlighting the need for empirical research on the role of sex reversal in mate choice.
Collapse
|
29
|
Lin H, Zhou Z, Zhao J, Zhou T, Bai H, Ke Q, Pu F, Zheng W, Xu P. Genome-Wide Association Study Identifies Genomic Loci of Sex Determination and Gonadosomatic Index Traits in Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:127-139. [PMID: 33196953 DOI: 10.1007/s10126-020-10007-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Larimichthys crocea is one of the traditional marine culture fishes in China, widely distributed in South China Sea, East Sea, and southern Yellow Sea. Sex dimorphism is evident in this species that females present a substantial growth strength than males, suggesting breeding females could obtain more economic benefits in L. crocea aquaculture industry. With the continuous expansion of aquaculture industry, both identifying sex-associated genome region and understanding the genetic basis underlying gonad differentiation and development matter to not only sex control aquaculture but also breeding industry. Thus, genome-wide association analysis (GWAS) of sex determination was conducted with a random breeding population of 905 individuals (including 463 females and 442 males) by ddRAD sequencing. For sex determination, 21 significant single nucleotide polymorphisms (SNPs) in chromosome (Chr) 22 were identified. Surrounding these SNPs, we founded 14 candidate genes, including dmrt1, dmrt3, and piwil2, fam102a, and odf2. The sex-associated region was narrowed down further to 2.4 Mb on Chr22 through Fst scanning and insertion-deletion (InDel) analysis. Besides, 3 SNPs in the supposed sex-determining region on Chr22 were identified as highly associated with gonad differentiation through GWAS on gonadosomatic index (GSI) in 350 males and 231 females. Because of the significant difference of GSI between females and males of L. crocea, GWAS on GSI of different genders was also conducted independently. Finally, we identified a SNP in Chr18 showing genome-wide significant association with male GSI (MGSI) and three genes axl, cyp2a10, and cyp2g1 involved in the gonadal development regulation process of aromatase. Overall, this study explored the genetic basis of sex determination mechanism and provided novel insights into gonad differentiation and development, offering solid genetic support for sex control breeding, marker-assisted selection, and marine resources conservation.
Collapse
Affiliation(s)
- Huanling Lin
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Zhixiong Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Huaqiang Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Weiqiang Zheng
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, China.
| |
Collapse
|
30
|
Hill P, Shams F, Burridge CP, Wapstra E, Ezaz T. Differences in Homomorphic Sex Chromosomes Are Associated with Population Divergence in Sex Determination in Carinascincus ocellatus (Scincidae: Lygosominae). Cells 2021; 10:291. [PMID: 33535518 PMCID: PMC7912723 DOI: 10.3390/cells10020291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 01/09/2023] Open
Abstract
Sex determination directs development as male or female in sexually reproducing organisms. Evolutionary transitions in sex determination have occurred frequently, suggesting simple mechanisms behind the transitions, yet their detail remains elusive. Here we explore the links between mechanisms of transitions in sex determination and sex chromosome evolution at both recent and deeper temporal scales (<1 Myr; ~79 Myr). We studied a rare example of a species with intraspecific variation in sex determination, Carinascincus ocellatus, and a relative, Liopholis whitii, using c-banding and mapping of repeat motifs and a custom Y chromosome probe set to identify the sex chromosomes. We identified both unique and conserved regions of the Y chromosome among C. ocellatus populations differing in sex determination. There was no evidence for homology of sex chromosomes between C. ocellatus and L. whitii, suggesting independent evolutionary origins. We discuss sex chromosome homology between members of the subfamily Lygosominae and propose links between sex chromosome evolution, sex determination transitions, and karyotype evolution.
Collapse
Affiliation(s)
- Peta Hill
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Sandy Bay, TAS 7000, Australia; (C.P.B.); (E.W.)
| | - Foyez Shams
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia; (F.S.); (T.E.)
| | - Christopher P. Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Sandy Bay, TAS 7000, Australia; (C.P.B.); (E.W.)
| | - Erik Wapstra
- Discipline of Biological Sciences, University of Tasmania, Private Bag 5, Sandy Bay, TAS 7000, Australia; (C.P.B.); (E.W.)
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, ACT 2601, Australia; (F.S.); (T.E.)
| |
Collapse
|
31
|
Feller AF, Ogi V, Seehausen O, Meier JI. Identification of a novel sex determining chromosome in cichlid fishes that acts as XY or ZW in different lineages. HYDROBIOLOGIA 2021; 848:3727-3745. [PMID: 34720170 PMCID: PMC8550731 DOI: 10.1007/s10750-021-04560-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 02/02/2021] [Accepted: 02/23/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Sex determination systems are highly conserved among most vertebrates with genetic sex determination, but can be variable and evolve rapidly in some. Here, we study sex determination in a clade with exceptionally high sex chromosome turnover rates. We identify the sex determining chromosomes in three interspecific crosses of haplochromine cichlid fishes from Lakes Victoria and Malawi. We find evidence for different sex determiners in each cross. In the Malawi cross and one Victoria cross the same chromosome is sex-linked but while females are the heterogametic sex in the Malawi species, males are the heterogametic sex in the Victoria species. This chromosome has not previously been reported to be sex determining in cichlids, increasing the number of different chromosomes shown to be sex determining in cichlids to 12. All Lake Victoria species of our crosses are less than 15,000 years divergent, and we identified different sex determiners among them. Our study provides further evidence for the diversity and evolutionary flexibility of sex determination in cichlids, factors which might contribute to their rapid adaptive radiations. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10750-021-04560-7.
Collapse
Affiliation(s)
- Anna F. Feller
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Vera Ogi
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Ole Seehausen
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
| | - Joana I. Meier
- Division of Aquatic Ecology & Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland
- Department of Fish Ecology and Evolution, Centre of Ecology, Evolution and Biogeochemistry (CEEB), Eawag Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, 6047 Kastanienbaum, Switzerland
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ UK
- St John’s College, University of Cambridge, St John’s Street, Cambridge, CB2 1TP UK
| |
Collapse
|
32
|
The evolution of sex chromosome dosage compensation in animals. J Genet Genomics 2020; 47:681-693. [PMID: 33579636 DOI: 10.1016/j.jgg.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 02/02/2023]
Abstract
The evolution of heteromorphic sex chromosomes shall lead to gene expression dosage problems, as in at least one of the sexes, the sex-linked gene dose has been reduced by half. It has been proposed that the transcriptional output of the whole X or Z chromosome should be doubled for complete dosage compensation in heterogametic sex. However, owing to the variability of the existing methods to determine the transcriptional differences between sex chromosomes and autosomes (S:A ratios) in different studies, we collected more than 500 public RNA-Seq data set from multiple tissues and species in major clades and proposed a unified computational framework for unbiased and comparable measurement of the S:A ratios of multiple species. We also tested the evolution of dosage compensation more directly by assessing changes in the expression levels of the current sex-linked genes relative to those of the ancestral sex-linked genes. We found that in mammals and birds, the S:A ratio is approximately 0.5, whereas in insects, fishes, and flatworms, the S:A ratio is approximately 1.0. Further analysis showed that the fraction of dosage-sensitive housekeeping genes on the X/Z chromosome is significantly correlated with the S:A ratio. In addition, the degree of degeneration of the Y chromosome may be responsible for the change in the S:A ratio in mammals without a dosage compensation mechanism. Our observations offer unequivocal support for the sex chromosome insensitivity hypothesis in animals and suggest that dosage sensitivity states of sex chromosomes are a major factor underlying different evolutionary strategies of dosage compensation.
Collapse
|
33
|
Nemesházi E, Gál Z, Ujhegyi N, Verebélyi V, Mikó Z, Üveges B, Lefler KK, Jeffries DL, Hoffmann OI, Bókony V. Novel genetic sex markers reveal high frequency of sex reversal in wild populations of the agile frog (Rana dalmatina) associated with anthropogenic land use. Mol Ecol 2020; 29:3607-3621. [PMID: 32799395 DOI: 10.1111/mec.15596] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/22/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
Populations of ectothermic vertebrates are vulnerable to environmental pollution and climate change because certain chemicals and extreme temperatures can cause sex reversal during early ontogeny (i.e. genetically female individuals develop male phenotype or vice versa), which may distort population sex ratios. However, we have troublingly little information on sex reversals in natural populations, due to unavailability of genetic sex markers. Here, we developed a genetic sexing method based on sex-linked single nucleotide polymorphism loci to study the prevalence and fitness consequences of sex reversal in agile frogs (Rana dalmatina). Out of 125 juveniles raised in laboratory without exposure to sex-reversing stimuli, 6 showed male phenotype but female genotype according to our markers. These individuals exhibited several signs of poor physiological condition, suggesting stress-induced sex reversal and inferior fitness prospects. Among 162 adults from 11 wild populations in North-Central Hungary, 20% of phenotypic males had female genotype according to our markers. These individuals occurred more frequently in areas of anthropogenic land use; this association was attributable to agriculture and less strongly to urban land use. Female-to-male sex-reversed adults had similar body mass as normal males. We recorded no events of male-to-female sex reversal either in the laboratory or in the wild. These results support recent suspicions that sex reversal is widespread in nature, and suggest that human-induced environmental changes may contribute to its pervasiveness. Furthermore, our findings indicate that sex reversal is associated with stress and poor health in early life, but sex-reversed individuals surviving to adulthood may participate in breeding.
Collapse
Affiliation(s)
- Edina Nemesházi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zoltán Gál
- NARIC Agricultural Biotechnology Institute, Gödöllő, Hungary
| | - Nikolett Ujhegyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Viktória Verebélyi
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Zsanett Mikó
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Bálint Üveges
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| | - Kinga Katalin Lefler
- Department of Aquaculture, Faculty of Agricultural and Environmental Sciences, Institute for Conservation of Natural Resources, Szent István University, Gödöllő, Hungary
| | - Daniel Lee Jeffries
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | - Veronika Bókony
- Lendület Evolutionary Ecology Research Group Plant Protection Institute Centre for Agricultural Research, Budapest, Hungary
| |
Collapse
|
34
|
Meiotic Executioner Genes Protect the Y from Extinction. Trends Genet 2020; 36:728-738. [PMID: 32773168 DOI: 10.1016/j.tig.2020.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 01/24/2023]
Abstract
The Y has been described as a wimpy degraded relic of the X, with imminent demise should it lose sex-determining function. Why then has it persisted in almost all mammals? Here we present a novel mechanistic explanation for its evolutionary perseverance: the persistent Y hypothesis. The Y chromosome bears genes that act as their own judge, jury, and executioner in the tightly regulated meiotic surveillance pathways. These executioners are crucial for successful meiosis, yet need to be silenced during the meiotic sex chromosome inactivation window, otherwise germ cells die. Only rare transposition events to the X, where they remain subject to obligate meiotic silencing, are heritable, posing strong evolutionary constraint for the Y chromosome to persist.
Collapse
|
35
|
Viana PF, Ezaz T, de Bello Cioffi M, Liehr T, Al-Rikabi A, Goll LG, Rocha AM, Feldberg E. Landscape of snake' sex chromosomes evolution spanning 85 MYR reveals ancestry of sequences despite distinct evolutionary trajectories. Sci Rep 2020; 10:12499. [PMID: 32719365 PMCID: PMC7385105 DOI: 10.1038/s41598-020-69349-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/06/2020] [Indexed: 11/09/2022] Open
Abstract
Most of snakes exhibit a ZZ/ZW sex chromosome system, with different stages of degeneration. However, undifferentiated sex chromosomes and unique Y sex-linked markers, suggest that an XY system has also evolved in ancestral lineages. Comparative cytogenetic mappings revealed that several genes share ancestry among X, Y and Z chromosomes, implying that XY and ZW may have undergone transitions during serpent's evolution. In this study, we performed a comparative cytogenetic analysis to identify homologies of sex chromosomes across ancestral (Henophidia) and more recent (Caenophidia) snakes. Our analysis suggests that, despite ~ 85 myr of independent evolution, henophidians and caenophidians retained conserved synteny over much of their genomes. However, our findings allowed us to discover that ancestral and recent lineages of snakes do not share the same sex chromosome and followed distinct pathways for sex chromosomes evolution.
Collapse
Affiliation(s)
- Patrik F Viana
- Coordenação de Biodiversidade, Laboratory of Animal Genetics, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, Manaus, AM, 69067-375, Brazil.
| | - Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, ACT 12, Canberra, 2616, Australia
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil.,Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Leonardo G Goll
- Coordenação de Biodiversidade, Laboratory of Animal Genetics, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| | - Anderson M Rocha
- Faculdade Cathedral, Laboratório de Zoologia Aplicada de Vertebrados Terrestres E Aquáticos, Av. Luis Canuto Chaves 293, Boa Vista, RR, Brazil
| | - Eliana Feldberg
- Coordenação de Biodiversidade, Laboratory of Animal Genetics, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, Manaus, AM, 69067-375, Brazil
| |
Collapse
|
36
|
Ahmad SF, Singchat W, Jehangir M, Panthum T, Srikulnath K. Consequence of Paradigm Shift with Repeat Landscapes in Reptiles: Powerful Facilitators of Chromosomal Rearrangements for Diversity and Evolution. Genes (Basel) 2020; 11:E827. [PMID: 32708239 PMCID: PMC7397244 DOI: 10.3390/genes11070827] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022] Open
Abstract
Reptiles are notable for the extensive genomic diversity and species richness among amniote classes, but there is nevertheless a need for detailed genome-scale studies. Although the monophyletic amniotes have recently been a focus of attention through an increasing number of genome sequencing projects, the abundant repetitive portion of the genome, termed the "repeatome", remains poorly understood across different lineages. Consisting predominantly of transposable elements or mobile and satellite sequences, these repeat elements are considered crucial in causing chromosomal rearrangements that lead to genomic diversity and evolution. Here, we propose major repeat landscapes in representative reptilian species, highlighting their evolutionary dynamics and role in mediating chromosomal rearrangements. Distinct karyotype variability, which is typically a conspicuous feature of reptile genomes, is discussed, with a particular focus on rearrangements correlated with evolutionary reorganization of micro- and macrochromosomes and sex chromosomes. The exceptional karyotype variation and extreme genomic diversity of reptiles are used to test several hypotheses concerning genomic structure, function, and evolution.
Collapse
Affiliation(s)
- Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Maryam Jehangir
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Integrative Genomics Lab-LGI, Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (S.F.A.); (W.S.); (M.J.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
| |
Collapse
|
37
|
Assigning the Sex-Specific Markers via Genotyping-by-Sequencing onto the Y Chromosome for a Torrent Frog Amolops mantzorum. Genes (Basel) 2020; 11:genes11070727. [PMID: 32630012 PMCID: PMC7397147 DOI: 10.3390/genes11070727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022] Open
Abstract
We used a genotyping-by-sequencing (GBS) approach to identify sex-linked markers in a torrent frog (Amolops mantzorum), using 21 male and 19 female wild-caught individuals from the same population. A total of 141 putatively sex-linked markers were screened from 1,015,964 GBS-tags via three approaches, respectively based on sex differences in allele frequencies, sex differences in heterozygosity, and sex-limited occurrence. With validations, 69 sex-linked markers were confirmed, all of which point to male heterogamety. The male specificity of eight sex markers was further verified by PCR amplifications, with a large number of additional individuals covering the whole geographic distribution of the species. Y chromosome (No. 5) was microdissected under a light microscope and amplified by whole-genome amplification, and a draft Y genome was assembled. Of the 69 sex-linked markers, 55 could be mapped to the Y chromosome assembly (i.e., 79.7%). Thus, chromosome 5 could be added as a candidate to the chromosomes that are particularly favored for recruitment in sex-determination in frogs. Three sex-linked markers that mapped onto the Y chromosome were aligned to three different promoter regions of the Rana rugosa CYP19A1 gene, which might be considered as a candidate gene for triggering sex-determination in A. mantzorum.
Collapse
|
38
|
Li YL, Xing TF, Liu JX. Genome-wide association analyses based on whole-genome sequencing of Protosalanx hyalocranius provide insights into sex determination of Salangid fishes. Mol Ecol Resour 2020; 20:1038-1049. [PMID: 32315505 DOI: 10.1111/1755-0998.13172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 03/28/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
Abstract
Identification of sex determination system and sex-determining genes have important implications in conservation, ecology and evolution. However, much remains to be discovered about the evolution of different sexual determination systems in teleost fishes, of which the mechanisms of sex determination are remarkably variable. In the present study, the whole genomes of 20 males and 20 females of a Salangid fish, Protosalanx hyalocranius, were sequenced and genome wide association analyses were conducted to uncover its sex determination system and putative sex-determining genes. A total of 150 SNPs were significantly associated with sex, which showed high differentiation between sexes (FST ranged from 0.245 to 0.556). Of the 150 sex-associated SNPs, 76 SNPs displayed sex specificity with even coverage of depth and were female heterogametic, which suggested a ZZ/ZW sex determination system. Interestingly, one scaffold containing sex-specific SNPs displayed synteny to the sex chromosome of medaka. Annotations of sex-associated loci suggested that both transcriptional regulators (e.g., FOX genes) and secreted hormones and their receptors might be involved in the sex determination/differentiation of P. hyalocranius. More strikingly, we found a nonsense mutation in one copy of GALNT homology gene of all females, which suggested that "Z dosage" effect might play a vital role in the processes of sex determination/differentiation. These sex-specific loci could be a valuable resource for further research on sex determination of Salangid fishes and the results could contribute to the understanding of sex determination mechanisms and the evolution of sex chromosome in teleost fishes.
Collapse
Affiliation(s)
- Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
39
|
Taslima K, Wehner S, Taggart JB, de Verdal H, Benzie JAH, Bekaert M, McAndrew BJ, Penman DJ. Sex determination in the GIFT strain of tilapia is controlled by a locus in linkage group 23. BMC Genet 2020; 21:49. [PMID: 32349678 PMCID: PMC7189693 DOI: 10.1186/s12863-020-00853-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022] Open
Abstract
Background Tilapias (Family Cichlidae) are the second most important group of aquaculture species in the world. They have been the subject of much research on sex determination due to problems caused by early maturation in culture and their complex sex-determining systems. Different sex-determining loci (linkage group 1, 20 and 23) have been detected in various tilapia stocks. The ‘genetically improved farmed tilapia’ (GIFT) stock, founded from multiple Nile tilapia (Oreochromis niloticus) populations, with some likely to have been introgressed with O. mossambicus, is a key resource for tilapia aquaculture. The sex-determining mechanism in the GIFT stock was unknown, but potentially complicated due to its multiple origins. Results A bulk segregant analysis (BSA) version of double-digest restriction-site associated DNA sequencing (BSA-ddRADseq) was developed and used to detect and position sex-linked single nucleotide polymorphism (SNP) markers in 19 families from the GIFT strain breeding nucleus and two Stirling families as controls (a single XY locus had been previously mapped to LG1 in the latter). About 1500 SNPs per family were detected across the genome. Phenotypic sex in Stirling families showed strong association with LG1, whereas only SNPs located in LG23 showed clear association with sex in the majority of the GIFT families. No other genomic regions linked to sex determination were apparent. This region was validated using a series of LG23-specific DNA markers (five SNPs with highest association to sex from this study, the LG23 sex-associated microsatellite UNH898 and ARO172, and the recently isolated amhy marker for individual fish (n = 284). Conclusions Perhaps surprisingly given its multiple origins, sex determination in the GIFT strain breeding nucleus was associated only with a locus in LG23. BSA-ddRADseq allowed cost-effective analysis of multiple families, strengthening this conclusion. This technique has potential to be applied to other complex traits. The sex-linked SNP markers identified will be useful for potential marker-assisted selection (MAS) to control sex-ratio in GIFT tilapia to suppress unwanted reproduction during growout.
Collapse
Affiliation(s)
- Khanam Taslima
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK.,Department of Fisheries Biology and Genetics, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Stefanie Wehner
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - John B Taggart
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Hugues de Verdal
- WorldFish Centre, Jalan Batu Maung, Bayan Lepas, Penang, Malaysia.,CIRAD, UMR ISEM, F-34398 Montpellier, France; ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - John A H Benzie
- WorldFish Centre, Jalan Batu Maung, Bayan Lepas, Penang, Malaysia.,School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Michaël Bekaert
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - Brendan J McAndrew
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK
| | - David J Penman
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, UK.
| |
Collapse
|
40
|
Xirocostas ZA, Everingham SE, Moles AT. The sex with the reduced sex chromosome dies earlier: a comparison across the tree of life. Biol Lett 2020; 16:20190867. [PMID: 32126186 PMCID: PMC7115182 DOI: 10.1098/rsbl.2019.0867] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/10/2020] [Indexed: 01/02/2023] Open
Abstract
Many taxa show substantial differences in lifespan between the sexes. However, these differences are not always in the same direction. In mammals, females tend to live longer than males, while in birds, males tend to live longer than females. One possible explanation for these differences in lifespan is the unguarded X hypothesis, which suggests that the reduced or absent chromosome in the heterogametic sex (e.g. the Y chromosome in mammals and the W chromosome in birds) exposes recessive deleterious mutations on the other sex chromosome. While the unguarded X hypothesis is intuitively appealing, it had never been subject to a broad test. We compiled male and female longevity data for 229 species spanning 99 families, 38 orders and eight classes across the tree of life. Consistent with the unguarded X hypothesis, a meta-analysis showed that the homogametic sex, on average, lives 17.6% longer than the heterogametic sex. Surprisingly, we found substantial differences in lifespan dimorphism between female heterogametic species (in which the homogametic sex lives 7.1% longer) and male heterogametic species (in which the homogametic sex lives 20.9% longer). Our findings demonstrate the importance of considering chromosome morphology in addition to sexual selection and environment as potential drivers of sexual dimorphism, and advance our fundamental understanding of the mechanisms that shape an organism's lifespan.
Collapse
Affiliation(s)
- Zoe A. Xirocostas
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Susan E. Everingham
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
- The Australian PlantBank, Royal Botanic Gardens and Domain Trust, Australian Botanic Garden, Mount Annan, New South Wales 2567, Australia
| | - Angela T. Moles
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
41
|
Crepaldi C, Parise-Maltempi PP. Heteromorphic Sex Chromosomes and Their DNA Content in Fish: An Insight through Satellite DNA Accumulation in Megaleporinus elongatus. Cytogenet Genome Res 2020; 160:38-46. [DOI: 10.1159/000506265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
The repetitive DNA content of fish sex chromosomes provides valuable insights into specificities and patterns of their genetic sex determination systems. In this study, we revealed the genomic satellite DNA (satDNA) content of Megaleporinuselongatus, a Neotropical fish species with Z1Z1Z2Z2/Z1W1Z2W2 multiple sex chromosomes, through high-throughput analysis and graph-based clustering, isolating 68 satDNA families. By physically mapping these sequences in female metaphases, we discovered 15 of the most abundant satDNAs clustered in its chromosomes, 9 of which were found exclusively in the highly heterochromatic W1. This heteromorphic sex chromosome showed the highest amount of satDNA accumulations in this species. The second most abundant family, MelSat02-26, shared FISH signals with the NOR-bearing pair in similar patterns and is linked to the multiple sex chromosome system. Our results demonstrate the diverse satDNA content in M. elongatus, especially in its heteromorphic sex chromosome. Additionally, we highlighted the different accumulation patterns and distribution of these sequences across species by physically mapping these satDNAs in other Anostomidae, Megaleporinusmacrocephalus and Leporinusfriderici (a species without differentiated sex chromosomes).
Collapse
|
42
|
Zhou Y, Liu H, Wang X, Fu B, Yu X, Tong J. QTL Fine Mapping for Sex Determination Region in Bighead Carp (Hypophthalmichthys nobilis) and Comparison with Silver Carp (Hypophthalmichthys molitrix). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:41-53. [PMID: 31776800 DOI: 10.1007/s10126-019-09929-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
Bighead carp (Hypophthalmichthys nobilis) and silver carp (Hypophthalmichthys molitrix) are genetically close aquaculture fish in the Cyprinidae, which have been confirmed to hold XX/XY sex determination. However, genomic locations of potential sex-related loci in these two fishes are still unknown. In this study, a high-resolution genetic linkage map was constructed by using 2976 SNP and 924 microsatellite markers in a F1 full-sib family of bighead carp, the length of which spanned 2022.34 cM with an average inter-marker distance of 0.52 cM. Comparative genomics revealed a high level of genomic synteny between bighead carp and zebrafish as well as grass carp. QTL fine mapping for sex trait was performed based on this linkage map of bighead carp and an unpublished linkage map of silver carp. A map distance of 3.863 cM (69.787-73.650 cM) on LG19 of bighead carp and 4.705 cM (79.096-83.801 cM) on LG21 of silver carp was significantly associated with sex phenotypes, and these two LGs are homologous between two fish species. Fourteen markers harboring in these regions were in strong linkage disequilibrium with the sex phenotype variance explained (PVE) varying from 89 to 100%. Two common markers were mapped on the QTL regions of bighead carp and silver carp, suggesting that these two carp species may have similar genetic bases for sex determination. Eleven potentially sex-related genes were identified within or near the sex QTL markers in two species. This study provided insights into elucidating mechanisms and evolution of sex determination in cyprinid fishes.
Collapse
Affiliation(s)
- Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Haiyang Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xinhua Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, 450046, China
| | - Beide Fu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
| |
Collapse
|
43
|
Sopniewski J, Shams F, Scheele BC, Kefford BJ, Ezaz T. Identifying sex-linked markers in Litoria aurea: a novel approach to understanding sex chromosome evolution in an amphibian. Sci Rep 2019; 9:16591. [PMID: 31719585 PMCID: PMC6851140 DOI: 10.1038/s41598-019-52970-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 01/13/2023] Open
Abstract
Few taxa exhibit the variability of sex-determining modes as amphibians. However, due to the presence of homomorphic sex chromosomes in many species, this phenomenon has been difficult to study. The Australian frog, Litoria aurea, has been relatively well studied over the past 20 years due to widespread declines largely attributable to chytrid fungus. However, it has been subject to few molecular studies and its mode of sex determination remained unknown. We applied DArTseq™ to develop sex-linked single nucleotide polymorphisms (SNPs) and restriction fragment presence/absence (PA) markers in 44 phenotypically sexed L. aurea individuals from the Molonglo River in NSW, Australia. We conclusively identified a male heterogametic (XX-XY) sex determination mode in this species, identifying 11 perfectly sex-linked SNP and six strongly sex-linked PA markers. We identified a further 47 moderately sex-linked SNP loci, likely serving as evidence indicative of XY recombination. Furthermore, within these 47 loci, a group of nine males were found to have a feminised Y chromosome that significantly differed to all other males. We postulate ancestral sex-reversal as a means for the evolution of this now pseudoautosomal region on the Y chromosome. Our findings present new evidence for the ‘fountain of youth’ hypothesis for the retention of homomorphic sex chromosomes in amphibians and describe a novel approach for the study of sex chromosome evolution in amphibia.
Collapse
Affiliation(s)
- Jarrod Sopniewski
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia.
| | - Foyez Shams
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia
| | - Benjamin C Scheele
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ben J Kefford
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia
| | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce 2617, Canberra, Australia.
| |
Collapse
|
44
|
Wang L, Xie N, Shen Y, Ye B, Yue GH, Feng X. Constructing High-Density Genetic Maps and Developing Sexing Markers in Northern Snakehead (Channa argus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:348-358. [PMID: 30888532 DOI: 10.1007/s10126-019-09884-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
High-density genetic maps are essential for mapping QTL, improving genome assembly, comparative genomics, and studying sex chromosome evolution. The northern snakehead (Channa argus) is an economically important foodfish species with significant sexual dimorphism, where the males grow much faster and bigger than the females. However, to date, the sex determination pattern is still not clear, limiting identification of sex chromosomes, even sex determination genes and development of monosex populations that are valuable for both sex evolution of vertebrates and aquaculture practices. Here, a sex-averaged map and two sex-specific genetic maps were constructed with 2974, 2323, and 2338 SNPs, respectively. Little difference was observed in the pattern of sex-specific recombination between female- and male-specific genetic maps. Genome scan identified a major locus for sex determination at LG16. Females and males are, respectively, homogametic and heterogametic, suggesting an XY sex determination system for this species. By resequencing genomes, InDels in the sex-associated QTL region were discovered and used for developing sex-specific PCR assays for fast sexing of snakehead. These high-density genetic maps provide useful resources for future genomic studies in snakehead and its related species. The PCR assays for sexing are of importance in developing all male populations for aquaculture.
Collapse
Affiliation(s)
- Le Wang
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Nan Xie
- Institute of Fishery Science, Hangzhou Academy of Agriculture Sciences, 228 East Yuanpu Road, Hangzhou, 310024, China
| | - Yubang Shen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Baoqing Ye
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore
| | - Gen Hua Yue
- Molecular Population Genetics and Breeding Group, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Republic of Singapore.
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| | - Xiaoyu Feng
- Institute of Fishery Science, Hangzhou Academy of Agriculture Sciences, 228 East Yuanpu Road, Hangzhou, 310024, China.
| |
Collapse
|
45
|
Adolfi MC, Fischer P, Herpin A, Regensburger M, Kikuchi M, Tanaka M, Schartl M. Increase of cortisol levels after temperature stress activates dmrt1a causing female-to-male sex reversal and reduced germ cell number in medaka. Mol Reprod Dev 2019; 86:1405-1417. [PMID: 31140678 DOI: 10.1002/mrd.23177] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 04/30/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022]
Abstract
In vertebrates, there is accumulating evidence that environmental factors as triggers for sex determination and genetic sex determination are not two opposing alternatives but that a continuum of mechanisms bridge those extremes. One prominent example is the model fish species Oryzias latipes which has a stable XX/XY genetic sex determination system, but still responds to environmental cues, where high temperatures lead to female-to-male sex reversal. However, the mechanisms behind are still unknown. We show that high temperatures increase primordial germ cells (PGC) numbers before they reach the genital ridge, which, in turn, regulates the germ cell proliferation. Complete ablation of PGCs led to XX males with germ cell less testis, whereas experimentally increased PGC numbers did not reverse XY genotypes to female. For the underlying molecular mechanism, we provide support for the explanation that activation of the dmrt1a gene by cortisol during early development of XX embryos enables this autosomal gene to take over the role of the male determining Y-chromosomal dmrt1bY.
Collapse
Affiliation(s)
| | - Peter Fischer
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Amaury Herpin
- INRA, UR1037 Fish Physiology and Genomics, Rennes, France
| | | | - Mariko Kikuchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Minoru Tanaka
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany.,Germany and Hagler Institute for Advanced Study and Department of Biology, Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Texas A&M University, College Station, Texas
| |
Collapse
|
46
|
Natri HM, Merilä J, Shikano T. The evolution of sex determination associated with a chromosomal inversion. Nat Commun 2019; 10:145. [PMID: 30635564 PMCID: PMC6329827 DOI: 10.1038/s41467-018-08014-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/11/2018] [Indexed: 11/24/2022] Open
Abstract
Sex determination is a fundamentally important and highly diversified biological process, yet the mechanisms behind the origin of this diversity are mostly unknown. Here we suggest that the evolution of sex determination systems can be driven by a chromosomal inversion. We show that an XY system evolved recently in particular nine-spined stickleback (Pungitius pungitius) populations, which arose from ancient hybridization between two divergent lineages. Our phylogenetic and genetic mapping analyses indicate that the XY system is formed in a large inversion that is associated with hybrid sterility between the divergent lineages. We suggest that a new male-determining gene evolved in the inversion in response to selection against impaired male fertility in a hybridized population. Given that inversions are often associated with hybrid incompatibility in animals and plants, they might frequently contribute to the diversification of sex determination systems. Turnovers in sex determination systems occur quite frequently, yet the evolutionary drivers of these turnovers are not well understood. Here, the authors study the sex determination systems in sticklebacks and propose chromosomal inversions as a possible driver of the evolution of sex determination.
Collapse
Affiliation(s)
- Heini M Natri
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland
| | - Takahito Shikano
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014, Helsinki, Finland. .,Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
47
|
Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci Rep 2018; 8:17882. [PMID: 30552368 PMCID: PMC6294749 DOI: 10.1038/s41598-018-36209-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
In the Mexican axolotl (Ambystoma mexicanum), sex is determined by a single Mendelian factor, yet its sex chromosomes do not exhibit morphological differentiation typical of many vertebrate taxa that possess a single sex-determining locus. As sex chromosomes are theorized to differentiate rapidly, species with undifferentiated sex chromosomes provide the opportunity to reconstruct early events in sex chromosome evolution. Whole genome sequencing of 48 salamanders, targeted chromosome sequencing and in situ hybridization were used to identify the homomorphic sex chromosome that carries an A. mexicanum sex-determining factor and sequences that are present only on the W chromosome. Altogether, these sequences cover ~300 kb of validated female-specific (W chromosome) sequence, representing ~1/100,000th of the 32 Gb genome. Notably, a recent duplication of ATRX, a gene associated with mammalian sex-determining pathways, is one of few functional (non-repetitive) genes identified among these W-specific sequences. This duplicated gene (ATRW) was used to develop highly predictive markers for diagnosing sex and represents a strong candidate for a recently-acquired sex determining locus (or sexually antagonistic gene) in A. mexicanum.
Collapse
|
48
|
Dupim EG, Goldstein G, Vanderlinde T, Vaz SC, Krsticevic F, Bastos A, Pinhão T, Torres M, David JR, Vilela CR, Carvalho AB. An investigation of Y chromosome incorporations in 400 species of Drosophila and related genera. PLoS Genet 2018; 14:e1007770. [PMID: 30388103 PMCID: PMC6235401 DOI: 10.1371/journal.pgen.1007770] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/14/2018] [Accepted: 10/17/2018] [Indexed: 11/23/2022] Open
Abstract
Y chromosomes are widely believed to evolve from a normal autosome through a process of massive gene loss (with preservation of some male genes), shaped by sex-antagonistic selection and complemented by occasional gains of male-related genes. The net result of these processes is a male-specialized chromosome. This might be expected to be an irreversible process, but it was found in 2005 that the Drosophila pseudoobscura Y chromosome was incorporated into an autosome. Y chromosome incorporations have important consequences: a formerly male-restricted chromosome reverts to autosomal inheritance, and the species may shift from an XY/XX to X0/XX sex-chromosome system. In order to assess the frequency and causes of this phenomenon we searched for Y chromosome incorporations in 400 species from Drosophila and related genera. We found one additional large scale event of Y chromosome incorporation, affecting the whole montium subgroup (40 species in our sample); overall 13% of the sampled species (52/400) have Y incorporations. While previous data indicated that after the Y incorporation the ancestral Y disappeared as a free chromosome, the much larger data set analyzed here indicates that a copy of the Y survived as a free chromosome both in montium and pseudoobscura species, and that the current Y of the pseudoobscura lineage results from a fusion between this free Y and the neoY. The 400 species sample also showed that the previously suggested causal connection between X-autosome fusions and Y incorporations is, at best, weak: the new case of Y incorporation (montium) does not have X-autosome fusion, whereas nine independent cases of X-autosome fusions were not followed by Y incorporations. Y incorporation is an underappreciated mechanism affecting Y chromosome evolution; our results show that at least in Drosophila it plays a relevant role and highlight the need of similar studies in other groups. In contrast to other chromosomes (X and autosomes), which are present in males and females, Y chromosomes spend all time in males. Hence it is not surprising that along evolution they became male specialized, e.g., containing a disproportionate amount of male-fertility genes. Interestingly it was found in 2005 that in Drosophila pseudoobscura the Y chromosome reverted to "male-female existence", being incorporated into an autosome. These "Y chromosome incorporations" have important consequences on sex-chromosome evolution, and allow the study of the evolutionary forces that shaped Y chromosomes as they act backwards. As D. pseudoobscura was the second Drosophila species investigated in this respect, it is likely that other cases exist, and that perhaps it is a common phenomenon. In order to answer this question we studied 400 Drosophila species. We found one additional case of Y incorporation, which occurred in the ancestor of Drosophila montium, and currently affects a large number of species; overall 13% of the species we sampled (52/400) have Y incorporations. We also found that a previously suggested cause of Y incorporations (X-autosome fusions) is not a general explanation. Our results show that in Drosophila Y incorporations play a relevant role and highlight the need of similar studies in other groups.
Collapse
Affiliation(s)
- Eduardo G. Dupim
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel Goldstein
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thyago Vanderlinde
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Suzana C. Vaz
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Flávia Krsticevic
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- CIFASIS, CONICET, Rosario, Santa Fe, Argentina
| | - Aline Bastos
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thadeo Pinhão
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcos Torres
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jean R. David
- Laboratoire Evolution, Génomes et Spéciation (LEGS), CNRS, France
| | - Carlos R. Vilela
- Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antonio Bernardo Carvalho
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- * E-mail: ,
| |
Collapse
|
49
|
Joshi R, Árnyasi M, Lien S, Gjøen HM, Alvarez AT, Kent M. Development and Validation of 58K SNP-Array and High-Density Linkage Map in Nile Tilapia ( O. niloticus). Front Genet 2018; 9:472. [PMID: 30374365 PMCID: PMC6196754 DOI: 10.3389/fgene.2018.00472] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/24/2018] [Indexed: 11/22/2022] Open
Abstract
Despite being the second most important aquaculture species in the world accounting for 7.4% of global production in 2015, tilapia aquaculture has lacked genomic tools like SNP-arrays and high-density linkage maps to improve selection accuracy and accelerate genetic progress. In this paper, we describe the development of a genotyping array containing more than 58,000 SNPs for Nile tilapia (Oreochromis niloticus). SNPs were identified from whole genome resequencing of 32 individuals from the commercial population of the Genomar strain, and were selected for the SNP-array based on polymorphic information content and physical distribution across the genome using the Orenil1.1 genome assembly as reference sequence. SNP-performance was evaluated by genotyping 4991 individuals, including 689 offspring belonging to 41 full-sib families, which revealed high-quality genotype data for 43,588 SNPs. A preliminary genetic linkage map was constructed using Lepmap2 which in turn was integrated with information from the O_niloticus_UMD1 genome assembly to produce an integrated physical and genetic linkage map comprising 40,186 SNPs distributed across 22 linkage groups (LGs). Around one-third of the LGs showed a different recombination rate between sexes, with the female being greater than the male map by a factor of 1.2 (1632.9 to 1359.6 cM, respectively), with most LGs displaying a sigmoid recombination profile. Finally, the sex-determining locus was mapped to position 40.53 cM on LG23, in the vicinity of the anti-Müllerian hormone (amh) gene. These new resources has the potential to greatly influence and improve the genetic gain when applying genomic selection and surpass the difficulties of efficient selection for invasively measured traits in Nile tilapia.
Collapse
Affiliation(s)
- Rajesh Joshi
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Mariann Árnyasi
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Hans Magnus Gjøen
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Matthew Kent
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
50
|
Hill PL, Burridge CP, Ezaz T, Wapstra E. Conservation of Sex-Linked Markers among Conspecific Populations of a Viviparous Skink, Niveoscincus ocellatus, Exhibiting Genetic and Temperature-Dependent Sex Determination. Genome Biol Evol 2018; 10:1079-1087. [PMID: 29659810 PMCID: PMC5905450 DOI: 10.1093/gbe/evy042] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 12/18/2022] Open
Abstract
Sex determination systems are exceptionally diverse and have undergone multiple and independent evolutionary transitions among species, particularly reptiles. However, the mechanisms underlying these transitions have not been established. Here, we tested for differences in sex-linked markers in the only known reptile that is polymorphic for sex determination system, the spotted snow skink, Niveoscincus ocellatus, to quantify the genomic differences that have accompanied this transition. In a highland population, sex is determined genetically, whereas in a lowland population, offspring sex ratio is influenced by temperature. We found a similar number of sex-linked loci in each population, including shared loci, with genotypes consistent with male heterogamety (XY). However, population-specific linkage disequilibrium suggests greater differentiation of sex chromosomes in the highland population. Our results suggest that transitions between sex determination systems can be facilitated by subtle genetic differences.
Collapse
Affiliation(s)
- Peta L Hill
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | | | - Tariq Ezaz
- Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Erik Wapstra
- School of Biological Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| |
Collapse
|