1
|
Gentile M, Mercati D, Fanciulli PP, Lupetti P, Dallai R. The ultrastructure of sperm and the female storage organ in the backswimmer Notonecta glauca (Hemiptera: Notonectidae) and the coevolution of these two structures. ARTHROPOD STRUCTURE & DEVELOPMENT 2025; 84:101410. [PMID: 39893710 DOI: 10.1016/j.asd.2025.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
This study describes the coevolution of sperm length and female spermatheca size in the backswimmer Notonecta glauca. The species exhibits exceptionally long sperm, characterized by an unusually elongated acrosome, a short nucleus, and a long flagellum featuring a conventional 9 + 9+2 microtubular axoneme and two large mitochondrial derivatives. The spermatheca is equally elongated, comprising a spiralized proximal tract with a unique and novel ultrastructure, a long middle cuticular duct, and a terminal bulb. The spiralized region is lined by an epithelium covered with an extraordinarily thick cuticle composed of orthogonal pillars that terminate in pointed apices. In mated females, a thick secretion layer accumulates between the cuticle and the epithelium, which is enriched with mitochondrial complexes. A comparative analysis of virgin and mated females suggests that the epithelium in mated females actively reabsorbs fluid from the duct lumen. The cuticular duct, a simple and elongated tract, has its lumen compartmentalized by cuticular projections. The terminal bulb, in turn, features an epithelium made up of secretory cells with an extracellular cistern for secretion storage and duct-forming cells rich in longitudinal microtubules. These cells are equipped with ducts that transport the stored secretion to the lumen. Overall, the findings confirm that the size of the female spermatheca influences sperm morphology, underscoring a tight coevolution between these traits.
Collapse
Affiliation(s)
| | - David Mercati
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Romano Dallai
- Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
2
|
Castano-Sanz V, Gomez-Mestre I, Rodriguez-Exposito E, Garcia-Gonzalez F. Pesticide exposure triggers sex-specific inter- and transgenerational effects conditioned by past sexual selection. Proc Biol Sci 2024; 291:20241037. [PMID: 39014998 PMCID: PMC11252676 DOI: 10.1098/rspb.2024.1037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/18/2024] Open
Abstract
Environmental variation often induces plastic responses in organisms that can trigger changes in subsequent generations through non-genetic inheritance mechanisms. Such transgenerational plasticity thus consists of environmentally induced non-random phenotypic modifications that are transmitted through generations. Transgenerational effects may vary according to the sex of the organism experiencing the environmental perturbation, the sex of their descendants or both, but whether they are affected by past sexual selection is unknown. Here, we use experimental evolution on an insect model system to conduct a first test of the involvement of sexual selection history in shaping transgenerational plasticity in the face of rapid environmental change (exposure to pesticide). We manipulated evolutionary history in terms of the intensity of sexual selection for over 80 generations before exposing individuals to the toxicant. We found that sexual selection history constrained adaptation under rapid environmental change. We also detected inter- and transgenerational effects of pesticide exposure in the form of increased fitness and longevity. These cross-generational influences of toxicants were sex dependent (they affected only male descendants), and intergenerational, but not transgenerational, plasticity was modulated by sexual selection history. Our results highlight the complexity of intra-, inter- and transgenerational influences of past selection and environmental stress on phenotypic expression.
Collapse
Affiliation(s)
- Veronica Castano-Sanz
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | - Ivan Gomez-Mestre
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
| | | | - Francisco Garcia-Gonzalez
- Department of Ecology and Evolution, Doñana Biological Station (CSIC), Seville, Spain
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
3
|
Dallai R, Mercati D, Lupetti P. The ultrastructure of the spermatheca of Mordellistena brevicauda (Coleoptera, Tenebrionoidea) and the associated bacterial cells. ARTHROPOD STRUCTURE & DEVELOPMENT 2024; 80:101357. [PMID: 38669939 DOI: 10.1016/j.asd.2024.101357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
The ultrastructural study on the female reproductive system of the beetle M. brevicauda (Mordellidae) confirmed the positive correlation between the length of the sperm and the size of the female seminal receptacle (Spermatheca). The spermatheca of the species is characterized by an apical bulb-like structure where the spermathecal duct forms numerous folds filled with sperm. At this level many bacterial cells are present intermingled with the duct folds. Some are organized in large structures, such as bacteriomes, while other are single bacteriocytes. The latter are often found near the basal lamina of duct epithelium. In addition, some bacteria are visible in the cytoplasm of the duct epithelial cells. Interestingly, bacterial cells have never been observed in the duct lumen. The possible function of the bacterial cells is discussed.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - David Mercati
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
4
|
Bramwell G, Schultz AG, Jennings G, Nini UN, Vanbeek C, Biro PA, Beckmann C, Dujon AM, Thomas F, Sherman CDH, Ujvari B. The effect of mitochondrial recombination on fertilization success in blue mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169491. [PMID: 38154641 DOI: 10.1016/j.scitotenv.2023.169491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 12/30/2023]
Abstract
The presence of doubly uniparental inheritance (DUI) in bivalves represents a unique mode of mitochondrial transmission, whereby paternal (male-transmitted M-type) and maternal (female-transmitted F-type) haplotypes are transmitted to offspring separately. Male embryos retain both haplotypes, but the M-type is selectively removed from females. Due to the presence of heteroplasmy in males, mtDNA can recombine resulting in a 'masculinized' haplotype referred to as Mf-type. While mtDNA recombination is usually rare, it has been recorded in multiple mussel species across the Northern Hemisphere. Given that mitochondria are the powerhouse of the cell, different mtDNA haplotypes may have different selective advantages under diverse environmental conditions. This may be particularly important for sperm fitness and fertilization success. In this study we aimed to i) determine the presence, prevalence of the Mf-type in Australian blue mussels (Mytilus sp.) and ii) investigate the effect of Mf-mtDNA on sperm performance (a fitness correlate). We found a high prevalence of recombined mtDNA (≈35 %) located within the control region of the mitochondrial genome, which occurred only in specimens that contained Southern Hemisphere mtDNA. The presence of two female mitotypes were identified in the studied mussels, one likely originating from the Northern Hemisphere, and the other either representing the endemic M. planulatus species or introduced genotypes from the Southern Hemisphere. Despite having recombination events present in a third of the studied population, analysis of sperm performance indicated no difference in fertilization success related to mitotype.
Collapse
Affiliation(s)
- Georgina Bramwell
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Aaron G Schultz
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Geordie Jennings
- Queenscliff Marine Research Facility and Shellfish Hatchery, Victorian Fisheries Australia, Queenscliff, VIC, Australia
| | - Urmi Nishat Nini
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Caitlin Vanbeek
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Peter A Biro
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia
| | - Christa Beckmann
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia; School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Antoine M Dujon
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia; CREEC, MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- CREEC, MIVEGEC, UMR IRD 224-CNRS 5290-Université de Montpellier, Montpellier, France
| | - Craig D H Sherman
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia; Queenscliff Marine Research Facility and Shellfish Hatchery, Victorian Fisheries Australia, Queenscliff, VIC, Australia
| | - Beata Ujvari
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, VIC, Australia.
| |
Collapse
|
5
|
Dallai R, Mercati D, Fanciulli PP, Lupetti P. The Structure of the Female Genital System of the Diving Beetle Scarodytes halensis (Fabricius, 1787) (Hydroporinae, Dytiscidae), and the Organization of the Spermatheca and the Spermathecal Gland Complex. INSECTS 2023; 14:insects14030282. [PMID: 36975967 PMCID: PMC10053596 DOI: 10.3390/insects14030282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 05/29/2023]
Abstract
The fine structure of the female reproductive organs of the diving beetle Scarodytes halensis has been described, with particular attention to the complex organization of the spermatheca and the spermathecal gland. These organs are fused in a single structure whose epithelium is involved in a quite different activity. The secretory cells of the spermathecal gland have a large extracellular cistern with secretions; duct-forming cells, by their efferent duct, transport the secretions up to the apical cell region where they are discharged into the gland lumen. On the contrary, the spermatheca, filled with sperm, has a quite simple epithelium, apparently not involved in secretory activity. The ultrastructure of the spermatheca is almost identical to that described in a closely related species Stictonectes optatus. Sc. halensis has a long spermathecal duct connecting the bursa copulatrix to the spermatheca-spermathecal gland complex. This duct has a thick outer layer of muscle cells. Through muscle contractions, sperm can be pushed forwarding up to the complex of the two organs. A short fertilization duct allows sperm to reach the common oviduct where eggs will be fertilized. The different organization of the genital systems of Sc. halensis and S. optatus might be related to a different reproductive strategy of the two species.
Collapse
|
6
|
Veronica CS, Ivan GM, Francisco GG. Evolutionary consequences of pesticide exposure include transgenerational plasticity and potential terminal investment transgenerational effects. Evolution 2022; 76:2649-2668. [PMID: 36117275 DOI: 10.1111/evo.14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 01/22/2023]
Abstract
Transgenerational plasticity, the influence of the environment experienced by parents on the phenotype and fitness of subsequent generations, is being increasingly recognized. Human-altered environments, such as those resulting from the increasing use of pesticides, may be major drivers of such cross-generational influences, which in turn may have profound evolutionary and ecological repercussions. Most of these consequences are, however, unknown. Whether transgenerational plasticity elicited by pesticide exposure is common, and the consequences of its potential carryover effects on fitness and population dynamics, remains to be determined. Here, we investigate whether exposure of parents to a common pesticide elicits intra-, inter-, and transgenerational responses (in F0, F1, and F2 generations) in life history (fecundity, longevity, and lifetime reproductive success), in an insect model system, the seed beetle Callosobruchus maculatus. We also assessed sex specificity of the effects. We found sex-specific and hormetic intergenerational and transgenerational effects on longevity and lifetime reproductive success, manifested both in the form of maternal and paternal effects. In addition, the transgenerational effects via mothers detected in this study are consistent with a new concept: terminal investment transgenerational effects. Such effects could underlie cross-generational responses to environmental perturbation. Our results indicate that pesticide exposure leads to unanticipated effects on population dynamics and have far-reaching ecological and evolutionary implications.
Collapse
Affiliation(s)
- Castano-Sanz Veronica
- Department of Ecology and Evolution, Estación Biológica de Doñana-CSIC, Seville, 41092, Spain
| | - Gomez-Mestre Ivan
- Department of Ecology and Evolution, Estación Biológica de Doñana-CSIC, Seville, 41092, Spain
| | - Garcia-Gonzalez Francisco
- Department of Ecology and Evolution, Estación Biológica de Doñana-CSIC, Seville, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|
7
|
Shenoi VN, Brengdahl MI, Grace JL, Eriksson B, Rydén P, Friberg U. A genome-wide test for paternal indirect genetic effects on lifespan in Drosophila melanogaster. Proc Biol Sci 2022; 289:20212707. [PMID: 35538781 PMCID: PMC9091837 DOI: 10.1098/rspb.2021.2707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposing sires to various environmental manipulations has demonstrated that paternal effects can be non-trivial also in species where male investment in offspring is almost exclusively limited to sperm. Whether paternal effects also have a genetic component (i.e. paternal indirect genetic effects (PIGEs)) in such species is however largely unknown, primarily because of methodological difficulties separating indirect from direct effects of genes. PIGEs may nevertheless be important since they have the capacity to contribute to evolutionary change. Here we use Drosophila genetics to construct a breeding design that allows testing nearly complete haploid genomes (more than 99%) for PIGEs. Using this technique, we estimate the variance in male lifespan due to PIGEs among four populations and compare this to the total paternal genetic variance (the sum of paternal indirect and direct genetic effects). Our results indicate that a substantial part of the total paternal genetic variance results from PIGEs. A screen of 38 haploid genomes, randomly sampled from a single population, suggests that PIGEs also influence variation in lifespan within populations. Collectively, our results demonstrate that PIGEs may constitute an underappreciated source of phenotypic variation.
Collapse
Affiliation(s)
| | | | - Jaime L. Grace
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd., Chicago, IL 60660, USA
| | - Björn Eriksson
- Unit of Chemical Ecology, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Sundsvägen 14, Box 102, 230 53 Alnarp, Sweden
| | - Patrik Rydén
- Department of Mathematics and Mathematical Statistics, Umeå University, 901 87 Umeå, Sweden,Computational Life Science Cluster (CLiC), Umeå University, 901 87 Umeå, Sweden
| | - Urban Friberg
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
8
|
Limberger GM, Esteves KP, Halal LM, Nery LEM, da Fonseca DB. Chronic immune challenge is detrimental to female survival, feeding behavior, and reproduction in the field cricket Gryllus assimilis (Fabricius, 1775). J Comp Physiol B 2022; 192:423-434. [PMID: 35195757 DOI: 10.1007/s00360-022-01431-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2023]
Abstract
Physiological trade-offs among expensive fitness-related traits, such as reproduction and immunity, are common in life histories of animals. An immune challenge can have different effects on female reproduction mediated by resource allocation and acquisition. In this study, employing a widely used method to challenge the insect immune system (nylon implant), we assessed the effects of mounting a chronic immune response simulating three successive immune assaults on survival and reproduction of mated females of Gryllus assimilis. We also verified feeding behavior following an implantation, which can be important in explaining trade-off dynamics in terms of energy acquisition. For this, three experimental groups were designed (Control, Sham, and Implant) with oviposition rates, egg morphometry, and nymph vigour observed over 3 weeks, at which ovarian mass and unlaid eggs were quantified from remaining individuals. The results showed that chronic implants were detrimental to female survival and reproduction throughout the experiments; Surgical Sham had no effect on survival compared to the control, but did on reproductive aspects such as oviposition rates and hatchling vigour. These negative effects on reproduction in Sham disappeared in the last experimental week, but still strong in the implanted females. Such immune challenge affected the feeding behavior of implanted females by reducing food consumption compared to control after infection, which is probably explained by illness-induced anorexia that takes place to maximize the immune system performance as a part of sickness behavior, exacerbating the adverse effects observed on reproduction (i.e., fewer and smaller eggs, and low vigour of nymphs) and survival.
Collapse
Affiliation(s)
- Guilherme Martins Limberger
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil.
| | | | - Lamia Marques Halal
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | - Luiz Eduardo Maia Nery
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália, km 8, Rio Grande, RS, 96203-001, Brazil
| | | |
Collapse
|
9
|
Simmons LW, Ng SH, Lovegrove M. Condition‐dependent seminal fluid gene expression and intergenerational paternal effects on ejaculate quality. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Soon Hwee Ng
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| |
Collapse
|
10
|
Moschilla JA, Tomkins JL, Simmons LW. Nongenetic inheritance of behavioural variability is context specific and sex specific. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joe A. Moschilla
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| | - Joseph L. Tomkins
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology School of Biological Sciences (M092) The University of Western Australia Crawley WA Australia
| |
Collapse
|
11
|
Yasui Y, Yamamoto Y. An empirical test of bet-hedging polyandry hypothesis in the field cricket Gryllus bimaculatus. J ETHOL 2021. [DOI: 10.1007/s10164-021-00707-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractTheory shows that polyandry (mating with multiple males within a reproductive season) works as bet-hedging to increase the geometric mean fitness (GMF) of polyandrous genotype over generations and avoid extinction but it was rarely tested empirically. In this study, we distributed the eggs of Gryllus bimaculatus females mated with 1–4 males (mating treatment) into 4 petri dishes with different conditions: 25 °C/fresh water, 37 °C/fresh water, 25 °C/salt water, 37 °C/salt water, simulating 4 clutches laid at the different sites are suffered environmental change. The egg hatching rate was obtained over 7 blocks with different females for each mating treatment. In general, significantly more eggs hatched in 25 °C than 37 °C and in fresh water than salt water. The reproductive failure (no hatched eggs per petri dish) frequently occurred in monandry and 2-male polyandry. Next, we considered 7 blocks as the successive 7 virtual generations and calculated the within-generation arithmetic mean fitness (AMF) among females of the same treatment and the between-generation GMF of the AMF across 7 generations. Randomization test shows that the GMF of 3- and 4-male polyandry were significantly higher than monandry. This study shows that the risk from mating only once can be avoided by polyandrous mating as bet-hedging.
Collapse
|
12
|
Dallai R, Fanciulli PP, Lupetti P, Mercati D. The ultrastructure of sperm and female sperm storage organs in the water strider Gerris lacustris L. (Heteroptera) and a possible example of genital coevolution. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101043. [PMID: 33689939 DOI: 10.1016/j.asd.2021.101043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
The fine structural organization of the male and the female inner reproductive apparatuses of the water-strider Gerris lacustris was studied. The sperm of the species shows a long helicoidal acrosome provided with longitudinal tubules, and a short nucleus. The flagellum is characterized by crescent mitochondrial derivatives and a 9 + 9 + 2 axoneme, as occurs in all Heteroptera. The female reproductive apparatus is characterized by an extremely long spermathecal duct, filled with sperm, which plays the role of the main sperm storage organ. The duct has a thin epithelium surrounded by a complex of secretory and duct-forming cells. The spermathecal duct flows into the gynatrial sac. This region, together with the fertilization chamber, exhibits a simple epithelium with deep apical plasma membrane invaginations, and it does not show conspicuous secretions. The basal cell region shows plasma membrane infoldings forming thin cytoplasmic bands hosting mitochondria and large intercellular spaces. This organization is typical of epithelia active in fluid reabsorption. Two lateral large gynatrial glands open into the gynatrial sac. Such glands also exhibit secretory and duct forming cells. The same structure of these glands is also present along the proximal region of the fecundation canal. The duct forming cells of these regions have very wide ducts with peculiar cuticular finger-like structures at their opening into the gland duct lumen. The results of the present study suggest the occurrence of a coevolution between the sperm and the spermathecal duct lengths.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Life Sciences, University of Siena, Italy.
| | | | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Italy.
| | - David Mercati
- Department of Life Sciences, University of Siena, Italy.
| |
Collapse
|
13
|
Dallai R, Fanciulli PP, Mercati D, Lupetti P. Coevolution between female seminal receptacle and sperm morphology in the semiaquatic measurer bug Hydrometra stagnorum L. (Heteroptera, Hydrometridae). ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 60:101001. [PMID: 33120187 DOI: 10.1016/j.asd.2020.101001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
The coevolution between sperm length and size of the female sperm-storage organs is described for the first time within Heteroptera. The long sperm of the measurer bug Hydrometra stagnorum is characterized by the unusually long acrosome with its anterior region helically arranged, and by a very short nucleus. The sperm flagellum has a 9 + 9+2 conventional axoneme and crystallized mitochondrial derivatives. The female spermatheca consists of an extraordinarily long spermathecal duct ending with an apical spermathecal bulb into which flows also the secretions of a relatively short spermathecal gland. Both spermathecal duct and gland have a thin epithelium lined by a cuticle, beneath which a complex of secretory and duct forming cells are present. The secretions of these two structures flow into the apical spermathecal bulb. A thick layer of muscle fibers surrounds the epithelium. These results confirm the opinion that the dimensions of the female reproductive sperm-storage organs are able to drive the sperm morphology.
Collapse
Affiliation(s)
- Romano Dallai
- Department of Life Sciences, University of Siena, Siena, Italy.
| | | | - David Mercati
- Department of Life Sciences, University of Siena, Siena, Italy.
| | - Pietro Lupetti
- Department of Life Sciences, University of Siena, Siena, Italy.
| |
Collapse
|
14
|
Lymbery RA, Berson JD, Evans JP. Indirect parental effects on offspring viability by egg-derived fluids in an external fertilizer. Proc Biol Sci 2020; 287:20202538. [PMID: 33290674 DOI: 10.1098/rspb.2020.2538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The capacity for parents to influence offspring phenotypes via nongenetic inheritance is currently a major area of focus in evolutionary biology. Intriguing recent evidence suggests that sexual interactions among males and females, both before and during mating, are important mediators of such effects. Sexual interactions typically extend beyond gamete release, involving both sperm and eggs, and their associated fluids. However, the potential for gamete-level interactions to induce nongenetic parental effects remains under-investigated. Here, we test for such effects using an emerging model system for studying gamete interactions, the external fertilizer Mytilus galloprovincialis. We employed a split-ejaculate design to test whether exposing sperm to egg-derived chemicals (ECs) from a female would affect fertilization rate and offspring viability when those sperm were used to fertilize a different female's eggs. We found separate, significant effects of ECs from non-fertilizing females on both fertilization rate and offspring viability. The offspring viability effect indicates that EC-driven interactions can have nongenetic implications for offspring fitness independent of the genotypes inherited by those offspring. These findings provide a rare test of indirect parental effects driven exclusively by gamete-level interactions, and to our knowledge the first evidence that such effects occur via the gametic fluids of females.
Collapse
Affiliation(s)
- Rowan A Lymbery
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Jacob D Berson
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
15
|
Simmons LW, Lovegrove M. Can paternal effects via seminal fluid contribute to the evolution of polyandry? Biol Lett 2020; 16:20200680. [PMID: 33202182 DOI: 10.1098/rsbl.2020.0680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Genetic benefits from mating with multiple males are thought to favour the evolution of polyandry. However, recent evidence suggests that non-genetic paternal effects via seminal fluid might contribute to the observed effects of polyandry on offspring performance. Here, we test this hypothesis using the field cricket Teleogryllus oceanicus. Using interference RNA, we first show that at least one seminal fluid protein is essential for embryo survival. We then show that polyandrous females mated to three different males produced embryos with higher pre-hatching viability than did monandrous females mated with the same male three times. Pseudo-polyandrous females that obtained sperm and seminal fluid from a single male and seminal fluid from two additional males had embryos with viabilities intermediate between monandrous and polyandrous females. Our results suggest either that ejaculate mediated paternal effects on embryo viability have both genetic and non-genetic components, or that seminal fluids transferred by castrated males provide only a subset of proteins contained within the normal ejaculate, and are unable to exert their full effect on embryo viability.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| | - Maxine Lovegrove
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
16
|
García-Roa R, Garcia-Gonzalez F, Noble DWA, Carazo P. Temperature as a modulator of sexual selection. Biol Rev Camb Philos Soc 2020; 95:1607-1629. [PMID: 32691483 DOI: 10.1111/brv.12632] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/25/2022]
Abstract
A central question in ecology and evolution is to understand why sexual selection varies so much in strength across taxa; it has long been known that ecological factors are crucial to this. Temperature is a particularly salient abiotic ecological factor that modulates a wide range of physiological, morphological and behavioural traits, impacting individuals and populations at a global taxonomic scale. Furthermore, temperature exhibits substantial temporal variation (e.g. daily, seasonally and inter-seasonally), and hence for most species in the wild sexual selection will regularly unfold in a dynamic thermal environment. Unfortunately, studies have so far almost completely neglected the role of temperature as a modulator of sexual selection. Here, we outline the main pathways through which temperature can affect the intensity and form (i.e. mechanisms) of sexual selection, via: (i) direct effects on secondary sexual traits and preferences (i.e. trait variance, opportunity for selection and trait-fitness covariance), and (ii) indirect effects on key mating parameters, sex-specific reproductive costs/benefits, trade-offs, demography and correlated abiotic factors. Building upon this framework, we show that, by focusing exclusively on the first-order effects that environmental temperature has on traits linked with individual fitness and population viability, current global warming studies may be ignoring eco-evolutionary feedbacks mediated by sexual selection. Finally, we tested the general prediction that temperature modulates sexual selection by conducting a meta-analysis of available studies experimentally manipulating temperature and reporting effects on the variance of male/female reproductive success and/or traits under sexual selection. Our results show a clear association between temperature and sexual selection measures in both sexes. In short, we suggest that studying the feedback between temperature and sexual selection processes may be vital to developing a better understanding of variation in the strength of sexual selection in nature, and its consequences for population viability in response to environmental change (e.g. global warming).
Collapse
Affiliation(s)
- Roberto García-Roa
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| | - Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, 26, Isla de la Cartuja, Sevilla, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| | - Daniel W A Noble
- Ecology and Evolution Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.,Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, 2061, Australia
| | - Pau Carazo
- Behaviour and Evolution, Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/Catedrático José Beltrán 2, Paterna, Valencia, 46980, Spain
| |
Collapse
|
17
|
Kekäläinen J, Jokiniemi A, Janhunen M, Huuskonen H. Offspring phenotype is shaped by the nonsperm fraction of semen. J Evol Biol 2020; 33:584-594. [PMID: 31984576 DOI: 10.1111/jeb.13592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
In a large majority of animal species, the only contribution of males to the next generation has been assumed to be their genes (sperm). However, along with sperm, seminal plasma contains a wide array of extracellular factors that have many important functions in reproduction. Yet, the potential intergenerational effects of these factors are virtually unknown. We investigated these effects in European whitefish (Coregonus lavaretus) by experimentally manipulating the presence and identity of seminal plasma and by fertilizing the eggs of multiple females with the manipulated and unmanipulated semen of several males in a full-factorial breeding design. The presence of both own seminal plasma and foreign seminal plasma inhibited sperm motility, and the removal of own seminal plasma decreased embryo survival. Embryos hatched significantly earlier after both semen manipulations than in control fertilizations; foreign seminal plasma also increased offspring aerobic swimming performance. Given that our experimental design allowed us to control potentially confounding sperm-mediated (sire) effects and maternal effects, our results indicate that seminal plasma may have direct intergenerational consequences for offspring phenotype and performance. This novel source of offspring phenotypic variance may provide new insights into the evolution of polyandry and mechanisms that maintain heritable variation in fitness and associated female mating preferences.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Annalaura Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Janhunen
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Hannu Huuskonen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
18
|
Simmons LW, Lovegrove M. Nongenetic paternal effects via seminal fluid. Evol Lett 2019; 3:403-411. [PMID: 31388449 PMCID: PMC6675144 DOI: 10.1002/evl3.124] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/11/2019] [Indexed: 11/08/2022] Open
Abstract
Mounting evidence suggests that nongenetic paternal effects on offspring may be widespread among animal taxa, but the mechanisms underlying this form of nongenetic inheritance are not yet fully understood. Here, we show that seminal fluids underlie paternal effects on early offspring survival in an insect, the cricket Teleogryllus oceanicus, and quantify the contribution of this paternal effect to the inheritance of this important fitness trait. We used castrated males within a full-sib half-sib experimental design to show that seminal fluid donors were responsible for variation in the survival of developing embryos to hatching, and in their subsequent survival to adulthood. Increased expression of two seminal fluid protein genes, previously found to be positively associated with sperm quality, was found to be negatively associated with embryo survival. These nongenetic paternal effects hold important implications for the evolution of adaptive maternal responses to sperm competition, and more broadly for the interpretation of sire effects from classic quantitative genetic breeding designs.
Collapse
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawley6009Australia
| | - Maxine Lovegrove
- Centre for Evolutionary BiologySchool of Biological SciencesThe University of Western AustraliaCrawley6009Australia
| |
Collapse
|
19
|
Evans JP, Wilson AJ, Pilastro A, Garcia-Gonzalez F. Ejaculate-mediated paternal effects: evidence, mechanisms and evolutionary implications. Reproduction 2019; 157:R109-R126. [PMID: 30668523 DOI: 10.1530/rep-18-0524] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022]
Abstract
Despite serving the primary objective of ensuring that at least one sperm cell reaches and fertilises an ovum, the male ejaculate (i.e. spermatozoa and seminal fluid) is a compositionally complex 'trait' that can respond phenotypically to subtle changes in conditions. In particular, recent research has shown that environmentally and genetically induced changes to ejaculates can have implications for offspring traits that are independent of the DNA sequence encoded into the sperm's haploid genome. In this review, we compile evidence from several disciplines and numerous taxonomic systems to reveal the extent of such ejaculate-mediated paternal effects (EMPEs). We consider a number of environmental and genetic factors that have been shown to impact offspring phenotypes via ejaculates, and where possible, we highlight the putative mechanistic pathways by which ejaculates can act as conduits for paternal effects. We also highlight how females themselves can influence EMPEs, and in some cases, how maternally derived sources of variance may confound attempts to test for EMPEs. Finally, we consider a range of putative evolutionary implications of EMPEs and suggest a number of potentially useful approaches for exploring these further. Overall, our review confirms that EMPEs are both widespread and varied in their effects, although studies reporting their evolutionary effects are still in their infancy.
Collapse
Affiliation(s)
- Jonathan P Evans
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Alastair J Wilson
- Centre for Ecology and Evolution, University of Exeter, Cornwall Campus, Penryn, UK
| | | | - Francisco Garcia-Gonzalez
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Crawley, Western Australia, Australia.,Estacion Biologica de Doñana-CSIC, Sevilla, Spain
| |
Collapse
|
20
|
Chakrabarty A, van Kronenberg P, Toliopoulos N, Schielzeth H. Direct and indirect genetic effects on reproductive investment in a grasshopper. J Evol Biol 2019; 32:331-342. [PMID: 30693584 DOI: 10.1111/jeb.13417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/22/2019] [Indexed: 12/20/2022]
Abstract
A fundamental part of the quantitative genetic theory deals with the partitioning of the phenotypic variance into additive genetic and environmental components. During interaction with conspecifics, the interaction partner becomes a part of the environment from the perspective of the focal individual. If the interaction effects have a genetic basis, they are called indirect genetic effects (IGEs) and can evolve along with direct genetic effects. Sexual reproduction is a classic context where potential conflict between males and females can arise from trade-offs between current and future investments. We studied five female fecundity traits, egg length and number, egg pod length and number and latency to first egg pod, and estimated the direct and IGEs using a half-sib breeding design in the grasshopper Chorthippus biguttulus. We found that the male IGEs were an order of magnitude lower than the direct genetic effects and were not significantly different from zero. However, there was some indication that IGEs were larger shortly after mating, consistent with the idea that IGEs fade with time after interaction. Female direct heritabilities were moderate to low. Simulation shows that the variance component estimates can appear larger with less data, calling for care when interpreting variance components estimated with low power. Our results illustrate that the contribution of male IGEs is overall low on the phenotypic variance of female fecundity traits. Thus, even in the relevant context of sexual conflict, the influence of male IGEs on the evolutionary trajectory of female reproductive traits is likely to be small.
Collapse
Affiliation(s)
- Anasuya Chakrabarty
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| | | | | | - Holger Schielzeth
- Department of Evolutionary Biology, Bielefeld University, Bielefeld, Germany.,Population Ecology Group, Institute of Ecology and Evolution, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
21
|
Lubanga U, Peters R, Steinbauer M. Convenience polyandry and the role of lone and reciprocal calls in a psyllid. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Kekäläinen J, Oskoei P, Janhunen M, Koskinen H, Kortet R, Huuskonen H. Sperm pre-fertilization thermal environment shapes offspring phenotype and performance. ACTA ACUST UNITED AC 2018; 221:jeb.181412. [PMID: 30171097 DOI: 10.1242/jeb.181412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023]
Abstract
The sperm pre-fertilization environment has recently been suggested to mediate remarkable transgenerational consequences for offspring phenotype (transgenerational plasticity, TGB), but the adaptive significance of the process has remained unclear. Here, we studied the transgenerational effects of sperm pre-fertilization thermal environment in a cold-adapted salmonid, the European whitefish (Coregonus lavaretus). We used a full-factorial breeding design where the eggs of five females were fertilized with the milt of 10 males that had been pre-incubated at two different temperatures (3.5°C and 6.5°C) for 15 h prior to fertilization. Thermal manipulation did not affect sperm motility, cell size, fertilization success or embryo mortality. However, offspring that were fertilized with 6.5°C-exposed milt were smaller and had poorer swimming performance than their full-siblings that had been fertilized with the 3.5°C-exposed milt. Furthermore, the effect of milt treatment on embryo mortality varied among different females (treatment×female interaction) and male-female combinations (treatment×female×male interaction). Together, these results indicate that sperm pre-fertilization thermal environment shapes offspring phenotype and post-hatching performance and modifies both the magnitude of female (dam) effects and the compatibility of the gametes. Generally, our results suggest that short-term changes in sperm thermal conditions may have negative impact for offspring fitness. Thus, sperm thermal environment may have an important role in determining the adaptation potential of organisms to climate change. Detailed mechanism(s) behind our findings require further attention.
Collapse
Affiliation(s)
- Jukka Kekäläinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Párástu Oskoei
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland.,Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Matti Janhunen
- Natural Resources Institute Finland (Luke), Survontie 9, FI-40500 Jyväskylä, Finland
| | - Heikki Koskinen
- Natural Resources Institute Finland (Luke), Huuhtajantie 160, FI-72210 Tervo, Finland
| | - Raine Kortet
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| | - Hannu Huuskonen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box 111, FI-80101 Joensuu, Finland
| |
Collapse
|
23
|
Lymbery RA, Kennington WJ, Evans JP. Multivariate Sexual Selection on Ejaculate Traits under Sperm Competition. Am Nat 2018; 192:94-104. [DOI: 10.1086/697447] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Baena-Díaz F, Martínez-M I, Gil-Pérez Y, González-Tokman D. Trans-generational effects of ivermectin exposure in dung beetles. CHEMOSPHERE 2018; 202:637-643. [PMID: 29597181 DOI: 10.1016/j.chemosphere.2018.03.109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Ivermectin is a powerful antiparasitic drug commonly used in cattle. Ivermectin residues are excreted in dung, threatening non-target coprophagous fauna such as dung beetles. This can have severe ecological and economic consequences for dung degradation and soil fertility. Even though the negative effects of direct ivermectin exposure on dung-degrading organisms are well known, effects could extend across generations. Here, we tested the effects of paternal or maternal exposure to ivermectin on offspring in the dung beetle Euoniticellus intermedius. This species is a classic study subject in ecotoxicology and sexual selection because males have a cephalic horn that is under intense selection via male-male competition. After confirming a negative effect of ivermectin on the number of emerged beetles, we found trans-generational effects of ivermectin exposure on the horn size of male offspring. Surprisingly however, this trans-generational effect only occurred when only the father was exposed. We detected no trans-generational effects of ivermectin exposure on offspring number, sex ratio or body size. Our results confirm that ivermectin not only has a strong effect on exposed individuals but also in their progeny. Our study opens new questions about the mechanisms responsible for parental effects and their long-term fitness consequences in contaminated habitats.
Collapse
Affiliation(s)
- Fernanda Baena-Díaz
- Instituto de Ecología A. C. Antigua carretera a Coatepec 351. El Haya, Xalapa, Veracruz, 91070, Mexico
| | - Imelda Martínez-M
- Instituto de Ecología A. C. Antigua carretera a Coatepec 351. El Haya, Xalapa, Veracruz, 91070, Mexico
| | - Yorleny Gil-Pérez
- Instituto de Ecología A. C. Antigua carretera a Coatepec 351. El Haya, Xalapa, Veracruz, 91070, Mexico
| | - Daniel González-Tokman
- Instituto de Ecología A. C. Antigua carretera a Coatepec 351. El Haya, Xalapa, Veracruz, 91070, Mexico; CONACYT, Mexico.
| |
Collapse
|
25
|
Zajitschek SRK, Dowling DK, Head ML, Rodriguez-Exposito E, Garcia-Gonzalez F. Transgenerational effects of maternal sexual interactions in seed beetles. Heredity (Edinb) 2018; 121:282-291. [PMID: 29802349 DOI: 10.1038/s41437-018-0093-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/14/2018] [Accepted: 04/23/2018] [Indexed: 11/10/2022] Open
Abstract
Mating often bears large costs to females, especially in species with high levels of sexual conflict over mating rates. Given the direct costs to females associated with multiple mating, which include reductions in lifespan and lifetime reproductive success, past research focused on identifying potential indirect benefits (through increases in offspring fitness) that females may accrue. Far less attention has, however, been devoted to understanding how costs of sexual interactions to females may extend across generations. Hence, little is known about the transgenerational implications of variation in mating rates, or the net consequences of maternal sexual activities across generations. Using the seed beetle, Callosobruchus maculatus, a model system for the study of sexual conflict, we investigate the effects of mating with multiple males versus a single male, and tease apart effects due to sexual harassment and those due to mating per se, over three generations. A multigenerational analysis indicated that females that were exposed to ongoing sexual harassment and who also were permitted to mate with multiple males showed no difference in net fitness compared to females that mated just once without ongoing harassment. Intriguingly, however, females that were continually harassed, but permitted to mate just once, suffered a severe decline in net fitness compared to females that were singly (not harassed) or multiply mated (harassed, but potentially gaining benefits via mating with multiple males). Overall, the enhanced fitness in multiply mated compared to harassed females may indicate that multiple mating confers transgenerational benefits. These benefits may counteract, but do not exceed (i.e., we found no difference between singly and multiply mated females), the large transgenerational costs of harassment. Our study highlights the importance of examining transgenerational effects from an inclusive (looking at both indirect benefits but also costs) perspective, and the need to investigate transgenerational effects across several generations if we are to fully understand the consequences of sexual interactions, sexual conflict evolution, and the interplay of sexual conflict and multi-generational costs and benefits.
Collapse
Affiliation(s)
- Susanne R K Zajitschek
- Estación Biológica de Doñana - CSIC, Seville, 41092, Spain. .,School of Biological Sciences, Monash University, Clayton, 3800, VIC, Australia.
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, 3800, VIC, Australia
| | - Megan L Head
- Research School of Biology, Australian National University, Canberra, 0200, ACT, Australia
| | | | - Francisco Garcia-Gonzalez
- Estación Biológica de Doñana - CSIC, Seville, 41092, Spain.,Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Crawley, 6009, WA, Australia
| |
Collapse
|
26
|
Turnell BR, Shaw KL, Reeve HK. Modeling strategic sperm allocation: Tailoring the predictions to the species. Evolution 2018; 72:414-425. [PMID: 29331038 DOI: 10.1111/evo.13423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 12/01/2022]
Abstract
Two major challenges exist when empirically testing the predictions of sperm allocation theory. First, the study species must adhere to the assumptions of the model being tested. Unfortunately, the common assumption of sperm allocation models that females mate a maximum of once or twice does not hold for many, if not most, multiply and sequentially mating animals. Second, a model's parameters, which dictate its predictions, must be measured in the study species. Common examples of such parameters, female mating frequency and sperm precedence patterns, are unknown for many species used in empirical tests. Here, we present a broadly applicable model, appropriate for multiply, sequentially mating animals, and test it in three species for which data on all the relevant parameter values are available. The model predicts that relative allocation to virgin females, compared to nonvirgins, depends on the interaction between female mating rate and the sperm precedence pattern: relative allocation to virgins increases with female mating rate under first-male precedence, while the opposite is true under later-male precedence. Our model is moderately successful in predicting actual allocation patterns in the three species, including a cricket in which we measured the parameter values and performed an empirical test of allocation.
Collapse
Affiliation(s)
- Biz R Turnell
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853.,Current Address: Department of Biology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| | - H Kern Reeve
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| |
Collapse
|
27
|
Gasparini C, Lu C, Dingemanse NJ, Tuni C. Paternal‐effects in a terrestrial ectotherm are temperature dependent but no evidence for adaptive effects. Funct Ecol 2017. [DOI: 10.1111/1365-2435.13022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clelia Gasparini
- Centre for Evolutionary BiologySchool of Biological SciencesUniversity of Western Australia Crawley Australia
| | - ChuChu Lu
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| | - Niels J. Dingemanse
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| | - Cristina Tuni
- Behavioural EcologyDepartment of BiologyLudwig Maximilian University Munich Germany
| |
Collapse
|
28
|
Garcia-Gonzalez F. Indirect genetic effects—everything is special, everything is important: a comment on Bailey et al. Behav Ecol 2017. [DOI: 10.1093/beheco/arx144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Lymbery RA, Kennington WJ, Evans JP. Fluorescent sperm offer a method for tracking the real-time success of ejaculates when they compete to fertilise eggs. Sci Rep 2016; 6:22689. [PMID: 26941059 PMCID: PMC4778040 DOI: 10.1038/srep22689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/17/2016] [Indexed: 12/25/2022] Open
Abstract
Despite intensive research effort, many uncertainties remain in the field of gamete-level sexual selection, particularly in understanding how sperm from different males interact when competing for fertilisations. Here, we demonstrate the utility of broadcast spawning marine invertebrates for unravelling these mysteries, highlighting their mode of reproduction and, in some species, unusual patterns of mitochondrial inheritance. We present a method utilising both properties in the blue mussel, Mytilus galloprovincialis. In mytilids and many other bivalves, both sperm and egg mitochondria are inherited. We exploit this, using the vital mitochondrial dye MitoTracker, to track the success of sperm from individual males when they compete with those from rivals to fertilise eggs. We confirm that dying mitochondria has no adverse effects on in vitro measures of sperm motility (reflecting mitochondrial energetics) or sperm competitive fertilisation success. Therefore, we propose the technique as a powerful and logistically tractable tool for sperm competition studies. Importantly, our method allows the competitive fertilisation success of sperm from any male to be measured directly and disentangled from confounding effects of post-fertilisation embryo survival. Moreover, the mitochondrial dye has broader applications in taxa without paternal mitochondrial inheritance, for example by tracking the dynamics of competing ejaculates prior to fertilisation.
Collapse
Affiliation(s)
- Rowan A Lymbery
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - W Jason Kennington
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| | - Jonathan P Evans
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, Crawley 6009, WA, Australia
| |
Collapse
|
30
|
Ala-Honkola O, Ritchie MG, Veltsos P. Postmating-prezygotic isolation between two allopatric populations of Drosophila montana: fertilisation success differs under sperm competition. Ecol Evol 2016; 6:1679-91. [PMID: 27087932 PMCID: PMC4801965 DOI: 10.1002/ece3.1995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 12/23/2022] Open
Abstract
Postmating but prezygotic (PMPZ) interactions are increasingly recognized as a potentially important early‐stage barrier in the evolution of reproductive isolation. A recent study described a potential example between populations of the same species: single matings between Drosophila montana populations resulted in differential fertilisation success because of the inability of sperm from one population (Vancouver) to penetrate the eggs of the other population (Colorado). As the natural mating system of D. montana is polyandrous (females remate rapidly), we set up double matings of all possible crosses between the same populations to test whether competitive effects between ejaculates influence this PMPZ isolation. We measured premating isolation in no‐choice tests, female fecundity, fertility and egg‐to‐adult viability after single and double matings as well as second‐male paternity success (P2). Surprisingly, we found no PMPZ reproductive isolation between the two populations under a competitive setting, indicating no difficulty of sperm from Vancouver males to fertilize Colorado eggs after double matings. While there were subtle differences in how P2 changed over time, suggesting that Vancouver males’ sperm are somewhat less competitive in a first‐male role within Colorado females, these effects did not translate into differences in overall P2. Fertilisation success can thus differ dramatically between competitive and noncompetitive conditions, perhaps because the males that mate second produce higher quality ejaculates in response to sperm competition. We suggest that unlike in more divergent species comparisons, where sperm competition typically increases reproductive isolation, ejaculate tailoring can reduce the potential for PMPZ isolation when recently diverged populations interbreed.
Collapse
Affiliation(s)
- Outi Ala-Honkola
- Department of Biological and Environmental Science University of Jyvaskyla PO Box 35 FI- 40014 Jyvaskyla Finland
| | - Michael G Ritchie
- Centre for Biological Diversity School of Biology University of St Andrews St Andrews KY16 9TS UK
| | - Paris Veltsos
- Department of Ecology and Evolution University of Lausanne Biophore Building Lausanne 1015 Switzerland
| |
Collapse
|
31
|
Travers LM, Simmons LW, Garcia‐Gonzalez F. Additive genetic variance in polyandry enables its evolution, but polyandry is unlikely to evolve through sexy or good sperm processes. J Evol Biol 2016; 29:916-28. [DOI: 10.1111/jeb.12834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 01/15/2016] [Indexed: 02/03/2023]
Affiliation(s)
- L. M. Travers
- Centre for Evolutionary Biology School of Animal Biology (M092) The University of Western Australia Crawley WA Australia
| | - L. W. Simmons
- Centre for Evolutionary Biology School of Animal Biology (M092) The University of Western Australia Crawley WA Australia
| | - F. Garcia‐Gonzalez
- Centre for Evolutionary Biology School of Animal Biology (M092) The University of Western Australia Crawley WA Australia
- Doñana Biological Station Spanish Research Council CSIC Sevilla Spain
| |
Collapse
|
32
|
Ellen ED, Peeters K, Verhoeven M, Gols R, Harvey JA, Wade MJ, Dicke M, Bijma P. Direct and indirect genetic effects in life-history traits of flour beetles (Tribolium castaneum). Evolution 2016; 70:207-17. [PMID: 26660947 DOI: 10.1111/evo.12835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/20/2015] [Accepted: 11/21/2015] [Indexed: 11/27/2022]
Abstract
Indirect genetic effects (IGEs) are the basis of social interactions among conspecifics, and can affect genetic variation of nonsocial and social traits. We used flour beetles (Tribolium castaneum) of two phenotypically distinguishable populations to estimate genetic (co)variances and the effect of IGEs on three life-history traits: development time (DT), growth rate (GR), and pupal body mass (BM). We found that GR was strongly affected by social environment with IGEs accounting for 18% of the heritable variation. We also discovered a sex-specific social effect: male ratio in a group significantly affected both GR and BM; that is, beetles grew larger and faster in male-biased social environments. Such sex-specific IGEs have not previously been demonstrated in a nonsocial insect. Our results show that beetles that achieve a higher BM do so via a slower GR in response to social environment. Existing models of evolution in age-structured or stage-structured populations do not account for IGEs of social cohorts. It is likely that such IGEs have played a key role in the evolution of developmental plasticity shown by Tenebrionid larvae in response to density. Our results document an important source of genetic variation for GR, often overlooked in life-history theory.
Collapse
Affiliation(s)
- Esther D Ellen
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, the Netherlands.
| | - Katrijn Peeters
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, the Netherlands.,Research and Technology Centre, Hendrix Genetics, 5831 CK Boxmeer, the Netherlands
| | - Merel Verhoeven
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, the Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, the Netherlands
| | - Jeffrey A Harvey
- Department of Terrestrial Ecology, Netherlands Institute of Ecology, 6700 AB Wageningen, the Netherlands
| | - Michael J Wade
- Department of Biology, Indiana University, Bloomington, Indiana, 47405
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University, 6700 EH Wageningen, the Netherlands
| | - Piter Bijma
- Animal Breeding and Genomics Centre, Wageningen University, 6700 AH Wageningen, the Netherlands
| |
Collapse
|
33
|
Turnell BR, Shaw KL. Polyandry and postcopulatory sexual selection in a wild population. Mol Ecol 2015; 24:6278-88. [PMID: 26577698 DOI: 10.1111/mec.13470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/05/2015] [Accepted: 11/09/2015] [Indexed: 11/28/2022]
Abstract
When females mate multiply, postcopulatory sexual selection can occur via sperm competition and cryptic female choice. Although postcopulatory selection has the potential to be a major force in driving evolution, few studies have estimated its strength in natural populations. Likewise, although polyandry is widespread across taxa and is the focus of a growing body of research, estimates of natural female mating rates are still limited in number. Microsatellites can be used to estimate the number of mates represented in females' sperm stores and the number of sires contributing to their offspring, enabling comparisons both of polyandry and of two components of postcopulatory selection: the proportion of males that mate but fail to sire offspring, and the degree of paternity skew among the males that do sire offspring. Here, we estimate the number of mates and sires among wild females in the Hawaiian swordtail cricket Laupala cerasina. We compare these estimates to the actual mating rates and paternity shares we observed in a semi-natural population. Our results show that postcopulatory sexual selection operates strongly in this species: wild females mated with an average minimum of 3.6 males but used the sperm from only 58% of them. Furthermore, among the males that did sire offspring, paternity was significantly skewed. These patterns were similar to those observed in the field enclosure, where females mated with an average of 5.7 males and used the sperm from 62% of their mates, with paternity significantly skewed among the sires.
Collapse
Affiliation(s)
- Biz R Turnell
- Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| | - Kerry L Shaw
- Neurobiology and Behavior, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
34
|
Garcia-Gonzalez F, Dowling DK. Transgenerational effects of sexual interactions and sexual conflict: non-sires boost the fecundity of females in the following generation. Biol Lett 2015; 11:rsbl.2015.0067. [PMID: 25788486 DOI: 10.1098/rsbl.2015.0067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The consequences of sexual interactions extend beyond the simple production of offspring. These interactions typically entail direct effects on female fitness, but may also impact the life histories of later generations. Evaluating the cross-generational effects of sexual interactions provides insights into the dynamics of sexual selection and conflict. Such studies can elucidate whether offspring fitness optima diverge across sexes upon heightened levels of sexual interaction among parents. Here, we found that, in Drosophila melanogaster, components of reproductive success in females, but not males, were contingent on the nature of sexual interactions experienced by their mothers. In particular, maternal sexual interactions with non-sires enhanced female fecundity in the following generation. This highlights the importance of non-sire influences of sexual interactions on the expression of offspring life histories.
Collapse
Affiliation(s)
- Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/ Americo Vespucio, s/n, Isla de la Cartuja 41092, Sevilla, Spain Centre for Evolutionary Biology, School of Animal Biology M092, University of Western Australia, Nedlands, 6009 Western Australia, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
35
|
Lane SM, Solino JH, Mitchell C, Blount JD, Okada K, Hunt J, House CM. Rival male chemical cues evoke changes in male pre- and post-copulatory investment in a flour beetle. Behav Ecol 2015; 26:1021-1029. [PMID: 26167098 PMCID: PMC4495758 DOI: 10.1093/beheco/arv047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/06/2015] [Accepted: 03/10/2015] [Indexed: 11/13/2022] Open
Abstract
Males can gather information on the risk and intensity of sperm competition from their social environment. Recent studies have implicated chemosensory cues, for instance cuticular hydrocarbons (CHCs) in insects, as a key source of this information. Here, using the broad-horned flour beetle (Gnatocerus cornutus), we investigated the importance of contact-derived rival male CHCs in informing male perception of sperm competition risk and intensity. We experimentally perfumed virgin females with male CHCs via direct intersexual contact and measured male pre- and post-copulatory investment in response to this manipulation. Using chemical analysis, we verified that this treatment engendered changes to perfumed female CHC profiles, but did not make perfumed females "smell" mated. Despite this, males responded to these chemical changes. Males increased courtship effort under low levels of perceived competition (from 1-3 rivals), but significantly decreased courtship effort as perceived competition rose (from 3-5 rivals). Furthermore, our measurement of ejaculate investment showed that males allocated significantly more sperm to perfumed females than to control females. Together, these results suggest that changes in female chemical profile elicited by contact with rival males do not provide males with information on female mating status, but rather inform males of the presence of rivals within the population and thus provide a means for males to indirectly assess the risk of sperm competition.
Collapse
Affiliation(s)
- Sarah M Lane
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus , Cornwall TR10 9EZ , UK
| | - Joanna H Solino
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus , Cornwall TR10 9EZ , UK , ; Liverpool School of Tropical Medicine, Vector Control Department , Pembroke Place, Liverpool L3 5QA , UK
| | - Christopher Mitchell
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus , Cornwall TR10 9EZ , UK , ; Hawkesbury Institute for the Environment, University of Western Sydney, Hawkesbury Campus , Penrith, New South Wales 2751 , Australia , and
| | - Jonathan D Blount
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus , Cornwall TR10 9EZ , UK
| | - Kensuke Okada
- Laboratory of Evolutionary Ecology, Graduate School of Environmental Science, Okayama University , Tsushima-naka 1-1-1, Okayama , Japan
| | - John Hunt
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus , Cornwall TR10 9EZ , UK
| | - Clarissa M House
- Centre for Ecology and Conservation, College of Life & Environmental Sciences, University of Exeter, Penryn Campus , Cornwall TR10 9EZ , UK
| |
Collapse
|
36
|
Garcia-Gonzalez F, Yasui Y, Evans JP. Mating portfolios: bet-hedging, sexual selection and female multiple mating. Proc Biol Sci 2015; 282:20141525. [PMID: 25411448 DOI: 10.1098/rspb.2014.1525] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Polyandry (female multiple mating) has profound evolutionary and ecological implications. Despite considerable work devoted to understanding why females mate multiply, we currently lack convincing empirical evidence to explain the adaptive value of polyandry. Here, we provide a direct test of the controversial idea that bet-hedging functions as a risk-spreading strategy that yields multi-generational fitness benefits to polyandrous females. Unfortunately, testing this hypothesis is far from trivial, and the empirical comparison of the across-generations fitness payoffs of a polyandrous (bet hedger) versus a monandrous (non-bet hedger) strategy has never been accomplished because of numerous experimental constraints presented by most 'model' species. In this study, we take advantage of the extraordinary tractability and versatility of a marine broadcast spawning invertebrate to overcome these challenges. We are able to simulate multi-generational (geometric mean) fitness among individual females assigned simultaneously to a polyandrous and monandrous mating strategy. Our approaches, which separate and account for the effects of sexual selection and pure bet-hedging scenarios, reveal that bet-hedging, in addition to sexual selection, can enhance evolutionary fitness in multiply mated females. In addition to offering a tractable experimental approach for addressing bet-hedging theory, our study provides key insights into the evolutionary ecology of sexual interactions.
Collapse
Affiliation(s)
- Francisco Garcia-Gonzalez
- Doñana Biological Station, Spanish Research Council CSIC, c/Americo Vespucio, s/n, Isla de la Cartuja 41092, Sevilla, Spain Centre for Evolutionary Biology, University of Western Australia, School of Animal Biology M092, Nedlands 6009, Western Australia
| | - Yukio Yasui
- Laboratory of Entomology, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Jonathan P Evans
- Centre for Evolutionary Biology, University of Western Australia, School of Animal Biology M092, Nedlands 6009, Western Australia
| |
Collapse
|
37
|
Kangassalo K, Valtonen TM, Roff D, Pölkki M, Dubovskiy IM, Sorvari J, Rantala MJ. Intra- and trans-generational effects of larval diet on susceptibility to an entomopathogenic fungus, Beauveria bassiana
, in the greater wax moth, Galleria mellonella. J Evol Biol 2015; 28:1453-64. [DOI: 10.1111/jeb.12666] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 05/11/2015] [Indexed: 11/30/2022]
Affiliation(s)
- K. Kangassalo
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - T. M. Valtonen
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - D. Roff
- Department of Biology; University of California; Riverside CA USA
| | - M. Pölkki
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
| | - I. M. Dubovskiy
- Institute of Animal Systematics and Ecology; Siberian Branch of Russian Academy of Science; Novosibirsk Russia
| | - J. Sorvari
- Department of Environmental Science; University of Eastern Finland; Kuopio Finland
| | - M. J. Rantala
- Department of Biology; Section of Ecology; University of Turku; Turku Finland
- Turku Brain and Mind Center; University of Turku; Turku Finland
| |
Collapse
|
38
|
Crean AJ, Kopps AM, Bonduriansky R, Marshall D. Revisiting telegony: offspring inherit an acquired characteristic of their mother's previous mate. Ecol Lett 2014; 17:1545-52. [PMID: 25270393 PMCID: PMC4282758 DOI: 10.1111/ele.12373] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/07/2014] [Accepted: 08/27/2014] [Indexed: 01/08/2023]
Abstract
Newly discovered non-genetic mechanisms break the link between genes and inheritance, thereby also raising the possibility that previous mating partners could influence traits in offspring sired by subsequent males that mate with the same female ('telegony'). In the fly Telostylinus angusticollis, males transmit their environmentally acquired condition via paternal effects on offspring body size. We manipulated male condition, and mated females to two males in high or low condition in a fully crossed design. Although the second male sired a large majority of offspring, offspring body size was influenced by the condition of the first male. This effect was not observed when females were exposed to the first male without mating, implicating semen-mediated effects rather than female differential allocation based on pre-mating assessment of male quality. Our results reveal a novel type of transgenerational effect with potential implications for the evolution of reproductive strategies.
Collapse
Affiliation(s)
- Angela J Crean
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South WalesSydney, NSW, 2052, Australia
| | - Anna M Kopps
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South WalesSydney, NSW, 2052, Australia
| | - Russell Bonduriansky
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South WalesSydney, NSW, 2052, Australia
| | - Dustin Marshall
- Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South WalesSydney, NSW, 2052, Australia
| |
Collapse
|
39
|
Ibáñez B, Cervantes I, Gutiérrez JP, Goyache F, Moreno E. Estimates of direct and indirect effects for early juvenile survival in captive populations maintained for conservation purposes: the case of Cuvier's gazelle. Ecol Evol 2014; 4:4117-29. [PMID: 25505538 PMCID: PMC4242564 DOI: 10.1002/ece3.1280] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 09/21/2014] [Indexed: 12/26/2022] Open
Abstract
Together with the avoidance of any negative impact of inbreeding, preservation of genetic variability for life-history traits that could undergo future selective pressure is a major issue in endangered species management programmes. However, most of these programmes ignore that, apart from the direct action of genes on such traits, parents, as contributors of offspring environment, can influence offspring performance through indirect parental effects (when parental genotype and phenotype exerts environmental influences on offspring phenotype independently of additive genetic effects). Using quantitative genetic models, we estimated the additive genetic variance for juvenile survival in a population of the endangered Cuvier's gazelle kept in captivity since 1975. The dataset analyzed included performance recording for 700 calves and a total pedigree of 740 individuals. Results indicated that in this population juvenile survival harbors significant additive genetic variance. The estimates of heritability obtained were in general moderate (0.115-0.457) and not affected by the inclusion of inbreeding in the models. Maternal genetic contribution to juvenile survival seems to be of major importance in this gazelle's population as well. Indirect genetic and indirect environmental effects assigned to mothers (i.e., maternal genetic and maternal permanent environmental effects) roughly explain a quarter of the total variance estimated for the trait analyzed. These findings have major evolutionary consequences for the species as show that offspring phenotypes can evolve strictly through changes in the environment provided by mothers. They are also relevant for the captive breeding programme of the species. To take into account, the contribution that mothers have on offspring phenotype through indirect genetic effects when designing pairing strategies might serve to identify those females with better ability to recruit, and, additionally, to predict reliable responses to selection in the captive population.
Collapse
Affiliation(s)
- Belén Ibáñez
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC)Carretera de Sacramento s/n, La Cañada de San Urbano, Almería, E- 04120, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Universidad Complutense de MadridAvda. Puerta de Hierro s/n, Madrid, E-28040, Spain
| | - Juan P Gutiérrez
- Departamento de Producción Animal, Universidad Complutense de MadridAvda. Puerta de Hierro s/n, Madrid, E-28040, Spain
| | - Félix Goyache
- Area de Genética y Reproducción Animal, SERIDA-DevaCamino de Rioseco 1225, Gijón, E-33394, Asturias, Spain
| | - Eulalia Moreno
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (CSIC)Carretera de Sacramento s/n, La Cañada de San Urbano, Almería, E- 04120, Spain
| |
Collapse
|
40
|
Crean AJ, Bonduriansky R. What is a paternal effect? Trends Ecol Evol 2014; 29:554-9. [DOI: 10.1016/j.tree.2014.07.009] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023]
|
41
|
McNamara KB, van Lieshout E, Simmons LW. A test of the sexy-sperm and good-sperm hypotheses for the evolution of polyandry. Behav Ecol 2014. [DOI: 10.1093/beheco/aru067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
McNamara KB, van Lieshout E, Simmons LW. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket. J Evol Biol 2014; 27:1020-8. [DOI: 10.1111/jeb.12376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/19/2014] [Accepted: 03/14/2014] [Indexed: 01/01/2023]
Affiliation(s)
- K. B. McNamara
- Centre for Evolutionary Biology; School of Animal Biology (M092); the University of Western Australia; Crawley Australia
| | - E. van Lieshout
- Centre for Evolutionary Biology; School of Animal Biology (M092); the University of Western Australia; Crawley Australia
| | - L. W. Simmons
- Centre for Evolutionary Biology; School of Animal Biology (M092); the University of Western Australia; Crawley Australia
| |
Collapse
|
43
|
Oliver M, Evans JP. Chemically moderated gamete preferences predict offspring fitness in a broadcast spawning invertebrate. Proc Biol Sci 2014; 281:20140148. [PMID: 24741014 DOI: 10.1098/rspb.2014.0148] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Sperm chemoattraction, where sperm locate unfertilized eggs by following a concentration gradient of egg-derived chemoattractants, has been widely documented across numerous taxa. While marine invertebrates are favoured models for understanding the underlying mechanisms of sperm chemoattraction, the evolutionary forces underpinning the process remain enigmatic. Here, we show that in mussels (Mytilus galloprovincialis), chemically moderated gamete preferences promote assortative fertilizations between genetically compatible gametes. When offered the choice of egg clutches from two females, sperm exhibited consistent but differential 'preferences' for chemical cues secreted from conspecific eggs. Critically, our data reveal that the preferences shown by sperm during the egg-choice trials are highly predictive of early embryonic viability when eggs and sperm from the same individuals are mixed during standard (no-choice) fertilization assays. Moreover, we demonstrate that by experimentally separating chemoattractants from eggs, sperm swimming behaviour is differentially regulated by egg-derived chemoattractants, and that these changes in sperm behaviour are highly consistent with observed patterns of gamete preferences, fertilization and larval survival. Together, this integrated series of experiments reveals that the behaviour of sperm is fine-tuned to respond differentially to the chemical signals emitted from different conspecific eggs, and that these choices have measurable fitness benefits.
Collapse
Affiliation(s)
- Mathew Oliver
- Centre for Evolutionary Biology, School of Animal Biology, University of Western Australia, , Crawley, Western Australia 6009, Australia
| | | |
Collapse
|
44
|
Plough LV, Moran A, Marko P. Density drives polyandry and relatedness influences paternal success in the Pacific gooseneck barnacle, Pollicipes elegans. BMC Evol Biol 2014; 14:81. [PMID: 24739102 PMCID: PMC4021092 DOI: 10.1186/1471-2148-14-81] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 03/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyandry is a common mating strategy in animals, increasing female fitness through direct (material) and indirect (genetic) benefits. Most theories about the benefits of polyandry come from studies of terrestrial animals, which have relatively complex mating systems and behaviors; less is known about the potential benefits of polyandry in sessile marine animals, for which potential mates may be scarce and females have less control over pre-copulatory mate choice. Here, we used microsatellite markers to examine multiple paternity in natural aggregations of the Pacific gooseneck barnacle Pollicipes elegans, testing the effect of density on paternity and mate relatedness on male reproductive success. RESULTS We found that multiple paternity was very common (79% of broods), with up to five fathers contributing to a brood, though power was relatively low to detect more than four fathers. Density had a significant and positive linear effect on the number of fathers siring a brood, though this relationship leveled off at high numbers of fathers, which may reflect a lack of power and/or an upper limit to polyandry in this species. Significant skew in male reproductive contribution in multiply-sired broods was observed and we found a positive and significant relationship between the proportion of offspring sired and the genetic similarity between mates, suggesting that genetic compatibility may influence reproductive success in this species. CONCLUSIONS To our knowledge, this is the first study to show high levels of multiple paternity in a barnacle, and overall, patterns of paternity in P. elegans appear to be driven primarily by mate availability. Evidence of paternity bias for males with higher relatedness suggests some form of post-copulatory sexual selection is taking place, but more work is needed to determine whether it operates during or post-fertilization. Overall, our results suggest that while polyandry in P. elegans is driven by mate availability, it may also provide a mechanism for females to ensure fertilization by compatible gametes and increase reproductive success in this sessile species.
Collapse
Affiliation(s)
- Louis V Plough
- Horn Point Laboratory, University of Maryland Center for Environmental Science, P,O, Box 775, Cambridge, MD 21601, USA.
| | | | | |
Collapse
|
45
|
Wilson CJ, Tomkins JL. Countering counteradaptations: males hijack control of female kicking behavior. Behav Ecol 2014. [DOI: 10.1093/beheco/aru022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Simmons LW, Beveridge M, Li L, Tan Y, Millar AH. Ontogenetic changes in seminal fluid gene expression and the protein composition of cricket seminal fluid. Evol Dev 2014; 16:101-9. [DOI: 10.1111/ede.12068] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Leigh W. Simmons
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawley6009Australia
| | - Maxine Beveridge
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawley6009Australia
| | - Lie Li
- Centre for Comparative Analysis of Biomolecular NetworksThe University of Western AustraliaCrawley6009Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawley6009Australia
| | - Yew‐Foon Tan
- Centre for Evolutionary BiologyThe University of Western AustraliaCrawley6009Australia
- Centre for Comparative Analysis of Biomolecular NetworksThe University of Western AustraliaCrawley6009Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawley6009Australia
| | - A. Harvey Millar
- Centre for Comparative Analysis of Biomolecular NetworksThe University of Western AustraliaCrawley6009Australia
- ARC Centre of Excellence in Plant Energy BiologyThe University of Western AustraliaCrawley6009Australia
| |
Collapse
|
47
|
Klemme I, Bäumer J, Eccard JA, Ylönen H. Polyandrous females produce sons that are successful at post-copulatory competition. J Evol Biol 2014; 27:457-65. [DOI: 10.1111/jeb.12334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Affiliation(s)
- I. Klemme
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| | - J. Bäumer
- Department of Animal Ecology; University of Potsdam; Potsdam Germany
| | - J. A. Eccard
- Department of Animal Ecology; University of Potsdam; Potsdam Germany
| | - H. Ylönen
- Department of Biological and Environmental Science; University of Jyväskylä; Jyväskylä Finland
| |
Collapse
|
48
|
Tennant HM, Sonser EE, Long TAF. Variation in male effects on female fecundity in Drosophila melanogaster. J Evol Biol 2013; 27:449-54. [DOI: 10.1111/jeb.12305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/14/2013] [Accepted: 11/18/2013] [Indexed: 11/26/2022]
Affiliation(s)
- H. M. Tennant
- Department of Biology; Wilfrid Laurier University; Waterloo ON Canada
| | - E. E. Sonser
- Department of Biology; Wilfrid Laurier University; Waterloo ON Canada
| | - T. A. F. Long
- Department of Biology; Wilfrid Laurier University; Waterloo ON Canada
| |
Collapse
|
49
|
Dowling DK, Williams BR, Garcia-Gonzalez F. Maternal sexual interactions affect offspring survival and ageing. J Evol Biol 2013; 27:88-97. [DOI: 10.1111/jeb.12276] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/03/2013] [Accepted: 10/05/2013] [Indexed: 11/26/2022]
Affiliation(s)
- D. K. Dowling
- School of Biological Sciences; Monash University; Melbourne Vic. Australia
| | - B. R. Williams
- School of Biological Sciences; Monash University; Melbourne Vic. Australia
| | - F. Garcia-Gonzalez
- Doñana Biological Station; Spanish Research Council CSIC; Isla de la Cartuja Seville Spain
- Centre for Evolutionary Biology; School of Animal Biology; The University of Western Australia; Nedlands WA Australia
| |
Collapse
|
50
|
|