1
|
Zhang Q, Chen Y, Teng Z, Lin Z, Liu H. CDK11 facilitates centromeric transcription to maintain centromeric cohesion during mitosis. Mol Biol Cell 2024; 35:ar18. [PMID: 38019613 PMCID: PMC10881149 DOI: 10.1091/mbc.e23-08-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
Actively-transcribing RNA polymerase (RNAP)II is remained on centromeres to maintain centromeric cohesion during mitosis, although it is largely released from chromosome arms. This pool of RNAPII plays an important role in centromere functions. However, the mechanism of RNAPII retention on mitotic centromeres is poorly understood. We here demonstrate that Cyclin-dependent kinase (Cdk)11 is involved in RNAPII regulation on mitotic centromeres. Consistently, we show that Cdk11 knockdown induces centromeric cohesion defects and decreases Bub1 on kinetochores, but the centromeric cohesion defects are partially attributed to Bub1. Furthermore, Cdk11 knockdown and the expression of its kinase-dead version significantly reduce both RNAPII and elongating RNAPII (pSer2) levels on centromeres and decrease centromeric transcription. Importantly, the overexpression of centromeric α-satellite RNAs fully rescues Cdk11-knockdown defects. These results suggest that the maintenance of centromeric cohesion requires Cdk11-facilitated centromeric transcription. Mechanistically, Cdk11 localizes on centromeres where it binds and phosphorylates RNAPII to promote transcription. Remarkably, mitosis-specific degradation of G2/M Cdk11-p58 recapitulates Cdk11-knockdown defects. Altogether, our findings establish Cdk11 as an important regulator of centromeric transcription and as part of the mechanism for retaining RNAPII on centromeres during mitosis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Yujue Chen
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Zhen Teng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
| | - Zhen Lin
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112
| | - Hong Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112
- Tulane Aging Center, Tulane University School of Medicine, New Orleans, LA 70112
| |
Collapse
|
2
|
Zhang B, Li W, Cao J, Zhou Y, Yuan X. Prohibitin 2: A key regulator of cell function. Life Sci 2024; 338:122371. [PMID: 38142736 DOI: 10.1016/j.lfs.2023.122371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
The PHB2 gene is located on chromosome 12p13 and encodes prohibitin 2, a highly conserved protein of 37 kDa. PHB2 is a dimer with antiparallel coils, possessing a unique negatively charged region crucial for its mitochondrial molecular chaperone functions. Thus, PHB2 plays a significant role in cell life activities such as mitosis, mitochondrial autophagy, signal transduction, and cell death. This review discusses how PHB2 inhibits transcription factors or nuclear receptors to maintain normal cell functions; how PHB2 in the cytoplasm or membrane ensures normal cell mitosis and regulates cell differentiation; how PHB2 affects mitochondrial structure, function, and cell apoptosis through mitochondrial intimal integrity and mitochondrial autophagy; how PHB2 affects mitochondrial stress and inhibits cell apoptosis by regulating cytochrome c migration and other pathways; how PHB2 affects cell growth, proliferation, and metastasis through a mitochondrial independent mechanism; and how PHB2 could be applied in disease treatment. We provide a theoretical basis and an innovative perspective for a comprehensive understanding of the role and mechanism of PHB2 in cell function regulation.
Collapse
Affiliation(s)
- Bingjie Zhang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China; Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Wentao Li
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Jiaying Cao
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China
| | - Yanhong Zhou
- Cancer Research Institute, Basic School of Medicine, Central South University, Changsha, Hunan 410011, China.
| | - Xia Yuan
- Gastroenterology and Urology Department II, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
3
|
Liu G, Wang Y, Zheng Y, Lv J, Li Y, Liu N, Gao H, Ran H, Tang H, Jiang Z. PHB2 binds to ERβ to induce the autophagy of porcine ovarian granulosa cells through mTOR phosphorylation. Theriogenology 2023; 198:114-122. [PMID: 36580849 DOI: 10.1016/j.theriogenology.2022.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Autophagy of ovarian granulosa cells is one of the reasons which results in follicular atresia. PHB2 regulates many fundamental biological processes and is pivotal in the mitophagy of cells; nevertheless, the autophagy in the porcine ovary and how PHB2 regulates the follicular cells are unknown. Here we report a protein complex that induces autophagy in porcine granulosa cells (PGCs) through the direct interaction of ERβ and PHB2. In this study, we aimed to elucidate the autophagy and the role of PHB2 in porcine ovaries using porcine primary ovarian granulosa cells (PGCs). The results showed that PHB2 induces PGCs autophagy because of the change in related genes and protein expression levels. In addition, the results of Co-IP and the distribution of the combination of PHB2 and ERβ showed that this complex is also indicated as an essential role of PHB2 in PGCs autophagy. Based on our results, it can be concluded that PHB2 combined with ERβ induces PGCs autophagy by targeting the mTOR pathway. This study pinpoints a novel regulatory mechanism of autophagy and demonstrates the existence of a protein complex that may underlie its roles in autophagy in PGCs.
Collapse
Affiliation(s)
- Guangyu Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Yifan Wang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Yuxin Zheng
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Lv
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanyou Li
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Liu
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Huimin Gao
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China
| | - Haohan Ran
- College of Animal Science and Animal Medicine, Tianjin Agricultural University, Tianjin, China
| | - Hong Tang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production/Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, 832000, China.
| | - Zhongliang Jiang
- College of Animal Science and Technology, Key Laboratory of Animal Genetic, Breeding and Reproduction in Shaanxi Province, Northwestern A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
4
|
Huang F, Ye X, Wang Z, Ding Y, Cai X, Yu L, Waseem M, Abbas F, Ashraf U, Chen X, Ke Y. The prohibitins (PHB) gene family in tomato: Bioinformatic identification and expression analysis under abiotic and phytohormone stresses. GM CROPS & FOOD 2021; 12:535-550. [PMID: 33678114 PMCID: PMC8820253 DOI: 10.1080/21645698.2021.1872333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The prohibitins (PHB) are SPFH domain-containing proteins found in the prokaryotes to eukaryotes. The plant PHBs are associated with a wide range of biological processes, including senescence, development, and responses to biotic and abiotic stresses. The PHB proteins are identified and characterized in the number of plant species, such as Arabidopsis, rice, maize, and soybean. However, no systematic identification of PHB proteins was performed in Solanum lycopersicum. In this study, we identified 16 PHB proteins in the tomato genome. The analysis of conserved motifs and gene structure validated the phylogenetic classification of tomato PHB proteins. It was observed that various members of tomato PHB proteins undergo purifying selection based on the Ka/Ks ratio and are targeted by four families of miRNAs. Moreover, SlPHB proteins displayed a very unique expression pattern in different plant parts including fruits at various development stages. It was found that SlPHBs processed various development-related and phytohormone responsive cis-regulatory elements in their promoter regions. Furthermore, the exogenous phytohormones treatments (Abscisic acid, indole-3-acetic acid, gibberellic acid, methyl jasmonate) salt and drought stresses induce the expression of SlPHB. Moreover, the subcellular localization assay revealed that SlPHB5 and SlPHB10 were located in the mitochondria. This study systematically summarized the general characterization of SlPHBs in the tomato genome and provides a foundation for the functional characterization of PHB genes in tomato and other plant species.
Collapse
Affiliation(s)
- Feiyan Huang
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University Kunming, China
| | - Xianwen Ye
- Kunming Tobacco Corporation of Yunnan Province, Kunming, China
| | - Zhijiang Wang
- Kunming Tobacco Corporation of Yunnan Province, Kunming, China
| | - Yan Ding
- Material Procurement Center, Shanghai Tobacco Group Co., Ltd, Shanghai, China
| | - Xianjie Cai
- Material Procurement Center, Shanghai Tobacco Group Co., Ltd, Shanghai, China
| | - Lei Yu
- College of Agriculture and Life Sciences, Yunnan Urban Agricultural Engineering & Technological Research Center, Kunming University Kunming, China
| | - Muhammad Waseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Xiaolong Chen
- Tobacco Leaf Purchase Center, China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Yanguo Ke
- College of Economics and Management, Kunming University, Kunming, China
| |
Collapse
|
5
|
Rao CV, Farooqui M, Madhavaram A, Zhang Y, Asch AS, Yamada HY. GSK3-ARC/Arg3.1 and GSK3-Wnt signaling axes trigger amyloid-β accumulation and neuroinflammation in middle-aged Shugoshin 1 mice. Aging Cell 2020; 19:e13221. [PMID: 32857910 PMCID: PMC7576275 DOI: 10.1111/acel.13221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/30/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022] Open
Abstract
The cerebral amyloid‐β accumulation that begins in middle age is considered the critical triggering event in the pathogenesis of late‐onset Alzheimer's disease (LOAD). However, the molecular mechanism remains elusive. The Shugoshin 1 (Sgo1−/+) mouse model, a model for mitotic cohesinopathy‐genomic instability that is observed in human AD at a higher rate, showed spontaneous accumulation of amyloid‐β in the brain at old age. With the model, novel insights into the molecular mechanism of LOAD development are anticipated. In this study, the initial appearance of cerebral amyloid‐β accumulation was determined as 15‐18 months of age (late middle age) in the Sgo1−/+ model. The amyloid‐β accumulation was associated with unexpected GSK3α/β inactivation, Wnt signaling activation, and ARC/Arg3.1 accumulation, suggesting involvement of both the GSK3‐Arc/Arg3.1 axis and the GSK3‐Wnt axis. As observed in human AD brains, neuroinflammation with IFN‐γ expression occurred with amyloid‐β accumulation and was pronounced in the aged (24‐month‐old) Sgo1−/+ model mice. AD‐relevant protein panels (oxidative stress defense, mitochondrial energy metabolism, and β‐oxidation and peroxisome) analysis indicated (a) early increases in Pdk1 and Phb in middle‐aged Sgo1−/+ brains, and (b) misregulations in 32 proteins among 130 proteins tested in old age. Thus, initial amyloid‐β accumulation in the Sgo1−/+ model is suggested to be triggered by GSK3 inactivation and the resulting Wnt activation and ARC/Arg3.1 accumulation. The model displayed characteristics and affected pathways similar to those of human LOAD including neuroinflammation, demonstrating its potential as a study tool for the LOAD development mechanism and for preclinical AD drug research and development.
Collapse
Affiliation(s)
- Chinthalapally V. Rao
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Mudassir Farooqui
- Department of Neurology University of Iowa Hospitals and Clinics Iowa City Iowa USA
| | - Avanish Madhavaram
- Biology/Exercise and Sports Science University of North Carolina Chapel Hill North Carolina USA
| | - Yuting Zhang
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Adam S. Asch
- Hematology/Oncology Section Department of Medicine Stephenson Cancer Center University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| | - Hiroshi Y. Yamada
- Hematology/Oncology Section Department of Medicine Center for Cancer Prevention and Drug Development University of Oklahoma Health Sciences Center (OUHSC Oklahoma City Oklahoma USA
| |
Collapse
|
6
|
Remnant L, Booth DG, Vargiu G, Spanos C, Kerr ARW, Earnshaw WC. In vitro BioID: mapping the CENP-A microenvironment with high temporal and spatial resolution. Mol Biol Cell 2019; 30:1314-1325. [PMID: 30892990 PMCID: PMC6724601 DOI: 10.1091/mbc.e18-12-0799] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The centromere is located at the primary constriction of condensed chromosomes where it acts as a platform regulating chromosome segregation. The histone H3 variant CENP-A is the foundation for kinetochore formation. CENP-A directs the formation of a highly dynamic molecular neighborhood whose temporal characterization during mitosis remains a challenge due to limitations in available techniques. BioID is a method that exploits a “promiscuous” biotin ligase (BirA118R or BirA*) to identify proteins within close proximity to a fusion protein of interest. As originally described, cells expressing BirA* fusions were exposed to high biotin concentrations for 24 h during which the ligase transferred activated biotin (BioAmp) to other proteins within the immediate vicinity. The protein neighborhood could then be characterized by streptavidin-based purification and mass spectrometry. Here we describe a further development to this technique, allowing CENP-A interactors to be characterized within only a few minutes, in an in vitro reaction in lysed cells whose physiological progression is “frozen.” This approach, termed in vitro BioID (ivBioID), has the potential to study the molecular neighborhood of any structural protein whose interactions change either during the cell cycle or in response to other changes in cell physiology.
Collapse
Affiliation(s)
- Lucy Remnant
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | - Daniel G Booth
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and.,Centre for Brain Discovery Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Giulia Vargiu
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | - Christos Spanos
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | - Alastair R W Kerr
- Wellcome Trust Centre for Cell Biology, Institute of Cell Biology and
| | | |
Collapse
|
7
|
Significance of prohibitin domain family in tumorigenesis and its implication in cancer diagnosis and treatment. Cell Death Dis 2018; 9:580. [PMID: 29784973 PMCID: PMC5962566 DOI: 10.1038/s41419-018-0661-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
Prohibitin (PHB) was originally isolated and characterized as an anti-proliferative gene in rat liver. The evolutionarily conserved PHB gene encodes two human protein isoforms with molecular weights of ~33 kDa, PHB1 and PHB2. PHB1 and PHB2 belong to the prohibitin domain family, and both are widely distributed in different cellular compartments such as the mitochondria, nucleus, and cell membrane. Most studies have confirmed differential expression of PHB1 and PHB2 in cancers compared to corresponding normal tissues. Furthermore, studies verified that PHB1 and PHB2 are involved in the biological processes of tumorigenesis, including cancer cell proliferation, apoptosis, and metastasis. Two small molecule inhibitors, Rocaglamide (RocA) and fluorizoline, derived from medicinal plants, were demonstrated to interact directly with PHB1 and thus inhibit the interaction of PHB with Raf-1, impeding Raf-1/ERK signaling cascades and significantly suppressing cancer cell metastasis. In addition, a short peptide ERAP and a natural product xanthohumol were shown to target PHB2 directly and prohibit cancer progression in estrogen-dependent cancers. As more efficient biomarkers and targets are urgently needed for cancer diagnosis and treatment, here we summarize the functional role of prohibitin domain family proteins, focusing on PHB1 and PHB2 in tumorigenesis and cancer development, with the expectation that targeting the prohibitin domain family will offer more clues for cancer therapy.
Collapse
|
8
|
Rossi L, Bonuccelli L, Iacopetti P, Evangelista M, Ghezzani C, Tana L, Salvetti A. Prohibitin 2 regulates cell proliferation and mitochondrial cristae morphogenesis in planarian stem cells. Stem Cell Rev Rep 2015; 10:871-87. [PMID: 24974103 DOI: 10.1007/s12015-014-9540-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Prohibitins are pleiotropic proteins, whose multiple roles are emerging as key elements in the regulation of cell survival and proliferation. Indeed, prohibitins interact with several intracellular proteins strategically involved in the regulation of cell cycle progression in response to extracellular growth signals. Prohibitins also have regulatory functions in mitochondrial fusion and cristae morphogenesis, phenomena related to the ability of self-renewing embryonic stem cells to undergo differentiation, during which mitochondria develop numerous cristae, increase in number, and generate an extensive reticular network. We recently identified a Prohibitin 2 homolog (DjPhb2) that is expressed in adult stem cells (neoblasts) of planarians, a well-known model system for in vivo studies on stem cells and tissue regeneration. Here, we show that in DjPhb2 silenced planarians, most proliferating cells disappear, with the exception of a subpopulation of neoblasts localized along the dorsal body midline. Neoblast depletion impairs regeneration and, finally, leads animals to death. Our in vivo findings demonstrate that prohibitin 2 plays an important role in regulating stem cell biology, being involved in both the control of cell cycle progression and mitochondrial cristae morphogenesis.
Collapse
Affiliation(s)
- Leonardo Rossi
- Unit of Experimental Biology and Genetics, Department of Clinical and Experimental Medicine, University of Pisa, Via Volta 4, 56126, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Li T, Wang Y, Gao Y, Li Q. Identification and characterisation of the anti-oxidative stress properties of the lamprey prohibitin 2 gene. FISH & SHELLFISH IMMUNOLOGY 2015; 42:447-456. [PMID: 25463290 DOI: 10.1016/j.fsi.2014.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/13/2014] [Accepted: 11/17/2014] [Indexed: 06/04/2023]
Abstract
The highly conserved protein prohibitin 2 (PHB2) has been implicated as a cell-surface receptor in the regulation of proliferation, apoptosis, transcription, and mitochondrial protein folding. In the present study, we identified a Lampetra morii homologue of PHB2, Lm-PHB2, showing greater than 61.8% sequence identity with its homologues. Phylogenetic analysis indicated that the position of Lm-PHB2 is consistent with lamprey phylogeny. Expression of the Lm-PHB2 protein was nearly equivalent in the heart, liver, kidneys, intestines, and muscles of normal lampreys. However, the Lm-PHB2 protein was down-regulated in the myocardia of lampreys challenged for 5 days with adriamycin (Adr), followed by a significant up-regulation 10 days after treatment. In vitro, recombinant Lm-PHB2 (rLm-PHB2) protein could significantly enhance the H2O2-induced oxidative stress tolerance in Chang liver (CHL) cells. Further mechanism studies indicated that the nucleus-to-mitochondria translocation of Lm-PHB2 was closely involved in the oxidative stress protection. Our results suggests that the strategies to modulate Lm-PHB2 levels may constitute a novel therapeutic approach for myocardial injury and liver inflammatory diseases, conditions in which oxidative stress plays a critical role in tissue injury and inflammation.
Collapse
Affiliation(s)
- Tiesong Li
- Life Science College of Liaoning Normal University, Dalian 116029, China; Lamprey Research Centre, Liaoning Normal University, Dalian 116029, China.
| | - Ying Wang
- Life Science College of Liaoning Normal University, Dalian 116029, China; Lamprey Research Centre, Liaoning Normal University, Dalian 116029, China
| | - Yang Gao
- Life Science College of Liaoning Normal University, Dalian 116029, China; Lamprey Research Centre, Liaoning Normal University, Dalian 116029, China
| | - Qingwei Li
- Life Science College of Liaoning Normal University, Dalian 116029, China; Lamprey Research Centre, Liaoning Normal University, Dalian 116029, China.
| |
Collapse
|
10
|
Lee MY, Marina M, King JL, Saavedra HI. Differential expression of centrosome regulators in Her2+ breast cancer cells versus non-tumorigenic MCF10A cells. Cell Div 2014; 9:3. [PMID: 25278993 PMCID: PMC4181616 DOI: 10.1186/1747-1028-9-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/08/2014] [Indexed: 12/26/2022] Open
Abstract
Centrosome amplification (CA) amongst particular breast cancer subtypes (Her2+ subtype) is associated with genomic instability and aggressive tumor phenotypes. However, changes in signaling pathways associated with centrosome biology have not been fully explored in subtype specific models. Novel centrosome regulatory genes that are selectively altered in Her2+ breast cancer cells are of interest in discerning why CA is more prevalent in this subtype. To determine centrosome/cell cycle genes that are altered in Her2+ cells that display CA (HCC1954) versus non-tumorigenic cells (MCF10A), we carried out a gene microarray. Expression differences were validated by real-time PCR and Western blotting. After the microarray validation, we pursued a panel of upregulated and downregulated genes based on novelty/relevance to centrosome duplication. Functional experiments measuring CA and BrdU incorporation were completed after genetic manipulation of targets (TTK, SGOL1, MDM2 and SFRP1). Amongst genes that were downregulated in HCC1954 cells, knockdown of MDM2 and SFRP1 in MCF10A cells did not consistently induce CA or impaired BrdU incorporation. Conversely, amongst upregulated genes in HCC1954 cells, knockdown of SGOL1 and TTK decreased CA in breast cancer cells, while BrdU incorporation was only altered by SGOL1 knockdown. We also explored the Kaplan Meier Plot resource and noted that MDM2 and SFRP1 are positively associated with relapse free survival in all breast cancer subtypes, while TTK is negatively correlated with overall survival of Luminal A patients. Based on this functional screen, we conclude that SGOL1 and TTK are important modulators of centrosome function in a breast cancer specific model.
Collapse
Affiliation(s)
- Mi-Young Lee
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, C3084, 1365C Clifton Road NE, Atlanta, GA 30322, USA
| | - Mihaela Marina
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, C3084, 1365C Clifton Road NE, Atlanta, GA 30322, USA
| | - Jamie L King
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, C3084, 1365C Clifton Road NE, Atlanta, GA 30322, USA.,Cancer Biology Graduate Program, Emory University School of Medicine, 1365C Clifton Road NE, Atlanta, GA 30322, USA
| | - Harold I Saavedra
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, C3084, 1365C Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Xu T, Fan X, Tan Y, Yue Y, Chen W, Gu X. Expression of PHB2 in rat brain cortex following traumatic brain injury. Int J Mol Sci 2014; 15:3299-318. [PMID: 24566151 PMCID: PMC3958913 DOI: 10.3390/ijms15023299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/31/2014] [Accepted: 02/13/2014] [Indexed: 12/19/2022] Open
Abstract
Prohibitin2 (PHB2) is a ubiquitous, evolutionarily strongly conserved protein. It is one of the components of the prohibitin complex, which comprises two highly homologous subunits, PHB1 and PHB2. PHB2 is present in various cellular compartments including the nucleus and mitochondria. Recent studies have identified PHB2 as a multifunctional protein that controls cell proliferation, apoptosis, cristae morphogenesis and the functional integrity of mitochondria. However its distribution and function in the central nervous system (CNS) are not well understood. In this study, we examined PHB2 expression and cellular localization in rats after acute traumatic brain injury (TBI). Western Blot analysis showed PHB2 level was significantly enhanced at five days after injury compared to control, and then declined during the following days. The protein expression of PHB2 was further analyzed by immunohistochemistry. In comparison to contralateral cerebral cortex, we observed a highly significant accumulation of PHB2 at the ipsilateral brain. Immunofluorescence double-labeling showed that PHB2 was co-expressed with NeuN, GFAP. Besides, PHB2 also colocalized with activated caspase-3 and PCNA. To further investigate the function of PHB2, primary cultured astrocytes and the neuronal cell line PC12 were employed to establish a proliferation model and an apoptosis model, respectively, to simulate the cell activity after TBI to a certain degree. Knocking down PHB2 by siRNA partly increased the apoptosis level of PC12 stimulated by H2O2. While the PHB2 was interrupted by siRNA, the proliferation level of primary cultured astrocytes was inhibited notably than that in the control group. Together with our data, we hypothesized that PHB2 might play an important role in CNS pathophysiology after TBI.
Collapse
Affiliation(s)
- Ting Xu
- The Center Laboratory of Huai'an First People's Hospital Nanjing Medical University, Huai'an 223300, China.
| | - Xinjuan Fan
- Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Yuanyuan Tan
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Ying Yue
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Weijie Chen
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| | - Xingxing Gu
- Jiangsu Province Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
12
|
Long L, Huang Y, Wu H, Luan W, Zhang Q, Wen H, Ding T, Wang Y. Dynamic change of Prohibitin2 expression in rat sciatic nerve after crush. Cell Mol Neurobiol 2013; 33:689-98. [PMID: 23568660 DOI: 10.1007/s10571-013-9935-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/27/2013] [Indexed: 10/27/2022]
Abstract
As a novel cell cycle inhibitor, PHB2 controls the G1/S transition in cycling cells in a complex manner. Its aberrant expression is closely related to cell carcinogenesis. While its expression and role in peripheral nervous system lesion and repair were still unknown. Here, we performed an acute sciatic nerve crush (SNC) model in adult rats to examine the dynamic changes of PHB2. Temporally, PHB2 expression was sharply decreased after sciatic nerve crush and reached a valley at day 5. Spatially, PHB2 was widely expressed in the normal sciatic nerve including axons and Schwann cells. While after injury, PHB2 expression decreased predominantly in Schwann cells. The alteration was due to the decreased expression of PHB2 in Schwann cells after SNC. PHB2 expression correlated closely with Schwann cells proliferation in sciatic nerve post injury. Furthermore, PHB2 largely localized with GAP43 in axons in the crushed segment. Collectively, we suggested that PHB2 participated in the pathological process response to sciatic nerve injury and may be associated with Schwann cells proliferation and axons regeneration.
Collapse
Affiliation(s)
- Long Long
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Cheng J, Gao F, Chen X, Wu J, Xing C, Lv Z, Xu W, Xie Q, Wu L, Ye S, Xie H, Zheng S, Zhou L. Prohibitin-2 promotes hepatocellular carcinoma malignancy progression in hypoxia based on a label-free quantitative proteomics strategy. Mol Carcinog 2013; 53:820-32. [PMID: 23661548 DOI: 10.1002/mc.22040] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 11/20/2012] [Accepted: 12/12/2012] [Indexed: 02/05/2023]
Abstract
The rapid growth of hepatocellular carcinoma (HCC) leading to tumor hypoxia is a common pathological phenomenon. Meanwhile, tumor hypoxia can promote a change in the biological properties of tumor cells. It may enhance the survival of tumor cells under stress conditions, resulting in resistance to apoptosis and angiogenesis. The moleculars that could modulate the malignant phenotypes of HCC cells remain largely unknown. Based on label-free quantitative proteomic data, we found a significant upregulation of prohibitin-2 (PHB2) in HCC tissues. Treatment of hepatoma cells with small interfering RNAs against PHB2 suppressed cell growth and colony formation, led to G1 phase arrest and sensitized HCC cells to apoptosis. Moreover, inhibition of PHB2 expression dramatically repressed the ability of HCC cells to adapt to hypoxic microenvironments and resist chemotherapy-induced apoptosis. Thus, PHB2 in HCC supports the development and progression of hepatocellular malignancy to hypoxia, and implicates the potential antagonist function of PHB2 in transarterial chemoembolization treatment.
Collapse
Affiliation(s)
- Jun Cheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R., China; Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, Zhejiang University, Hangzhou, P.R., China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Equilibrina I, Matsunaga S, Morimoto A, Hashimoto T, Uchiyama S, Fukui K. ASURA (PHB2) interacts with Scc1 through chromatin. Cytogenet Genome Res 2013; 139:225-33. [PMID: 23548868 DOI: 10.1159/000350004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2012] [Indexed: 11/19/2022] Open
Abstract
Sister chromatid cohesion mediated by the cohesin complex is essential for faithful chromosome segregation. Previously we reported that PHB2 (prohibitin2/ASURA), a multifunctional protein, has a role in sister chromatid cohesion. Nevertheless, how ASURA is involved in sister chromatid cohesion still remains unclear. The present co-immunoprecipitation analysis reveals that ASURA interacts with cohesin subunit Scc1 in vivo. We show that ASURA associates with chromatin in a similar manner as Scc1 throughout the cell cycle. Furthermore, our observation using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system indicates that ASURA is important for cohesin maintenance at early mitosis. We have also identified that the conserved PHB domain is responsible for chromatin targeting of ASURA. Our results suggest that the regulation of sister chromatid cohesion is mediated by ASURA binding to chromatin, where ASURA might be involved in cohesin protection through ASURA-Scc1 interactions.
Collapse
Affiliation(s)
- I Equilibrina
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Kutsuna N, Higaki T, Matsunaga S, Otsuki T, Yamaguchi M, Fujii H, Hasezawa S. Active learning framework with iterative clustering for bioimage classification. Nat Commun 2013; 3:1032. [PMID: 22929789 PMCID: PMC3432472 DOI: 10.1038/ncomms2030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
Advances in imaging systems have yielded a flood of images into the research field. A semi-automated facility can reduce the laborious task of classifying this large number of images. Here we report the development of a novel framework, CARTA (Clustering-Aided Rapid Training Agent), applicable to bioimage classification that facilitates annotation and selection of features. CARTA comprises an active learning algorithm combined with a genetic algorithm and self-organizing map. The framework provides an easy and interactive annotation method and accurate classification. The CARTA framework enables classification of subcellular localization, mitotic phases and discrimination of apoptosis in images of plant and human cells with an accuracy level greater than or equal to annotators. CARTA can be applied to classification of magnetic resonance imaging of cancer cells or multicolour time-course images after surgery. Furthermore, CARTA can support development of customized features for classification, high-throughput phenotyping and application of various classification schemes dependent on the user's purpose. Semi-automated imaging systems help with the task of classifying large numbers of biological images. This study presents a novel framework—CARTA—with an active learning algorithm combined with a genetic algorithm, whose applications include the classification of magnetic resonance imaging of cancer cells.
Collapse
Affiliation(s)
- Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8562, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Yang C, Lee M, Hao J, Cui X, Guo X, Smal C, Bontemps F, Ma S, Liu X, Engler D, Parker WB, Xu B. Deoxycytidine kinase regulates the G2/M checkpoint through interaction with cyclin-dependent kinase 1 in response to DNA damage. Nucleic Acids Res 2012; 40:9621-32. [PMID: 22850745 PMCID: PMC3479177 DOI: 10.1093/nar/gks707] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Deoxycytidine kinase (dCK) is a rate limiting enzyme critical for phosphorylation of endogenous deoxynucleosides for DNA synthesis and exogenous nucleoside analogues for anticancer and antiviral drug actions. dCK is activated in response to DNA damage; however, how it functions in the DNA damage response is largely unknown. Here, we report that dCK is required for the G2/M checkpoint in response to DNA damage induced by ionizing radiation (IR). We demonstrate that the ataxia–telangiectasia-mutated (ATM) kinase phosphorylates dCK on Serine 74 to activate it in response to DNA damage. We further demonstrate that Serine 74 phosphorylation is required for initiation of the G2/M checkpoint. Using mass spectrometry, we identified a protein complex associated with dCK in response to DNA damage. We demonstrate that dCK interacts with cyclin-dependent kinase 1 (Cdk1) after IR and that the interaction inhibits Cdk1 activity both in vitro and in vivo. Together, our results highlight the novel function of dCK and provide molecular insights into the G2/M checkpoint regulation in response to DNA damage.
Collapse
Affiliation(s)
- Chunying Yang
- Department of Radiation Oncology, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX77030, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gutiérrez-Caballero C, Cebollero LR, Pendás AM. Shugoshins: from protectors of cohesion to versatile adaptors at the centromere. Trends Genet 2012; 28:351-60. [PMID: 22542109 DOI: 10.1016/j.tig.2012.03.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 03/07/2012] [Accepted: 03/07/2012] [Indexed: 11/20/2022]
Abstract
Sister chromatids are held together by a protein complex named cohesin. Shugoshin proteins protect cohesin from cleavage by separase during meiosis I in eukaryotes and from phosphorylation-mediated removal during mitosis in vertebrates. This protection is crucial for chromosome segregation during mitosis and meiosis. Mechanistically, shugoshins shield cohesin by forming a complex with the phosphatase PP2A, which dephosphorylates cohesin, leading to its retention at centromeres during the onset of meiotic anaphase and vertebrate mitotic prophase I. In addition to this canonical function, shugoshins have evolved novel, species-specific cellular functions, the mechanisms of which remain a subject of intense debate, but are likely to involve spatio-temporally coordinated interactions with the chromosome passenger complex, the spindle checkpoint and the anaphase promoting complex. Here, we compare and contrast these remarkable features of shugoshins in model organisms and humans.
Collapse
Affiliation(s)
- Cristina Gutiérrez-Caballero
- Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | |
Collapse
|
18
|
Matsunaga S, Takata H, Morimoto A, Hayashihara K, Higashi T, Akatsuchi K, Mizusawa E, Yamakawa M, Ashida M, Matsunaga TM, Azuma T, Uchiyama S, Fukui K. RBMX: a regulator for maintenance and centromeric protection of sister chromatid cohesion. Cell Rep 2012; 1:299-308. [PMID: 22832223 DOI: 10.1016/j.celrep.2012.02.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/12/2011] [Accepted: 02/09/2012] [Indexed: 01/06/2023] Open
Abstract
Cohesion is essential for the identification of sister chromatids and for the biorientation of chromosomes until their segregation. Here, we have demonstrated that an RNA-binding motif protein encoded on the X chromosome (RBMX) plays an essential role in chromosome morphogenesis through its association with chromatin, but not with RNA. Depletion of RBMX by RNA interference (RNAi) causes the loss of cohesin from the centromeric regions before anaphase, resulting in premature chromatid separation accompanied by delocalization of the shugoshin complex and outer kinetochore proteins. Cohesion defects caused by RBMX depletion can be detected as early as the G2 phase. Moreover, RBMX associates with the cohesin subunits, Scc1 and Smc3, and with the cohesion regulator, Wapl. RBMX is required for cohesion only in the presence of Wapl, suggesting that RBMX is an inhibitor of Wapl. We propose that RBMX is a cohesion regulator that maintains the proper cohesion of sister chromatids.
Collapse
Affiliation(s)
- Sachihiro Matsunaga
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mao H, Wang DH, Zhou H, Yang WX. Characterization and expression analysis of prohibitin in the testis of Chinese mitten crab Eriocheir sinensis. Mol Biol Rep 2012; 39:7031-9. [DOI: 10.1007/s11033-012-1534-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 01/24/2012] [Indexed: 10/14/2022]
|
20
|
Lee MH, Lin L, Equilibrina I, Uchiyama S, Matsunaga S, Fukui K. ASURA (PHB2) Is Required for Kinetochore Assembly and Subsequent Chromosome Congression. Acta Histochem Cytochem 2011; 44:247-58. [PMID: 22282585 PMCID: PMC3263857 DOI: 10.1267/ahc.11033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/25/2011] [Indexed: 01/24/2023] Open
Abstract
ASURA (PHB2) knockdown has been known to cause premature loss of sister chromatid cohesion, and disrupt the localization of several outer plate proteins to the kinetochore. As a result, cells are arrested at mitotic phase and chromosomes fail to congress to the metaphase plate. In this study, we further clarified the mechanism underlying ASURA function on chromosome congression. Interestingly, ASURA is not specifically localized at the kinetochore during mitotic phase, unlike other kinetochore proteins which construct the kinetochore. Electron microscopy (EM) observation showed that ASURA is required for proper kinetochore formation. By the partial depletion of ASURA, kinetochore maturation is impaired, and kinetochores showing fibrillar balls without a well-defined outer plates are often observed. Moreover, even when the outer plates of kinetochores are constructed, most showed structures stretched and/or distended from the centromere, which resembled premature kinetochores at prometaphase, indicating that the constructed kinetochore plates are less rigid against tension derived from kinetochore microtubule pulling forces. We concluded that ASURA is an essential protein for complete kinetochore development, although ASURA is not being integrated to the kinetochore. These results highlight the uniqueness of ASURA as a kinetochore protein.
Collapse
Affiliation(s)
- Mei Hann Lee
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Linyen Lin
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University
| | - Ilma Equilibrina
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Susumu Uchiyama
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Sachihiro Matsunaga
- Department of Biotechnology, Graduate School of Engineering, Osaka University
- Present address: Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science
| | - Kiichi Fukui
- Department of Biotechnology, Graduate School of Engineering, Osaka University
| |
Collapse
|
21
|
Hérault Y, Duchon A, Maréchal D, Raveau M, Pereira PL, Dalloneau E, Brault V. Controlled somatic and germline copy number variation in the mouse model. Curr Genomics 2011; 11:470-80. [PMID: 21358991 PMCID: PMC3018727 DOI: 10.2174/138920210793176038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 05/24/2010] [Accepted: 05/27/2010] [Indexed: 12/20/2022] Open
Abstract
Changes in the number of chromosomes, but also variations in the copy number of chromosomal regions have been described in various pathological conditions, such as cancer and aneuploidy, but also in normal physiological condition. Our classical view of DNA replication and mitotic preservation of the chromosomal integrity is now challenged as new technologies allow us to observe such mosaic somatic changes in copy number affecting regions of chromosomes with various sizes. In order to go further in the understanding of copy number influence in normal condition we could take advantage of the novel strategy called Targeted Asymmetric Sister Chromatin Event of Recombination (TASCER) to induce recombination during the G2 phase so that we can generate deletions and duplications of regions of interest prior to mitosis. Using this approach in the mouse we could address the effects of copy number variation and segmental aneuploidy in daughter cells and allow us to explore somatic mosaics for large region of interest in the mouse.
Collapse
Affiliation(s)
- Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Université de Strasbourg, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
22
|
CaMK IV phosphorylates prohibitin 2 and regulates prohibitin 2-mediated repression of MEF2 transcription. Cell Signal 2011; 23:1686-90. [PMID: 21689744 PMCID: PMC7127762 DOI: 10.1016/j.cellsig.2011.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/06/2011] [Indexed: 12/19/2022]
Abstract
Prohibitin 2 (PHB2) is an evolutionarily conserved and ubiquitously expressed multifunctional protein which is present in various cellular compartments including the nucleus. However, mechanisms underlying various functions of PHB2 are not fully explored yet. Previously we showed that PHB2 interacts with Akt and inhibits muscle differentiation by repressing the transcriptional activity of both MyoD and MEF2. Here we show that Calcium/Calmodulin-dependent kinase IV (CaMK IV) specifically binds to the C terminus of PHB2 and phosphorylates PHB2 at serine 91. Ectopic expression of CaMK IV and PHB2 in C2C12 cells results effectively in decreased PHB2-mediated repression of MEF2-dependent gene expression. Conversely, PHB2 mutant (S91A) resistant to CaMK IV phosphorylation has less effective in relieving the inhibition of MEF2 transcription by PHB2. Our findings suggest that CaMK IV interacts with and regulates PHB2 through phosphorylation, which could be one of the mechanisms underlying the CaMK-mediated activation of MEF2.
Collapse
|
23
|
Abstract
Cohesin is a conserved multisubunit protein complex with diverse cellular roles, making key contributions to the coordination of chromosome segregation, the DNA damage response and chromatin regulation by epigenetic mechanisms. Much has been learned in recent years about the roles of cohesin in a physiological context, whereas its potential and emerging role in tumour initiation and/or progression has received relatively little attention. In this Opinion article we examine how cohesin deregulation could contribute to cancer development on the basis of its physiological roles.
Collapse
Affiliation(s)
- Huiling Xu
- Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia
| | | | | |
Collapse
|
24
|
The chromosome peripheral proteins play an active role in chromosome dynamics. Biomol Concepts 2010; 1:157-64. [DOI: 10.1515/bmc.2010.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractThe chromosome periphery is a chromosomal structure that covers the surface of mitotic chromosomes. The structure and function of the chromosome periphery has been poorly understood since its first description in 1882. It has, however, been proposed to be an insulator or barrier to protect chromosomes from subcellular substances and to act as a carrier of nuclear and nucleolar components to direct their equal distribution to daughter cells because most chromosome peripheral proteins (CPPs) are derived from the nucleolus or nucleus. Until now, more than 30 CPPs were identified in mammalians. Recent immunostaining analyses of CPPs have revealed that the chromosome periphery covers the centromeric region of mitotic chromosomes in addition to telomeres and regions between two sister chromatids. Knockdown analyses of CPPs using RNAi have revealed functions in chromosome dynamics, including cohesion of sister chromatids, kinetochore-microtubule attachments, spindle assembly and chromosome segregation. Because most CPPs are involved in various subcellular events in the nucleolus or nuclear at interphase, a temporal and spatial-specific knockdown method of CPPs in the chromosome periphery will be useful to understand the function of chromosome periphery in cell division.
Collapse
|
25
|
Dai J, Kateneva AV, Higgins JMG. Studies of haspin-depleted cells reveal that spindle-pole integrity in mitosis requires chromosome cohesion. J Cell Sci 2010; 122:4168-76. [PMID: 19910498 DOI: 10.1242/jcs.054122] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cohesins and their regulators are vital for normal chromosome cohesion and segregation. A number of cohesion proteins have also been localized to centrosomes and proposed to function there. We show that RNAi-mediated depletion of factors required for cohesion, including haspin, Sgo1 and Scc1, leads to the generation of multiple acentriolar centrosome-like foci and disruption of spindle structure in mitosis. Live-cell imaging reveals that, in haspin-depleted cells, these effects occur only as defects in chromosome cohesion become manifest, and they require ongoing microtubule dynamics and kinesin-5 (also known as Eg5) activity. Inhibition of topoisomerase II in mitosis, which prevents decatenation and separation of chromatids, circumvents the loss of cohesion and restores integrity of the spindle poles. Although these results do not rule out roles for cohesin proteins at centrosomes, they suggest that when cohesion is compromised, spindle-pole integrity can be disrupted as an indirect consequence of the failure to properly integrate chromosome- and centrosome-initiated pathways for spindle formation.
Collapse
Affiliation(s)
- Jun Dai
- Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
26
|
Osman C, Merkwirth C, Langer T. Prohibitins and the functional compartmentalization of mitochondrial membranes. J Cell Sci 2010; 122:3823-30. [PMID: 19889967 DOI: 10.1242/jcs.037655] [Citation(s) in RCA: 237] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prohibitins constitute an evolutionarily conserved and ubiquitously expressed family of membrane proteins that are essential for cell proliferation and development in higher eukaryotes. Roles for prohibitins in cell signaling at the plasma membrane and in transcriptional regulation in the nucleus have been proposed, but pleiotropic defects associated with the loss of prohibitin genes can be largely attributed to a dysfunction of mitochondria. Two closely related proteins, prohibitin-1 (PHB1) and prohibitin-2 (PHB2), form large, multimeric ring complexes in the inner membrane of mitochondria. The absence of prohibitins leads to an increased generation of reactive oxygen species, disorganized mitochondrial nucleoids, abnormal cristae morphology and an increased sensitivity towards stimuli-elicited apoptosis. It has been found that the processing of the dynamin-like GTPase OPA1, which regulates mitochondrial fusion and cristae morphogenesis, is a key process regulated by prohibitins. Furthermore, genetic analyses in yeast have revealed an intimate functional link between prohibitin complexes and the membrane phospholipids cardiolipin and phosphatidylethanolamine. In light of these findings, it is emerging that prohibitin complexes can function as protein and lipid scaffolds that ensure the integrity and functionality of the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Christof Osman
- Institute for Genetics, Centre for Molecular Medicine (CMMC), Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | | |
Collapse
|
27
|
Higgins JMG. Haspin: a newly discovered regulator of mitotic chromosome behavior. Chromosoma 2009; 119:137-47. [PMID: 19997740 DOI: 10.1007/s00412-009-0250-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/12/2009] [Accepted: 11/13/2009] [Indexed: 01/20/2023]
Abstract
The haspins are divergent members of the eukaryotic protein kinase family that are conserved in many eukaryotic lineages including animals, fungi, and plants. Recently-solved crystal structures confirm that the kinase domain of human haspin has unusual structural features that stabilize a catalytically active conformation and create a distinctive substrate binding site. Haspin localizes predominantly to chromosomes and phosphorylates histone H3 at threonine-3 during mitosis, particularly at inner centromeres. This suggests that haspin directly regulates chromosome behavior by modifying histones, although it is likely that additional substrates will be identified in the future. Depletion of haspin by RNA interference in human cell lines causes premature loss of centromeric cohesin from chromosomes in mitosis and failure of metaphase chromosome alignment, leading to activation of the spindle assembly checkpoint and mitotic arrest. Haspin overexpression stabilizes chromosome arm cohesion. Haspin, therefore, appears to be required for protection of cohesion at mitotic centromeres. Saccharomyces cerevisiae homologues of haspin, Alk1 and Alk2, are also implicated in regulation of mitosis. In mammals, haspin is expressed at high levels in the testis, particularly in round spermatids, so it seems likely that haspin has an additional role in post-meiotic spermatogenesis. Haspin is currently the subject of a number of drug discovery efforts, and the future use of haspin inhibitors should provide new insight into the cellular functions of these kinases and help determine the utility of, for example, targeting haspin for cancer therapy.
Collapse
Affiliation(s)
- Jonathan M G Higgins
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Artal-Sanz M, Tavernarakis N. Prohibitin and mitochondrial biology. Trends Endocrinol Metab 2009; 20:394-401. [PMID: 19733482 DOI: 10.1016/j.tem.2009.04.004] [Citation(s) in RCA: 226] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 04/12/2009] [Accepted: 04/14/2009] [Indexed: 12/15/2022]
Abstract
Prohibitins are ubiquitous, evolutionarily conserved proteins that are mainly localized in mitochondria. The mitochondrial prohibitin complex comprises two subunits, PHB1 and PHB2. These two proteins assemble into a ring-like macromolecular structure at the inner mitochondrial membrane and are implicated in diverse cellular processes: from mitochondrial biogenesis and function to cell death and replicative senescence. In humans, prohibitins have been associated with various types of cancer. While their biochemical function remains poorly understood, studies in organisms ranging from yeast to mammals have provided significant insights into the role of the prohibitin complex in mitochondrial biogenesis and metabolism. Here we review recent studies and discuss their implications for deciphering the function of prohibitins in mitochondria.
Collapse
Affiliation(s)
- Marta Artal-Sanz
- Instituto de Biomedicina de Valencia, CSIC, 46010 Valencia, Spain
| | | |
Collapse
|
29
|
Gambe AE, Matsunaga S, Takata H, Ono-Maniwa R, Baba A, Uchiyama S, Fukui K. A nucleolar protein RRS1 contributes to chromosome congression. FEBS Lett 2009; 583:1951-6. [PMID: 19465021 DOI: 10.1016/j.febslet.2009.05.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2009] [Revised: 05/12/2009] [Accepted: 05/15/2009] [Indexed: 11/29/2022]
Abstract
We report here the functional analysis of human Regulator of Ribosome Synthesis 1 (RRS1) protein during mitosis. We demonstrate that RRS1 localizes in the nucleolus during interphase and is distributed at the chromosome periphery during mitosis. RNA interference experiments revealed that RRS1-depleted cells show abnormalities in chromosome alignment and spindle organization, which result in mitotic delay. RRS1 knockdown also perturbs the centromeric localization of Shugoshin 1 and results in premature separation of sister chromatids. Our results suggest that a nucleolar protein RRS1 contributes to chromosome congression.
Collapse
Affiliation(s)
- Arni E Gambe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Serrano Á, Rodríguez-Corsino M, Losada A. Heterochromatin protein 1 (HP1) proteins do not drive pericentromeric cohesin enrichment in human cells. PLoS One 2009; 4:e5118. [PMID: 19352502 PMCID: PMC2662427 DOI: 10.1371/journal.pone.0005118] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 03/09/2009] [Indexed: 01/02/2023] Open
Abstract
Sister chromatid cohesion mediated by cohesin is essential for accurate chromosome segregation. Classical studies suggest that heterochromatin promotes cohesion, but whether this happens through regulation of cohesin remains to be determined. Heterochromatin protein 1 (HP1) is a major component of heterochromatin. In fission yeast, the HP1 homologue Swi6 interacts with cohesin and is required for proper targeting and/or stabilization of cohesin at the centromeric region. To test whether this pathway is conserved in human cells, we have examined the behavior of cohesin in cells in which the levels of HP1 alpha, beta or gamma (the three HP1 proteins present in mammalian organisms) have been reduced by siRNA. We have also studied the consequences of treating human cells with drugs that change the histone modification profile of heterochromatin and thereby affect HP1 localization. Our results show no evidence for a requirement of HP1 proteins for either loading of bulk cohesin onto chromatin in interphase or retention of cohesin at pericentric heterochromatin in mitosis. However, depletion of HP1gamma leads to defects in mitotic progression.
Collapse
Affiliation(s)
- Ángel Serrano
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
31
|
Abstract
Heterochromatin, once thought to be the useless junk of chromosomes, is now known to play significant roles in biology. Underlying much of this newfound fame are links between the repressive chromatin structure and cohesin, the protein complex that mediates sister chromatid cohesion. Heterochromatin-mediated recruitment and retention of cohesin to domains flanking centromeres promotes proper attachment of chromosomes to the mitotic and meiotic spindles. Heterochromatin assembled periodically between convergently transcribed genes also recruits cohesin, which promotes a novel form of transcription termination. Heterochromatin-like structures in budding yeast also recruit cohesin. Here the complex appears to regulate transcriptional silencing and recombination between repeated DNA sequences. The link between heterochromatin and cohesin is particularly relevant to human health. In Roberts-SC phocomelia syndrome, heterochromatic cohesion is selectively lost due to mutation of the acetyltransferase responsible for cohesin activation. In this review I discuss recent work that relates to these relationships between heterochromatin and cohesin.
Collapse
Affiliation(s)
- Marc Gartenberg
- Department of Pharmacology, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
32
|
Abstract
Cohesin is a chromosome-associated multisubunit protein complex that is highly conserved in eukaryotes and has close homologs in bacteria. Cohesin mediates cohesion between replicated sister chromatids and is therefore essential for chromosome segregation in dividing cells. Cohesin is also required for efficient repair of damaged DNA and has important functions in regulating gene expression in both proliferating and post-mitotic cells. Here we discuss how cohesin associates with DNA, how these interactions are controlled during the cell cycle; how binding of cohesin to DNA may mediate sister chromatid cohesion, DNA repair, and gene regulation; and how defects in these processes can lead to human disease.
Collapse
Affiliation(s)
- Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), A-1030 Vienna, Austria.
| | | | | |
Collapse
|
33
|
Losada A. The regulation of sister chromatid cohesion. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1786:41-8. [PMID: 18474253 DOI: 10.1016/j.bbcan.2008.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/06/2008] [Accepted: 04/08/2008] [Indexed: 01/20/2023]
Abstract
Sister chromatid cohesion is a major feature of the eukaryotic chromosome. It entails the formation of a physical linkage between the two copies of a chromosome that result from the duplication process. This linkage must be maintained until chromosome segregation takes place in order to ensure the accurate distribution of the genomic information. Cohesin, a multiprotein complex conserved from yeast to humans, is largely responsible for sister chromatid cohesion. Other cohesion factors regulate the interaction of cohesin with chromatin as well as the establishment and dissolution of cohesion. In addition, the presence of cohesin throughout the genome appears to influence processes other than chromosome segregation, such as transcription and DNA repair. In this review I summarize recent advances in our understanding of cohesin function and regulation in mitosis, and discuss the consequences of impairing the cohesion process at the level of the whole organism.
Collapse
Affiliation(s)
- Ana Losada
- Chromosome Dynamics Group, Spanish National Cancer Research Centre, Melchor Fernández Almagro 3, Madrid E-28029, Spain.
| |
Collapse
|
34
|
Inducing segmental aneuploid mosaicism in the mouse through targeted asymmetric sister chromatid event of recombination. Genetics 2008; 180:51-9. [PMID: 18757940 DOI: 10.1534/genetics.108.092312] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Loss or gain of whole chromosomes, or parts of chromosomes, is found in various pathological conditions, such as cancer and aneuploidy, and results from the missegregation of chromosomes during cellular division or abnormal mitotic recombination. We introduce a novel strategy for determining the consequences of segmental aneuploid mosaicism, called targeted asymmetric sister chromatin event of recombination (TASCER). We took advantage of the Cre/loxP system, used extensively in embryonic stem cells for generating deletions and duplications of regions of interest, to induce recombination during the G2 phase. Using two loxP sites in a Cis configuration, we generated in vivo cells harboring microdeletions and microduplications for regions of interest covering up to 2.2 Mb. Using this approach in the mouse provides insight into the consequences of segmental aneuploidy for homologous regions of the human chromosome 21 on cell survival. Furthermore, TASCER shows that Cre-induced recombination is more efficient after DNA replication in vivo and provides an opportunity to evaluate, through genetic mosaics, the outcome of copy number variation and segmental aneuploidy in the mouse.
Collapse
|
35
|
Merkwirth C, Langer T. Prohibitin function within mitochondria: essential roles for cell proliferation and cristae morphogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:27-32. [PMID: 18558096 DOI: 10.1016/j.bbamcr.2008.05.013] [Citation(s) in RCA: 292] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/14/2008] [Accepted: 05/16/2008] [Indexed: 12/23/2022]
Abstract
Prohibitins comprise an evolutionary conserved and ubiquitously expressed family of membrane proteins. Various roles in different cellular compartments have been proposed for prohibitin proteins. Recent experiments, however, identify large assemblies of two homologous prohibitin subunits, PHB1 and PHB2, in the inner membrane of mitochondria as the physiologically active structure. Mitochondrial prohibitin complexes control cell proliferation, cristae morphogenesis and the functional integrity of mitochondria. The processing of the dynamin-like GTPase OPA1, a core component of the mitochondrial fusion machinery, has been defined as a key process affected by prohibitins. The molecular mechanism of prohibitin function, however, remained elusive. The ring-like assembly of prohibitins and their sequence similarity with lipid raft-associated SPFH-family members suggests a scaffolding function of prohibitins, which may lead to functional compartmentalization in the inner membrane of mitochondria.
Collapse
Affiliation(s)
- Carsten Merkwirth
- Institute for Genetics, Centre for Molecular Medicine (CMMC), University of Cologne, 50674 Cologne, Germany
| | | |
Collapse
|
36
|
Koch B, Kueng S, Ruckenbauer C, Wendt KS, Peters JM. The Suv39h-HP1 histone methylation pathway is dispensable for enrichment and protection of cohesin at centromeres in mammalian cells. Chromosoma 2008; 117:199-210. [PMID: 18075750 DOI: 10.1007/s00412-007-0139-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 11/11/2007] [Accepted: 11/12/2007] [Indexed: 11/29/2022]
Abstract
Sister chromatids are physically connected by cohesin complexes. This sister chromatid cohesion is essential for the biorientation of chromosomes on the mitotic and meiotic spindle. In many species, cohesion between chromosome arms is partly dissolved in prophase of mitosis, whereas cohesion is protected at centromeres until the onset of anaphase. In vertebrates, the protein Sgo1, protein phosphatase 2A, and several other proteins are required for protection of centromeric cohesin in early mitosis. In fission yeast, the recruitment of heterochromatin protein Swi6/HP1 to centromeres by the histone-methyltransferase Clr4/Suv39h is required for enrichment of cohesin at centromeres already in interphase. We have tested if the Suv39h-HP1 histone methylation pathway is also required for enrichment and mitotic protection of cohesin at centromeres in mammalian cells. We show that cohesin and HP1 proteins partially colocalize at mitotic centromeres but that cohesin localization is not detectably altered in mouse embryonic fibroblasts that lack Suv39h genes and in which HP1 proteins can, therefore, not be properly enriched in pericentric heterochromatin. Our data indicate that the Suv39h-HP1 pathway is not essential for enrichment and mitotic protection of cohesin at centromeres in mammalian cells.
Collapse
Affiliation(s)
- Birgit Koch
- Research Institute of Molecular Pathology (IMP), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
37
|
Ritchie K, Seah C, Moulin J, Isaac C, Dick F, Bérubé NG. Loss of ATRX leads to chromosome cohesion and congression defects. ACTA ACUST UNITED AC 2008; 180:315-24. [PMID: 18227278 PMCID: PMC2213576 DOI: 10.1083/jcb.200706083] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alpha thalassemia/mental retardation X linked (ATRX) is a switch/sucrose nonfermenting-type ATPase localized at pericentromeric heterochromatin in mouse and human cells. Human ATRX mutations give rise to mental retardation syndromes characterized by developmental delay, facial dysmorphisms, cognitive deficits, and microcephaly and the loss of ATRX in the mouse brain leads to reduced cortical size. We find that ATRX is required for normal mitotic progression in human cultured cells and in neuroprogenitors. Using live cell imaging, we show that the transition from prometaphase to metaphase is prolonged in ATRX-depleted cells and is accompanied by defective sister chromatid cohesion and congression at the metaphase plate. We also demonstrate that loss of ATRX in the embryonic mouse brain induces mitotic defects in neuroprogenitors in vivo with evidence of abnormal chromosome congression and segregation. These findings reveal that ATRX contributes to chromosome dynamics during mitosis and provide a possible cellular explanation for reduced cortical size and abnormal brain development associated with ATRX deficiency.
Collapse
Affiliation(s)
- Kieran Ritchie
- Department of Paediatrics, University of Western Ontario, London, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Ross JA, Nagy ZS, Kirken RA. The PHB1/2 Phosphocomplex Is Required for Mitochondrial Homeostasis and Survival of Human T Cells. J Biol Chem 2008; 283:4699-713. [DOI: 10.1074/jbc.m708232200] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|