1
|
Dai W, Deng L, He C, Fu X, Liu J, Wang GC, Yang J, Zhang YB, Xiao F, Wan QL. Crassifolin A prolongs lifespan and healthspan in Caenorhabditis elegans via activating autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2025; 342:119399. [PMID: 39890089 DOI: 10.1016/j.jep.2025.119399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Croton crassifolius Geiseler (C. crassifolius), commonly known as "Jiguxiang" in traditional Chinese medicine, is globally recognized for its ethnomedical applications in treating a spectrum of diseases. Crassifolin A (CA), a diterpenoid compound extracted from the roots of C. crassifolius, exhibits anti-herpes simplex virus (HSV), anti-viral and anti-angiogenic properties. AIM OF THE REVIEW This study aimed to explore the effects of CA on aging and the mechanisms involved. MATERIALS AND METHODS Utilizing Caenorhabditis elegans (C. elegans) as a model organism, we conducted a comprehensive survival analysis and evaluated aging-related phenotypes, including the period of fast body movement and body bending rates. To elucidate the molecular mechanisms of CA's impact on aging, we employed a multifaceted approach, including reverse transcription quantitative polymerase chain reaction (RT-qPCR), western blotting, and fluorescence quantification of transgenic reporter strains. RESULTS Our findings demonstrated that CA significantly prolonged both the lifespan and healthspan of C. elegans. The survival benefits conferred by CA were found to correlate with the activation of several key aging-related signaling pathways, including insulin/insulin-like signaling pathway (IIS), dietary restriction (DR) pathway, and germline signaling pathway. Engagement of these pathways led to the activation of transcription factors DAF-16/FOXO, SKN-1/NRF2, HSF-1 and HLH-30/TFEB, as well as the nuclear receptor DAF-12. Consequently, this activation cascade prompted an upregulation of autophagy, a cellular process associated with the maintenance of cellular homeostasis and longevity. CONCLUSION Our study delineates novel mechanisms underlying anti-aging strategies, establishing a conceptual framework for the exploitation and advancement of traditional Chinese medicinal herbs as potential therapeutic agents in the fight against aging and its associated pathologies.
Collapse
Affiliation(s)
- Wenyu Dai
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China; The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lifeng Deng
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chenyang He
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaoxia Fu
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jing Liu
- Neurology Department, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Guo-Cai Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University, Guangzhou, 510632, China
| | - Jing Yang
- The College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yu-Bo Zhang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research Jinan University, Guangzhou, 510632, China.
| | - Fei Xiao
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qin-Li Wan
- Department of Pathogen Biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
2
|
Liu X, Chang Z, Sun P, Cao B, Wang Y, Fang J, Pei Y, Chen B, Zou W. MONITTR allows real-time imaging of transcription and endogenous proteins in C. elegans. J Cell Biol 2025; 224:e202403198. [PMID: 39400293 PMCID: PMC11473600 DOI: 10.1083/jcb.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/26/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024] Open
Abstract
Maximizing cell survival under stress requires rapid and transient adjustments of RNA and protein synthesis. However, capturing these dynamic changes at both single-cell level and across an organism has been challenging. Here, we developed a system named MONITTR (MS2-embedded mCherry-based monitoring of transcription) for real-time simultaneous measurement of nascent transcripts and endogenous protein levels in C. elegans. Utilizing this system, we monitored the transcriptional bursting of fasting-induced genes and found that the epidermis responds to fasting by modulating the proportion of actively transcribing nuclei and transcriptional kinetics of individual alleles. Additionally, our findings revealed the essential roles of the transcription factors NHR-49 and HLH-30 in governing the transcriptional kinetics of fasting-induced genes under fasting. Furthermore, we tracked transcriptional dynamics during heat-shock response and ER unfolded protein response and observed rapid changes in the level of nascent transcripts under stress conditions. Collectively, our study provides a foundation for quantitatively investigating how animals spatiotemporally modulate transcription in various physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaofan Liu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Zhi Chang
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Pingping Sun
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Beibei Cao
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhi Wang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Jie Fang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yechun Pei
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University and Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Orea-Soufi A, Dávila D, Salazar-Roa M, Lorente M, Velasco G. Phosphorylation of FOXO Proteins as a Key Mechanism to Regulate Their Activity. Methods Mol Biol 2025; 2871:11-18. [PMID: 39565574 DOI: 10.1007/978-1-0716-4217-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Phosphorylation of FOXO transcription factors is one of the key mechanisms involved in the regulation of the activity, nucleo-cytosolic shuttling, and stability of this family of proteins. Here we describe several experimental approaches allowing analysis of changes in the phosphorylation of these proteins upon exposure to different stimuli.
Collapse
Affiliation(s)
- Alba Orea-Soufi
- ABC-RI, Algarve Biomedical Center Research Institute, Algarve Biomedical Center, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - David Dávila
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - María Salazar-Roa
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| |
Collapse
|
4
|
Qu Q, Chen Y, Wang Y, Long S, Wang W, Yang HY, Li M, Tian X, Wei X, Liu YH, Xu S, Zhang C, Zhu M, Lam SM, Wu J, Yun C, Chen J, Xue S, Zhang B, Zheng ZZ, Piao HL, Jiang C, Guo H, Shui G, Deng X, Zhang CS, Lin SC. Lithocholic acid phenocopies anti-ageing effects of calorie restriction. Nature 2024:10.1038/s41586-024-08329-5. [PMID: 39695227 DOI: 10.1038/s41586-024-08329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 10/31/2024] [Indexed: 12/20/2024]
Abstract
Calorie restriction (CR) is a dietary intervention used to promote health and longevity1,2. CR causes various metabolic changes in both the production and the circulation of metabolites1; however, it remains unclear which altered metabolites account for the physiological benefits of CR. Here we use metabolomics to analyse metabolites that exhibit changes in abundance during CR and perform subsequent functional validation. We show that lithocholic acid (LCA) is one of the metabolites that alone can recapitulate the effects of CR in mice. These effects include activation of AMP-activated protein kinase (AMPK), enhancement of muscle regeneration and rejuvenation of grip strength and running capacity. LCA also activates AMPK and induces life-extending and health-extending effects in Caenorhabditis elegans and Drosophila melanogaster. As C. elegans and D. melanogaster are not able to synthesize LCA, these results indicate that these animals are able to transmit the signalling effects of LCA once administered. Knockout of AMPK abrogates LCA-induced phenotypes in all the three animal models. Together, we identify that administration of the CR-mediated upregulated metabolite LCA alone can confer anti-ageing benefits to metazoans in an AMPK-dependent manner.
Collapse
Affiliation(s)
- Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shating Long
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiche Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Heng-Ye Yang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Shengrong Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | | | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Fujian, China
| | - Chuyu Yun
- State Key Laboratory of Female Fertility Promotion, Centre for Reproductive Medicine, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, China
| | - Junjie Chen
- Analysis and Measurement Centre, School of Pharmaceutical Sciences, Xiamen University, Fujian, China
| | - Shengye Xue
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhong-Zheng Zheng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Liaoning, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, Department of Immunology, School of Basic Medical Sciences, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodelling, Peking University, Beijing, China
| | - Hao Guo
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
- Xiang'an Hospital of Xiamen University, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Guanghou Shui
- Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
5
|
Smiles WJ, Ovens AJ, Oakhill JS, Kofler B. The metabolic sensor AMPK: Twelve enzymes in one. Mol Metab 2024; 90:102042. [PMID: 39362600 PMCID: PMC11752127 DOI: 10.1016/j.molmet.2024.102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/12/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an evolutionarily conserved regulator of energy metabolism. AMPK is sensitive to acute perturbations to cellular energy status and leverages fundamental bioenergetic pathways to maintain cellular homeostasis. AMPK is a heterotrimer comprised of αβγ-subunits that in humans are encoded by seven individual genes (isoforms α1, α2, β1, β2, γ1, γ2 and γ3), permitting formation of at least 12 different complexes with personalised biochemical fingerprints and tissue expression patterns. While the canonical activation mechanisms of AMPK are well-defined, delineation of subtle, as well as substantial, differences in the regulation of heterogenous AMPK complexes remain poorly defined. SCOPE OF REVIEW Here, taking advantage of multidisciplinary findings, we dissect the many aspects of isoform-specific AMPK function and links to health and disease. These include, but are not limited to, allosteric activation by adenine nucleotides and small molecules, co-translational myristoylation and post-translational modifications (particularly phosphorylation), governance of subcellular localisation, and control of transcriptional networks. Finally, we delve into current debate over whether AMPK can form novel protein complexes (e.g., dimers lacking the α-subunit), altogether highlighting opportunities for future and impactful research. MAJOR CONCLUSIONS Baseline activity of α1-AMPK is higher than its α2 counterpart and is more sensitive to synergistic allosteric activation by metabolites and small molecules. α2 complexes however, show a greater response to energy stress (i.e., AMP production) and appear to be better substrates for LKB1 and mTORC1 upstream. These differences may explain to some extent why in certain cancers α1 is a tumour promoter and α2 a suppressor. β1-AMPK activity is toggled by a 'myristoyl-switch' mechanism that likely precedes a series of signalling events culminating in phosphorylation by ULK1 and sensitisation to small molecules or endogenous ligands like fatty acids. β2-AMPK, not entirely beholden to this myristoyl-switch, has a greater propensity to infiltrate the nucleus, which we suspect contributes to its oncogenicity in some cancers. Last, the unique N-terminal extensions of the γ2 and γ3 isoforms are major regulatory domains of AMPK. mTORC1 may directly phosphorylate this region in γ2, although whether this is inhibitory, especially in disease states, is unclear. Conversely, γ3 complexes might be preferentially regulated by mTORC1 in response to physical exercise.
Collapse
Affiliation(s)
- William J Smiles
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia.
| | - Ashley J Ovens
- Protein Engineering in Immunity & Metabolism, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute of Medical Research, Fitzroy, Melbourne, Australia; Department of Medicine, University of Melbourne, Parkville, Australia
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumour Metabolism, Department of Paediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
6
|
Cheng E, Lu R, Gerhold AR. Non-autonomous insulin signaling delays mitotic progression in C. elegans germline stem and progenitor cells. PLoS Genet 2024; 20:e1011351. [PMID: 39715269 PMCID: PMC11706408 DOI: 10.1371/journal.pgen.1011351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
Stem and progenitor cell mitosis is essential for tissue development and homeostasis. How these cells ensure proper chromosome segregation, and thereby maintain mitotic fidelity, in the complex physiological environment of a living animal is poorly understood. Here we use in situ live-cell imaging of C. elegans germline stem and progenitor cells (GSPCs) to ask how the signaling environment influences stem and progenitor cell mitosis in vivo. Through a candidate screen we identify a new role for the insulin/IGF receptor (IGFR), daf-2, during GSPC mitosis. Mitosis is delayed in daf-2/IGFR mutants, and these delays require canonical, DAF-2/IGFR to DAF-16/FoxO insulin signaling, here acting cell non-autonomously from the soma. Interestingly, mitotic delays in daf-2/IGFR mutants depend on the spindle assembly checkpoint but are not accompanied by a loss of mitotic fidelity. Correspondingly, we show that caloric restriction, which delays GSPC mitosis and compromises mitotic fidelity, does not act via the canonical insulin signaling pathway, and instead requires AMP-activated kinase (AMPK). Together this work demonstrates that GSPC mitosis is influenced by at least two genetically separable signaling pathways and highlights the importance of signaling networks for proper stem and progenitor cell mitosis in vivo.
Collapse
Affiliation(s)
- Eric Cheng
- Department of Biology, McGill University, Montréal, Canada
| | - Ran Lu
- Department of Biology, McGill University, Montréal, Canada
| | | |
Collapse
|
7
|
Shan S, Hoffman JM. Serine metabolism in aging and age-related diseases. GeroScience 2024:10.1007/s11357-024-01444-1. [PMID: 39585647 DOI: 10.1007/s11357-024-01444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Non-essential amino acids are often overlooked in biomedical research; however, they are crucial components of organismal metabolism. One such metabolite that is integral to physiological function is serine. Serine acts as a pivotal link connecting glycolysis with one-carbon and lipid metabolism, as well as with pyruvate and glutathione syntheses. Interestingly, increasing evidence suggests that serine metabolism may impact the aging process, and supplementation with serine may confer benefits in safeguarding against aging and age-related disorders. This review synthesizes recent insights into the regulation of serine metabolism during aging and its potential to promote healthy lifespan and mitigate a spectrum of age-related diseases.
Collapse
Affiliation(s)
- Shengshuai Shan
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
8
|
Xiao Y, Zhang H, Li X, Han C, Liu F. DEAD-box RNA helicase DDX-23 mediates dietary restriction induced health span in Caenorhabditis elegans. GeroScience 2024:10.1007/s11357-024-01434-3. [PMID: 39578298 DOI: 10.1007/s11357-024-01434-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Dietary restriction (DR) extends lifespan in diverse species, from yeast to mammals. However, its underlying mechanisms are not well understood. In this study, through using the tractable model Caenorhabditis elegans, we show a role for the DEAD-box RNA helicase, DDX-23 (homologous to mammal DDX23) as a regulator of healthspan in response to dietary restriction. Meanwhile, DDX-23 is also required for heat and oxidative stress response in C. elegans. Intriguingly, DDX-23 functions in the germline during adult to regulate dietary restriction-induced longevity. We then find that PHA-4/FOXA acts downstream of DDX-23 to mediate the transcriptional response of SOD-related genes and consequently the lifespan of the animals. Furthermore, we find that the DEAD-box RNA helicase, DDX-23 negatively regulates the healthy lifespan extension by up-regulating the expression of miR-231, and resulting in suppressing the activation of FOXO transcription factor DAF-16. Our work shows a newly discovered for DEAD-box RNA helicase DDX-23 in the regulation of dietary restriction-mediated longevity in C. elegans and reveals the downstream transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Yi Xiao
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou, 563000, China.
| | - Hongjiao Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi Guizhou, 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Xiaocong Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi Guizhou, 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Chao Han
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi Guizhou, 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou, 563000, China
| | - Fang Liu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment With Distinctive Medicines, Zunyi Medical University, Zunyi Guizhou, 563000, China.
- College of Basic Medicine, Zunyi Medical University, Zunyi Guizhou, 563000, China.
| |
Collapse
|
9
|
Li M, Wang Y, Wei X, Cai WF, Liu YH, Wu J, Chen Y, Xiong J, Cui LF, Zhu M, Zhang C, Lin L, Yu Y, Piao HL, Lin SC, Zhang CS. AMPK-PDZD8-GLS1 axis mediates calorie restriction-induced lifespan extension. Cell Res 2024; 34:806-809. [PMID: 39300254 PMCID: PMC11528062 DOI: 10.1038/s41422-024-01021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024] Open
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li-Feng Cui
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Liyun Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yong Yu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
- The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan, China.
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
10
|
Zhang H, Zhu Y, Xue D. Moderate embryonic delay of paternal mitochondrial elimination impairs mating and cognition and alters behaviors of adult animals. SCIENCE ADVANCES 2024; 10:eadp8351. [PMID: 39365857 PMCID: PMC11451536 DOI: 10.1126/sciadv.adp8351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Rapid elimination of paternal mitochondria following fertilization is a conserved event in most animals, but its physiological significance remains unclear. We find that modest delay of paternal mitochondrial elimination (PME) in Caenorhabditis elegans embryos unexpectedly impairs mating and cognition of adult animals and alters their locomotion behaviors. Delayed PME causes decreased adenosine triphosphate (ATP) levels in early embryos, which lead to impaired physiological functions of adult animals through an energy-sensing pathway mediated by an adenosine monophosphate (AMP)-activated protein kinase, AAK-2, and a forkhead box class O (FOXO) transcription factor, DAF-16. Treatment of PME-delayed animals with MK-4, a subtype of vitamin K2 that can improve mitochondrial ATP production, restores ATP levels in early embryos, and rescues physiological defects of adult animals. Our results suggest that moderate PME delay during embryo development adversely affects crucial physiological functions in adults, which could be evolutionarily disadvantageous. These observations provide mechanistic explanations for the need to swiftly remove paternal mitochondria early during embryo development.
Collapse
Affiliation(s)
| | | | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
11
|
Cornwell AB, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. GeroScience 2024; 46:4827-4854. [PMID: 38878153 PMCID: PMC11336136 DOI: 10.1007/s11357-024-01197-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/08/2024] [Indexed: 06/25/2024] Open
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to FOXA) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. Surprisingly, we discovered more than 2000 genes synthetically dysregulated in eat-2;mxl-2, out of which the promoters of down-regulated genes were substantially enriched for PQM-1 and ELT-1/3 GATA TF binding motifs. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress, such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have distinct roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam B Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- MURTI Centre and Department of Biotechnology, School of Technology, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, Andhra Pradesh, 530045, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd, Batavia, NY, 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Calubag MF, Robbins PD, Lamming DW. A nutrigeroscience approach: Dietary macronutrients and cellular senescence. Cell Metab 2024; 36:1914-1944. [PMID: 39178854 PMCID: PMC11386599 DOI: 10.1016/j.cmet.2024.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
Cellular senescence, a process in which a cell exits the cell cycle in response to stressors, is one of the hallmarks of aging. Senescence and the senescence-associated secretory phenotype (SASP)-a heterogeneous set of secreted factors that disrupt tissue homeostasis and promote the accumulation of senescent cells-reprogram metabolism and can lead to metabolic dysfunction. Dietary interventions have long been studied as methods to combat age-associated metabolic dysfunction, promote health, and increase lifespan. A growing body of literature suggests that senescence is responsive to diet, both to calories and specific dietary macronutrients, and that the metabolic benefits of dietary interventions may arise in part through reducing senescence. Here, we review what is currently known about dietary macronutrients' effect on senescence and the SASP, the nutrient-responsive molecular mechanisms that may mediate these effects, and the potential for these findings to inform the development of a nutrigeroscience approach to healthy aging.
Collapse
Affiliation(s)
- Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Paul D Robbins
- Institute On the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street, SE, Minneapolis, MN 55455, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
13
|
Zhou Y, Zhang M, Lu S, Liu L, Duan Z, Wei F, Li G. Superoxide signal orchestrates tetrathiomolybdate-induced longevity via ARGK-1 in Caenorhabditis elegans. Free Radic Biol Med 2024; 222:650-660. [PMID: 39025156 DOI: 10.1016/j.freeradbiomed.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE While reactive oxygen species (ROS) have been identified as key redox signaling agents contributing to aging process, which and how specific oxidants trigger healthy longevity remain unclear. This paper aimed to explore the precise role and signaling mechanism of superoxide (O2•-) in health and longevity. METHODS A tool for precise regulation of O2•- levels in vivo was developed based on the inhibition of superoxide dismutase 1 (SOD1) by tetrathiomolybdate (TM) in Caenorhabditis elegans (C. elegans). Then, we examined the effects of TM on lifespan, reproduction, lipofuscin accumulation, mobility, and stress resistance. Finally, the signaling mechanism for longevity induced by TM-O2•- was screened by transcriptome analysis and tested in sod-1 and argk-1 RNAi strains, sod-2, sod-3, and daf-16 mutants. RESULTS TM promoted longevity in C. elegans with a concomitant extension of healthy lifespan as indicated by increasing fertility and mobility and reducing lipofuscin accumulation, as well as enhanced resistance to different abiotic stresses. Mechanically, TM could precisely regulate O2•- levels in nematodes via modulating SOD1 activity. An O2•- scavenger Mn(III)TBAP abolished TM-induced lifespan extension, while an O2•- generator paraquat at low concentration mimicked the life prolongation effects. The longevity in TM-treated worms was abolished by sod-1 RNAi but was not affected in sod-2 or sod-3 mutants. Further transcriptome analysis revealed arginine kinase ARGK-1 and its downstream insulin/insulin-like growth factor 1 signaling (IIS) as potential effectors for TM-O2•‾-induced longevity, and argk-1 RNAi or daf-16 mutant nullified the longevity. CONCLUSIONS These findings indicate that it is feasible to precisely control specific oxidant in vivo and O2•- orchestrates TM-induced health and longevity in C. elegans via ARGK-1-IIS axis.
Collapse
Affiliation(s)
- Yiming Zhou
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Mengting Zhang
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Siyu Lu
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Li Liu
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Zhigui Duan
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China
| | - Fang Wei
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China.
| | - Guolin Li
- Center for Aging Biomedicine, National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410081, China; Key Laboratory of Hunan Province for Model Animal and Stem Cell Biology, School of Medicine, Hunan Normal University, Changsha, Hunan, 410081, China; FuRong Laboratory, Changsha, 410078, Hunan, China.
| |
Collapse
|
14
|
Liu CC, Khan A, Seban N, Littlejohn N, Shah A, Srinivasan S. A homeostatic gut-to-brain insulin antagonist restrains neuronally stimulated fat loss. Nat Commun 2024; 15:6869. [PMID: 39127676 PMCID: PMC11316803 DOI: 10.1038/s41467-024-51077-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
In C. elegans mechanisms by which peripheral organs relay internal state information to the nervous system remain unknown, although strong evidence suggests that such signals do exist. Here we report the discovery of a peptide of the ancestral insulin superfamily called INS-7 that functions as an enteroendocrine peptide and is secreted from specialized cells of the intestine. INS-7 secretion is stimulated by food withdrawal, increases during fasting and acts as a bona fide gut-to-brain peptide that attenuates the release of a neuropeptide that drives fat loss in the periphery. Thus, INS-7 functions as a homeostatic signal from the intestine that gates the neuronal drive to stimulate fat loss during food shortage. Mechanistically, INS-7 functions as an antagonist at the canonical DAF-2 receptor and functions via FOXO and AMPK signaling in ASI neurons. Phylogenetic analysis suggests that INS-7 bears greater resemblance to members of the broad insulin/relaxin superfamily than to conventional mammalian insulin and IGF peptides. The discovery of an endogenous insulin antagonist secreted by specialized intestinal cells with enteroendocrine functions suggests unexpected and important properties of the intestine and its role in directing neuronal functions.
Collapse
Affiliation(s)
- Chung-Chih Liu
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, San Diego, CA, USA
| | - Ayub Khan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Nicolas Seban
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Nicole Littlejohn
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Aayushi Shah
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA
| | - Supriya Srinivasan
- Department of Neuroscience and Dorris Neuroscience Center, The Scripps Research Institute, San Diego, CA, USA.
| |
Collapse
|
15
|
Zheng X. An Introductory Guide to Using Bloomington Drosophila Stock Center and FlyBase for Aging Research. Cells 2024; 13:1192. [PMID: 39056774 PMCID: PMC11275189 DOI: 10.3390/cells13141192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Studies on numerous species have demonstrated strikingly conserved mechanisms that determine the aging process, from yeasts to worms, flies, zebrafish, mice, and humans. The fruit fly Drosophila melanogaster is an excellent model organism for studying the biological basis of normal aging and etiology of age-related diseases. Since its inception in 1967, the Bloomington Drosophila Stock Center (BDSC) has grown into the largest collection of documented D. melanogaster strains (currently > 91,000). This paper aims to briefly review conserved mechanisms of aging and provides a guide to help users understand the organization of stock listings on the BDSC website and familiarize themselves with the search functions on BDSC and FlyBase, with an emphasis on using genes in conserved pathways as examples to find stocks for aging studies.
Collapse
Affiliation(s)
- Xiangzhong Zheng
- Department of Biology, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
16
|
Wang L, Qin N, Ge S, Zhao X, Yang Y, Jia W, Xu R, Zhu T. Notoginseng leaf triterpenes promotes angiogenesis by activating the Nrf2 pathway and AMPK/SIRT1-mediated PGC-1/ERα axis in ischemic stroke. Fitoterapia 2024; 176:106045. [PMID: 38823597 DOI: 10.1016/j.fitote.2024.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
Notoginseng leaf triterpenes (PNGL), derived from the dried stems and leaves of P. notoginseng, is a phytoestrogen that exerts many neuroprotective effects in vivo and in vitro of ischemic stroke. However, its impact on neurological restoration specifically in relation to angiogenesis following ischemic stroke remains unexplored. The aim of this study was to assess the effects of PNGL on angiogenesis subsequent to ischemic stroke. Male Sprague-Dawley rats were utilized in this study and were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Post-ischemia, PNGL were administered through intraperitoneal (i.p.) injection. The high-performance liquid chromatography (HPLC) fingerprinting, triphenyltetrazolium chloride (TTC) staining, immunofluorescent staining, network pharmacology and western blot analyses were assessed to determine the therapeutical effect and molecular mechanisms of PNGL on cerebral ischemia/reperfusion injury. Our findings demonstrate that PNGL effectively reduced infarct volume, enhanced cerebral blood flow, and induced angiogenesis in rats subjected to MCAO/R. Notably, PNGL also facilitated neuronal proliferation and migration in HUMECs in vitro. The proangiogenic effects of PNGL were found to be linked to the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis, as well as the activation of neurological function. Our study provides evidence that PNGL hold promise as an active ingredient of inducing proangiogenic effects, potentially through the activation of the Nrf2 pathway and the AMPK/SIRT1-mediated PGC-1/ERα axis. These findings contribute to the understanding of novel mechanisms involved in the restoration of neurological function following PNGL treatment for ischemic stroke.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China; School of traditional Chinese pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Na Qin
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Shanchun Ge
- School of traditional Chinese pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Xinyue Zhao
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Yuxi Yang
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Wanqi Jia
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China
| | - Rongjian Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, PR China.
| | - Ting Zhu
- Institute of Neuroregeneration and Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
17
|
Rothi MH, Haddad JA, Sarkar GC, Mitchell W, Ying K, Pohl N, Sotomayor R, Natale J, Dellacono S, Gladyshev VN, Greer EL. The 18S rRNA Methyltransferase DIMT-1 Regulates Lifespan in the Germline Later in Life. RESEARCH SQUARE 2024:rs.3.rs-4421268. [PMID: 38946979 PMCID: PMC11213213 DOI: 10.21203/rs.3.rs-4421268/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Ribosome heterogeneity has emerged as an important regulatory control feature for determining which proteins are synthesized, however, the influence of age on ribosome heterogeneity is not fully understood. Whether mRNA transcripts are selectively translated in young versus old cells and whether dysregulation of this process drives organismal aging is unknown. Here we examined the role of ribosomal RNA (rRNA) methylation in maintaining appropriate translation as organisms age. In a directed RNAi screen, we identified the 18S rRNA N6'-dimethyl adenosine (m6,2A) methyltransferase, dimt-1, as a regulator of C. elegans lifespan and stress resistance. Lifespan extension induced by dimt-1 deficiency required a functional germline and was dependent on the known regulator of protein translation, the Rag GTPase, raga-1, which links amino acid sensing to the mechanistic target of rapamycin complex (mTORC)1. Using an auxin-inducible degron tagged version of dimt-1, we demonstrate that DIMT-1 functions in the germline after mid-life to regulate lifespan. We further found that knock-down of dimt-1 leads to selective translation of transcripts important for stress resistance and lifespan regulation in the C. elegans germline in mid-life including the cytochrome P450 daf-9, which synthesizes a steroid that signals from the germline to the soma to regulate lifespan. We found that dimt-1 induced lifespan extension was dependent on the daf-9 signaling pathway. This finding reveals a new layer of proteome dysfunction, beyond protein synthesis and degradation, as an important regulator of aging. Our findings highlight a new role for ribosome heterogeneity, and specific rRNA modifications, in maintaining appropriate translation later in life to promote healthy aging.
Collapse
Affiliation(s)
- M. Hafiz Rothi
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Joseph Al Haddad
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Gautam Chandra Sarkar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Kejun Ying
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Nancy Pohl
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Roberto Sotomayor
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Julia Natale
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Scarlett Dellacono
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Hafiz Rothi M, Sarkar GC, Haddad JA, Mitchell W, Ying K, Pohl N, Sotomayor-Mena RG, Natale J, Dellacono S, Gladyshev VN, Lieberman Greer E. The 18S rRNA Methyltransferase DIMT-1 Regulates Lifespan in the Germline Later in Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.14.594211. [PMID: 38798397 PMCID: PMC11118296 DOI: 10.1101/2024.05.14.594211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Ribosome heterogeneity has emerged as an important regulatory control feature for determining which proteins are synthesized, however, the influence of age on ribosome heterogeneity is not fully understood. Whether mRNA transcripts are selectively translated in young versus old cells and whether dysregulation of this process drives organismal aging is unknown. Here we examined the role of ribosomal RNA (rRNA) methylation in maintaining appropriate translation as organisms age. In a directed RNAi screen, we identified the 18S rRNA N6'-dimethyl adenosine (m6,2A) methyltransferase, dimt-1, as a regulator of C. elegans lifespan and stress resistance. Lifespan extension induced by dimt-1 deficiency required a functional germline and was dependent on the known regulator of protein translation, the Rag GTPase, raga-1, which links amino acid sensing to the mechanistic target of rapamycin complex (mTORC)1. Using an auxin-inducible degron tagged version of dimt-1, we demonstrate that DIMT-1 functions in the germline after mid-life to regulate lifespan. We further found that knock-down of dimt-1 leads to selective translation of transcripts important for stress resistance and lifespan regulation in the C. elegans germline in mid-life including the cytochrome P450 daf-9, which synthesizes a steroid that signals from the germline to the soma to regulate lifespan. We found that dimt-1 induced lifespan extension was dependent on the daf-9 signaling pathway. This finding reveals a new layer of proteome dysfunction, beyond protein synthesis and degradation, as an important regulator of aging. Our findings highlight a new role for ribosome heterogeneity, and specific rRNA modifications, in maintaining appropriate translation later in life to promote healthy aging.
Collapse
Affiliation(s)
- M. Hafiz Rothi
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Gautam Chandra Sarkar
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph Al Haddad
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Wayne Mitchell
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Kejun Ying
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Nancy Pohl
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Roberto G. Sotomayor-Mena
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Julia Natale
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Scarlett Dellacono
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston MA 02115, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston MA, USA
- Division of Newborn Medicine, Boston Children’s Hospital, Boston MA, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
19
|
Mauro MS, Martin SL, Dumont J, Shirasu-Hiza M, Canman JC. Patterning, regulation, and role of FoxO/DAF-16 in the early embryo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.594029. [PMID: 38798632 PMCID: PMC11118310 DOI: 10.1101/2024.05.13.594029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Insulin resistance and diabetes are associated with many health issues including higher rates of birth defects and miscarriage during pregnancy. Because insulin resistance and diabetes are both associated with obesity, which also affects fertility, the role of insulin signaling itself in embryo development is not well understood. A key downstream target of the insulin/insulin-like growth factor signaling (IIS) pathway is the forkhead family transcription factor FoxO (DAF-16 in C. elegans ). Here, we used quantitative live imaging to measure the patterning of endogenously tagged FoxO/DAF-16 in the early worm embryo. In 2-4-cell stage embryos, FoxO/DAF-16 initially localized uniformly to all cell nuclei, then became dramatically enriched in germ precursor cell nuclei beginning at the 8-cell stage. This nuclear enrichment in early germ precursor cells required germ fate specification, PI3K (AGE-1)- and PTEN (DAF-18)-mediated phospholipid regulation, and the deubiquitylase USP7 (MATH-33), yet was unexpectedly insulin receptor (DAF-2)- and AKT-independent. Functional analysis revealed that FoxO/DAF-16 acts as a cell cycle pacer for early cleavage divisions-without FoxO/DAF-16 cell cycles were shorter than in controls, especially in germ lineage cells. These results reveal the germ lineage specific patterning, upstream regulation, and cell cycle role for FoxO/DAF-16 during early C. elegans embryogenesis.
Collapse
|
20
|
Zhan Y, Wu G, Fan X, Fu Z, Ni Y, Sun B, Chen H, Chen T, Wang X. YAP upregulates AMPKα1 to induce cancer cell senescence. Int J Biochem Cell Biol 2024; 170:106559. [PMID: 38499237 DOI: 10.1016/j.biocel.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/20/2024]
Abstract
Yes-associated protein (YAP)-a major effector protein of the Hippo pathway- regulates cell proliferation, differentiation, apoptosis, and senescence. Amp-activated protein kinase (AMPK) is a key sensor that monitors cellular nutrient supply and energy status. Although YAP and AMPK are considered to regulate cellular senescence, it is still unclear whether AMPK is involved in YAP-regulated cellular senescence. Here, we found that YAP promoted AMPKα1 aggregation and localization around mitochondria by co-transfecting CFP-YAP and YFP-AMPKα1 plasmids. Subsequent live cell fluorescence resonance energy transfer (FRET) assay did not exhibit direct interaction between YAP and AMPKα1. FRET, Co-immunoprecipitation, and western blot experiments revealed that YAP directly bound to TEAD, enhancing the expression of AMPKα1 and p-AMPKα. Treatment with verteporfin inhibited YAP's binding to TEAD and reversed the elevated expression of AMPKα1 in the cells overexpressing CFP-YAP. Verteporfin also reduced the proportion of AMPKα1 puncta in the cells co-expressing CFP-YAP and YFP-AMPKα1. In addition, the AMPKα1 puncta were demonstrated to inhibit cell viability, autophagy, and proliferation, and ultimately promote cell senescence. In conclusion, YAP binds to TEAD to upregulate AMPKα1 and promotes the formation of AMPKα1 puncta around mitochondria under the condition of co-expression of CFP-YAP and YFP-AMPKα1, in which AMPKα1 puncta lead to cellular senescence.
Collapse
Affiliation(s)
- Yongtong Zhan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guihao Wu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xuhong Fan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Ze Fu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yue Ni
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Beini Sun
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
21
|
Zang X, Wang Q, Zhang H, Zhang Y, Wang Z, Wu Z, Chen D. Knockdown of neuronal DAF-15/Raptor promotes healthy aging in C. elegans. J Genet Genomics 2024; 51:507-516. [PMID: 37951302 DOI: 10.1016/j.jgg.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/06/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The highly conserved target of rapamycin (TOR) pathway plays an important role in aging across species. Previous studies have established that inhibition of the TOR complex 1 (TORC1) significantly extends lifespan in Caenorhabditiselegans. However, it has not been clear whether TORC1 perturbation affects aging in a spatiotemporal manner. Here, we apply the auxin-inducible degradation tool to knock down endogenous DAF-15, the C. elegans ortholog of regulatory associated protein of TOR (Raptor), to characterize its roles in aging. Global or tissue-specific inhibition of DAF-15 during development results in various growth defects, whereas neuron-specific knockdown of DAF-15 during adulthood significantly extends lifespan and healthspan. The neuronal DAF-15 deficiency-induced longevity requires the intestinal activities of DAF-16/FOXO and PHA-4/FOXA transcription factors, as well as the AAK-2/AMP-activated protein kinase α catalytic subunit. Transcriptome profiling reveals that the neuronal DAF-15 knockdown promotes the expression of genes involved in protection. These findings define the tissue-specific roles of TORC1 in healthy aging and highlight the importance of neuronal modulation of aging.
Collapse
Affiliation(s)
- Xiao Zang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Qi Wang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Hanxin Zhang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Yiyan Zhang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China
| | - Zi Wang
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Zixing Wu
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China
| | - Di Chen
- Model Animal Research Center of Medical School, Nanjing University, Nanjing, Jiangsu 210061, China; Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, Zhejiang 314400, China; Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
22
|
Metcalf MG, Monshietehadi S, Sahay A, Durieux J, Frakes AE, Velichkovska M, Mena C, Farinas A, Sanchez M, Dillin A. Cell non-autonomous control of autophagy and metabolism by glial cells. iScience 2024; 27:109354. [PMID: 38500817 PMCID: PMC10946330 DOI: 10.1016/j.isci.2024.109354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/01/2023] [Accepted: 02/23/2024] [Indexed: 03/20/2024] Open
Abstract
Glia are the protectors of the nervous system, providing neurons with support and protection from cytotoxic insults. We previously discovered that four astrocyte-like glia can regulate organismal proteostasis and longevity in C. elegans. Expression of the UPRER transcription factor, XBP-1s, in these glia increases stress resistance, and longevity, and activates the UPRER in intestinal cells via neuropeptides. Autophagy, a key regulator of metabolism and aging, has been described as a cell autonomous process. Surprisingly, we find that glial XBP-1s enhances proteostasis and longevity by cell non-autonomously reprogramming organismal lipid metabolism and activating autophagy. Glial XBP-1s regulates the activation of another transcription factor, HLH-30/TFEB, in the intestine. HLH-30 activates intestinal autophagy, increases intestinal lipid catabolism, and upregulates a robust transcriptional program. Our study reveals a novel role for glia in regulating peripheral lipid metabolism, autophagy, and organellar health through peripheral activation of HLH-30 and autophagy.
Collapse
Affiliation(s)
- Melissa G. Metcalf
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Samira Monshietehadi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arushi Sahay
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jenni Durieux
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ashley E. Frakes
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Martina Velichkovska
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Cesar Mena
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Amelia Farinas
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Melissa Sanchez
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
23
|
Thiruppathi G, Mohankumar A, Kalaiselvi D, Velumani M, Saravana Bhavan P, Premasudha P, Tawata S, Sundararaj P. Geroprotective Effect of Levilactobacillus brevis and Weizmannia coagulans in Caenorhabditis elegans. Probiotics Antimicrob Proteins 2024; 16:589-605. [PMID: 37036656 DOI: 10.1007/s12602-023-10060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/11/2023]
Abstract
The prophylactic use of lactic acid bacteria (LAB) to maintain human health is one of the most important research areas in recent times. LAB supplementation confers a wide range of health benefits to the host, but few studies have focused on their possible role in delaying the aging process. This study explored the health and life-promoting properties of two LAB, Levilactobacillus brevis and Weizmannia coagulans, using the Caenorhabditis elegans model. We found that L. brevis and W. coagulans enhanced the intestinal integrity and intestinal barrier functions without affecting the overall physiological functions of C. elegans. Wild-type worms preconditioned with LAB strains increased their survival under oxidative and thermal stress conditions by reducing intracellular reactive oxygen levels. Live L. brevis and W. coagulans significantly extended the lifespan of C. elegans under standard laboratory conditions independently of dietary restrictions. Genetic and reporter gene expression analysis revealed that L. brevis and W. coagulans extend lifespan via insulin/insulin-like growth factor-1 signaling and the p38 MAPK signaling axis. Furthermore, sirtuin, JNK MAPK, and mitochondrial respiratory complexes were found to be partially involved in W. coagulans-mediated lifespan extension and stress resilience. Preconditioning with LAB ameliorated age-related functional decline in C. elegans and reduced ectopic fat deposition in an NHR-49-dependent manner. Together, our findings indicated that L. brevis and W. coagulans are worth exploring further as "gerobiotic" candidates to delay aging and improve the healthspan of the host.
Collapse
Affiliation(s)
| | - Amirthalingam Mohankumar
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-Cho, Okinawa, 903-0213, Japan.
| | - Duraisamy Kalaiselvi
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Muthusamy Velumani
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Paramasivam Premasudha
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Shinkichi Tawata
- PAK Research Center, University of the Ryukyus, Senbaru 1, Nishihara-Cho, Okinawa, 903-0213, Japan
| | - Palanisamy Sundararaj
- Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
24
|
Godthi A, Min S, Das S, Cruz-Corchado J, Deonarine A, Misel-Wuchter K, Issuree PD, Prahlad V. Neuronal IL-17 controls Caenorhabditis elegans developmental diapause through CEP-1/p53. Proc Natl Acad Sci U S A 2024; 121:e2315248121. [PMID: 38483995 PMCID: PMC10963014 DOI: 10.1073/pnas.2315248121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/06/2024] [Indexed: 03/19/2024] Open
Abstract
During metazoan development, how cell division and metabolic programs are coordinated with nutrient availability remains unclear. Here, we show that nutrient availability signaled by the neuronal cytokine, ILC-17.1, switches Caenorhabditis elegans development between reproductive growth and dormancy by controlling the activity of the tumor suppressor p53 ortholog, CEP-1. Specifically, upon food availability, ILC-17.1 signaling by amphid neurons promotes glucose utilization and suppresses CEP-1/p53 to allow growth. In the absence of ILC-17.1, CEP-1/p53 is activated, up-regulates cell-cycle inhibitors, decreases phosphofructokinase and cytochrome C expression, and causes larvae to arrest as stress-resistant, quiescent dauers. We propose a model whereby ILC-17.1 signaling links nutrient availability and energy metabolism to cell cycle progression through CEP-1/p53. These studies describe ancestral functions of IL-17 s and the p53 family of proteins and are relevant to our understanding of neuroimmune mechanisms in cancer. They also reveal a DNA damage-independent function of CEP-1/p53 in invertebrate development and support the existence of a previously undescribed C. elegans dauer pathway.
Collapse
Affiliation(s)
- Abhishiktha Godthi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Sehee Min
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Srijit Das
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Johnny Cruz-Corchado
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Andrew Deonarine
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| | - Kara Misel-Wuchter
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Priya D. Issuree
- Department of Internal Medicine, The University of Iowa, Iowa City, IA52242
| | - Veena Prahlad
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY14263
- Department of Biology, The University of Iowa, Iowa City, IA52242-1324
| |
Collapse
|
25
|
Pokhrel RH, Acharya S, Mishra S, Gu Y, Manzoor U, Kim JK, Park Y, Chang JH. AMPK Alchemy: Therapeutic Potentials in Allergy, Aging, and Cancer. Biomol Ther (Seoul) 2024; 32:171-182. [PMID: 38346909 PMCID: PMC10902700 DOI: 10.4062/biomolther.2023.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
All cells are equipped with intricate signaling networks to meet the energy demands and respond to the nutrient availability in the body. AMP-activated protein kinase (AMPK) is among the most potent regulators of cellular energy balance. Under ATP -deprived conditions, AMPK phosphorylates substrates and affects various biological processes, such as lipid/glucose metabolism and protein synthesis. These actions further affect the cell growth, death, and functions, altering the cellular outcomes in energy-restricted environments. AMPK plays vital roles in maintaining good health. AMPK dysfunction is observed in various chronic diseases, making it a promising target for preventing and alleviating such diseases. Herein, we highlight the different AMPK functions, especially in allergy, aging, and cancer, to facilitate the development of new therapeutic approaches in the future.
Collapse
Affiliation(s)
- Ram Hari Pokhrel
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Suman Acharya
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Ye Gu
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Umar Manzoor
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeon-Kyung Kim
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Youngjun Park
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
- Jeju Research Institute of Pharmaceutical Sciences, College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
26
|
de Oliveira Pereira FS, Santos AG, Neto JSS, Silva GMM, Pinton S, Zeni GR, Nogueira CW, Ávila DS, Quines CB. (p-ClPhSe) 2 modulation on carbohydrate and lipid metabolism requires the insulin-like signaling in Caenorhabditis elegans. Biochem Biophys Res Commun 2024; 696:149514. [PMID: 38237233 DOI: 10.1016/j.bbrc.2024.149514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Organoselenium compounds modulate the metabolism by regulating carbohydrate and lipid syntheses and degradation in the liver, muscle, and adipose tissue. Notably, p-chloro-diphenyl diselenide (p-ClPhSe)2 can directly regulate the activities of enzymes involved in glucose metabolism, suggesting an insulin-like effect in rodents; however, there is still a lack of scientific evidence to confirm this hypothesis. The objective of this study was to investigate (p-ClPhSe)2 effects on glucose and lipid metabolism in Caenorhabditis elegans. The contribution of AGE-1/PI3K, AKT-1, AKT-2, PFK-1, DAF-16, and DAF-2 in the (p-ClPhSe)2 effects were also investigated. Our results demonstrate that (p-ClPhSe)2 acute exposure presented some toxicity to the worms, and therefore, lower concentrations were further used. (p-ClPhSe)2 reduced glucose and triglyceride levels to the baseline levels, after induction with glucose or fructose, in wild-type worms. This effect required proteins involved in the insulin/IGF-1 like signaling, such as the DAF-2, AGE-1, AKT-1 and AKT-2, PFK-1, but also DAF-16, which would be negatively regulated by DAF-2 activation. Moreover, the reduction in glucose and triglyceride levels, caused by (p-ClPhSe)2per se was lost in age-1/daf-16 worms, suggesting that insulin/IGF-1-like signaling in a DAF-2 and AGE-1/DAF-16 dependent-manner in C. elegans are necessary to effects of (p-ClPhSe)2. In conclusion, (p-ClPhSe)2 requires proteins involved in the IIS pathway to modulate carbohydrate and lipid metabolism.
Collapse
Affiliation(s)
| | | | - José S S Neto
- Chemistry Institute, Federal University of Goiás, Goiânia, GO, Brazil.
| | | | - Simone Pinton
- Federal University of Pampa, Uruguaiana, RS, Brazil.
| | - Gilson R Zeni
- Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | |
Collapse
|
27
|
Tumbapo S, Strudwick A, Stastna JJ, Harvey SC, Bloemink MJ. Moderate dietary restriction delays the onset of age-associated sarcopenia in Caenorhabditis elegans due to reduced myosin UNC-54 degradation. Mech Ageing Dev 2024; 217:111900. [PMID: 38163472 DOI: 10.1016/j.mad.2023.111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Sarcopenia, a gradual decrease in skeletal muscle mass and strength, is a major component of frailty in the elderly, with age, (lack of) exercise and diet found to be the major risk factors. The nematode Caenorhabditis elegans is an important model of sarcopenia. Although many studies describe loss of muscle function in ageing C. elegans, surprisingly few report on the loss of muscle mass. Here, in order to quantify loss of muscle mass under various dietary restriction (DR) conditions, we used an internal GFP standard to determine levels of the major body wall muscle myosin (UNC-54) in transgenic unc-54::gfp worms over their lifespan. Myosin density linearly increased during the first week of adulthood and there was no significant effect of DR. In contrast, an exponential decrease in myosin density was seen during the second week of adulthood, with reduced rates of myosin loss for mild and medium DR compared to control. UNC-54 turnover rates, previously determined using pulse-labelling methods, correspond well with the t1/2 value found here for UNC-54-GFP using fluorescence (control t1/2 = 12.0 days), independently validating our approach. These data indicate that sarcopenia is delayed in worms under mild and medium DR due to a reduced rate of myosin UNC-54 degradation, thereby maintaining protein homeostasis.
Collapse
Affiliation(s)
- Sobha Tumbapo
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Adam Strudwick
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Jana J Stastna
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom
| | - Simon C Harvey
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom; Faculty of Engineering and Science, University of Greenwich, United Kingdom
| | - Marieke J Bloemink
- School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, United Kingdom.
| |
Collapse
|
28
|
VenkataKrishna LM, Balasubramaniam B, Sushmitha TJ, Ravichandiran V, Balamurugan K. Cronobacter sakazakii infection implicates multifaceted neuro-immune regulatory pathways of Caenorhabditis elegans. Mol Omics 2024; 20:48-63. [PMID: 37818754 DOI: 10.1039/d3mo00167a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The neural pathways of Caenorhabditis elegans play a crucial role in regulating host immunity and inflammation during pathogenic infections. To understand the major neuro-immune signaling pathways, this study aimed to identify the key regulatory proteins in the host C. elegans during C. sakazakii infection. We used high-throughput label-free quantitative proteomics and identified 69 differentially expressed proteins. KEGG analysis revealed that C. sakazakii elicited host immune signaling cascades primarily including mTOR signaling, axon regeneration, metabolic pathways (let-363 and acox-1.4), calcium signaling (mlck-1), and longevity regulating pathways (ddl-2), respectively. The abrogation in functional loss of mTOR-associated players deciphered that C. sakazakii infection negatively regulated the lifespan of mutant worms (akt-1, let-363 and dlk-1), including physiological aberrations, such as reduced pharyngeal pumping and egg production. Additionally, the candidate pathway proteins were validated by transcriptional profiling of their corresponding genes. Furthermore, immunoblotting showed the downregulation of mTORC2/SGK-1 during the later hours of pathogen exposure. Overall, our findings profoundly provide an understanding of the specificity of proteome imbalance in affecting neuro-immune regulations during C. sakazakii infection.
Collapse
Affiliation(s)
| | | | - T J Sushmitha
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - V Ravichandiran
- National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | | |
Collapse
|
29
|
Du N, Yang R, Jiang S, Niu Z, Zhou W, Liu C, Gao L, Sun Q. Anti-Aging Drugs and the Related Signal Pathways. Biomedicines 2024; 12:127. [PMID: 38255232 PMCID: PMC10813474 DOI: 10.3390/biomedicines12010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Aging is a multifactorial biological process involving chronic diseases that manifest from the molecular level to the systemic level. From its inception to 31 May 2022, this study searched the PubMed, Web of Science, EBSCO, and Cochrane library databases to identify relevant research from 15,983 articles. Multiple approaches have been employed to combat aging, such as dietary restriction (DR), exercise, exchanging circulating factors, gene therapy, and anti-aging drugs. Among them, anti-aging drugs are advantageous in their ease of adherence and wide prevalence. Despite a shared functional output of aging alleviation, the current anti-aging drugs target different signal pathways that frequently cross-talk with each other. At present, six important signal pathways were identified as being critical in the aging process, including pathways for the mechanistic target of rapamycin (mTOR), AMP-activated protein kinase (AMPK), nutrient signal pathway, silent information regulator factor 2-related enzyme 1 (SIRT1), regulation of telomere length and glycogen synthase kinase-3 (GSK-3), and energy metabolism. These signal pathways could be targeted by many anti-aging drugs, with the corresponding representatives of rapamycin, metformin, acarbose, nicotinamide adenine dinucleotide (NAD+), lithium, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. This review summarized these important aging-related signal pathways and their representative targeting drugs in attempts to obtain insights into and promote the development of mechanism-based anti-aging strategies.
Collapse
Affiliation(s)
- Nannan Du
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Ruigang Yang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Shengrong Jiang
- The Meta-Center, 29 Xierqi Middle Rd, Beijing 100193, China;
| | - Zubiao Niu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| | - Wenzhao Zhou
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
| | - Chenyu Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Lihua Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (N.D.); (R.Y.); (Z.N.); (W.Z.); (C.L.); (L.G.)
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing 100071, China
- Nanhu Laboratory, Jiaxing 314002, China
| |
Collapse
|
30
|
Kim Y, Lee SB, Cho M, Choe S, Jang M. Indian Almond ( Terminalia catappa Linn.) Leaf Extract Extends Lifespan by Improving Lipid Metabolism and Antioxidant Activity Dependent on AMPK Signaling Pathway in Caenorhabditis elegans under High-Glucose-Diet Conditions. Antioxidants (Basel) 2023; 13:14. [PMID: 38275634 PMCID: PMC10812731 DOI: 10.3390/antiox13010014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
This study aimed to evaluate the antioxidant and antiaging effects of Indian almond (Terminalia catappa Linn.) leaf extract (TCE) on high-glucose (GLU)-induced obese Caenorhabditis elegans. Since TCE contains high contents of flavonoids and phenolics, strong radical scavenging activity was confirmed in vitro. The stress-resistance effect of TCE was confirmed under thermal and oxidative stress conditions at nontoxic tested concentrations (6.25, 12.5, and 25 μg/mL). GLU at 2% caused lipid and reactive oxygen species (ROS) accumulation in C. elegans, and TCE inhibited lipid and ROS accumulation under both normal and 2% GLU conditions in a concentration-dependent manner. In addition, TCE proved to be effective in prolonging the lifespan of C. elegans under normal and 2% GLU conditions. The ROS reduction effect of TCE was abolished in mutants deficient in daf-16/FOXO and skn-1/Nrf-2. In addition, the lifespan-extending effect of TCE in these two mutants disappeared. The lifespan-extending effect was abolished even in atgl-1/ATGL-deficiency mutants. The TCE effect was reduced in aak-1/AMPK-deficient mutants and completely abolished under 2% GLU conditions. Therefore, the effect of prolonging lifespan by inhibiting lipid and ROS accumulation under the high GLU conditions of TCE is considered to be the result of atgl-1, daf-16, and skn-1 being downregulated by aak-1. These results suggest that the physiological potential of TCE contributes to antiaging under metabolic disorders.
Collapse
Affiliation(s)
- Yebin Kim
- Department of Smart Food and Drug, Inje University, Gimhae 50834, Republic of Korea; (Y.K.); (S.-b.L.); (M.C.)
| | - Seul-bi Lee
- Department of Smart Food and Drug, Inje University, Gimhae 50834, Republic of Korea; (Y.K.); (S.-b.L.); (M.C.)
| | - Myogyeong Cho
- Department of Smart Food and Drug, Inje University, Gimhae 50834, Republic of Korea; (Y.K.); (S.-b.L.); (M.C.)
| | - Soojin Choe
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea;
| | - Miran Jang
- Department of Smart Food and Drug, Inje University, Gimhae 50834, Republic of Korea; (Y.K.); (S.-b.L.); (M.C.)
- Department of Food Technology and Nutrition, Inje University, Gimhae 50834, Republic of Korea;
| |
Collapse
|
31
|
Ke CL, Lew SQ, Hsieh Y, Chang SC, Lin CH. Convergent and divergent roles of the glucose-responsive kinase SNF4 in Candida tropicalis. Virulence 2023; 14:2175914. [PMID: 36745535 PMCID: PMC9928470 DOI: 10.1080/21505594.2023.2175914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The sucrose non-fermenting 1 (SNF1) complex is a heterotrimeric protein kinase complex that is an ortholog of the mammalian AMPK complex and is evolutionally conserved in most eukaryotes. This complex contains a catalytic subunit (Snf1), a regulatory subunit (Snf4) and a scaffolding subunit (Sip1/Sip2/Gal73) in budding yeast. Although the function of AMPK has been well studied in Saccharomyces cerevisiae and Candida albicans, the role of AMPK in Candida tropicalis has never been investigated. In this study, we focused on SNF4 in C. tropicalis as this fungus cannot produce a snf1Δ mutant. We demonstrated that C. tropicalis SNF4 shares similar roles in glucose derepression and is necessary for cell wall integrity and virulence. The expression of both SNF1 and SNF4 was significantly induced when glucose was limited. Furthermore, snf4Δ strains exhibited high sensitivity to many surface-perturbing agents because the strains contained lower levels of glucan, chitin and mannan. Interestingly, in contrast to C. albicans sak1Δ and snf4Δ, C. tropicalis snf4Δ exhibited phenotypes for cell aggregation and pseudohypha production. These data indicate that SNF4 performs convergent and divergent roles in C. tropicalis and possibly other unknown roles in the C. tropicalis SNF1-SNF4 AMPK pathway.
Collapse
Affiliation(s)
- Cai-Ling Ke
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Shi Qian Lew
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi Hsieh
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Szu-Cheng Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan,CONTACT Ching-Hsuan Lin
| |
Collapse
|
32
|
Yang K, Hou R, Zhao J, Wang X, Wei J, Pan X, Zhu X. Lifestyle effects on aging and CVD: A spotlight on the nutrient-sensing network. Ageing Res Rev 2023; 92:102121. [PMID: 37944707 DOI: 10.1016/j.arr.2023.102121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/12/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
Aging is widespread worldwide and a significant risk factor for cardiovascular disease (CVD). Mechanisms underlying aging have attracted considerable attention in recent years. Remarkably, aging and CVD overlap in numerous ways, with deregulated nutrient sensing as a common mechanism and lifestyle as a communal modifier. Interestingly, lifestyle triggers or suppresses multiple nutrient-related signaling pathways. In this review, we first present the composition of the nutrient-sensing network (NSN) and its metabolic impact on aging and CVD. Secondly, we review how risk factors closely associated with CVD, including adverse life states such as sedentary behavior, sleep disorders, high-fat diet, and psychosocial stress, contribute to aging and CVD, with a focus on the bridging role of the NSN. Finally, we focus on the positive effects of beneficial dietary interventions, specifically dietary restriction and the Mediterranean diet, on the regulation of nutrient metabolism and the delayed effects of aging and CVD that depend on the balance of the NSN. In summary, we expound on the interaction between lifestyle, NSN, aging, and CVD.
Collapse
Affiliation(s)
- Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao 266000, China
| | - Jie Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xia Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
33
|
Alnaaim SA, Al‐kuraishy HM, Al‐Gareeb AI, Ali NH, Alexiou A, Papadakis M, Saad HM, Batiha GE. New insights on the potential anti-epileptic effect of metformin: Mechanistic pathway. J Cell Mol Med 2023; 27:3953-3965. [PMID: 37737447 PMCID: PMC10747420 DOI: 10.1111/jcmm.17965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023] Open
Abstract
Epilepsy is a chronic neurological disease characterized by recurrent seizures. Epilepsy is observed as a well-controlled disease by anti-epileptic agents (AEAs) in about 69%. However, 30%-40% of epileptic patients fail to respond to conventional AEAs leading to an increase in the risk of brain structural injury and mortality. Therefore, adding some FDA-approved drugs that have an anti-seizure activity to the anti-epileptic regimen is logical. The anti-diabetic agent metformin has anti-seizure activity. Nevertheless, the underlying mechanism of the anti-seizure activity of metformin was not entirely clarified. Henceforward, the objective of this review was to exemplify the mechanistic role of metformin in epilepsy. Metformin has anti-seizure activity by triggering adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibiting the mechanistic target of rapamycin (mTOR) pathways which are dysregulated in epilepsy. In addition, metformin improves the expression of brain-derived neurotrophic factor (BDNF) which has a neuroprotective effect. Hence, metformin via induction of BDNF can reduce seizure progression and severity. Consequently, increasing neuronal progranulin by metformin may explain the anti-seizure mechanism of metformin. Also, metformin reduces α-synuclein and increases protein phosphatase 2A (PPA2) with modulation of neuroinflammation. In conclusion, metformin might be an adjuvant with AEAs in the management of refractory epilepsy. Preclinical and clinical studies are warranted in this regard.
Collapse
Affiliation(s)
- Saud A. Alnaaim
- Clinical Neurosciences Department, College of MedicineKing Faisal UniversityHofufSaudi Arabia
| | - Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Naif H. Ali
- Department of Internal Medicine, Medical CollegeNajran UniversityNajranSaudi Arabia
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery IIUniversity Hospital Witten‐Herdecke, University of Witten‐HerdeckeWuppertalGermany
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
34
|
Ripa R, Ballhysa E, Steiner JD, Laboy R, Annibal A, Hochhard N, Latza C, Dolfi L, Calabrese C, Meyer AM, Polidori MC, Müller RU, Antebi A. Refeeding-associated AMPK γ1 complex activity is a hallmark of health and longevity. NATURE AGING 2023; 3:1544-1560. [PMID: 37957359 PMCID: PMC10724066 DOI: 10.1038/s43587-023-00521-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023]
Abstract
Late-life-initiated dietary interventions show limited efficacy in extending longevity or mitigating frailty, yet the underlying causes remain unclear. Here we studied the age-related fasting response of the short-lived killifish Nothobranchius furzeri. Transcriptomic analysis uncovered the existence of a fasting-like transcriptional program in the adipose tissue of old fish that overrides the feeding response, setting the tissue in persistent metabolic quiescence. The fasting-refeeding cycle triggers an inverse oscillatory expression of genes encoding the AMP-activated protein kinase (AMPK) regulatory subunits Prkag1 (γ1) and Prkag2 (γ2) in young individuals. Aging blunts such regulation, resulting in reduced Prkag1 expression. Transgenic fish with sustained AMPKγ1 countered the fasting-like transcriptional program, exhibiting a more youthful feeding and fasting response in older age, improved metabolic health and longevity. Accordingly, Prkag1 expression declines with age in human tissues and is associated with multimorbidity and multidimensional frailty risk. Thus, selective activation of AMPKγ1 prevents metabolic quiescence and preserves healthy aging in vertebrates, offering potential avenues for intervention.
Collapse
Affiliation(s)
- Roberto Ripa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Eugen Ballhysa
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
| | - Joachim D Steiner
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Raymond Laboy
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andrea Annibal
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nadine Hochhard
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Christian Latza
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Luca Dolfi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Chiara Calabrese
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany
| | - Anna M Meyer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Maria Cristina Polidori
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
- Cologne Graduate School for Ageing Research (CGA), Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.
| |
Collapse
|
35
|
Wang Z, Zou L, Zhang Y, Zhu M, Zhang S, Wu D, Lan J, Zang X, Wang Q, Zhang H, Wu Z, Zhu H, Chen D. ACS-20/FATP4 mediates the anti-ageing effect of dietary restriction in C. elegans. Nat Commun 2023; 14:7683. [PMID: 38001113 PMCID: PMC10673863 DOI: 10.1038/s41467-023-43613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Dietary restriction is an effective anti-ageing intervention across species. However, the molecular mechanisms from the metabolic aspects of view are still underexplored. Here we show ACS-20 as a key mediator of dietary restriction on healthy ageing from a genetic screen of the C. elegans acyl-CoA synthetase family. ACS-20 functions in the epidermis during development to regulate dietary restriction-induced longevity. Functional transcriptomics studies reveal that elevated expression of PTR-8/Patched is responsible for the proteostasis and lifespan defects of acs-20. Furthermore, the conserved NHR-23 nuclear receptor serves as a transcriptional repressor of ptr-8 and a key regulator of dietary restriction-induced longevity. Mechanistically, a specific region in the ptr-8 promoter plays a key role in mediating the transcription regulation and lifespan extension under dietary restriction. Altogether, these findings identify a highly conserved lipid metabolism enzyme as a key mediator of dietary restriction-induced lifespan and healthspan extension and reveal the downstream transcriptional regulation mechanisms.
Collapse
Affiliation(s)
- Zi Wang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Lina Zou
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Yiyan Zhang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
| | - Mengnan Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shuxian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Di Wu
- Institute of Drug Discovery and Development, Center for Drug Safety Evaluation and Research, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jianfeng Lan
- Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, 541001, China
| | - Xiao Zang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
| | - Qi Wang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China
| | - Hanxin Zhang
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Zixing Wu
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China
| | - Huanhu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Di Chen
- Model Animal Research Center of Medical School, MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, Jiangsu, 210061, China.
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, 314400, China.
- Department of Colorectal Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
36
|
Cornwell A, Zhang Y, Thondamal M, Johnson DW, Thakar J, Samuelson AV. The C. elegans Myc-family of transcription factors coordinate a dynamic adaptive response to dietary restriction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568222. [PMID: 38045350 PMCID: PMC10690244 DOI: 10.1101/2023.11.22.568222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Dietary restriction (DR), the process of decreasing overall food consumption over an extended period of time, has been shown to increase longevity across evolutionarily diverse species and delay the onset of age-associated diseases in humans. In Caenorhabditis elegans, the Myc-family transcription factors (TFs) MXL-2 (Mlx) and MML-1 (MondoA/ChREBP), which function as obligate heterodimers, and PHA-4 (orthologous to forkhead box transcription factor A) are both necessary for the full physiological benefits of DR. However, the adaptive transcriptional response to DR and the role of MML-1::MXL-2 and PHA-4 remains elusive. We identified the transcriptional signature of C. elegans DR, using the eat-2 genetic model, and demonstrate broad changes in metabolic gene expression in eat-2 DR animals, which requires both mxl-2 and pha-4. While the requirement for these factors in DR gene expression overlaps, we found many of the DR genes exhibit an opposing change in relative gene expression in eat-2;mxl-2 animals compared to wild-type, which was not observed in eat-2 animals with pha-4 loss. We further show functional deficiencies of the mxl-2 loss in DR outside of lifespan, as eat-2;mxl-2 animals exhibit substantially smaller brood sizes and lay a proportion of dead eggs, indicating that MML-1::MXL-2 has a role in maintaining the balance between resource allocation to the soma and to reproduction under conditions of chronic food scarcity. While eat-2 animals do not show a significantly different metabolic rate compared to wild-type, we also find that loss of mxl-2 in DR does not affect the rate of oxygen consumption in young animals. The gene expression signature of eat-2 mutant animals is consistent with optimization of energy utilization and resource allocation, rather than induction of canonical gene expression changes associated with acute metabolic stress -such as induction of autophagy after TORC1 inhibition. Consistently, eat-2 animals are not substantially resistant to stress, providing further support to the idea that chronic DR may benefit healthspan and lifespan through efficient use of limited resources rather than broad upregulation of stress responses, and also indicates that MML-1::MXL-2 and PHA-4 may have different roles in promotion of benefits in response to different pro-longevity stimuli.
Collapse
Affiliation(s)
- Adam Cornwell
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Yun Zhang
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Manjunatha Thondamal
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biological Sciences, GITAM University, Andhra Pradesh, India
| | - David W Johnson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Math and Science, Genesee Community College, One College Rd Batavia, NY 14020, USA
| | - Juilee Thakar
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Andrew V Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
37
|
Nevi L, Pöllänen N, Penna F, Caretti G. Targeting Epigenetic Regulators with HDAC and BET Inhibitors to Modulate Muscle Wasting. Int J Mol Sci 2023; 24:16404. [PMID: 38003594 PMCID: PMC10671811 DOI: 10.3390/ijms242216404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Epigenetic changes contribute to the profound alteration in the transcriptional program associated with the onset and progression of muscle wasting in several pathological conditions. Although HDACs and their inhibitors have been extensively studied in the field of muscular dystrophies, the potential of epigenetic inhibitors has only been marginally explored in other disorders associated with muscle atrophy, such as in cancer cachexia and sarcopenia. BET inhibitors represent a novel class of recently developed epigenetic drugs that display beneficial effects in a variety of diseases beyond malignancies. Based on the preliminary in vitro and preclinical data, HDACs and BET proteins contribute to the pathogenesis of cancer cachexia and sarcopenia, modulating processes related to skeletal muscle mass maintenance and/or metabolism. Thus, epigenetic drugs targeting HDACs and BET proteins may emerge as promising strategies to reverse the catabolic phenotype associated with cachexia and sarcopenia. Further preclinical studies are warranted to delve deeper into the molecular mechanisms associated with the functions of HDACs and BET proteins in muscle atrophy and to establish whether their epigenetic inhibitors represent a prospective therapeutic avenue to alleviate muscle wasting.
Collapse
Affiliation(s)
- Lorenzo Nevi
- Department of Biosciences, University of Milan, 20133 Milan, Italy;
| | - Noora Pöllänen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Fabio Penna
- Department of Clinical and Biological Sciences, University of Torino, 10125 Torino, Italy
| | | |
Collapse
|
38
|
Yasuda K, Miyazawa M, Ishii T, Ishii N. The role of nutrition and oxidative stress as aging factors in Caenorhabditis elegans. J Clin Biochem Nutr 2023; 73:173-177. [PMID: 37970544 PMCID: PMC10636583 DOI: 10.3164/jcbn.23-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/26/2023] [Indexed: 11/17/2023] Open
Abstract
The molecular mechanism of aging, which has been a "black box" for many years, has been elucidated in recent years, and the nematode C. elegans, which is a model animal for aging research, has played a major role in its elucidation. From the analysis of C. elegans longevity-related mutant genes, many signal transduction systems, with the insulin/insulin-like growth factor signal transduction system at the core, have emerged. It has become clear that this signal transduction system is greatly affected by external nutrients and is involved in the downstream regulation of oxidative stress, which is considered to be one of the main causes of aging.
Collapse
Affiliation(s)
- Kayo Yasuda
- Department of Health Management, Undergraduate School of Health Studies, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Masaki Miyazawa
- Department of Health Management, Undergraduate School of Health Studies, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| | - Takamasa Ishii
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Naoaki Ishii
- Office of Professor Emeritus, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan
| |
Collapse
|
39
|
Ali NH, Al-Kuraishy HM, Al-Gareeb AI, Alnaaim SA, Alexiou A, Papadakis M, Saad HM, Batiha GES. Autophagy and autophagy signaling in Epilepsy: possible role of autophagy activator. Mol Med 2023; 29:142. [PMID: 37880579 PMCID: PMC10598971 DOI: 10.1186/s10020-023-00742-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023] Open
Abstract
Autophagy is an explicit cellular process to deliver dissimilar cytoplasmic misfolded proteins, lipids and damaged organelles to the lysosomes for degradation and elimination. The mechanistic target of rapamycin (mTOR) is the main negative regulator of autophagy. The mTOR pathway is involved in regulating neurogenesis, synaptic plasticity, neuronal development and excitability. Exaggerated mTOR activity is associated with the development of temporal lobe epilepsy, genetic and acquired epilepsy, and experimental epilepsy. In particular, mTOR complex 1 (mTORC1) is mainly involved in epileptogenesis. The investigation of autophagy's involvement in epilepsy has recently been conducted, focusing on the critical role of rapamycin, an autophagy inducer, in reducing the severity of induced seizures in animal model studies. The induction of autophagy could be an innovative therapeutic strategy in managing epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus (SE) is perplexing and might be beneficial or detrimental. Therefore, the present review aims to revise the possible role of autophagy in epilepsy.
Collapse
Affiliation(s)
- Naif H Ali
- Department of Internal Medicine, Medical College, Najran university, Najran, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, P.O. Box 14132, Baghdad, Iraq
| | - Saud A Alnaaim
- Clinical Neurosciences Department, College of Medicine, King Faisal University, Hofuf, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, Wien, 1030, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Matrouh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira, 22511, Egypt.
| |
Collapse
|
40
|
Liu CC, Khan A, Seban N, Littlejohn N, Srinivasan S. A homeostatic gut-to-brain insulin antagonist restrains neuronally stimulated fat loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563330. [PMID: 37961386 PMCID: PMC10634694 DOI: 10.1101/2023.10.20.563330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In C. elegans mechanisms by which peripheral organs relay internal state information to the nervous system remain unknown, although strong evidence suggests that such signals do exist. Here we report the discovery of a peptide of the ancestral insulin superfamily called INS-7 that functions as an enteroendocrine peptide and is secreted from specialized cells of the intestine. INS-7 secretion increases during fasting, and acts as a bona fide gut-to-brain homeostatic signal that attenuates neuronally induced fat loss during food shortage. INS-7 functions as an antagonist at the canonical DAF-2 receptor in the nervous system, and phylogenetic analysis suggests that INS-7 bears greater resemblance to members of the broad insulin/relaxin superfamily than to conventional mammalian insulin and IGF peptides. The discovery of an endogenous insulin antagonist secreted by specialized intestinal cell with enteroendocrine functions suggests that much remains to be learned about the intestine and its role in directing neuronal functions.
Collapse
|
41
|
Cho J, Park Y. Kahweol, a coffee diterpene, increases lifespan via insulin/insulin-like growth factor-1 and AMP-activated protein kinase signaling pathways in Caenorhabditiselegans. Curr Res Food Sci 2023; 7:100618. [PMID: 37886681 PMCID: PMC10598723 DOI: 10.1016/j.crfs.2023.100618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Coffee is one of the most widely consumed beverages and is known to have many health benefits. Our previous study reported that kahweol, a diterpene found in coffee, reduced fat accumulation by reducing food intake in Caenorhabditis elegans. Based on the widely known observation of caloric restriction and lifespan, we determined if kahweol extends lifespan in C. elegans. Kahweol significantly extended the lifespan of wild-type C. elegans. However, kahweol increased the lifespan of the eat-2 null mutant that has a reduced food intake phenotype, suggesting that kahweol extends lifespan independent of reduced food intake. Therefore, we further determine the target of kahweol on lifespan extension. Kahweol had no effects on the lifespan of both daf-2 (the homolog of insulin/insulin-like growth factor-1 receptor) and daf-16 (the homolog of Forkhead box O transcription factor and a major downstream target of daf-2) null mutants, suggesting kahweol extended lifespan via insulin/insulin-like growth factor-1 signaling pathway. In addition, kahweol failed to extend lifespan in tub-1 (the homolog of TUB bipartite transcription factor) and aak-2 (the homolog of AMP-activated protein kinase) null mutants, suggesting these roles on kahweol's effect on lifespan. However, the treatment of kahweol increased the lifespan in sir-2.1 (the homolog of NAD-dependent deacetylase sirtuin-1) and skn-1 (the homolog of nuclear factor erythroid 2-related factor 2) null mutants over the control, suggesting independent functions of these genes on kahweol's lifespan extension. These results indicate that the insulin/insulin-like growth factor-1 signaling and AMPK pathways may play critical roles in extending lifespan by kahweol in C. elegans.
Collapse
Affiliation(s)
- Junhyo Cho
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
42
|
Hahm JH, Seo HD, Jung CH, Ahn J. Longevity through diet restriction and immunity. BMB Rep 2023; 56:537-544. [PMID: 37482753 PMCID: PMC10618078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023] Open
Abstract
The share of the population that is aging is growing rapidly. In an aging society, technologies and interventions that delay the aging process are of great interest. Dietary restriction (DR) is the most reproducible and effective nutritional intervention tested to date for delaying the aging process and prolonging the health span in animal models. Preventive effects of DR on age-related diseases have also been reported in human. In addition, highly conserved signaling pathways from small animal models to human mediate the effects of DR. Recent evidence has shown that the immune system is closely related to the effects of DR, and functions as a major mechanism of DR in healthy aging. This review discusses the effects of DR in delaying aging and preventing age-related diseases in animal, including human, and introduces the molecular mechanisms that mediate these effects. In addition, it reports scientific findings on the relationship between the immune system and DRinduced longevity. The review highlights the role of immunity as a potential mediator of the effects of DR on longevity, and provides insights into healthy aging in human. [BMB Reports 2023; 56(10): 537-544].
Collapse
Affiliation(s)
- Jeong-Hoon Hahm
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
| | - Chang Hwa Jung
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| | - Jiyun Ahn
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju 55365, Korea
- Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
43
|
Liberman N, Rothi MH, Gerashchenko MV, Zorbas C, Boulias K, MacWhinnie FG, Ying AK, Flood Taylor A, Al Haddad J, Shibuya H, Roach L, Dong A, Dellacona S, Lafontaine DLJ, Gladyshev VN, Greer EL. 18S rRNA methyltransferases DIMT1 and BUD23 drive intergenerational hormesis. Mol Cell 2023; 83:3268-3282.e7. [PMID: 37689068 DOI: 10.1016/j.molcel.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 09/11/2023]
Abstract
Heritable non-genetic information can regulate a variety of complex phenotypes. However, what specific non-genetic cues are transmitted from parents to their descendants are poorly understood. Here, we perform metabolic methyl-labeling experiments to track the heritable transmission of methylation from ancestors to their descendants in the nematode Caenorhabditis elegans (C. elegans). We find heritable methylation in DNA, RNA, proteins, and lipids. We find that parental starvation elicits reduced fertility, increased heat stress resistance, and extended longevity in fed, naïve progeny. This intergenerational hormesis is accompanied by a heritable increase in N6'-dimethyl adenosine (m6,2A) on the 18S ribosomal RNA at adenosines 1735 and 1736. We identified DIMT-1/DIMT1 as the m6,2A and BUD-23/BUD23 as the m7G methyltransferases in C. elegans that are both required for intergenerational hormesis, while other rRNA methyltransferases are dispensable. This study labels and tracks heritable non-genetic material across generations and demonstrates the importance of rRNA methylation for regulating epigenetic inheritance.
Collapse
Affiliation(s)
- Noa Liberman
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - M Hafiz Rothi
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Maxim V Gerashchenko
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark Campus, 6041 Gosselies, Belgium
| | - Konstantinos Boulias
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Fiona G MacWhinnie
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Albert Kejun Ying
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anya Flood Taylor
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Joseph Al Haddad
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hiroki Shibuya
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Lara Roach
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Anna Dong
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Scarlett Dellacona
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark Campus, 6041 Gosselies, Belgium
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Lieberman Greer
- Department of Pediatrics, HMS Initiative for RNA Medicine, Harvard Medical School, Boston, MA, USA; Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
Zhang H, Zhu Y, Suehiro Y, Mitani S, Xue D. AMPK-FOXO-IP3R signaling pathway mediates neurological and developmental defects caused by mitochondrial DNA mutations. Proc Natl Acad Sci U S A 2023; 120:e2302490120. [PMID: 37639584 PMCID: PMC10483642 DOI: 10.1073/pnas.2302490120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/29/2023] [Indexed: 08/31/2023] Open
Abstract
Pathological mutations in human mitochondrial genomes (mtDNA) can cause a series of neurological, behavioral, and developmental defects, but the underlying molecular mechanisms are poorly understood. We show here that the energy-sensing adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway plays a key role in mediating similar defects caused by different mtDNA mutations in Caenorhabditis elegans, including loss or reduction of osmotic, chemical and olfactory sensing, locomotion, and associative learning and memory, as well as increased embryonic lethality. mtDNA mutations cause reduced ATP (adenosine triphosphate) levels, activation of C. elegans AMPK AAK-2, and nuclear translocation of the FOXO transcription factor DAF-16. Activated DAF-16 up-regulates the expression of inositol triphosphate receptor ITR-1, an endoplasmic reticulum calcium channel, leading to increased basal cytosolic Ca2+ levels, decreased neuronal responsiveness, compromised synapses, and increased embryonic death. Treatment of mtDNA mutants with vitamin MK-4 restores cellular ATP and cytosolic Ca2+ levels, improves synaptic development, and suppresses sensory and behavioral defects and embryonic death. Our study provides crucial mechanistic insights into neuronal and developmental defects caused by mtDNA mutations and will improve understanding and treatment of related mitochondrial diseases.
Collapse
Affiliation(s)
- Hu Zhang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Yunan Zhu
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO80309
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University, School of Medicine, Tokyo162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University, School of Medicine, Tokyo162-8666, Japan
| | - Ding Xue
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO80309
| |
Collapse
|
45
|
Villalobos TV, Ghosh B, DeLeo KR, Alam S, Ricaurte-Perez C, Wang A, Mercola BM, Butsch TJ, Ramos CD, Das S, Eymard ED, Bohnert KA, Johnson AE. Tubular lysosome induction couples animal starvation to healthy aging. NATURE AGING 2023; 3:1091-1106. [PMID: 37580394 PMCID: PMC10501908 DOI: 10.1038/s43587-023-00470-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/17/2023] [Indexed: 08/16/2023]
Abstract
Dietary restriction promotes longevity in several species via autophagy activation. However, changes to lysosomes underlying this effect remain unclear. Here using the nematode Caenorhabditis elegans, we show that the induction of autophagic tubular lysosomes (TLs), which occurs upon dietary restriction or mechanistic target of rapamycin inhibition, is a critical event linking reduced food intake to lifespan extension. We find that starvation induces TLs not only in affected individuals but also in well-fed descendants, and the presence of gut TLs in well-fed progeny is predictive of enhanced lifespan. Furthermore, we demonstrate that expression of Drosophila small VCP-interacting protein, a TL activator in flies, artificially induces TLs in well-fed worms and improves C. elegans health in old age. These findings identify TLs as a new class of lysosomes that couples starvation to healthy aging.
Collapse
Affiliation(s)
- Tatiana V Villalobos
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Bhaswati Ghosh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Kathryn R DeLeo
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Sanaa Alam
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | | | - Andrew Wang
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Brennan M Mercola
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Tyler J Butsch
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Cara D Ramos
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Suman Das
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Eric D Eymard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - K Adam Bohnert
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Alyssa E Johnson
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
46
|
Liu B, Meng Q, Gao X, Sun H, Xu Z, Wang Y, Zhou H. Lipid and glucose metabolism in senescence. Front Nutr 2023; 10:1157352. [PMID: 37680899 PMCID: PMC10481967 DOI: 10.3389/fnut.2023.1157352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/09/2023] [Indexed: 09/09/2023] Open
Abstract
Senescence is an inevitable biological process. Disturbances in glucose and lipid metabolism are essential features of cellular senescence. Given the important roles of these types of metabolism, we review the evidence for how key metabolic enzymes influence senescence and how senescence-related secretory phenotypes, autophagy, apoptosis, insulin signaling pathways, and environmental factors modulate glucose and lipid homeostasis. We also discuss the metabolic alterations in abnormal senescence diseases and anti-cancer therapies that target senescence through metabolic interventions. Our work offers insights for developing pharmacological strategies to combat senescence and cancer.
Collapse
Affiliation(s)
- Bin Liu
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Xin Gao
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Zhixiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, Jilin, China
| | - Honglan Zhou
- Department of Urology II, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
47
|
Astre G, Atlan T, Goshtchevsky U, Oron-Gottesman A, Smirnov M, Shapira K, Velan A, Deelen J, Levy T, Levanon EY, Harel I. Genetic perturbation of AMP biosynthesis extends lifespan and restores metabolic health in a naturally short-lived vertebrate. Dev Cell 2023; 58:1350-1364.e10. [PMID: 37321215 DOI: 10.1016/j.devcel.2023.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/09/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
During aging, the loss of metabolic homeostasis drives a myriad of pathologies. A central regulator of cellular energy, the AMP-activated protein kinase (AMPK), orchestrates organismal metabolism. However, direct genetic manipulations of the AMPK complex in mice have, so far, produced detrimental phenotypes. Here, as an alternative approach, we alter energy homeostasis by manipulating the upstream nucleotide pool. Using the turquoise killifish, we mutate APRT, a key enzyme in AMP biosynthesis, and extend the lifespan of heterozygous males. Next, we apply an integrated omics approach to show that metabolic functions are rejuvenated in old mutants, which also display a fasting-like metabolic profile and resistance to high-fat diet. At the cellular level, heterozygous cells exhibit enhanced nutrient sensitivity, reduced ATP levels, and AMPK activation. Finally, lifelong intermittent fasting abolishes the longevity benefits. Our findings suggest that perturbing AMP biosynthesis may modulate vertebrate lifespan and propose APRT as a promising target for promoting metabolic health.
Collapse
Affiliation(s)
- Gwendoline Astre
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Tehila Atlan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Uri Goshtchevsky
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Adi Oron-Gottesman
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Margarita Smirnov
- Central Fish Health Laboratory, Department of Fisheries and Aquaculture, Ministry of Agriculture and Rural Development, Nir David 10803, Israel
| | - Kobi Shapira
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ariel Velan
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Tomer Levy
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Erez Y Levanon
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Itamar Harel
- Department of Genetics, the Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| |
Collapse
|
48
|
Zhang N, Meng X, Jiang H, Ge H, Qian K, Zheng Y, Park Y, Wang J. Restoration of energy homeostasis under oxidative stress: Duo synergistic AMPK pathways regulating arginine kinases. PLoS Genet 2023; 19:e1010843. [PMID: 37535699 PMCID: PMC10427004 DOI: 10.1371/journal.pgen.1010843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/15/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023] Open
Abstract
Rapid depletion of cellular ATP can occur by oxidative stress induced by reactive oxygen species (ROS). Maintaining energy homeostasis requires the key molecular components AMP-activated protein kinase (AMPK) and arginine kinase (AK), an invertebrate orthologue of the mammalian creatine kinase (CK). Here, we deciphered two independent and synergistic pathways of AMPK acting on AK by using the beetle Tribolium castaneum as a model system. First, AMPK acts on transcriptional factor forkhead box O (FOXO) leading to phosphorylation and nuclear translocation of the FOXO. The phospho-FOXO directly promotes the expression of AK upon oxidative stress. Concomitantly, AMPK directly phosphorylates the AK to switch the direction of enzymatic catalysis for rapid production of ATP from the phosphoarginine-arginine pool. Further in vitro assays revealed that Sf9 cells expressing phospho-deficient AK mutants displayed the lower ATP/ADP ratio and cell viability under paraquat-induced oxidative stress conditions when compared with Sf9 cells expressing wild-type AKs. Additionally, the AMPK-FOXO-CK pathway is also involved in the restoration of ATP homeostasis under oxidative stress in mammalian HEK293 cells. Overall, we provide evidence that two distinct AMPK-AK pathways, transcriptional and post-translational regulations, are coherent responders to acute oxidative stresses and distinguished from classical AMPK-mediated long-term metabolic adaptations to energy challenge.
Collapse
Affiliation(s)
- Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Lixiahe Institute of Agricultural Sciences, Yangzhou, China
| | - Xiangkun Meng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Heng Jiang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Huichen Ge
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Qian
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yang Zheng
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, Kansas, United States of America
| | - Jianjun Wang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
49
|
Soo SK, Rudich ZD, Ko B, Moldakozhayev A, AlOkda A, Van Raamsdonk JM. Biological resilience and aging: Activation of stress response pathways contributes to lifespan extension. Ageing Res Rev 2023; 88:101941. [PMID: 37127095 DOI: 10.1016/j.arr.2023.101941] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/06/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
While aging was traditionally viewed as a stochastic process of damage accumulation, it is now clear that aging is strongly influenced by genetics. The identification and characterization of long-lived genetic mutants in model organisms has provided insights into the genetic pathways and molecular mechanisms involved in extending longevity. Long-lived genetic mutants exhibit activation of multiple stress response pathways leading to enhanced resistance to exogenous stressors. As a result, lifespan exhibits a significant, positive correlation with resistance to stress. Disruption of stress response pathways inhibits lifespan extension in multiple long-lived mutants representing different pathways of lifespan extension and can also reduce the lifespan of wild-type animals. Combined, this suggests that activation of stress response pathways is a key mechanism by which long-lived mutants achieve their extended longevity and that many of these pathways are also required for normal lifespan. These results highlight an important role for stress response pathways in determining the lifespan of an organism.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Zenith D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alibek Moldakozhayev
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
50
|
Li J, Li D, Chen Y, Chen W, Xu J, Gao L. Gut Microbiota and Aging: Traditional Chinese Medicine and Modern Medicine. Clin Interv Aging 2023; 18:963-986. [PMID: 37351381 PMCID: PMC10284159 DOI: 10.2147/cia.s414714] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
The changing composition of gut microbiota, much like aging, accompanies people throughout their lives, and the inextricable relationship between both has recently attracted extensive attention as well. Modern medical research has revealed that a series of changes in gut microbiota are involved in the aging process of organisms, which may be because gut microbiota modulates aging-related changes related to innate immunity and cognitive function. At present, there is no definite and effective method to delay aging. However, Nobel laureate Tu Youyou's research on artemisinin has inspired researchers to study the importance of Traditional Chinese Medicine (TCM). TCM, as an ancient alternative medicine, has unique advantages in preventive health care and in treating diseases as it already has formed an independent understanding of the aging system. TCM practitioners believe that the mechanism of aging is mainly deficiency, and pathological states such as blood stasis, qi stagnation and phlegm coagulation can exacerbate the process of aging, which involves a series of organs, including the brain, kidney, heart, liver and spleen. Our current understanding of aging has led us to realise that TCM can indeed make some beneficial changes, such as the improvement of cognitive impairment. However, due to the multi-component and multi-target nature of TCM, the exploration of its mechanism of action has become extremely complex. While analysing the relationship between gut microbiota and aging, this review explores the similarities and differences in treatment methods and mechanisms between TCM and Modern Medicine, in order to explore a new approach that combines TCM and Modern Medicine to regulate gut microbiota, improve immunity and delay aging.
Collapse
Affiliation(s)
- Jinfan Li
- Department of First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250000, People’s Republic of China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
| | - Dong Li
- Department of Diabetes, Licheng District Hospital of Traditional Chinese Medicine, Jinan, Shandong, 250100, People’s Republic of China
| | - Yajie Chen
- Department of Rehabilitation and Health Care, Jinan Vocational College of Nursing, Jinan, Shandong, 250100, People’s Republic of China
| | - Wenbin Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong, 250021, People’s Republic of China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, People’s Republic of China
| |
Collapse
|