1
|
Gao W, Lu J, Yang Z, Li E, Cao Y, Xie L. Mitotic Functions and Characters of KIF11 in Cancers. Biomolecules 2024; 14:386. [PMID: 38672404 PMCID: PMC11047945 DOI: 10.3390/biom14040386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Mitosis mediates the accurate separation of daughter cells, and abnormalities are closely related to cancer progression. KIF11, a member of the kinesin family, plays a vital role in the formation and maintenance of the mitotic spindle. Recently, an increasing quantity of data have demonstrated the upregulated expression of KIF11 in various cancers, promoting the emergence and progression of cancers. This suggests the great potential of KIF11 as a prognostic biomarker and therapeutic target. However, the molecular mechanisms of KIF11 in cancers have not been systematically summarized. Therefore, we first discuss the functions of the protein encoded by KIF11 during mitosis and connect the abnormal expression of KIF11 with its clinical significance. Then, we elucidate the mechanism of KIF11 to promote various hallmarks of cancers. Finally, we provide an overview of KIF11 inhibitors and outline areas for future work.
Collapse
Affiliation(s)
| | | | | | | | - Yufei Cao
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (W.G.); (J.L.); (Z.Y.); (E.L.)
| | - Lei Xie
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China; (W.G.); (J.L.); (Z.Y.); (E.L.)
| |
Collapse
|
2
|
Pena GE, Zhou X, Slevin L, Brownlee C, Heald R. Identification of a motif in TPX2 that regulates spindle architecture in Xenopus egg extracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579770. [PMID: 38370704 PMCID: PMC10871311 DOI: 10.1101/2024.02.10.579770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A bipolar spindle composed of microtubules and many associated proteins functions to segregate chromosomes during cell division in all eukaryotes, yet spindle size and architecture varies dramatically across different species and cell types. Targeting protein for Xklp2 (TPX2) is one candidate factor for modulating spindle microtubule organization through its roles in branching microtubule nucleation, activation of the mitotic kinase Aurora A, and association with the kinesin-5 (Eg5) motor. Here we identify a conserved nuclear localization sequence (NLS) motif, 123 KKLK 126 in X. laevis TPX2, which regulates astral microtubule formation and spindle pole morphology in Xenopus egg extracts. Addition of recombinant TPX2 with this sequence mutated to AALA dramatically increased spontaneous formation of microtubule asters and recruitment of phosphorylated Aurora A, pericentrin, and Eg5 to meiotic spindle poles. We propose that TPX2 is a linchpin spindle assembly factor whose regulation contributes to the recruitment and activation of multiple microtubule polymerizing and organizing proteins, generating distinct spindle architectures.
Collapse
|
3
|
Guo C, Alfaro-Aco R, Zhang C, Russell RW, Petry S, Polenova T. Structural basis of protein condensation on microtubules underlying branching microtubule nucleation. Nat Commun 2023; 14:3682. [PMID: 37344496 PMCID: PMC10284871 DOI: 10.1038/s41467-023-39176-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Targeting protein for Xklp2 (TPX2) is a key factor that stimulates branching microtubule nucleation during cell division. Upon binding to microtubules (MTs), TPX2 forms condensates via liquid-liquid phase separation, which facilitates recruitment of microtubule nucleation factors and tubulin. We report the structure of the TPX2 C-terminal minimal active domain (TPX2α5-α7) on the microtubule lattice determined by magic-angle-spinning NMR. We demonstrate that TPX2α5-α7 forms a co-condensate with soluble tubulin on microtubules and binds to MTs between two adjacent protofilaments and at the intersection of four tubulin heterodimers. These interactions stabilize the microtubules and promote the recruitment of tubulin. Our results reveal that TPX2α5-α7 is disordered in solution and adopts a folded structure on MTs, indicating that TPX2α5-α7 undergoes structural changes from unfolded to folded states upon binding to microtubules. The aromatic residues form dense interactions in the core, which stabilize folding of TPX2α5-α7 on microtubules. This work informs on how the phase-separated TPX2α5-α7 behaves on microtubules and represents an atomic-level structural characterization of a protein that is involved in a condensate on cytoskeletal filaments.
Collapse
Affiliation(s)
- Changmiao Guo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Raymundo Alfaro-Aco
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Chunting Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Ryan W Russell
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
4
|
Oh W, Wu TT, Jeong SY, You HJ, Lee JH. CtIP Regulates Mitotic Spindle Assembly by Modulating the TPX2-Aurora A Signaling Axis. Cells 2022; 11:cells11182814. [PMID: 36139389 PMCID: PMC9497199 DOI: 10.3390/cells11182814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
CtBP-interacting protein (CtIP) plays a critical role in controlling the homologous recombination-mediated DNA double-stranded break (DSB) repair pathway through DNA end resection, and recent studies suggest that it also plays a role in mitosis. However, the mechanism by which CtIP contributes to mitosis regulation remains elusive. Here, we show that depletion of CtIP leads to a delay in anaphase progression resulting in misaligned chromosomes, an aberrant number of centrosomes, and defects in chromosome segregation. Additionally, we demonstrate that CtIP binds and colocalizes with Targeting protein for Xklp2 (TPX2) during mitosis to regulate the recruitment of TPX2 to the spindle poles. Furthermore, depletion of CtIP resulted in both a lower concentration of Aurora A, its downstream target, and very low microtubule intensity at the spindle poles, suggesting an important role for the CtIP-TPX2-Auroa A complex in microtubule dynamics at the centrosomal spindles. Our findings reveal a novel function of CtIP in regulating spindle dynamics through interactions with TPX2 and indicate that CtIP is involved in the proper execution of the mitotic program, where deregulation may lead to chromosomal instability.
Collapse
Affiliation(s)
- Wonkyung Oh
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Ting Ting Wu
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Seo-Yeon Jeong
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Ho Jin You
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Pharmacology, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| | - Jung-Hee Lee
- Laboratory of Genomic Instability and Cancer Therapeutics, Cancer Mutation Research Center, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
- Department of Cellular and Molecular Medicine, School of Medicine, Chosun University, 375 Seosuk-dong, Gwangju 61452, Korea
| |
Collapse
|
5
|
Tomlinson L, Batchelor M, Sarsby J, Byrne DP, Brownridge PJ, Bayliss R, Eyers PA, Eyers CE. Exploring the Conformational Landscape and Stability of Aurora A Using Ion-Mobility Mass Spectrometry and Molecular Modeling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:420-435. [PMID: 35099954 PMCID: PMC9007459 DOI: 10.1021/jasms.1c00271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Protein kinase inhibitors are highly effective in treating diseases driven by aberrant kinase signaling and as chemical tools to help dissect the cellular roles of kinase signaling complexes. Evaluating the effects of binding of small molecule inhibitors on kinase conformational dynamics can assist in understanding both inhibition and resistance mechanisms. Using gas-phase ion-mobility mass spectrometry (IM-MS), we characterize changes in the conformational landscape and stability of the protein kinase Aurora A (Aur A) driven by binding of the physiological activator TPX2 or small molecule inhibition. Aided by molecular modeling, we establish three major conformations, the relative abundances of which were dependent on the Aur A activation status: one highly populated compact conformer similar to that observed in most crystal structures, a second highly populated conformer possessing a more open structure infrequently found in crystal structures, and an additional low-abundance conformer not currently represented in the protein databank. Notably, inhibitor binding induces more compact configurations of Aur A, as adopted by the unbound enzyme, with both IM-MS and modeling revealing inhibitor-mediated stabilization of active Aur A.
Collapse
Affiliation(s)
- Lauren
J. Tomlinson
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Matthew Batchelor
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Joscelyn Sarsby
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Dominic P. Byrne
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Philip J. Brownridge
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Richard Bayliss
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Patrick A. Eyers
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| | - Claire E. Eyers
- Centre
for Proteome Research, Department of Biochemistry & Systems Biology,
Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
- Department
of Biochemistry & Systems Biology, Institute of Systems, Molecular
& Integrative Biology, University of
Liverpool, Crown Street, Liverpool L69 7ZB, U.K.
| |
Collapse
|
6
|
Various effects of two types of kinesin-5 inhibitors on mitosis and cell proliferation. Biochem Pharmacol 2021; 193:114789. [PMID: 34582773 DOI: 10.1016/j.bcp.2021.114789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022]
Abstract
Kinesin-5 has received considerable attention as a new target for mitosis. Various small-molecule compounds targeting kinesin-5 have been developed in the last few decades. However, the differences in the cellular effects of kinesin-5 inhibitors remain poorly understood. Here, we used two different kinesin-5 inhibitors, biphenyl-type PVZB1194 and S-trityl-L-cysteine-type PVEI0021, to examine their effects on molecular events involving kinesin-5. Our biochemical study of kinesin-5 protein-protein interactions showed that PVZB1194-treated kinesin-5 interacted with TPX2 microtubule nucleation factor, Aurora-A kinase, receptor for hyaluronan-mediated motility, and γ-tubulin, as did untreated mitotic kinesin-5. However, PVEI0021 prevented kinesin-5 from binding to these proteins. In mitotic HeLa cells recovered from nocodazole inhibition, kinesin-5 colocalized with these binding proteins, along with microtubules nucleated near kinetochores. By acting on kinesin-5 interactions with chromatin-associated microtubules, PVZB1194, rather than PVEI0021, not only affected the formation of dispersed microtubule clusters but also enhanced the stability of microtubules. In addition, screening for mitotic inhibitors working synergistically with the kinesin-5 inhibitors revealed that paclitaxel synergistically inhibited HeLa cell proliferation only with PVZB1194. In contrast, the Aurora-A inhibitor MLN8237 exerted a synergistic anti-cell proliferation effect when combined with either inhibitor. Together, these results have provided a better understanding of the molecular action of kinesin-5 inhibitors and indicate their usefulness as molecular tools for the study of mitosis and the development of anticancer agents.
Collapse
|
7
|
Levine TP. Structural bioinformatics predicts that the Retinitis Pigmentosa-28 protein of unknown function FAM161A is a homologue of the microtubule nucleation factor Tpx2. F1000Res 2020; 9:1052. [PMID: 33093951 PMCID: PMC7551519 DOI: 10.12688/f1000research.25870.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2020] [Indexed: 11/20/2022] Open
Abstract
Background: FAM161A is a microtubule-associated protein conserved widely across eukaryotes, which is mutated in the inherited blinding disease Retinitis Pigmentosa-28. FAM161A is also a centrosomal protein, being a core component of a complex that forms an internal skeleton of centrioles. Despite these observations about the importance of FAM161A, current techniques used to examine its sequence reveal no homologies to other proteins. Methods: Sequence profiles derived from multiple sequence alignments of FAM161A homologues were constructed by PSI-BLAST and HHblits, and then used by the profile-profile search tool HHsearch, implemented online as HHpred, to identify homologues. These in turn were used to create profiles for reverse searches and pair-wise searches. Multiple sequence alignments were also used to identify amino acid usage in functional elements. Results: FAM161A has a single homologue: the targeting protein for
Xenopus kinesin-like protein-2 (Tpx2), which is a strong hit across more than 200 residues. Tpx2 is also a microtubule-associated protein, and it has been shown previously by a cryo-EM molecular structure to nucleate microtubules through two small elements: an extended loop and a short helix. The homology between FAM161A and Tpx2 includes these elements, as FAM161A has three copies of the loop, and one helix that has many, but not all, properties of the one in Tpx2. Conclusions: FAM161A and its homologues are predicted to be a previously unknown variant of Tpx2, and hence bind microtubules in the same way. This prediction allows precise, testable molecular models to be made of FAM161A-microtubule complexes.
Collapse
Affiliation(s)
- Timothy P Levine
- UCL Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| |
Collapse
|
8
|
Guilloux G, Gibeaux R. Mechanisms of spindle assembly and size control. Biol Cell 2020; 112:369-382. [PMID: 32762076 DOI: 10.1111/boc.202000065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023]
Abstract
The spindle is crucial for cell division by allowing the faithful segregation of replicated chromosomes to daughter cells. Proper segregation is ensured only if microtubules (MTs) and hundreds of other associated factors interact to assemble this complex structure with the appropriate architecture and size. In this review, we describe the latest view of spindle organisation as well as the molecular gradients and mechanisms underlying MT nucleation and spindle assembly. We then discuss the overlapping physical and molecular constraints that dictate spindle morphology, concluding with a focus on spindle size regulation.
Collapse
Affiliation(s)
- Gabriel Guilloux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| | - Romain Gibeaux
- Univ Rennes, CNRS, IGDR [(Institute of Genetics and Development of Rennes)] - UMR 6290, F-35000 Rennes, France
| |
Collapse
|
9
|
King MR, Petry S. Phase separation of TPX2 enhances and spatially coordinates microtubule nucleation. Nat Commun 2020; 11:270. [PMID: 31937751 PMCID: PMC6959270 DOI: 10.1038/s41467-019-14087-0] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 12/10/2019] [Indexed: 12/14/2022] Open
Abstract
Phase separation of substrates and effectors is proposed to enhance biological reaction rates and efficiency. Targeting protein for Xklp2 (TPX2) is an effector of branching microtubule nucleation in spindles and functions with the substrate tubulin by an unknown mechanism. Here we show that TPX2 phase separates into a co-condensate with tubulin, which mediates microtubule nucleation in vitro and in isolated cytosol. TPX2-tubulin co-condensation preferentially occurs on pre-existing microtubules, the site of branching microtubule nucleation, at the endogenous and physiologically relevant concentration of TPX2. Truncation and chimera versions of TPX2 suggest that TPX2-tubulin co-condensation enhances the efficiency of TPX2-mediated branching microtubule nucleation. Finally, the known inhibitor of TPX2, the importin-α/β heterodimer, regulates TPX2 condensation in vitro and, consequently, branching microtubule nucleation activity in isolated cytosol. Our study demonstrates how regulated phase separation can simultaneously enhance reaction efficiency and spatially coordinate microtubule nucleation, which may facilitate rapid and accurate spindle formation.
Collapse
Affiliation(s)
- Matthew R King
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA
- Department of Biomedical Engineering, Washington University, Brauer Hall, One Brookings Drive, Saint Louis, Missouri, 63130, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, 08544, USA.
| |
Collapse
|
10
|
Tsuchiya Y, Byrne DP, Burgess SG, Bormann J, Baković J, Huang Y, Zhyvoloup A, Yu BYK, Peak-Chew S, Tran T, Bellany F, Tabor AB, Chan AE, Guruprasad L, Garifulin O, Filonenko V, Vonderach M, Ferries S, Eyers CE, Carroll J, Skehel M, Bayliss R, Eyers PA, Gout I. Covalent Aurora A regulation by the metabolic integrator coenzyme A. Redox Biol 2020; 28:101318. [PMID: 31546169 PMCID: PMC6812009 DOI: 10.1016/j.redox.2019.101318] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/14/2019] [Accepted: 09/01/2019] [Indexed: 12/12/2022] Open
Abstract
Aurora A kinase is a master mitotic regulator whose functions are controlled by several regulatory interactions and post-translational modifications. It is frequently dysregulated in cancer, making Aurora A inhibition a very attractive antitumor target. However, recently uncovered links between Aurora A, cellular metabolism and redox regulation are not well understood. In this study, we report a novel mechanism of Aurora A regulation in the cellular response to oxidative stress through CoAlation. A combination of biochemical, biophysical, crystallographic and cell biology approaches revealed a new and, to our knowledge, unique mode of Aurora A inhibition by CoA, involving selective binding of the ADP moiety of CoA to the ATP binding pocket and covalent modification of Cys290 in the activation loop by the thiol group of the pantetheine tail. We provide evidence that covalent CoA modification (CoAlation) of Aurora A is specific, and that it can be induced by oxidative stress in human cells. Oxidising agents, such as diamide, hydrogen peroxide and menadione were found to induce Thr 288 phosphorylation and DTT-dependent dimerization of Aurora A. Moreover, microinjection of CoA into fertilized mouse embryos disrupts bipolar spindle formation and the alignment of chromosomes, consistent with Aurora A inhibition. Altogether, our data reveal CoA as a new, rather selective, inhibitor of Aurora A, which locks this kinase in an inactive state via a "dual anchor" mechanism of inhibition that might also operate in cellular response to oxidative stress. Finally and most importantly, we believe that these novel findings provide a new rationale for developing effective and irreversible inhibitors of Aurora A, and perhaps other protein kinases containing appropriately conserved Cys residues.
Collapse
Affiliation(s)
- Yugo Tsuchiya
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Selena G Burgess
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Jenny Bormann
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jovana Baković
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Yueyang Huang
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Alexander Zhyvoloup
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Sew Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Trang Tran
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Fiona Bellany
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Alethea B Tabor
- Department of Chemistry, University College London, London, WC1E 6BT, UK
| | - Aw Edith Chan
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK
| | | | - Oleg Garifulin
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine
| | - Valeriy Filonenko
- Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine
| | - Matthias Vonderach
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Samantha Ferries
- Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Claire E Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK; Centre for Proteome Research, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - John Carroll
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Richard Bayliss
- School of Molecular and Cellular Biology, Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv 143, Ukraine.
| |
Collapse
|
11
|
Vargas-Hurtado D, Brault JB, Piolot T, Leconte L, Da Silva N, Pennetier C, Baffet A, Marthiens V, Basto R. Differences in Mitotic Spindle Architecture in Mammalian Neural Stem Cells Influence Mitotic Accuracy during Brain Development. Curr Biol 2019; 29:2993-3005.e9. [DOI: 10.1016/j.cub.2019.07.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 05/31/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022]
|
12
|
Mann BJ, Wadsworth P. Kinesin-5 Regulation and Function in Mitosis. Trends Cell Biol 2019; 29:66-79. [DOI: 10.1016/j.tcb.2018.08.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/30/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
13
|
Hsu WH, Wang WJ, Lin WY, Huang YM, Lai CC, Liao JC, Chen HC. Adducin-1 is essential for spindle pole integrity through its interaction with TPX2. EMBO Rep 2018; 19:embr.201745607. [PMID: 29925526 PMCID: PMC6073210 DOI: 10.15252/embr.201745607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 05/21/2018] [Accepted: 05/28/2018] [Indexed: 11/25/2022] Open
Abstract
Bipolar spindle assembly is necessary to ensure the proper progression of cell division. Loss of spindle pole integrity leads to multipolar spindles and aberrant chromosomal segregation. However, the mechanism underlying the maintenance of spindle pole integrity remains unclear. In this study, we show that the actin‐binding protein adducin‐1 (ADD1) is phosphorylated at S726 during mitosis. S726‐phosphorylated ADD1 localizes to centrosomes, wherein it organizes into a rosette‐like structure at the pericentriolar material. ADD1 depletion causes centriole splitting and therefore results in multipolar spindles during mitosis, which can be restored by re‐expression of ADD1 and the phosphomimetic S726D mutant but not by the S726A mutant. Moreover, the phosphorylation of ADD1 at S726 is crucial for its interaction with TPX2, which is essential for spindle pole integrity. Together, our findings unveil a novel function of ADD1 in maintaining spindle pole integrity through its interaction with TPX2.
Collapse
Affiliation(s)
- Wen-Hsin Hsu
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Won-Jing Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Yi Lin
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Min Huang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Jung-Chi Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
| | - Hong-Chen Chen
- Ph.D. Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung, Taiwan .,Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
14
|
Manukyan A, Sargsyan L, Parsons SJ, Stukenberg PT. P190RhoGAP prevents mitotic spindle fragmentation and is required to activate Aurora A kinase at acentriolar poles. Chromosoma 2018; 127:375-386. [PMID: 29656322 DOI: 10.1007/s00412-018-0670-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 02/03/2023]
Abstract
Assembly of the mitotic spindle is essential for proper chromosome segregation during mitosis. Maintenance of spindle poles requires precise regulation of kinesin- and dynein-generated forces, and improper regulation of these forces disrupts pole integrity leading to pole fragmentation. The formation and function of the mitotic spindle are regulated by many proteins, including Aurora A kinase and the motor proteins Kif2a and Eg5. Here, we characterize a surprising role for the RhoA GTPase-activating protein, p190RhoGAP, in regulating the mitotic spindle. We show that cells depleted of p190RhoGAP arrest for long periods in mitosis during which cells go through multiple transitions between having bipolar and multipolar spindles. Most of the p190RhoGAP-depleted cells finally achieve a stable bipolar attachment and proceed through anaphase. The multipolar spindle phenotype can be rescued by low doses of an Eg5 inhibitor. Moreover, we show that p190RhoGAP-depleted multipolar cells localize Aurora A to all the poles, but the kinase is only activated at the two centriolar poles. Overall, our data identify an unappreciated connection between p190RhoGAP and the proteins that control spindle poles including Aurora A kinase and Eg5 that is required to prevent or correct spindle pole fragmentation.
Collapse
Affiliation(s)
- Arkadi Manukyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Lilit Sargsyan
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA
| | - Sarah J Parsons
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
- , Charlottesville, USA.
| |
Collapse
|
15
|
Dionisio-Vicuña MN, Gutiérrez-López TY, Adame-García SR, Vázquez-Prado J, Reyes-Cruz G. VPS28, an ESCRT-I protein, regulates mitotic spindle organization via Gβγ, EG5 and TPX2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1012-1022. [PMID: 29548937 DOI: 10.1016/j.bbamcr.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Misael Neri Dionisio-Vicuña
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - Tania Yareli Gutiérrez-López
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - Sendi Rafael Adame-García
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Apartado postal 14-740, CDMX 07360, Mexico.
| |
Collapse
|
16
|
Eibes S, Gallisà-Suñé N, Rosas-Salvans M, Martínez-Delgado P, Vernos I, Roig J. Nek9 Phosphorylation Defines a New Role for TPX2 in Eg5-Dependent Centrosome Separation before Nuclear Envelope Breakdown. Curr Biol 2017; 28:121-129.e4. [PMID: 29276125 DOI: 10.1016/j.cub.2017.11.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/31/2017] [Accepted: 11/21/2017] [Indexed: 11/18/2022]
Abstract
Centrosomes [1, 2] play a central role during spindle assembly in most animal cells [3]. In early mitosis, they organize two symmetrical microtubule arrays that upon separation define the two poles of the forming spindle. Centrosome separation is tightly regulated [4, 5], occurring through partially redundant mechanisms that rely on the action of microtubule-based dynein and kinesin motors and the actomyosin system [6]. While centrosomes can separate in prophase or in prometaphase after nuclear envelope breakdown (NEBD), prophase centrosome separation optimizes spindle assembly and minimizes the occurrence of abnormal chromosome attachments that could end in aneuploidy [7, 8]. Prophase centrosome separation relies on the activity of Eg5/KIF11, a mitotic kinesin [9] that accumulates around centrosomes in early mitosis under the control of CDK1 and the Nek9/Nek6/7 kinase module [10-17]. Here, we show that Eg5 localization and centrosome separation in prophase depend on the nuclear microtubule-associated protein TPX2 [18], a pool of which localizes to the centrosomes before NEBD. This localization involves RHAMM/HMMR [19] and the kinase Nek9 [20], which phosphorylates TPX2 nuclear localization signal (NLS) preventing its interaction with importin and nuclear import. The pool of centrosomal TPX2 in prophase has a critical role for both microtubule aster organization and Eg5 localization, and thereby for centrosome separation. Our results uncover an unsuspected role for TPX2 before NEBD and define a novel regulatory mechanism for centrosome separation in prophase. They furthermore suggest NLS phosphorylation as a novel regulatory mechanism for spindle assembly factors controlled by the importin/Ran system.
Collapse
Affiliation(s)
- Susana Eibes
- Molecular Biology Institute of Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Núria Gallisà-Suñé
- Molecular Biology Institute of Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Miquel Rosas-Salvans
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Paula Martínez-Delgado
- Molecular Biology Institute of Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Joan Roig
- Molecular Biology Institute of Barcelona (IBMB-CSIC) and Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
| |
Collapse
|
17
|
She1 affects dynein through direct interactions with the microtubule and the dynein microtubule-binding domain. Nat Commun 2017; 8:2151. [PMID: 29247176 PMCID: PMC5732302 DOI: 10.1038/s41467-017-02004-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/31/2017] [Indexed: 01/31/2023] Open
Abstract
Cytoplasmic dynein is an enormous minus end-directed microtubule motor. Rather than existing as bare tracks, microtubules are bound by numerous microtubule-associated proteins (MAPs) that have the capacity to affect various cellular functions, including motor-mediated transport. One such MAP is She1, a dynein effector that polarizes dynein-mediated spindle movements in budding yeast. Here, we characterize the molecular basis by which She1 affects dynein, providing the first such insight into which a MAP can modulate motor motility. We find that She1 affects the ATPase rate, microtubule-binding affinity, and stepping behavior of dynein, and that microtubule binding by She1 is required for its effects on dynein motility. Moreover, we find that She1 directly contacts the microtubule-binding domain of dynein, and that their interaction is sensitive to the nucleotide-bound state of the motor. Our data support a model in which simultaneous interactions between the microtubule and dynein enables She1 to directly affect dynein motility. Dynein is a microtubule motor the motility of which is affected by the microtubule-associated protein She1. Here, the authors show that She1 alters dynein stepping behavior and increases its microtubule affinity through simultaneous interactions with the microtubule and dynein microtubule binding domain.
Collapse
|
18
|
Zhang R, Roostalu J, Surrey T, Nogales E. Structural insight into TPX2-stimulated microtubule assembly. eLife 2017; 6. [PMID: 29120325 PMCID: PMC5679754 DOI: 10.7554/elife.30959] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/29/2017] [Indexed: 11/13/2022] Open
Abstract
During mitosis and meiosis, microtubule (MT) assembly is locally upregulated by the chromatin-dependent Ran-GTP pathway. One of its key targets is the MT-associated spindle assembly factor TPX2. The molecular mechanism of how TPX2 stimulates MT assembly remains unknown because structural information about the interaction of TPX2 with MTs is lacking. Here, we determine the cryo-electron microscopy structure of a central region of TPX2 bound to the MT surface. TPX2 uses two flexibly linked elements ('ridge' and 'wedge') in a novel interaction mode to simultaneously bind across longitudinal and lateral tubulin interfaces. These MT-interacting elements overlap with the binding site of importins on TPX2. Fluorescence microscopy-based in vitro reconstitution assays reveal that this interaction mode is critical for MT binding and facilitates MT nucleation. Together, our results suggest a molecular mechanism of how the Ran-GTP gradient can regulate TPX2-dependent MT formation.
Collapse
Affiliation(s)
- Rui Zhang
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | | | | | - Eva Nogales
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
19
|
Ly T, Whigham A, Clarke R, Brenes-Murillo AJ, Estes B, Madhessian D, Lundberg E, Wadsworth P, Lamond AI. Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS. eLife 2017; 6:e27574. [PMID: 29052541 PMCID: PMC5650473 DOI: 10.7554/elife.27574] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 10/06/2017] [Indexed: 12/22/2022] Open
Abstract
The temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al., 2014, 2015). Here, we show that by using specific intracellular immunolabelling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabelled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, termed 'early risers'. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide the first a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase.
Collapse
Affiliation(s)
- Tony Ly
- Centre for Gene Regulation and Expression, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUnited Kingdom
| | - Arlene Whigham
- CAST Flow Cytometry Facility, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Rosemary Clarke
- CAST Flow Cytometry Facility, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Alejandro J Brenes-Murillo
- Centre for Gene Regulation and Expression, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| | - Brett Estes
- Department of BiologyUniversity of MassachusettsMassachusettsUnited States
- Program in Molecular and Cellular BiologyUniversity of MassachusettsMassachusettsUnited States
| | - Diana Madhessian
- Science for Life LaboratoryRoyal Institute of TechnologyStockholmSweden
| | - Emma Lundberg
- Science for Life LaboratoryRoyal Institute of TechnologyStockholmSweden
| | - Patricia Wadsworth
- Department of BiologyUniversity of MassachusettsMassachusettsUnited States
- Program in Molecular and Cellular BiologyUniversity of MassachusettsMassachusettsUnited States
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life SciencesUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
20
|
Yoo KW, Maddirevula S, Kumar A, Ro H, Huh TL, Rhee M. Sinup is essential for the integrity of centrosomes and mitotic spindles in zebrafish embryos. Anim Cells Syst (Seoul) 2017; 21:93-99. [PMID: 30460056 PMCID: PMC6138333 DOI: 10.1080/19768354.2017.1308438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/13/2017] [Indexed: 11/15/2022] Open
Abstract
Fish lineage-specific gene, sinup [Siaz-interacting nuclear protein], modulates neural plate formation in embryogenesis and shares homology with human TPX2 protein, a member of the vertebrate mitogen-activating protein family. In spite of the presence of the TPX2 domain in Sinup, its cellular function has been unknown. As an initial approach to this question, we expressed Sinup by injecting sinup-EGFP mRNAs into zebrafish embryos at the one- to two-cell stage. First of all, Sinup-EGFP was associated with centrosomes and mitotic spindles. In particular, Sinup was localized to the spindle poles and midbody microtubules during the period between anaphase and cytokinesis. Second, various deleted mutants of Sinup-EGFP failed to be associated with the centrosomes and mitotic spindles. Third, a Sinup mutant, where the 144th Serine residue was converted to alanine, not only disturbed the mitotic spindle organization, such as multipolar spindles, fragmented spindle poles, and flattened spindles, but also arrested the cell cycle at metaphase and cell movement. Finally, Sinup is phosphorylated by Aurora A and the 144th Serine mutant of Sinup is partially phosphorylated by Aurora A kinase. We thus propose that Sinup is an essential element for the integrity of centrosomes and mitotic spindle fibers as well as for the normal process of cell cycle and cellular movement in vertebrate embryos.
Collapse
Affiliation(s)
- Kyeong-Won Yoo
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Sateesh Maddirevula
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ajeet Kumar
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Tae-Lin Huh
- College of Natural Sciences, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, South Korea
| | - Myungchull Rhee
- Department of Biological Sciences, College of Biosciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
21
|
Alfaro-Aco R, Thawani A, Petry S. Structural analysis of the role of TPX2 in branching microtubule nucleation. J Cell Biol 2017; 216:983-997. [PMID: 28264915 PMCID: PMC5379942 DOI: 10.1083/jcb.201607060] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/03/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022] Open
Abstract
TPX2 is required for microtubule nucleation in mitosis, but the mechanism underlying its function is unclear. Alfaro-Aco et al. analyze the domains of TPX2 necessary for its activity and identify the minimal region required for branching microtubule nucleation. The mitotic spindle consists of microtubules (MTs), which are nucleated by the γ-tubulin ring complex (γ-TuRC). How the γ-TuRC gets activated at the right time and location remains elusive. Recently, it was uncovered that MTs nucleate from preexisting MTs within the mitotic spindle, which requires the protein TPX2, but the mechanism basis for TPX2 action is unknown. Here, we investigate the role of TPX2 in branching MT nucleation. We establish the domain organization of Xenopus laevis TPX2 and define the minimal TPX2 version that stimulates branching MT nucleation, which we find is unrelated to TPX2’s ability to nucleate MTs in vitro. Several domains of TPX2 contribute to its MT-binding and bundling activities. However, the property necessary for TPX2 to induce branching MT nucleation is contained within newly identified γ-TuRC nucleation activator motifs. Separation-of-function mutations leave the binding of TPX2 to γ-TuRC intact, whereas branching MT nucleation is abolished, suggesting that TPX2 may activate γ-TuRC to promote branching MT nucleation.
Collapse
Affiliation(s)
| | - Akanksha Thawani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
22
|
Mann BJ, Balchand SK, Wadsworth P. Regulation of Kif15 localization and motility by the C-terminus of TPX2 and microtubule dynamics. Mol Biol Cell 2016; 28:65-75. [PMID: 27852894 PMCID: PMC5221630 DOI: 10.1091/mbc.e16-06-0476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/04/2016] [Accepted: 11/07/2016] [Indexed: 12/31/2022] Open
Abstract
Mitotic motor proteins generate force to establish and maintain spindle bipolarity, but how they are temporally and spatially regulated in vivo is unclear. Prior work demonstrated that a microtubule-associated protein, TPX2, targets kinesin-5 and kinesin-12 motors to spindle microtubules. The C-terminal domain of TPX2 contributes to the localization and motility of the kinesin-5, Eg5, but it is not known whether this domain regulates kinesin-12, Kif15. We found that the C-terminal domain of TPX2 contributes to the localization of Kif15 to spindle microtubules in cells and suppresses motor walking in vitro. Kif15 and Eg5 are partially redundant motors, and overexpressed Kif15 can drive spindle formation in the absence of Eg5 activity. Kif15-dependent bipolar spindle formation in vivo requires the C-terminal domain of TPX2. In the spindle, fluorescent puncta of GFP-Kif15 move toward the equatorial region at a rate equivalent to microtubule growth. Reduction of microtubule growth with paclitaxel suppresses GFP-Kif15 motility, demonstrating that dynamic microtubules contribute to Kif15 behavior. Our results show that the C-terminal region of TPX2 regulates Kif15 in vitro, contributes to motor localization in cells, and is required for Kif15 force generation in vivo and further reveal that dynamic microtubules contribute to Kif15 behavior in vivo.
Collapse
Affiliation(s)
- Barbara J Mann
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Sai K Balchand
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Patricia Wadsworth
- Department of Biology and Program in Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
23
|
Cavazza T, Malgaretti P, Vernos I. The sequential activation of the mitotic microtubule assembly pathways favors bipolar spindle formation. Mol Biol Cell 2016; 27:2935-45. [PMID: 27489339 PMCID: PMC5042580 DOI: 10.1091/mbc.e16-05-0322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/27/2016] [Indexed: 01/22/2023] Open
Abstract
A combination of experimental data obtained in somatic cells and Xenopus egg extracts and modeling suggests a novel function for centrosome maturation that balances the activity of the mitotic microtubule assembly pathways favoring bipolar spindle formation. Centrosome maturation is the process by which the duplicated centrosomes recruit pericentriolar components and increase their microtubule nucleation activity before mitosis. The role of this process in cells entering mitosis has been mostly related to the separation of the duplicated centrosomes and thereby to the assembly of a bipolar spindle. However, spindles can form without centrosomes. In fact, all cells, whether they have centrosomes or not, rely on chromatin-driven microtubule assembly to form a spindle. To test whether the sequential activation of these microtubule assembly pathways, defined by centrosome maturation and nuclear envelope breakdown, plays any role in spindle assembly, we combined experiments in tissue culture cells and Xenopus laevis egg extracts with a mathematical model. We found that interfering with the sequential activation of the microtubule assembly pathways compromises bipolar spindle assembly in tissue culture cells but not in X. laevis egg extracts. Our data suggest a novel function for centrosome maturation that determines the contribution of the chromosomal microtubule assembly pathway and favors bipolar spindle formation in most animal cells in which tubulin is in limiting amounts.
Collapse
Affiliation(s)
- Tommaso Cavazza
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Paolo Malgaretti
- Departament de Fisica Fonamental, Universitat de Barcelona, 08028 Barcelona, Spain Max-Planck-Institut für Intelligente Systeme and IV. Institut für Theoretische Physik, Universität Stuttgart, D-70569 Stuttgart, Germany
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
24
|
Fu J, Bian M, Xin G, Deng Z, Luo J, Guo X, Chen H, Wang Y, Jiang Q, Zhang C. TPX2 phosphorylation maintains metaphase spindle length by regulating microtubule flux. J Cell Biol 2016; 210:373-83. [PMID: 26240182 PMCID: PMC4523612 DOI: 10.1083/jcb.201412109] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TPX2 is phosphorylated by Aurora A and is essential for normal microtubule flux on the metaphase spindle. A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A–dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux.
Collapse
Affiliation(s)
- Jingyan Fu
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Minglei Bian
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Zhaoxuan Deng
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jia Luo
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao Guo
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Hao Chen
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yao Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China The State Key Laboratory of Bio-membrane and Membrane Biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Garrido G, Vernos I. Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division. Front Oncol 2016; 6:88. [PMID: 27148480 PMCID: PMC4831974 DOI: 10.3389/fonc.2016.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A has been extensively characterized as a centrosomal kinase with essential functions during cell division including centrosome maturation and separation and spindle assembly. However, Aurora A localization is not restricted to the centrosomes and compelling evidence support the existence of specific mechanisms of activation and functions for non-centrosomal Aurora A in the dividing cell. It has been now well established that spindle assembly involves an acentrosomal RanGTP-dependent pathway that triggers microtubule assembly and organization in the proximity of the chromosomes whether centrosomes are present or not. The mechanism involves the regulation of a number of NLS-containing proteins, generically called SAFS (Spindle Assembly Factors) that exert their functions upon release from karyopherins by RanGTP. One of them, the nuclear protein TPX2 interacts with and activates Aurora A upon release from importins by RanGTP. This basic mechanism triggers the activation of Aurora A in the proximity of the chromosomes potentially translating the RanGTP signaling gradient centered on the chromosome into an Aurora A phosphorylation network. Here, we will review our current knowledge on the RanGTP-dependent TPX2 activation of Aurora A away from centrosomes: from the mechanism of activation and its functional consequences on the kinase stability and regulation to its roles in spindle assembly and cell division. We will then focus on the substrates of the TPX2-activated Aurora A having a role in microtubule nucleation, stabilization, and organization. Finally, we will briefly discuss the implications of the use of Aurora A inhibitors in anti-tumor therapies in the light of its functional interaction with TPX2.
Collapse
Affiliation(s)
- Georgina Garrido
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
26
|
Reid TA, Schuster BM, Mann BJ, Balchand SK, Plooster M, McClellan M, Coombes CE, Wadsworth P, Gardner MK. Suppression of microtubule assembly kinetics by the mitotic protein TPX2. J Cell Sci 2016; 129:1319-28. [PMID: 26869224 DOI: 10.1242/jcs.178806] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 02/05/2016] [Indexed: 01/01/2023] Open
Abstract
TPX2 is a widely conserved microtubule-associated protein that is required for mitotic spindle formation and function. Previous studies have demonstrated that TPX2 is required for the nucleation of microtubules around chromosomes; however, the molecular mechanism by which TPX2 promotes microtubule nucleation remains a mystery. In this study, we found that TPX2 acts to suppress tubulin subunit off-rates during microtubule assembly and disassembly, thus allowing for the support of unprecedentedly slow rates of plus-end microtubule growth, and also leading to a dramatically reduced microtubule shortening rate. These changes in microtubule dynamics can be explained in computational simulations by a moderate increase in tubulin-tubulin bond strength upon TPX2 association with the microtubule lattice, which in turn acts to reduce the departure rate of tubulin subunits from the microtubule ends. Thus, the direct suppression of tubulin subunit off-rates by TPX2 during microtubule growth and shortening could provide a molecular mechanism to explain the nucleation of new microtubules in the presence of TPX2.
Collapse
Affiliation(s)
- Taylor A Reid
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Breanna M Schuster
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Barbara J Mann
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Melissa Plooster
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark McClellan
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Courtney E Coombes
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pat Wadsworth
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Melissa K Gardner
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
27
|
Shimamoto Y, Forth S, Kapoor TM. Measuring Pushing and Braking Forces Generated by Ensembles of Kinesin-5 Crosslinking Two Microtubules. Dev Cell 2016; 34:669-81. [PMID: 26418296 DOI: 10.1016/j.devcel.2015.08.017] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/07/2015] [Accepted: 08/26/2015] [Indexed: 01/10/2023]
Abstract
The proper organization of the microtubule-based mitotic spindle is proposed to depend on nanometer-sized motor proteins generating forces that scale with a micron-sized geometric feature, such as microtubule overlap length. However, it is unclear whether such regulation can be achieved by any mitotic motor protein. Here, we employ an optical-trap- and total internal reflection fluorescence (TIRF)-based assay to show that ensembles of kinesin-5, a conserved mitotic motor protein, can push apart overlapping antiparallel microtubules to generate a force whose magnitude scales with filament overlap length. We also find that kinesin-5 can produce overlap-length-dependent "brake-like" resistance against relative microtubule sliding in both parallel and antiparallel geometries, an activity that has been suggested by cell biological studies but had not been directly measured. Together, these findings, along with numerical simulations, reveal how a motor protein can function as an analog converter, "reading" simple geometric and dynamic features in cytoskeletal networks to produce regulated force outputs.
Collapse
Affiliation(s)
- Yuta Shimamoto
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA; JST PRESTO, The Rockefeller University, New York, NY 10065, USA
| | - Scott Forth
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
28
|
Yamamoto TM, Wang L, Fisher LA, Eckerdt FD, Peng A. Regulation of Greatwall kinase by protein stabilization and nuclear localization. Cell Cycle 2015; 13:3565-75. [PMID: 25483093 DOI: 10.4161/15384101.2014.962942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Greatwall (Gwl) functions as an essential mitotic kinase by antagonizing protein phosphatase 2A. In this study we identified Hsp90, Cdc37 and members of the importin α and β families as the major binding partners of Gwl. Both Hsp90/Cdc37 chaperone and importin complexes associated with the N-terminal kinase domain of Gwl, whereas an intact glycine-rich loop at the N-terminus of Gwl was essential for binding of Hsp90/Cdc37 but not importins. We found that Hsp90 inhibition led to destabilization of Gwl, a mechanism that may partially contribute to the emerging role of Hsp90 in cell cycle progression and the anti-proliferative potential of Hsp90 inhibition. Moreover, in agreement with its importin association, Gwl exhibited nuclear localization in interphase Xenopus S3 cells, and dynamic nucleocytoplasmic distribution during mitosis. We identified KR456/457 as the locus of importin binding and the functional NLS of Gwl. Mutation of this site resulted in exclusion of Gwl from the nucleus. Finally, we showed that the Gwl nuclear localization is indispensable for the biochemical function of Gwl in promoting mitotic entry.
Collapse
Affiliation(s)
- Tomomi M Yamamoto
- a Department of Oral Biology ; University of Nebraska Medical Center ; Lincoln , NE USA
| | | | | | | | | |
Collapse
|
29
|
Balchand SK, Mann BJ, Titus J, Ross JL, Wadsworth P. TPX2 Inhibits Eg5 by Interactions with Both Motor and Microtubule. J Biol Chem 2015; 290:17367-79. [PMID: 26018074 DOI: 10.1074/jbc.m114.612903] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 12/27/2022] Open
Abstract
The microtubule-associated protein, TPX2, regulates the activity of the mitotic kinesin, Eg5, but the mechanism of regulation is not established. Using total internal reflection fluorescence microscopy, we observed that Eg5, in extracts of mammalian cells expressing Eg5-EGFP, moved processively toward the microtubule plus-end at an average velocity of 14 nm/s. TPX2 bound to microtubules with an apparent dissociation constant of ∼ 200 nm, and microtubule binding was not dependent on the C-terminal tails of tubulin. Using single molecule assays, we found that full-length TPX2 dramatically reduced Eg5 velocity, whereas truncated TPX2, which lacks the domain that is required for the interaction with Eg5, was a less effective inhibitor at the same concentration. To determine the region(s) of Eg5 that is required for interaction with TPX2, we performed microtubule gliding assays. Dimeric, but not monomeric, Eg5 was differentially inhibited by full-length and truncated TPX2, demonstrating that dimerization or residues in the neck region are important for the interaction of TPX2 with Eg5. These results show that both microtubule binding and interaction with Eg5 contribute to motor inhibition by TPX2 and demonstrate the utility of mammalian cell extracts for biophysical assays.
Collapse
Affiliation(s)
- Sai K Balchand
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Barbara J Mann
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Janel Titus
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jennifer L Ross
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 Physics and
| | - Patricia Wadsworth
- the Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003 From the Departments of Biology and
| |
Collapse
|
30
|
Shim SY, Perez de Castro I, Neumayer G, Wang J, Park SK, Sanada K, Nguyen MD. Phosphorylation of targeting protein for Xenopus kinesin-like protein 2 (TPX2) at threonine 72 in spindle assembly. J Biol Chem 2015; 290:9122-34. [PMID: 25688093 DOI: 10.1074/jbc.m114.591545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Indexed: 12/23/2022] Open
Abstract
The human ortholog of the targeting protein for Xenopus kinesin-like protein 2 (TPX2) is a cytoskeletal protein that plays a major role in spindle assembly and is required for mitosis. During spindle morphogenesis, TPX2 cooperates with Aurora A kinase and Eg5 kinesin to regulate microtubule organization. TPX2 displays over 40 putative phosphorylation sites identified from various high-throughput proteomic screenings. In this study, we characterize the phosphorylation of threonine 72 (Thr(72)) in human TPX2, a residue highly conserved across species. We find that Cdk1/2 phosphorylate TPX2 in vitro and in vivo. Using homemade antibodies specific for TPX2 phosphorylated at Thr(72), we show that this phosphorylation is cell cycle-dependent and peaks at M phase. Endogenous TPX2 phosphorylated at Thr(72) does not associate with the mitotic spindle. Furthermore, ectopic GFP-TPX2 T72A preferentially concentrates on the spindle, whereas GFP-TPX2 WT distributes to both spindle and cytosol. The T72A mutant also increases the proportion of cells with multipolar spindles phenotype. This effect is associated with increased Aurora A activity and abnormally elongated spindles, indicative of higher Eg5 activity. In summary, we propose that phosphorylation of Thr(72) regulates TPX2 localization and impacts spindle assembly via Aurora A and Eg5.
Collapse
Affiliation(s)
- Su Yeon Shim
- From the Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada T2N4N1
| | - Ignacio Perez de Castro
- the Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid 28029, Spain
| | - Gernot Neumayer
- From the Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada T2N4N1
| | - Jian Wang
- From the Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada T2N4N1
| | - Sang Ki Park
- the Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kamon Sanada
- the Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan, and
| | - Minh Dang Nguyen
- From the Departments of Clinical Neurosciences, Cell Biology & Anatomy, and Biochemistry & Molecular Biology and Hotchkiss Brain Institute, University of Calgary, Calgary, Canada T2N4N1,
| |
Collapse
|
31
|
Kaczmarczyk A, Sullivan KF. CENP-W plays a role in maintaining bipolar spindle structure. PLoS One 2014; 9:e106464. [PMID: 25329824 PMCID: PMC4198083 DOI: 10.1371/journal.pone.0106464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/03/2014] [Indexed: 11/20/2022] Open
Abstract
The CENP-W/T complex was previously reported to be required for mitosis. HeLa cells depleted of CENP-W displayed profound mitotic defects, with mitotic timing delay, disorganized prometaphases and multipolar spindles as major phenotypic consequences. In this study, we examined the process of multipolar spindle formation induced by CENP-W depletion. Depletion of CENP-W in HeLa cells labeled with histone H2B and tubulin fluorescent proteins induced rapid fragmentation of originally bipolar spindles in a high proportion of cells. CENP-W depletion was associated with depletion of Hec1 at kinetochores. The possibility of promiscuous centrosomal duplication was ruled out by immunofluorescent examination of centrioles. However, centrioles were frequently observed to be abnormally split. In addition, a large proportion of the supernumerary poles lacked centrioles, but were positively stained with different centrosomal markers. These observations suggested that perturbation in spindle force distribution caused by defective kinetochores could contribute to a mechanical mechanism for spindle pole disruption. ‘Spindle free’ nocodazole arrested cells did not exhibit pole fragmentation after CENP-W depletion, showing that pole fragmentation is microtubule dependent. Inhibition of centrosome separation by monastrol reduced the incidence of spindle pole fragmentation, indicating that Eg5 plays a role in spindle pole disruption. Surprisingly, CENP-W depletion rescued the monopolar spindle phenotype of monastrol treatment, with an increased frequency of bipolar spindles observed after CENP-W RNAi. We overexpressed the microtubule cross-linking protein TPX2 to create spindle poles stabilized by the microtubule cross-linking activity of TPX2. Spindle pole fragmentation was suppressed in a TPX2-dependent fashion. We propose that CENP-W, by influencing proper kinetochore assembly, particularly microtubule docking sites, can confer spindle pole resistance to traction forces exerted by motor proteins during chromosome congression. Taken together, our findings are consistent with a model in which centrosome integrity is controlled by the pathways regulating kinetochore-microtubule attachment stability.
Collapse
Affiliation(s)
- Agnieszka Kaczmarczyk
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Kevin F. Sullivan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Ireland
- * E-mail:
| |
Collapse
|
32
|
Helmke KJ, Heald R. TPX2 levels modulate meiotic spindle size and architecture in Xenopus egg extracts. ACTA ACUST UNITED AC 2014; 206:385-93. [PMID: 25070954 PMCID: PMC4121975 DOI: 10.1083/jcb.201401014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TPX2 levels modulate spindle architecture through Eg5, partitioning microtubules between a tiled, antiparallel array that promotes spindle expansion and a cross-linked, parallel architecture that concentrates microtubules at spindle poles. The spindle segregates chromosomes in dividing eukaryotic cells, and its assembly pathway and morphology vary across organisms and cell types. We investigated mechanisms underlying differences between meiotic spindles formed in egg extracts of two frog species. Small Xenopus tropicalis spindles resisted inhibition of two factors essential for assembly of the larger Xenopus laevis spindles: RanGTP, which functions in chromatin-driven spindle assembly, and the kinesin-5 motor Eg5, which drives antiparallel microtubule (MT) sliding. This suggested a role for the MT-associated protein TPX2 (targeting factor for Xenopus kinesin-like protein 2), which is regulated by Ran and binds Eg5. Indeed, TPX2 was threefold more abundant in X. tropicalis extracts, and elevated TPX2 levels in X. laevis extracts reduced spindle length and sensitivity to Ran and Eg5 inhibition. Higher TPX2 levels recruited Eg5 to the poles, where MT density increased. We propose that TPX2 levels modulate spindle architecture through Eg5, partitioning MTs between a tiled, antiparallel array that promotes spindle expansion and a cross-linked, parallel architecture that concentrates MTs at spindle poles.
Collapse
Affiliation(s)
- Kara J Helmke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
33
|
Eckerdt F, Perez-Neut M, Colamonici OR. LIN-9 phosphorylation on threonine-96 is required for transcriptional activation of LIN-9 target genes and promotes cell cycle progression. PLoS One 2014; 9:e87620. [PMID: 24475316 PMCID: PMC3903767 DOI: 10.1371/journal.pone.0087620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/27/2013] [Indexed: 02/03/2023] Open
Abstract
Cell cycle transitions are governed by the timely expression of cyclins, the activating subunits of Cyclin-dependent kinases (Cdks), which are responsible for the inactivation of the pocket proteins. Overexpression of cyclins promotes cell proliferation and cancer. Therefore, it is important to understand the mechanisms by which cyclins regulate the expression of cell cycle promoting genes including subsequent cyclins. LIN-9 and the pocket proteins p107 and p130 are members of the DREAM complex that in G0 represses cell cycle genes. Interestingly, little is know about the regulation and function of LIN-9 after phosphorylation of p107,p130 by Cyclin D/Cdk4 disassembles the DREAM complex in early G1. In this report, we demonstrate that cyclin E1/Cdk3 phosphorylates LIN-9 on Thr-96. Mutating Thr-96 to alanine inhibits activation of cyclins A2 and B1 promoters, whereas a phosphomimetic Asp mutant strongly activates their promoters and triggers accelerated entry into G2/M phase in 293T cells. Taken together, our data suggest a novel role for cyclin E1 beyond G1/S and into S/G2 phase, most likely by inducing the expression of subsequent cyclins A2 and B1 through LIN-9.
Collapse
Affiliation(s)
- Frank Eckerdt
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Mathew Perez-Neut
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
| | - Oscar R Colamonici
- Department of Pharmacology, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
34
|
Collins E, Mann BJ, Wadsworth P. Eg5 restricts anaphase B spindle elongation in mammalian cells. Cytoskeleton (Hoboken) 2013; 71:136-44. [PMID: 24285623 DOI: 10.1002/cm.21158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/29/2013] [Accepted: 11/11/2013] [Indexed: 01/31/2023]
Abstract
During anaphase, overlapping antiparallel microtubules in the spindle interzone elongate and contribute to chromosome segregation. Kinesin-5 family members are required for spindle elongation in some cells, but in other cases they restrict elongation acting like a brake. To determine how kinesin-5 contributes to spindle elongation in mammalian cells, we treated LLC-Pk1 epithelial cells with small molecule inhibitors of the mammalian kinesin-5, Eg5, at anaphase onset and measured the rate and extent of spindle pole separation using multidimensional tracking of centrosomes in cells expressing GFP-γ-tubulin. Centrosome separation was biphasic, with an initial fast phase followed by a slower phase. Treatment with the small molecule inhibitor, STLC, which weakens the interaction of Eg5 with microtubules, resulted in an increase in the rate of centrosome separation. Conversely, treatment with FCPT, which induces a rigor-like interaction of Eg5 with microtubules, reduced the rate of spindle elongation. In control cells, GFP-Eg5 was localized to spindle microtubules and accumulated in the interzone as anaphase progressed. Spindle fluorescence of GFP-Eg5 was decreased following treatment with STLC and increased in cells treated with FCPT. In anaphase cells, cortical dynein increases and rocking motion of spindle poles was detected consistent with the possibility that dynein mediates spindle elongation. In summary, our results demonstrate that Eg5 is not required for spindle elongation, and in fact, restricts the rate of spindle elongation in mammalian cells.
Collapse
Affiliation(s)
- Elizabeth Collins
- Department of Biology University of Massachusetts Amherst, Amherst, Massachusetts
| | | | | |
Collapse
|
35
|
Modular aspects of kinesin force generation machinery. Biophys J 2013; 104:1969-78. [PMID: 23663840 DOI: 10.1016/j.bpj.2013.03.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/04/2013] [Accepted: 03/07/2013] [Indexed: 11/21/2022] Open
Abstract
The motor head of kinesin carries out microtubule binding, ATP hydrolysis, and force generation. Despite a high level of sequence and structural conservation, subtle variations in subdomains of the motor head determine family-specific properties. In particular, both Kinesin-1 (Kin-1) and Kinesin-5 (Kin-5) walk processively to the microtubule plus-end, yet show distinct motility characteristics suitable for their functions. We studied chimeric Kin-1/Kin-5 constructs with a combination of single molecule motility assays and molecular dynamics simulations to demonstrate that Kin-5 possesses a force-generating element similar to Kin-1, i.e., the cover-neck bundle. Furthermore, the Kin-5 neck linker makes additional contacts with the core of the motor head via loop L13, which putatively compensates for the shorter cover-neck bundle of Kin-5. Our results indicate that Kin-1 is mechanically optimized for individual cargo transport, whereas Kin-5 does not necessarily maximize its mechanical performance. Its biochemical rates and enhanced force sensitivity may instead be beneficial for operation in a group of motors. Such variations in subdomains would be a strategy for achieving diversity in motility with the conserved motor head.
Collapse
|
36
|
Waitzman JS, Rice SE. Mechanism and regulation of kinesin-5, an essential motor for the mitotic spindle. Biol Cell 2013; 106:1-12. [PMID: 24125467 DOI: 10.1111/boc.201300054] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/09/2013] [Indexed: 11/27/2022]
Abstract
Mitotic cell division is the most fundamental task of all living cells. Cells have intricate and tightly regulated machinery to ensure that mitosis occurs with appropriate frequency and high fidelity. A core element of this machinery is the kinesin-5 motor protein, which plays essential roles in spindle formation and maintenance. In this review, we discuss how the structural and mechanical properties of kinesin-5 motors uniquely suit them to their mitotic role. We describe some of the small molecule inhibitors and regulatory proteins that act on kinesin-5, and discuss how these regulators may influence the process of cell division. Finally, we touch on some more recently described functions of kinesin-5 motors in non-dividing cells. Throughout, we highlight a number of open questions that impede our understanding of both this motor's function and the potential utility of kinesin-5 inhibitors.
Collapse
Affiliation(s)
- Joshua S Waitzman
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, U.S.A
| | | |
Collapse
|
37
|
Welburn JPI. The molecular basis for kinesin functional specificity during mitosis. Cytoskeleton (Hoboken) 2013; 70:476-93. [PMID: 24039047 PMCID: PMC4065354 DOI: 10.1002/cm.21135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 12/13/2022]
Abstract
Microtubule-based motor proteins play key roles during mitosis to assemble the bipolar spindle, define the cell division axis, and align and segregate the chromosomes. The majority of mitotic motors are members of the kinesin superfamily. Despite sharing a conserved catalytic core, each kinesin has distinct functions and localization, and is uniquely regulated in time and space. These distinct behaviors and functional specificity are generated by variations in the enzymatic domain as well as the non-conserved regions outside of the kinesin motor domain and the stalk. These flanking regions can directly modulate the properties of the kinesin motor through dimerization or self-interactions, and can associate with extrinsic factors, such as microtubule or DNA binding proteins, to provide additional functional properties. This review discusses the recently identified molecular mechanisms that explain how the control and functional specification of mitotic kinesins is achieved. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| |
Collapse
|
38
|
Kinesin-5: cross-bridging mechanism to targeted clinical therapy. Gene 2013; 531:133-49. [PMID: 23954229 DOI: 10.1016/j.gene.2013.08.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/29/2013] [Accepted: 08/02/2013] [Indexed: 12/28/2022]
Abstract
Kinesin motor proteins comprise an ATPase superfamily that works hand in hand with microtubules in every eukaryote. The mitotic kinesins, by virtue of their potential therapeutic role in cancerous cells, have been a major focus of research for the past 28 years since the discovery of the canonical Kinesin-1 heavy chain. Perhaps the simplest player in mitotic spindle assembly, Kinesin-5 (also known as Kif11, Eg5, or kinesin spindle protein, KSP) is a plus-end-directed motor localized to interpolar spindle microtubules and to the spindle poles. Comprised of a homotetramer complex, its function primarily is to slide anti-parallel microtubules apart from one another. Based on multi-faceted analyses of this motor from numerous laboratories over the years, we have learned a great deal about the function of this motor at the atomic level for catalysis and as an integrated element of the cytoskeleton. These data have, in turn, informed the function of motile kinesins on the whole, as well as spearheaded integrative models of the mitotic apparatus in particular and regulation of the microtubule cytoskeleton in general. We review what is known about how this nanomotor works, its place inside the cytoskeleton of cells, and its small-molecule inhibitors that provide a toolbox for understanding motor function and for anticancer treatment in the clinic.
Collapse
|
39
|
Salemi JD, McGilvray PT, Maresca TJ. Development of a Drosophila cell-based error correction assay. Front Oncol 2013; 3:187. [PMID: 23888285 PMCID: PMC3719216 DOI: 10.3389/fonc.2013.00187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/04/2013] [Indexed: 12/13/2022] Open
Abstract
Accurate transmission of the genome through cell division requires microtubules from opposing spindle poles to interact with protein super-structures called kinetochores that assemble on each sister chromatid. Most kinetochores establish erroneous attachments that are destabilized through a process called error correction. Failure to correct improper kinetochore-microtubule (kt-MT) interactions before anaphase onset results in chromosomal instability (CIN), which has been implicated in tumorigenesis and tumor adaptation. Thus, it is important to characterize the molecular basis of error correction to better comprehend how CIN occurs and how it can be modulated. An error correction assay has been previously developed in cultured mammalian cells in which incorrect kt-MT attachments are created through the induction of monopolar spindle assembly via chemical inhibition of kinesin-5. Error correction is then monitored following inhibitor wash out. Implementing the error correction assay in Drosophila melanogaster S2 cells would be valuable because kt-MT attachments are easily visualized and the cells are highly amenable to RNAi and high-throughput screening. However, Drosophila kinesin-5 (Klp61F) is unaffected by available small molecule inhibitors. To overcome this limitation, we have rendered S2 cells susceptible to kinesin-5 inhibitors by functionally replacing Klp61F with human kinesin-5 (Eg5). Eg5 expression rescued the assembly of monopolar spindles typically caused by Klp61F depletion. Eg5-mediated bipoles collapsed into monopoles due, in part, to kinesin-14 (Ncd) activity when treated with the kinesin-5 inhibitor S-trityl-L-cysteine (STLC). Furthermore, bipolar spindles reassembled and error correction was observed after STLC wash out. Importantly, error correction in Eg5-expressing S2 cells was dependent on the well-established error correction kinase Aurora B. This system provides a powerful new cell-based platform for studying error correction and CIN.
Collapse
Affiliation(s)
- Jeffrey D Salemi
- Biology Department, University of Massachusetts , Amherst, MA , USA
| | | | | |
Collapse
|
40
|
Pérez de Castro I, Malumbres M. Mitotic Stress and Chromosomal Instability in Cancer: The Case for TPX2. Genes Cancer 2013; 3:721-30. [PMID: 23634259 DOI: 10.1177/1947601912473306] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cell cycle deregulation is a common motif in human cancer, and multiple therapeutic strategies are aimed to prevent tumor cell proliferation. Whereas most current therapies are designed to arrest cell cycle progression either in G1/S or in mitosis, new proposals include targeting the intrinsic chromosomal instability (CIN, an increased rate of gain or losses of chromosomes during cell division) or aneuploidy (a genomic composition that differs from diploid) that many tumor cells display. Why tumors cells are chromosomally unstable or aneuploid and what are the consequences of these alterations are not completely clear at present. Several mitotic regulators are overexpressed as a consequence of oncogenic alterations, and they are likely to alter the proper regulation of chromosome segregation in cancer cells. In this review, we propose the relevance of TPX2, a mitotic regulator involved in the formation of the mitotic spindle, in oncogene-induced mitotic stress. This protein, as well as its partner Aurora-A, is frequently overexpressed in human cancer, and its deregulation may participate not only in chromosome numeric aberrations but also in other forms of genomic instability in cancer cells.
Collapse
Affiliation(s)
- Ignacio Pérez de Castro
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | |
Collapse
|
41
|
Branching microtubule nucleation in Xenopus egg extracts mediated by augmin and TPX2. Cell 2013; 152:768-77. [PMID: 23415226 DOI: 10.1016/j.cell.2012.12.044] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/17/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022]
Abstract
The microtubules that comprise mitotic spindles in animal cells are nucleated at centrosomes and by spindle assembly factors that are activated in the vicinity of chromatin. Indirect evidence has suggested that microtubules also might be nucleated from pre-existing microtubules throughout the spindle, but this process has not been observed directly. Here, we demonstrate microtubule nucleation from the sides of existing microtubules in meiotic Xenopus egg extracts. Daughter microtubules grow at a low branch angle and with the same polarity as mother filaments. Branching microtubule nucleation requires γ-tubulin and augmin and is stimulated by factors previously implicated in chromatin-stimulated nucleation, guanosine triphosphate(GTP)-bound Ran and its effector, TPX2. Because of the rapid amplification of microtubule numbers and the preservation of microtubule polarity, microtubule-dependent microtubule nucleation is well suited for spindle assembly and maintenance.
Collapse
|
42
|
Goulet A, Moores C. New insights into the mechanism of force generation by kinesin-5 molecular motors. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:419-66. [PMID: 23809441 DOI: 10.1016/b978-0-12-407696-9.00008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kinesin-5 motors are members of a superfamily of microtubule-dependent ATPases and are widely conserved among eukaryotes. Kinesin-5s typically form homotetramers with pairs of motor domains located at either end of a dumbbell-shaped molecule. This quaternary structure enables cross-linking and ATP-driven sliding of pairs of microtubules, although the exact molecular mechanism of this activity is still unclear. Kinesin-5 function has been characterized in greatest detail in cell division, although a number of interphase roles have also been defined. The kinesin-5 ATPase is tuned for slow microtubule sliding rather than cellular transport and-in vertebrates-can be inhibited specifically by allosteric small molecules currently in cancer clinical trials. The biophysical and structural basis of kinesin-5 mechanochemistry is being elucidated and has provided further insight into kinesin-5 activities. However, it is likely that the precise mechanism of these important motors has evolved according to functional context and regulation in individual organisms.
Collapse
Affiliation(s)
- Adeline Goulet
- Institute of Structural and Molecular Biology, Birkbeck College, London, United Kingdom
| | | |
Collapse
|
43
|
Affiliation(s)
- James L Maller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA.
| |
Collapse
|
44
|
Gable A, Qiu M, Titus J, Balchand S, Ferenz NP, Ma N, Collins ES, Fagerstrom C, Ross JL, Yang G, Wadsworth P. Dynamic reorganization of Eg5 in the mammalian spindle throughout mitosis requires dynein and TPX2. Mol Biol Cell 2012; 23:1254-66. [PMID: 22337772 PMCID: PMC3315814 DOI: 10.1091/mbc.e11-09-0820] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Kinesin-5 is an essential mitotic motor. However, how its spatial-temporal distribution is regulated in mitosis remains poorly understood. We expressed localization and affinity purification-tagged Eg5 from a mouse bacterial artificial chromosome (this construct was called mEg5) and found its distribution to be tightly regulated throughout mitosis. Fluorescence recovery after photobleaching analysis showed rapid Eg5 turnover throughout mitosis, which cannot be accounted for by microtubule turnover. Total internal reflection fluorescence microscopy and high-resolution, single-particle tracking revealed that mEg5 punctae on both astral and midzone microtubules rapidly bind and unbind. mEg5 punctae on midzone microtubules moved transiently both toward and away from spindle poles. In contrast, mEg5 punctae on astral microtubules moved transiently toward microtubule minus ends during early mitosis but switched to plus end-directed motion during anaphase. These observations explain the poleward accumulation of Eg5 in early mitosis and its redistribution in anaphase. Inhibition of dynein blocked mEg5 movement on astral microtubules, whereas depletion of the Eg5-binding protein TPX2 resulted in plus end-directed mEg5 movement. However, motion of Eg5 on midzone microtubules was not altered. Our results reveal differential and precise spatial and temporal regulation of Eg5 in the spindle mediated by dynein and TPX2.
Collapse
Affiliation(s)
- Alyssa Gable
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Identification of a TPX2-like microtubule-associated protein in Drosophila. PLoS One 2011; 6:e28120. [PMID: 22140519 PMCID: PMC3227607 DOI: 10.1371/journal.pone.0028120] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/01/2011] [Indexed: 12/31/2022] Open
Abstract
Chromosome segregation during mitosis and meiosis relies on the spindle and the functions of numerous microtubule-associated proteins (MAPs). One of the best-studied spindle MAPs is the highly conserved TPX2, which has been reported to have characteristic intracellular dynamics and molecular activities, such as nuclear localisation in interphase, poleward movement in the metaphase spindle, microtubule nucleation, microtubule stabilisation, microtubule bundling, Aurora A kinase activation, kinesin-5 binding, and kinesin-12 recruitment. This protein has been shown to be essential for spindle formation in every cell type analysed so far. However, as yet, TPX2 homologues have not been found in the Drosophila genome. In this study, I found that the Drosophila protein Ssp1/Mei-38 has significant homology to TPX2. Sequence conservation was limited to the putative spindle microtubule-associated region of TPX2, and intriguingly, D-TPX2 (Ssp1/Mei-38) lacks Aurora A- and kinesin-5-binding domains, which are highly conserved in other animal and plant species, including many insects such as ants and bees. D-TPX2 uniformly localised to kinetochore microtubule-enriched regions of the metaphase spindle in the S2 cell line, and it had microtubule binding and bundling activities in vitro. In comparison with other systems, the contribution of D-TPX2 to cell division seems to be minor; live cell imaging of microtubules and chromosomes after RNAi knockdown identified significant delay in chromosome congression in only 18% of the cells. Thus, while this conserved spindle protein is present in Drosophila, other mechanisms may largely compensate for its spindle assembly and chromosome segregation functions.
Collapse
|
46
|
Ma N, Titus J, Gable A, Ross JL, Wadsworth P. TPX2 regulates the localization and activity of Eg5 in the mammalian mitotic spindle. ACTA ACUST UNITED AC 2011; 195:87-98. [PMID: 21969468 PMCID: PMC3187703 DOI: 10.1083/jcb.201106149] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
TPX2 promotes mitotic spindle formation by enhancing Eg5 accumulation on microtubules and limiting motor activity. Mitotic spindle assembly requires the regulated activity of numerous spindle-associated proteins. In mammalian cells, the Kinesin-5 motor Eg5 interacts with the spindle assembly factor TPX2, but how this interaction contributes to spindle formation and function is not established. Using bacterial artificial chromosome technology, we generated cells expressing TPX2 lacking the Eg5 interaction domain. Spindles in these cells were highly disorganized with multiple spindle poles. The TPX2–Eg5 interaction was required for kinetochore fiber formation and contributed to Eg5 localization to spindle microtubules but not spindle poles. Microinjection of the Eg5-binding domain of TPX2 resulted in spindle elongation, indicating that the interaction of Eg5 with TPX2 reduces motor activity. Consistent with this possibility, we found that TPX2 reduced the velocity of Eg5-dependent microtubule gliding, inhibited microtubule sliding, and resulted in the accumulation of motor on microtubules. These results establish a novel function of TPX2 in regulating the location and activity of the mitotic motor Eg5.
Collapse
Affiliation(s)
- Nan Ma
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | |
Collapse
|
47
|
Zeng K, Bastos RN, Barr FA, Gruneberg U. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2. J Cell Biol 2010; 191:1315-32. [PMID: 21187329 PMCID: PMC3010072 DOI: 10.1083/jcb.201008106] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/23/2010] [Indexed: 01/08/2023] Open
Abstract
Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A-TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A-TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation.
Collapse
Affiliation(s)
- Kang Zeng
- University of Liverpool, Cancer Research Centre, Liverpool L3 9TA, England, UK
| | | | | | | |
Collapse
|
48
|
Giesecke A, Stewart M. Novel binding of the mitotic regulator TPX2 (target protein for Xenopus kinesin-like protein 2) to importin-alpha. J Biol Chem 2010; 285:17628-35. [PMID: 20335181 PMCID: PMC2878527 DOI: 10.1074/jbc.m110.102343] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several aspects of mitotic spindle assembly are orchestrated by the Ran GTPase through its modulation of the interaction between spindle assembly factors and importin-α. One such factor is TPX2 that promotes microtubule assembly in the vicinity of chromosomes. TPX2 is inhibited when bound to importin-α, which occurs when the latter is bound to importin-β. The importin-α:β interaction is disrupted by the high RanGTP concentration near the chromosomes, releasing TPX2. In more distal regions, where Ran is predominantly GDP-bound, TPX2 remains bound to importin-α and so is inhibited. Here we use a combination of structural and biochemical methods to define the basis for TPX2 binding to importin-α. A 2.2 Å resolution crystal structure shows that the primary nuclear localization signal (284KRKH287) of TPX2, which has been shown to be crucial for inhibition, binds to the minor NLS-binding site on importin-α. This atypical interaction pattern was confirmed using complementary binding studies that employed importin-α variants in which binding to either the major or minor NLS-binding site was impaired, together with competition assays using the SV40 monopartite NLS that binds primarily to the major site. The different way in which TPX2 binds to importin-α could account for much of the selectivity necessary during mitosis because this would reduce the competition for binding to importin-α from other NLS-containing proteins.
Collapse
Affiliation(s)
- Astrid Giesecke
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
49
|
Ma N, Tulu US, Ferenz NP, Fagerstrom C, Wilde A, Wadsworth P. Poleward transport of TPX2 in the mammalian mitotic spindle requires dynein, Eg5, and microtubule flux. Mol Biol Cell 2010; 21:979-88. [PMID: 20110350 PMCID: PMC2836978 DOI: 10.1091/mbc.e09-07-0601] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
TPX2 is a spindle assembly factor that is required for MT assembly near chromosomes. Using photoactivation of fluorescence, we report that TPX2 is transported poleward in the half-spindle. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5, and to suppression of MT flux. TPX2 is a Ran-regulated spindle assembly factor that is required for kinetochore fiber formation and activation of the mitotic kinase Aurora A. TPX2 is enriched near spindle poles and is required near kinetochores, suggesting that it undergoes dynamic relocalization throughout mitosis. Using photoactivation, we measured the movement of PA-GFP-TPX2 in the mitotic spindle. TPX2 moves poleward in the half-spindle and is static in the interzone and near spindle poles. Poleward transport of TPX2 is sensitive to inhibition of dynein or Eg5 and to suppression of microtubule flux with nocodazole or antibodies to Kif2a. Poleward transport requires the C terminus of TPX2, a domain that interacts with Eg5. Overexpression of TPX2 lacking this domain induced excessive microtubule formation near kinetochores, defects in spindle assembly and blocked mitotic progression. Our data support a model in which poleward transport of TPX2 down-regulates its microtubule nucleating activity near kinetochores and links microtubules generated at kinetochores to dynein for incorporation into the spindle.
Collapse
Affiliation(s)
- Nan Ma
- University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | | | | | |
Collapse
|
50
|
Ferenz NP, Gable A, Wadsworth P. Mitotic functions of kinesin-5. Semin Cell Dev Biol 2010; 21:255-9. [PMID: 20109572 DOI: 10.1016/j.semcdb.2010.01.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 01/19/2010] [Indexed: 12/30/2022]
Abstract
In all eukaryotic cells, molecular motor proteins play essential roles in spindle assembly and function. The homotetrameric kinesin-5 motors in particular generate outward forces that establish and maintain spindle bipolarity and contribute to microtubule flux. Cell-cycle dependent phosphorylation of kinesin-5 motors regulates their localization to the mitotic spindle. Analysis of live cells further shows that kinesin-5 motors are highly dynamic in the spindle. Understanding the interactions of kinesin-5 motors with microtubules and other spindle proteins is likely to broaden the documented roles of kinesin-5 motors during cell division.
Collapse
Affiliation(s)
- Nick P Ferenz
- Department of Biology, University of Massachusetts, Amherst, Morrill Science Center, Amherst, MA 01003, United States
| | | | | |
Collapse
|