1
|
Shah SS, Rubenstein DR. Intraspecific variation in group structure arises due to environmentally-mediated directional dispersal in a cooperative breeder. J Anim Ecol 2024. [PMID: 39104146 DOI: 10.1111/1365-2656.14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
Many cooperatively breeding species live in groups with complex structure-large group sizes, low and variable kin structure, and multiple breeding pairs. Since these mixed-kin groups typically form because of immigration of unrelated individuals of both sexes in addition to limited offspring dispersal, differences in patterns of dispersal can generate variation in group structure, even within the same species or population. Here, we examine how environmentally mediated dispersal patterns influence variation in group structure in the plural breeding superb starling (Lamprotornis superbus), an avian cooperative breeder that inhabits a spatiotemporally variable savanna environment and forms mixed-kin groups with variable group sizes and more than one breeding pair per group. Using 4068 genome-wide polymorphic loci and fine-scale, remotely sensed ecological data from 22 groups sampled across a nearly 200 km2 environmental gradient in central Kenya, we find evidence of not only frequent and long-distance dispersal in both sexes (low isolation-by-distance and weak genetic structure), but also directional dispersal from small groups in lower quality habitat with low normalised difference vegetation index (NDVI) to large groups in higher quality habitat with high NDVI. Additionally, we find stronger genetic structure among groups in lower quality habitat, and higher genetic diversity and lower relatedness of groups in higher quality habitat. Previous work using long-term data from groups in the same population has shown that groups with lower relatedness are larger and have more breeding pairs. Long-distance, directional dispersal to maximise individual fitness can thus lead to smaller and simpler kin-based social groups in lower quality habitat, but larger and more complex mixed-kin groups in higher quality habitat. Such intraspecific, within-population variation in group structure, including variation in kin structure of social groups, could have profound implications for the relative importance of the evolutionary mechanisms (i.e. direct vs. indirect fitness benefits) underlying the formation of cooperative societies.
Collapse
Affiliation(s)
- Shailee S Shah
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Center for Integrative Animal Behavior, Columbia University, New York, New York, USA
| |
Collapse
|
2
|
Wang Z, Martin A, Brunton D, Grueter CC, Qu J, He JS, Ji W, Nan Z. The effects of grassland degradation on the genetic structure of a small mammal. Integr Zool 2024. [PMID: 38704846 DOI: 10.1111/1749-4877.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Grassland degradation is challenging the health of grassland ecosystems globally and causing biodiversity decline. Previous studies have demonstrated the impact of grassland degradation on the abundance and behavior of small mammals. Little is known about how it affects the genetic structure of gregarious mammals in the wild. This study explores the effects of grassland degradation on the genetic structure of a small burrowing mammal, plateau pika (Ochotona curzoniae). We used nine microsatellite loci to analyze the genetic diversity and genetic differentiation between colonies and genetic relatedness between individuals within the colony. We found that pikas in severely degraded grasslands had a significantly higher genetic diversity within colonies, a higher level of gene flow between colonies, and a lower genetic differentiation between colonies compared to pikas in less degraded grasslands. Individuals within colonies had a significantly lower genetic relatedness in severely degraded grasslands than in less degraded grasslands. This study has provided potential evidence of a significant impact of grassland degradation on the genetic structure of pikas, which has caused a breakdown of their kin-selected colony structure.
Collapse
Affiliation(s)
- Zaiwei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Amy Martin
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Dianne Brunton
- School of Natural Sciences (SNS), Massey University, Auckland, New Zealand
| | - Cyril C Grueter
- Department of Anatomy, Physiology and Human Biology, School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, China
- Centre for Evolutionary Biology, School of Biological Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
- Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Weihong Ji
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- School of Natural Sciences (SNS), Massey University, Auckland, New Zealand
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Hori M, Takada H, Nakane Y, Minami M, Inoue E. Genetic Analysis Reveals Dispersal Patterns of Japanese Serow in Two Different Habitats of a Mountainous Region. Zoolog Sci 2024; 41:201-209. [PMID: 38587915 DOI: 10.2108/zs230055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 11/13/2023] [Indexed: 04/10/2024]
Abstract
Dispersal increases the costs of feeding and predation risk in the new environment and is reported to be biased toward habitats similar to the natal region in some mammals. The benefits and costs of dispersal often differ between sexes, and most mammals show male-biased dispersal in relation to a polygamous mating system. Japanese serow is generally a solitary and monogamous species. However, recent studies have shown that the sociality of serows on Mt. Asama differs between habitat types. In the mountain forests with low forage availability, solitary habits and social monogamy were observed, while, in alpine grasslands, female grouping and social polygyny were observed, which is probably due to abundant forage availability. We investigated the effects of habitat characteristics and sociality on the dispersal of serows using fecal and tissue samples from two different habitats on Mt. Asama. The Fst value between the two areas was significantly positive, and the mean relatedness within areas was significantly higher than that between areas, which suggests limited gene flow and natal habitat-biased dispersal. Bayesian clustering analysis showed unidirectional gene flow from forest to grassland, which was probably due to the high forage availability of the grassland. Analyses of the assignment index and mean relatedness did not show male-biased dispersal, even in the grassland, where serows were polygynous. Thus, polygyny in the grassland is not linked to male-biased dispersal. In summary, our study suggests that dispersal patterns in Japanese serows are affected by habitat rather than social differences.
Collapse
Affiliation(s)
- Maiko Hori
- Toho University, Funabashi, Chiba 274-8510, Japan
| | - Hayato Takada
- Wildlife Management Center, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
- Azabu University, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
- Mount Fuji Research Institute, Yamanashi Prefecture Government, Fijiyoshida, Yamanashi 403-0005, Japan
| | - Yuki Nakane
- Toho University, Funabashi, Chiba 274-8510, Japan
| | - Masato Minami
- Azabu University, Chuo-ku, Sagamihara, Kanagawa 252-5201, Japan
| | - Eiji Inoue
- Toho University, Funabashi, Chiba 274-8510, Japan,
| |
Collapse
|
4
|
Milich KM. Male-philopatric nonhuman primates and their potential role in understanding the evolution of human sociality. Evol Anthropol 2024; 33:e22014. [PMID: 38109039 DOI: 10.1002/evan.22014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
In most primate species, males transfer out of their natal groups, resulting in groups of unrelated males. However, in a few species, including humans, males remain in their groups and form life-long associations with each other. This pattern of male philopatry is linked with cooperative male behaviors, including border patrols and predator defense. Because females in male-philopatric species form weaker kin networks with each other than in female-philopatric species, they are expected to evolve counter-strategies to male sexual coercion that are relatively independent of support from other females. Studies of male-philopatric nonhuman primates can provide insight into the evolutionary basis of prosocial behaviors, cooperation, and group action in humans and offer comparative models for understanding the sociality of other hominin species. This review will discuss patterns of dispersal and philopatry across primates, explore the resulting male and female behaviors, and argue that male-philopatric nonhuman primate species offer insight into the social and sexual dynamics of hominins throughout evolution.
Collapse
Affiliation(s)
- Krista M Milich
- Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Michel A, Minocher R, Niehoff PP, Li Y, Nota K, Gadhvi MA, Su J, Iyer N, Porter A, Ngobobo-As-Ibungu U, Binyinyi E, Nishuli Pekeyake R, Parducci L, Caillaud D, Guschanski K. Isolated Grauer's gorilla populations differ in diet and gut microbiome. Mol Ecol 2023; 32:6523-6542. [PMID: 35976262 DOI: 10.1111/mec.16663] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022]
Abstract
The animal gut microbiome has been implicated in a number of key biological processes, ranging from digestion to behaviour, and has also been suggested to facilitate local adaptation. Yet studies in wild animals rarely compare multiple populations that differ ecologically, which is the level at which local adaptation may occur. Further, few studies simultaneously characterize diet and gut microbiome from the same sample, despite their probable interdependence. Here, we investigate the interplay between diet and gut microbiome in three geographically isolated populations of the critically endangered Grauer's gorilla (Gorilla beringei graueri), which we show to be genetically differentiated. We find population- and social group-specific dietary and gut microbial profiles and covariation between diet and gut microbiome, despite the presence of core microbial taxa. There was no detectable effect of age, and only marginal effects of sex and genetic relatedness on the microbiome. Diet differed considerably across populations, with the high-altitude population consuming a lower diversity of plants compared to low-altitude populations, consistent with plant availability constraining dietary choices. The observed pattern of covariation between diet and gut microbiome is probably a result of long-term social and environmental factors. Our study suggests that the gut microbiome is sufficiently plastic to support flexible food selection and hence contribute to local adaptation.
Collapse
Affiliation(s)
- Alice Michel
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Anthropology, University of California, Davis, California, USA
| | - Riana Minocher
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Human Behavior, Ecology and Culture, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Peter-Philip Niehoff
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Yuhong Li
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Kevin Nota
- Plant Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Maya A Gadhvi
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Jiancheng Su
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Neetha Iyer
- Department of Anthropology, University of California, Davis, California, USA
| | - Amy Porter
- Department of Anthropology, University of California, Davis, California, USA
| | | | - Escobar Binyinyi
- The Dian Fossey Gorilla Fund International, Kinshasa, Democratic Republic of the Congo
| | - Radar Nishuli Pekeyake
- Institut Congolais pour la Conservation de la Nature, Kinshasa, Democratic Republic of the Congo
| | - Laura Parducci
- Department of Human Behavior, Ecology and Culture, Max-Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Damien Caillaud
- Department of Anthropology, University of California, Davis, California, USA
| | - Katerina Guschanski
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
6
|
Robbins MM. Reflections on connections. Primates 2023; 64:191-197. [PMID: 36867278 PMCID: PMC9982802 DOI: 10.1007/s10329-023-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 03/04/2023]
Affiliation(s)
- Martha M Robbins
- Department of Primate Behavior and Evolution, Max Planck Institute for Evolutionary Anthropology, Leizpig, Germany.
| |
Collapse
|
7
|
García J, Morán‐Ordóñez A, García JT, Calero‐Riestra M, Alda F, Sanz J, Suárez‐Seoane S. Current landscape attributes and landscape stability in breeding grounds explain genetic differentiation in a long‐distance migratory bird. Anim Conserv 2020. [DOI: 10.1111/acv.12616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- J. García
- Department of Biodiversity and Environmental Management University of León León Spain
| | | | - J. T. García
- Instituto de Investigación en Recursos Cinegéticos (CSIC‐UCLM‐JCCM) Ciudad Real Spain
| | - M. Calero‐Riestra
- Instituto de Investigación en Recursos Cinegéticos (CSIC‐UCLM‐JCCM) Ciudad Real Spain
| | - F. Alda
- Department of Biology, Geology, and Environmental Science University of Tennessee at Chattanooga Chattanooga TN USA
| | - J. Sanz
- Laboratorio de Teledetección de la Universidad de Valladolid (LATUV) Valladolid Spain
| | - S. Suárez‐Seoane
- Department of Organisms and Systems Biology (BOS: Ecology Unit) Research Unit of Biodiversity (UMIBUO‐CSIC‐PA)University of Oviedo Oviedo Spain
| |
Collapse
|
8
|
Furuichi T. Variation in Intergroup Relationships Among Species and Among and Within Local Populations of African Apes. INT J PRIMATOL 2020. [DOI: 10.1007/s10764-020-00134-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Ishizuka S, Toda K, Furuichi T. Genetic Analysis of Migration Pattern of Female Bonobos (Pan paniscus) Among Three Neighboring Groups. INT J PRIMATOL 2019. [DOI: 10.1007/s10764-019-00106-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Robbins MM, Robbins AM. Variation in the social organization of gorillas: Life history and socioecological perspectives. Evol Anthropol 2018; 27:218-233. [PMID: 30325554 DOI: 10.1002/evan.21721] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 01/29/2023]
Abstract
A focus of socioecological research is to understand how ecological, social, and life history factors influence the variability of social organization within and between species. The genus Gorilla exhibits variability in social organization with western gorilla groups being almost exclusively one-male, yet approximately 40% of mountain gorilla groups are multimale. We review five ultimate causes for the variability in social organization within and among gorilla populations: human disturbance, ecological constraints on group size, risk of infanticide, life history patterns, and population density. We find the most evidence for the ecological constraints and life history hypotheses, but an over-riding explanation remains elusive. The variability may hinge on variation in female dispersal patterns, as females seek a group of optimal size and with a good protector male. Our review illustrates the challenges of understanding why the social organization of closely related species may deviate from predictions based on socioecological and life history theory.
Collapse
Affiliation(s)
- Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrew M Robbins
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
11
|
Hagemann L, Boesch C, Robbins MM, Arandjelovic M, Deschner T, Lewis M, Froese G, Vigilant L. Long-term group membership and dynamics in a wild western lowland gorilla population (Gorilla gorilla gorilla) inferred using non-invasive genetics. Am J Primatol 2018; 80:e22898. [PMID: 30024040 DOI: 10.1002/ajp.22898] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/22/2018] [Accepted: 07/01/2018] [Indexed: 01/07/2023]
Abstract
The social organization of a group-living animal is defined by a balance between group dynamic events such as group formation, group dissolution, and dispersal events and group stability in membership and over time. Understanding these processes, which are relevant for questions ranging from disease transmission patterns to the evolution of polygyny, requires long-term monitoring of multiple social units over time. Because all great ape species are long-lived and elusive, the number of studies on these key aspects of social organization are limited, especially for western lowland gorillas (Gorilla gorilla gorilla). In this study, we used non-invasive genetic samples collected within an approximately 100 km2 area of Loango National Park, Gabon to reconstruct group compositions and changes in composition over more than a decade. We identified 98 gorillas and 11 mixed sex groups sampled during 2014-2017. Using published data from 85 individuals and 12 groups surveyed between 2005 and 2009 at the same locality, we tracked groups and individuals back in time. The identification of 11 silverbacks via parentage analyses and the genetic tracking of 39 individuals across studies allowed us to infer six group formations, five group dissolutions, and 40 dispersal events within 12 years. We also observed four groups persisting across the sampling periods with a maximum inferred existence of nearly 17 years and exhibiting variation in membership stability. Our results highlight the variation in composition and stability among groups of western lowland gorillas and illustrate the power of non-invasive genetic sampling for long-term monitoring.
Collapse
Affiliation(s)
- Laura Hagemann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Martha M Robbins
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Tobias Deschner
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthew Lewis
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Graden Froese
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
12
|
Abstract
The great apes (orangutans, gorillas, chimpanzees, bonobos and humans) descended from a common ancestor around 13 million years ago, and since then their sex chromosomes have followed very different evolutionary paths. While great-ape X chromosomes are highly conserved, their Y chromosomes, reflecting the general lability and degeneration of this male-specific part of the genome since its early mammalian origin, have evolved rapidly both between and within species. Understanding great-ape Y chromosome structure, gene content and diversity would provide a valuable evolutionary context for the human Y, and would also illuminate sex-biased behaviours, and the effects of the evolutionary pressures exerted by different mating strategies on this male-specific part of the genome. High-quality Y-chromosome sequences are available for human and chimpanzee (and low-quality for gorilla). The chromosomes differ in size, sequence organisation and content, and while retaining a relatively stable set of ancestral single-copy genes, show considerable variation in content and copy number of ampliconic multi-copy genes. Studies of Y-chromosome diversity in other great apes are relatively undeveloped compared to those in humans, but have nevertheless provided insights into speciation, dispersal, and mating patterns. Future studies, including data from larger sample sizes of wild-born and geographically well-defined individuals, and full Y-chromosome sequences from bonobos, gorillas and orangutans, promise to further our understanding of population histories, male-biased behaviours, mutation processes, and the functions of Y-chromosomal genes.
Collapse
|
13
|
Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation. Mol Neurobiol 2017; 55:1871-1904. [PMID: 28233272 DOI: 10.1007/s12035-017-0427-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/26/2017] [Indexed: 01/31/2023]
Abstract
Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.
Collapse
|
14
|
Fünfstück T, Vigilant L. The geographic distribution of genetic diversity within gorillas. Am J Primatol 2015; 77:974-985. [DOI: 10.1002/ajp.22427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/23/2015] [Accepted: 04/26/2015] [Indexed: 11/06/2022]
Affiliation(s)
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology; Leipzig Germany
| |
Collapse
|
15
|
Arandjelovic M, Head J, Boesch C, Robbins MM, Vigilant L. Genetic inference of group dynamics and female kin structure in a western lowland gorilla population (<i>Gorilla gorilla gorilla</i>). Primate Biol 2014. [DOI: 10.5194/pb-1-29-2014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Dispersal and grouping patterns form the foundations of social interactions in group-living mammals and are the outcomes of a complex interplay between inbreeding avoidance, kin cooperation and competition, predation pressure and food resource distribution. In species where both sexes disperse, the potential for kin-biased associations would seem limited. In one such species, the western lowland gorilla (WLG), short-term data suggest that female kin associations may be present due to directed local dispersal decisions, but monitoring of groups over longer timescales is needed to better elucidate this pattern. Using autosomal genotyping of 419 faecal samples representing 85 unhabituated gorillas collected non-invasively over 5 years in a 132 km2 section of Loango National Park, Gabon, we investigated the dynamics of WLG group composition, social structure and patterns of dispersal. By revealing two group dissolutions, one group formation and the movement of 13 gorillas between groups, this study demonstrates the utility of genetic analysis as a way to track individuals, groups and population dynamics on a larger scale than when monitoring the behaviour of a limited number of habituated groups or through one-time genetic sampling. Furthermore, we find that females are found in groups containing their female kin more often than expected by chance, suggesting that dispersal may not impede female kin associations in WLGs.
Collapse
|
16
|
Snyder-Mackler N, Alberts SC, Bergman TJ. The socio-genetics of a complex society: female gelada relatedness patterns mirror association patterns in a multilevel society. Mol Ecol 2014; 23:6179-91. [PMID: 25362869 DOI: 10.1111/mec.12987] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/18/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
Multilevel societies with fission-fusion dynamics--arguably the most complex animal societies--are defined by two or more nested levels of organization. The core of these societies are modular social units that regularly fission and fuse with one another. Despite convergent evolution in disparate taxa, we know strikingly little about how such societies form and how fitness benefits operate. Understanding the kinship structure of complex societies could inform us about the origins of the social structure as well as about the potential for individuals in these societies to accrue indirect fitness benefits. Here, we combined genetic and behavioural data on geladas (Theropithecus gelada), an Old World Monkey, to complete the most comprehensive socio-genetic analysis of a multilevel society to date. In geladas, individuals in the core social 'units', associate at different frequencies to form 'teams', 'bands' and, the largest aggregations, 'communities'. Units were composed of closely related females, and females remained with their close kin during permanent fissions of units. Interestingly, female-female relatedness also significantly predicted between-unit, between-team and between-band association patterns, while male-male relatedness did not. Thus, it is likely that the socio-genetic structure of gelada society results from females maintaining associations with their female relatives during successive unit fissions--possibly in an attempt to balance the direct and indirect fitness benefits of group living. Overall, the persistence of associations among related females across generations appears to drive the formation of higher levels of gelada society, suggesting that females seek kin for inclusive fitness benefits at multiple levels of gelada society.
Collapse
Affiliation(s)
- Noah Snyder-Mackler
- Department of Evolutionary Anthropology, Duke University, 130 Science Dr., Durham, NC, USA
| | | | | |
Collapse
|
17
|
Roy J, Gray M, Stoinski T, Robbins MM, Vigilant L. Fine-scale genetic structure analyses suggest further male than female dispersal in mountain gorillas. BMC Ecol 2014; 14:21. [PMID: 25001262 PMCID: PMC4113491 DOI: 10.1186/1472-6785-14-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 06/27/2014] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Molecular studies in social mammals rarely compare the inferences gained from genetic analyses with field information, especially in the context of dispersal. In this study, we used genetic data to elucidate sex-specific dispersal dynamics in the Virunga Massif mountain gorilla population (Gorilla beringei beringei), a primate species characterized by routine male and female dispersal from stable mixed-sex social groups. Specifically, we conducted spatial genetic structure analyses for each sex and linked our genetically-based observations with some key demographic and behavioural data from this population. RESULTS To investigate the spatial genetic structure of mountain gorillas, we analysed the genotypes of 193 mature individuals at 11 microsatellite loci by means of isolation-by-distance and spatial autocorrelation analyses. Although not all males and females disperse, female gorillas displayed an isolation-by-distance pattern among groups and a signal of dispersal at short distances from their natal group based on spatial autocorrelation analyses. In contrast, male genotypes were not correlated with spatial distance, thus suggesting a larger mean dispersal distance for males as compared to females. Both within sex and mixed-sex pairs were on average genetically more related within groups than among groups. CONCLUSIONS Our study provides evidence for an intersexual difference in dispersal distance in the mountain gorilla. Overall, it stresses the importance of investigating spatial genetic structure patterns on a sex-specific basis to better understand the dispersal dynamics of the species under investigation. It is currently poorly understood why some male and female gorillas disperse while others remain in the natal group. Our results on average relatedness within and across groups confirm that groups often contain close relatives. While inbreeding avoidance may play a role in driving female dispersal, we note that more detailed dyadic genetic analyses are needed to shed light on the role of inbreeding avoidance as an ultimate cause of female dispersal in mountain gorillas.
Collapse
Affiliation(s)
- Justin Roy
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Maryke Gray
- International Gorilla Conservation Program, P.O. Box 931, Kigali, Rwanda
| | - Tara Stoinski
- The Dian Fossey Gorilla Fund International and Zoo Atlanta, Atlanta, Georgia 30315, USA
| | - Martha M Robbins
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| | - Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103, Leipzig, Germany
| |
Collapse
|
18
|
Fünfstück T, Arandjelovic M, Morgan DB, Sanz C, Breuer T, Stokes EJ, Reed P, Olson SH, Cameron K, Ondzie A, Peeters M, Kühl HS, Cipolletta C, Todd A, Masi S, Doran-Sheehy DM, Bradley BJ, Vigilant L. The genetic population structure of wild western lowland gorillas (Gorilla gorilla gorilla) living in continuous rain forest. Am J Primatol 2014; 76:868-78. [PMID: 24700547 DOI: 10.1002/ajp.22274] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/18/2013] [Accepted: 02/10/2014] [Indexed: 11/07/2022]
Abstract
To understand the evolutionary histories and conservation potential of wild animal species it is useful to assess whether taxa are genetically structured into different populations and identify the underlying factors responsible for any clustering. Landscape features such as rivers may influence genetic population structure, and analysis of structure by sex can further reveal effects of sex-specific dispersal. Using microsatellite genotypes obtained from noninvasively collected fecal samples we investigated the population structure of 261 western lowland gorillas (WLGs) (Gorilla gorilla gorilla) from seven locations spanning an approximately 37,000 km(2) region of mainly continuous rain forest within Central African Republic (CAR), Republic of Congo and Cameroon. We found our sample to consist of two or three significantly differentiated clusters. The boundaries of the clusters coincided with courses of major rivers. Moreover, geographic distance detoured around rivers better-explained variation in genetic distance than straight line distance. Together these results suggest that major rivers in our study area play an important role in directing WLG gene flow. The number of clusters did not change when males and females were analyzed separately, indicating a lack of greater philopatry in WLG females than males at this scale.
Collapse
|
19
|
Kopps AM, Ackermann CY, Sherwin WB, Allen SJ, Bejder L, Krützen M. Cultural transmission of tool use combined with habitat specializations leads to fine-scale genetic structure in bottlenose dolphins. Proc Biol Sci 2014; 281:20133245. [PMID: 24648223 DOI: 10.1098/rspb.2013.3245] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Socially learned behaviours leading to genetic population structure have rarely been described outside humans. Here, we provide evidence of fine-scale genetic structure that has probably arisen based on socially transmitted behaviours in bottlenose dolphins (Tursiops sp.) in western Shark Bay, Western Australia. We argue that vertical social transmission in different habitats has led to significant geographical genetic structure of mitochondrial DNA (mtDNA) haplotypes. Dolphins with mtDNA haplotypes E or F are found predominantly in deep (more than 10 m) channel habitat, while dolphins with a third haplotype (H) are found predominantly in shallow habitat (less than 10 m), indicating a strong haplotype-habitat correlation. Some dolphins in the deep habitat engage in a foraging strategy using tools. These 'sponging' dolphins are members of one matriline, carrying haplotype E. This pattern is consistent with what had been demonstrated previously at another research site in Shark Bay, where vertical social transmission of sponging had been shown using multiple lines of evidence. Using an individual-based model, we found support that in western Shark Bay, socially transmitted specializations may have led to the observed genetic structure. The reported genetic structure appears to present an example of cultural hitchhiking of mtDNA haplotypes on socially transmitted foraging strategies, suggesting that, as in humans, genetic structure can be shaped through cultural transmission.
Collapse
Affiliation(s)
- Anna M Kopps
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, , Sydney, New South Wales 2052, Australia, Evolutionary Genetics Group, Anthropological Institute and Museum, University of Zurich, , Winterthurerstrasse 190, Zurich 8057, Switzerland, Murdoch University Cetacean Research Unit, Centre for Fish, Fisheries and Aquatic Ecosystems Research, School of Veterinary and Life Sciences, Murdoch University, , South Street, Murdoch, Western Australia 6150, Australia
| | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Inoue E, Akomo-Okoue EF, Ando C, Iwata Y, Judai M, Fujita S, Hongo S, Nze-Nkogue C, Inoue-Murayama M, Yamagiwa J. Male genetic structure and paternity in western lowland gorillas (Gorilla gorilla gorilla). AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2013; 151:583-8. [PMID: 23868171 DOI: 10.1002/ajpa.22312] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 05/03/2013] [Indexed: 11/11/2022]
Abstract
The male dispersal patterns of western lowland gorillas (WLGs, Gorilla gorilla gorilla) are not well understood. To determine whether most silverbacks stay close to their relatives, we analyzed autosomal and Y-chromosomal microsatellites (STRs) in wild WLGs at Moukalaba, Gabon. We obtained STR genotypes for 38 individuals, including eight silverbacks and 12 adult females in an approximately 40 km(2) area. Among them, 20 individuals were members of one identified group (Group Gentil; GG), including one silverback and six adult females. The silverback sired all 13 of the offspring in GG and no Y-STR polymorphism within GG was found, as expected in a one-male group structure. Over all silverbacks sampled, Y-STR diversity was high considering the limited sampling area, and silverbacks with similar Y-STR haplotypes were not always located in nearby areas. Although the misclassification rate of kinship estimates in this study was not negligible, there were no kin dyads among all silverbacks sampled. These results suggest that silverbacks born in the same group do not stay close to each other after maturation. The Y-STR diversity in this study was similar to that of a previous study conducted in an area that was approximately 150 times larger than our study area. Similarity of WLG Y-STR diversity between studies at different sampling scales suggests that male gene flow may not be geographically limited. These results suggest that WLG males normally disperse from their natal areas after maturation, at least, in Moukalaba.
Collapse
Affiliation(s)
- Eiji Inoue
- Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Runcie DE, Wiedmann RT, Archie EA, Altmann J, Wray GA, Alberts SC, Tung J. Social environment influences the relationship between genotype and gene expression in wild baboons. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120345. [PMID: 23569293 DOI: 10.1098/rstb.2012.0345] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Variation in the social environment can have profound effects on survival and reproduction in wild social mammals. However, we know little about the degree to which these effects are influenced by genetic differences among individuals, and conversely, the degree to which social environmental variation mediates genetic reaction norms. To better understand these relationships, we investigated the potential for dominance rank, social connectedness and group size to modify the effects of genetic variation on gene expression in the wild baboons of the Amboseli basin. We found evidence for a number of gene-environment interactions (GEIs) associated with variation in the social environment, encompassing social environments experienced in adulthood as well as persistent effects of early life social environment. Social connectedness, maternal dominance rank and group size all interacted with genotype to influence gene expression in at least one sex, and either in early life or in adulthood. These results suggest that social and behavioural variation, akin to other factors such as age and sex, can impact the genotype-phenotype relationship. We conclude that GEIs mediated by the social environment are important in the evolution and maintenance of individual differences in wild social mammals, including individual differences in responses to social stressors.
Collapse
Affiliation(s)
- Daniel E Runcie
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Nater A, Arora N, Greminger MP, van Schaik CP, Singleton I, Wich SA, Fredriksson G, Perwitasari-Farajallah D, Pamungkas J, Krützen M. Marked Population Structure and Recent Migration in the Critically Endangered Sumatran Orangutan (Pongo abelii). J Hered 2012; 104:2-13. [DOI: 10.1093/jhered/ess065] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Alda F, García J, García JT, Suárez-Seoane S. Local genetic structure on breeding grounds of a long-distance migrant passerine: the bluethroat (Luscinia svecica) in Spain. J Hered 2012; 104:36-46. [PMID: 23008445 DOI: 10.1093/jhered/ess071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Breeding site fidelity can be determined by environmental features, which depending on their heterogeneous distribution may shape the genetic landscape of a population. We used 10 microsatellite loci to study the genetic variation of 83 bluethroats (Luscinia svecica azuricollis) across 14 localities within the Spanish breeding population and assess the relative influence of different habitat characteristics (physiography and vegetation) on genetic differentiation. Based on the genetic variation of this population, we identified 3 geographically consistent genetic clusters that on average showed a higher genetic differentiation than among other north European populations, even those belonging to different subspecies. The inferred genetic clusters occurred in geographic areas that significantly differed in elevation. The highest genetic differentiation was observed between sites at different mountain ranges, as well as between the highest altitude sites in the northeastern locale, whereas vegetation type did not explain a significant percentage of genetic variation. The lack of correlation between geographic and genetic distances suggests that this pattern of genetic structure cannot be explained as a consequence of isolation by distance. Finally, we discuss the importance of preserving areas encompassing high environmental and genetic variation as a means of preserving evolutionary processes and adaptive potential.
Collapse
Affiliation(s)
- Fernando Alda
- Instituto de Investigación en Recursos Cinegéticos, Ciudad Real, Spain.
| | | | | | | |
Collapse
|
25
|
ARORA N, Van NOORDWIJK MA, ACKERMANN C, WILLEMS EP, NATER A, GREMINGER M, NIETLISBACH P, DUNKEL LP, UTAMI ATMOKO SS, PAMUNGKAS JOKO, PERWITASARI-FARAJALLAH DYAH, Van SCHAIK CP, KRÜTZEN M. Parentage-based pedigree reconstruction reveals female matrilineal clusters and male-biased dispersal in nongregarious Asian great apes, the Bornean orang-utans (Pongo pygmaeus). Mol Ecol 2012; 21:3352-62. [DOI: 10.1111/j.1365-294x.2012.05608.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Yannic G, Basset P, Büchi L, Hausser J, Broquet T. SCALE-SPECIFIC SEX-BIASED DISPERSAL IN THE VALAIS SHREW UNVEILED BY GENETIC VARIATION ON THE Y CHROMOSOME, AUTOSOMES, AND MITOCHONDRIAL DNA. Evolution 2012; 66:1737-50. [DOI: 10.1111/j.1558-5646.2011.01554.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Schubert G, Stoneking CJ, Arandjelovic M, Boesch C, Eckhardt N, Hohmann G, Langergraber K, Lukas D, Vigilant L. Male-mediated gene flow in patrilocal primates. PLoS One 2011; 6:e21514. [PMID: 21747938 PMCID: PMC3128582 DOI: 10.1371/journal.pone.0021514] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/02/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Many group-living species display strong sex biases in dispersal tendencies. However, gene flow mediated by apparently philopatric sex may still occur and potentially alters population structure. In our closest living evolutionary relatives, dispersal of adult males seems to be precluded by high levels of territoriality between males of different groups in chimpanzees, and has only been observed once in bonobos. Still, male-mediated gene flow might occur through rare events such as extra-group matings leading to extra-group paternity (EGP) and female secondary dispersal with offspring, but the extent of this gene flow has not yet been assessed. METHODOLOGY/PRINCIPAL FINDINGS Using autosomal microsatellite genotyping of samples from multiple groups of wild western chimpanzees (Pan troglodytes verus) and bonobos (Pan paniscus), we found low genetic differentiation among groups for both males and females. Characterization of Y-chromosome microsatellites revealed levels of genetic differentiation between groups in bonobos almost as high as those reported previously in eastern chimpanzees, but lower levels of differentiation in western chimpanzees. By using simulations to evaluate the patterns of Y-chromosomal variation expected under realistic assumptions of group size, mutation rate and reproductive skew, we demonstrate that the observed presence of multiple and highly divergent Y-haplotypes within western chimpanzee and bonobo groups is best explained by successful male-mediated gene flow. CONCLUSIONS/SIGNIFICANCE The similarity of inferred rates of male-mediated gene flow and published rates of EGP in western chimpanzees suggests this is the most likely mechanism of male-mediated gene flow in this subspecies. In bonobos more data are needed to refine the estimated rate of gene flow. Our findings suggest that dispersal patterns in these closely related species, and particularly for the chimpanzee subspecies, are more variable than previously appreciated. This is consistent with growing recognition of extensive behavioral variation in chimpanzees and bonobos.
Collapse
Affiliation(s)
- Grit Schubert
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Junior Research Group Novel Zoonoses, Robert Koch Institute, Berlin, Germany
| | | | - Mimi Arandjelovic
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christophe Boesch
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Nadin Eckhardt
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Gottfried Hohmann
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kevin Langergraber
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Anthropology, Boston University, Boston, Massachusetts, United States of America
| | - Dieter Lukas
- Large Animal Research Group, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Linda Vigilant
- Department of Primatology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- * E-mail:
| |
Collapse
|
28
|
Tung J, Alberts SC, Wray GA. Evolutionary genetics in wild primates: combining genetic approaches with field studies of natural populations. Trends Genet 2010; 26:353-62. [PMID: 20580115 PMCID: PMC2933653 DOI: 10.1016/j.tig.2010.05.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 05/17/2010] [Accepted: 05/22/2010] [Indexed: 11/19/2022]
Abstract
Ecological and evolutionary studies of wild primates hold important keys to understanding both the shared characteristics of primate biology and the genetic and phenotypic differences that make specific lineages, including our own, unique. Although complementary genetic research on nonhuman primates has long been of interest, recent technological and methodological advances now enable functional and population genetic studies in an unprecedented manner. In the past several years, novel genetic data sets have revealed new information about the demographic history of primate populations and the genetics of adaptively important traits. In combination with the rich history of behavioral, ecological, and physiological work on natural primate populations, genetic approaches promise to provide a compelling picture of primate evolution in the past and in the present day.
Collapse
Affiliation(s)
- Jenny Tung
- Department of Biology, Duke University, P.O. Box 90338, Durham NC 27708, USA.
| | | | | |
Collapse
|
29
|
Secondary transfer of adult mantled howlers (Alouatta palliata) on Hacienda La Pacifica, Costa Rica: 1975–2009. Primates 2010; 51:241-9. [DOI: 10.1007/s10329-010-0195-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 02/25/2010] [Indexed: 10/19/2022]
|
30
|
Nsubuga AM, Holzman J, Chemnick LG, Ryder OA. The cryptic genetic structure of the North American captive gorilla population. CONSERV GENET 2009. [DOI: 10.1007/s10592-009-0015-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Vigilant L, Guschanski K. Using genetics to understand the dynamics of wild primate populations. Primates 2009; 50:105-20. [PMID: 19172380 PMCID: PMC2757609 DOI: 10.1007/s10329-008-0124-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 12/19/2008] [Indexed: 11/09/2022]
Abstract
While much can be learned about primates by means of observation, the slow life history of many primates means that even decades of dedicated effort cannot illuminate long-term evolutionary processes. For example, while the size of a contemporary population can be estimated from field censuses, it is often desirable to know whether a population has been constant or changing in size over a time frame of hundreds or thousands of years. Even the nature of "a population" is open to question, and the extent to which individuals successfully disperse among defined populations is also difficult to estimate by using observational methods alone. Researchers have thus turned to genetic methods to examine the size, structure, and evolutionary histories of primate populations. Many results have been gained by study of sequence variation of maternally inherited mitochondrial DNA, but in recent years researchers have been increasingly focusing on analysis of short, highly variable microsatellite segments in the autosomal genome for a high-resolution view of evolutionary processes involving both sexes. In this review we describe some of the insights thus gained, and discuss the likely impact on this field of new technologies such as high-throughput DNA sequencing.
Collapse
Affiliation(s)
- Linda Vigilant
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany.
| | | |
Collapse
|