1
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Gao J, Jing J, Shang G, Chen C, Duan M, Yu W, Wang K, Luo J, Song M, Chen K, Chen C, Zhang T, Ding D. TDRD1 phase separation drives intermitochondrial cement assembly to promote piRNA biogenesis and fertility. Dev Cell 2024; 59:2704-2718.e6. [PMID: 39029469 DOI: 10.1016/j.devcel.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/22/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024]
Abstract
The intermitochondrial cement (IMC) is a prominent germ granule that locates among clustered mitochondria in mammalian germ cells. Serving as a key platform for Piwi-interacting RNA (piRNA) biogenesis; however, how the IMC assembles among mitochondria remains elusive. Here, we identify that Tudor domain-containing 1 (TDRD1) triggers IMC assembly via phase separation. TDRD1 phase separation is driven by the cooperation of its tetramerized coiled-coil domain and dimethylarginine-binding Tudor domains but is independent of its intrinsically disordered region. TDRD1 is recruited to mitochondria by MILI and sequentially enhances mitochondrial clustering and triggers IMC assembly via phase separation to promote piRNA processing. TDRD1 phase separation deficiency in mice disrupts IMC assembly and piRNA biogenesis, leading to transposon de-repression and spermatogenic arrest. Moreover, TDRD1 phase separation is conserved in vertebrates but not in invertebrates. Collectively, our findings demonstrate a role of phase separation in germ granule formation and establish a link between membrane-bound organelles and membrane-less organelles.
Collapse
Affiliation(s)
- Jie Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiongjie Jing
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200127, China
| | - Guanyi Shang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Canmei Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Maoping Duan
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenyang Yu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ke Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jie Luo
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Manxiu Song
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kun Chen
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200127, China
| | - Chen Chen
- Department of Animal Science, Michigan State University, East Lansing, MI 48824, USA
| | - Tuo Zhang
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Deqiang Ding
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Shi DL. Interplay of RNA-binding proteins controls germ cell development in zebrafish. J Genet Genomics 2024; 51:889-899. [PMID: 38969260 DOI: 10.1016/j.jgg.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
The specification of germ cells in zebrafish mostly relies on an inherited mechanism by which localized maternal determinants, called germ plasm, confer germline fate in the early embryo. Extensive studies have partially allowed the identification of key regulators governing germ plasm formation and subsequent germ cell development. RNA-binding proteins, acting in concert with other germ plasm components, play essential roles in the organization of the germ plasm and the specification, migration, maintenance, and differentiation of primordial germ cells. The loss of their functions impairs germ cell formation and causes sterility or sexual conversion. Evidence is emerging that they instruct germline development through differential regulation of mRNA fates in somatic and germ cells. However, the challenge remains to decipher the complex interplay of maternal germ plasm components in germ plasm compartmentalization and germ cell specification. Because failure to control the developmental outcome of germ cells disrupts the formation of gametes, it is important to gain a complete picture of regulatory mechanisms operating in the germ cell lineage. This review sheds light on the contributions of RNA-binding proteins to germ cell development in zebrafish and highlights intriguing questions that remain open for future investigation.
Collapse
Affiliation(s)
- De-Li Shi
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine (IBPS), Sorbonne University, 75005 Paris, France.
| |
Collapse
|
4
|
Rani R, Sri NS, Medishetti R, Chatti K, Sevilimedu A. Loss of FMRP affects ovarian development and behaviour through multiple pathways in a zebrafish model of fragile X syndrome. Hum Mol Genet 2024; 33:1391-1405. [PMID: 38710511 PMCID: PMC7616351 DOI: 10.1093/hmg/ddae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder and the leading genetic cause of autism spectrum disorders. FXS is caused by loss of function mutations in Fragile X mental retardation protein (FMRP), an RNA binding protein that is known to regulate translation of its target mRNAs, predominantly in the brain and gonads. The molecular mechanisms connecting FMRP function to neurodevelopmental phenotypes are well understood. However, neither the full extent of reproductive phenotypes, nor the underlying molecular mechanisms have been as yet determined. Here, we developed new fmr1 knockout zebrafish lines and show that they mimic key aspects of FXS neuronal phenotypes across both larval and adult stages. Results from the fmr1 knockout females also showed that altered gene expression in the brain, via the neuroendocrine pathway contribute to distinct abnormal phenotypes during ovarian development and oocyte maturation. We identified at least three mechanisms underpinning these defects, including altered neuroendocrine signaling in sexually mature females resulting in accelerated ovarian development, altered expression of germ cell and meiosis promoting genes at various stages during oocyte maturation, and finally a strong mitochondrial impairment in late stage oocytes from knockout females. Our findings have implications beyond FXS in the study of reproductive function and female infertility. Dissection of the translation control pathways during ovarian development using models like the knockout lines reported here may reveal novel approaches and targets for fertility treatments.
Collapse
Affiliation(s)
- Rita Rani
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| | - N Sushma Sri
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| | - Raghavender Medishetti
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| | - Kiranam Chatti
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
- Center for Rare Disease Models, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| | - Aarti Sevilimedu
- Center for Innovation in Molecular and Pharmaceutical Sciences, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
- Center for Rare Disease Models, Dr. Reddy’s Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, Telangana500046, India
| |
Collapse
|
5
|
Divyanshi, Yang J. Germ plasm dynamics during oogenesis and early embryonic development in Xenopus and zebrafish. Mol Reprod Dev 2024; 91:e23718. [PMID: 38126950 PMCID: PMC11190040 DOI: 10.1002/mrd.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 11/09/2023] [Accepted: 11/12/2023] [Indexed: 12/23/2023]
Abstract
Specification of the germline and its segregation from the soma mark one of the most crucial events in the lifetime of an organism. In different organisms, this specification can occur through either inheritance or inductive mechanisms. In species such as Xenopus and zebrafish, the specification of primordial germ cells relies on the inheritance of maternal germline determinants that are synthesized and sequestered in the germ plasm during oogenesis. In this review, we discuss the formation of the germ plasm, how germline determinants are recruited into the germ plasm during oogenesis, and the dynamics of the germ plasm during oogenesis and early embryonic development.
Collapse
Affiliation(s)
- Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
| | - Jing Yang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL, USA
| |
Collapse
|
6
|
Scholl A, Liu Y, Seydoux G. Caenorhabditis elegans germ granules accumulate hundreds of low translation mRNAs with no systematic preference for germ cell fate regulators. Development 2024; 151:dev202575. [PMID: 38984542 PMCID: PMC11266749 DOI: 10.1242/dev.202575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
In animals with germ plasm, embryonic germline precursors inherit germ granules, condensates proposed to regulate mRNAs coding for germ cell fate determinants. In Caenorhabditis elegans, mRNAs are recruited to germ granules by MEG-3, a sequence non-specific RNA-binding protein that forms stabilizing interfacial clusters on germ granules. Using fluorescence in situ hybridization, we confirmed that 441 MEG-3-bound transcripts are distributed in a pattern consistent with enrichment in germ granules. Thirteen are related to transcripts reported in germ granules in Drosophila or Nasonia. The majority, however, are low-translation maternal transcripts required for embryogenesis that are not maintained preferentially in the nascent germline. Granule enrichment raises the concentration of certain transcripts in germ plasm but is not essential to regulate mRNA translation or stability. Our findings suggest that only a minority of germ granule-associated transcripts contribute to germ cell fate in C. elegans and that the vast majority function as non-specific scaffolds for MEG-3.
Collapse
Affiliation(s)
- Alyshia Scholl
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yihong Liu
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Geraldine Seydoux
- HHMI and Dept. of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Mullins MC. A toast to a zebrafish germ cell induction cocktail. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1314-1315. [PMID: 38376713 DOI: 10.1007/s11427-024-2530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Affiliation(s)
- Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, 19104, USA.
| |
Collapse
|
8
|
Wang H, Yu H, Li Q. Integrative analysis of single-nucleus RNA-seq and bulk RNA-seq reveals germline cells development dynamics and niches in the Pacific oyster gonad. iScience 2024; 27:109499. [PMID: 38571762 PMCID: PMC10987912 DOI: 10.1016/j.isci.2024.109499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Gametogenesis drives the maturation of germ cell precursors into functional gametes, facilitated by interactions with the niche environment. However, the molecular mechanisms, especially in invertebrates, remain incompletely understood. In this study, the gonadal microenvironment and gametogenic processes in the Pacific oyster, a model for diffuse gonadal organization and periodic gametogenesis, are investigated. We combine single-nucleus RNA-seq and bulk RNA-seq to analyze gonadal microenvironments in oysters. Twenty-three male and nineteen female gonadal cell clusters are identified, revealing four male and three female germ cell types, alongside follicular cells in females and Sertoli/Leydig cells in males. The NOTCH and BMP (bone morphogenetic protein) signaling pathways play a significant role in the male germline niche, suggesting similarities with mammalian germ cell microenvironment. This study offers valuable insights into germ cell developmental transitions and microenvironmental characteristics.
Collapse
Affiliation(s)
- Huihui Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| |
Collapse
|
9
|
Wang X, Zhu J, Wang H, Deng W, Jiao S, Wang Y, He M, Zhang F, Liu T, Hao Y, Ye D, Sun Y. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat Commun 2023; 14:7918. [PMID: 38097571 PMCID: PMC10721796 DOI: 10.1038/s41467-023-43587-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of genome editing and primordial germ cell (PGC) transplantation has enormous significance in the study of developmental biology and genetic breeding, despite its low efficiency due to limited number of donor PGCs. Here, we employ a combination of germplasm factors to convert blastoderm cells into induced PGCs (iPGCs) in zebrafish and obtain functional gametes either through iPGC transplantation or via the single blastomere overexpression of germplasm factors. Zebrafish-derived germplasm factors convert blastula cells of Gobiocypris rarus into iPGCs, and Gobiocypris rarus spermatozoa can be produced by iPGC-transplanted zebrafish. Moreover, the combination of genome knock-in and iPGC transplantation perfectly resolves the contradiction between high knock-in efficiency and early lethality during embryonic stages and greatly improves the efficiency of genome knock-in. Together, we present an efficient method for generating PGCs in a teleost, a technique that will have a strong impact in basic research and aquaculture.
Collapse
Affiliation(s)
- Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junwen Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenqi Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongkang Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
10
|
Hwang H, Chen S, Ma M, Divyanshi, Fan HC, Borwick E, Böke E, Mei W, Yang J. Solubility phase transition of maternal RNAs during vertebrate oocyte-to-embryo transition. Dev Cell 2023; 58:2776-2788.e5. [PMID: 37922909 PMCID: PMC10841985 DOI: 10.1016/j.devcel.2023.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/01/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The oocyte-to-embryo transition (OET) is regulated by maternal products stored in the oocyte cytoplasm, independent of transcription. How maternal products are precisely remodeled to dictate the OET remains largely unclear. In this work, we discover the dynamic solubility phase transition of maternal RNAs during Xenopus OET. We have identified 863 maternal transcripts that transition from a soluble state to a detergent-insoluble one after oocyte maturation. These RNAs are enriched in the animal hemisphere, and many of them encode key cell cycle regulators. In contrast, 165 transcripts, including nearly all Xenopus germline RNAs and some vegetally localized somatic RNAs, undergo an insoluble-to-soluble phase transition. This phenomenon is conserved in zebrafish. Our results demonstrate that the phase transition of germline RNAs influences their susceptibility to RNA degradation machinery and is mediated by the remodeling of germ plasm. This work thus identifies important remodeling mechanisms that act on RNAs to control vertebrate OET.
Collapse
Affiliation(s)
- Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Sijie Chen
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Meng Ma
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Hao-Chun Fan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Elizabeth Borwick
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
11
|
Westerich KJ, Tarbashevich K, Schick J, Gupta A, Zhu M, Hull K, Romo D, Zeuschner D, Goudarzi M, Gross-Thebing T, Raz E. Spatial organization and function of RNA molecules within phase-separated condensates in zebrafish are controlled by Dnd1. Dev Cell 2023; 58:1578-1592.e5. [PMID: 37463577 PMCID: PMC10528888 DOI: 10.1016/j.devcel.2023.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 06/08/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Germ granules, condensates of phase-separated RNA and protein, are organelles that are essential for germline development in different organisms. The patterning of the granules and their relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that the localization of RNA molecules to the periphery of the granules, where ribosomes are localized, depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates' periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with the loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for post-transcriptional control and its importance for preserving germ cell totipotency.
Collapse
Affiliation(s)
- Kim Joana Westerich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Jan Schick
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Antra Gupta
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Mingzhao Zhu
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Kenneth Hull
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Daniel Romo
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, TX 76706, USA
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Mohammad Goudarzi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Theresa Gross-Thebing
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster, 48149 Münster, Germany; Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany.
| |
Collapse
|
12
|
He Z, Chen Q, Xiong J, Chen M, Gao K, Lai B, Ding W, Huang J, Zheng L, Pu Y, Tang Z, Zhang M, Yang D, Yan T. FoxH1 Represses the Promoter Activity of cyp19a1a in the Ricefield Eel ( Monopterus albus). Int J Mol Sci 2023; 24:13712. [PMID: 37762014 PMCID: PMC10531137 DOI: 10.3390/ijms241813712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Forkhead box H1 (FoxH1) is a sexually dimorphic gene in Oreochromis niloticus, Oplegnathus fasciatus, and Acanthopagrus latus, indicating that it is essential for gonadal development. In the present study, the molecular characteristics and potential function of FoxH1 and the activation of the cyp19a1a promoter in vitro were evaluated in Monopterus albus. The levels of foxh1 in the ovaries were three times higher than those in the testes and were regulated by gonadotropins (Follicle-Stimulating Hormone and Human Chorionic Gonadotropin). FoxH1 colocalized with Cyp19a1a in the oocytes and granulosa cells of middle and late vitellogenic follicles. In addition, three FoxH1 binding sites were identified in the proximal promoter of cyp19a1a, namely, FH1 (-871/-860), FH2 (-535/-524), and FH3 (-218/-207). FoxH1 overexpression significantly attenuated the activity of the cyp19a1a promoter in CHO cells, and FH1/2 mutation increased promoter activity. Taken together, these results suggest that FoxH1 may act as an important regulator in the ovarian development of M. albus by repressing cyp19a1a promoter activity, which provides a foundation for the study of FoxH1 function in bony fish reproductive processes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Q.C.)
| | - Taiming Yan
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Z.H.); (Q.C.)
| |
Collapse
|
13
|
陈 一, 凌 晓, 于 浩, 丁 俊. [Role of Liquid-Liquid Phase Separation in Cell Fate Transition and Diseases]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2023; 54:857-862. [PMID: 37866939 PMCID: PMC10579061 DOI: 10.12182/20230960302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Indexed: 10/24/2023]
Abstract
Liquid-liquid phase separation (LLPS), a novel mechanism of the organization and formation of cellular structures, plays a vital role in regulating cell fate transitions and disease pathogenesis and is gaining widespread attention. LLPS may lead to the assemblage of cellular structures with liquid-like fluidity, such as germ granules, stress granules, and nucleoli, which are classic membraneless organelles. These structures are typically formed through the high-concentration liquid aggregation of biomacromolecules driven by weak multivalent interactions. LLPS is involved in regulating various intracellular life activities and its dysregulation may cause the disruption of cellular functions, thereby contributing to the pathogenesis and development of neurodegenerative diseases, infectious diseases, cancers, etc. Herein, we summarized published findings on the LLPS dynamics of membraneless organelles in physiological and pathological cell fate transition, revealing their crucial roles in cell differentiation, development, and various pathogenic processes. This paper provides a fresh theoretical framework and potential therapeutic targets for LLPS-related studies, opening new avenues for future research.
Collapse
Affiliation(s)
- 一龙 陈
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - 晓茹 凌
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
| | - 浩澎 于
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| | - 俊军 丁
- 四川大学医学大数据中心 (成都 610041)Medical Big Data Center, Sichuan University, Chengdu 610041, China
- 四川大学华西医院 生物医学大数据中心 (成都 610041)West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学“医学+信息”中心 (成都 610041)Med-X Center for Informatics, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Fodor E, Okendo J, Szabó N, Szabó K, Czimer D, Tarján-Rácz A, Szeverényi I, Low BW, Liew JH, Koren S, Rhie A, Orbán L, Miklósi Á, Varga M, Burgess SM. The reference genome of the paradise fish ( Macropodus opercularis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552018. [PMID: 37609174 PMCID: PMC10441432 DOI: 10.1101/2023.08.10.552018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Over the decades, a small number of model species, each representative of a larger taxa, have dominated the field of biological research. Amongst fishes, zebrafish (Danio rerio) has gained popularity over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species from Southeast Asia, has a highly complex behavioral repertoire and has been the subject of many ethological investigations, but lacks genomic resources. Here we report the reference genome assembly of Macropodus opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of ≈483 Mb on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ≈90% of them to orthogroups. Completeness analysis showed that 98.5% of the Actinopterygii core gene set (ODB10) was present as a complete ortholog in our reference genome with a further 1.2 % being present in a fragmented form. Additionally, we cloned multiple genes important during early development and using newly developed in situ hybridization protocols, we showed that they have conserved expression patterns.
Collapse
Affiliation(s)
- Erika Fodor
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Javan Okendo
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Nóra Szabó
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kata Szabó
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dávid Czimer
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Anita Tarján-Rácz
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ildikó Szeverényi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bi Wei Low
- Science Unit, Lingnan University, Hong Kong, China
| | | | - Sergey Koren
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Arang Rhie
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - László Orbán
- Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, Hungary
| | - Ádám Miklósi
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| |
Collapse
|
15
|
Doyle DA, Burian FN, Aharoni B, Klinder AJ, Menzel MM, Nifras GCC, Shabazz-Henry AL, Palma BU, Hidalgo GA, Sottolano CJ, Ortega BM, Niepielko MG. Germ Granule Evolution Provides Mechanistic Insight into Drosophila Germline Development. Mol Biol Evol 2023; 40:msad174. [PMID: 37527522 PMCID: PMC10414811 DOI: 10.1093/molbev/msad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
The copackaging of mRNAs into biomolecular condensates called germ granules is a conserved strategy to posttranscriptionally regulate germline mRNAs. In Drosophila melanogaster, mRNAs accumulate in germ granules by forming homotypic clusters, aggregates containing multiple transcripts from the same gene. Nucleated by Oskar (Osk), homotypic clusters are generated through a stochastic seeding and self-recruitment process that requires the 3' untranslated region (UTR) of germ granule mRNAs. Interestingly, the 3' UTR belonging to germ granule mRNAs, such as nanos (nos), have considerable sequence variations among Drosophila species and we hypothesized that this diversity influences homotypic clustering. To test our hypothesis, we investigated the homotypic clustering of nos and polar granule component (pgc) in four Drosophila species and concluded that clustering is a conserved process used to enrich germ granule mRNAs. However, we discovered germ granule phenotypes that included significant changes in the abundance of transcripts present in species' homotypic clusters, which also reflected diversity in the number of coalesced primordial germ cells within their embryonic gonads. By integrating biological data with computational modeling, we found that multiple mechanisms underlie naturally occurring germ granule diversity, including changes in nos, pgc, osk levels and/or homotypic clustering efficacy. Furthermore, we demonstrated how the nos 3' UTR from different species influences nos clustering, causing granules to have ∼70% less nos and increasing the presence of defective primordial germ cells. Our results highlight the impact that evolution has on germ granules, which should provide broader insight into processes that modify compositions and activities of other classes of biomolecular condensate.
Collapse
Affiliation(s)
- Dominique A Doyle
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Florencia N Burian
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Benjamin Aharoni
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Annabelle J Klinder
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Melissa M Menzel
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | | | | | - Bianca Ulrich Palma
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Gisselle A Hidalgo
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Christopher J Sottolano
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, USA
| | - Bianca M Ortega
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Matthew G Niepielko
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
- Department of Biological Sciences, Kean University, Union, NJ, USA
| |
Collapse
|
16
|
Westerich KJ, Tarbashevich K, Schick J, Gupta A, Zhu M, Hull K, Romo D, Zeuschner D, Goudarzi M, Gross-Thebing T, Raz E. Spatial organization and function of RNA molecules within phase-separated condensates are controlled by Dnd1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548244. [PMID: 37461638 PMCID: PMC10350045 DOI: 10.1101/2023.07.09.548244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Germ granules, condensates of phase-separated RNA and protein, are organelles essential for germline development in different organisms The patterning of the granules and its relevance for germ cell fate are not fully understood. Combining three-dimensional in vivo structural and functional analyses, we study the dynamic spatial organization of molecules within zebrafish germ granules. We find that localization of RNA molecules to the periphery of the granules, where ribosomes are localized depends on translational activity at this location. In addition, we find that the vertebrate-specific Dead end (Dnd1) protein is essential for nanos3 RNA localization at the condensates' periphery. Accordingly, in the absence of Dnd1, or when translation is inhibited, nanos3 RNA translocates into the granule interior, away from the ribosomes, a process that is correlated with loss of germ cell fate. These findings highlight the relevance of sub-granule compartmentalization for posttranscriptional control, and its importance for preserving germ cell totipotency.
Collapse
Affiliation(s)
- Kim Joana Westerich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Katsiaryna Tarbashevich
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Jan Schick
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Antra Gupta
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Mingzhao Zhu
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76706, United States
| | - Kenneth Hull
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76706, United States
| | - Daniel Romo
- Department of Chemistry & Biochemistry and The Baylor Synthesis and Drug-Lead Discovery Laboratory, Baylor University, Waco, Texas 76706, United States
| | - Dagmar Zeuschner
- Electron Microscopy Facility, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Mohammad Goudarzi
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Theresa Gross-Thebing
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, University of Münster; 48149 Münster, Germany
- Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| |
Collapse
|
17
|
Nie H, Xu Y, Zhang Y, Wen Y, Zhan J, Xia Y, Zhou Y, Wang R, Wu X. The effects of endogenous FSH and its receptor on oogenesis and folliculogenesis in female Alligator sinensis. BMC ZOOL 2023; 8:8. [PMID: 37403129 DOI: 10.1186/s40850-023-00170-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/26/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND The precise mechanisms of hormone action responsible for the full course of events modulating folliculogenesis in crocodilian have not been determined, although histological features have been identified. RESULTS The Alligator sinensis ovarian morphological characteristics observed at 1, 15, 30, 60, 90, and 300 days post hatching(dph) revealed that the dynamic changes in germ cells varied in different meiotic and developmental stages, confirming that the processes of folliculogenesis were protracted and asynchronous. The presence of endogenous follicle-stimulating hormone(FSH) mRNA and protein expression within the cerebrum at 1 dph, in parallel with the increase in germ cells within the germ cell nests(Nest) from 1 dph to 15 dph, suggested that endocrine regulation of the pituitary-gonad axis is an early event in oogonia division. Furthermore, the endogenous expression of FSH showed a trend of negative feedback augmentation accompanied by the exhaustion of maternal yolk E2 observed at 15 dph. Such significant elevation of endogenous FSH levels was observed to be related to pivotal events in the transition from mitosis to meiosis, as reflected by the proportion of oogonia during premeiosis interphase, with endogenous FSH levels reaching a peak at the earliest time step of 1 dph. In addition, the simultaneous upregulation of premeiotic marker STRA8 mRNA expression and the increase in endogenous FSH further verified the above speculation. The strongly FSHr-positive label in the oocytes within Pre-previtellogenic follicles was synchronized with the significant elevation of ovarian cAMP detected at 300 dph, which suggested that diplotene arrest maintenance during early vitellogenesis might be FSH dependent. In addition, preferential selection in asynchronous meiotic initiation has been supposed to act on somatic supportive cells and not directly on germ cells via regulation of FSH that in turn affects downstream estrogen levels. This suggestion was verified by the reciprocal stimulating effect of FSH and E2 on the accelerated meiotic marker SYCP3 and by the inhibited cell apoptosis demonstrated in ovarian cell culture in vitro. CONCLUSION The corresponding results contribute an expansion of the understanding of physiological processes and shed some light on the specific factors responsible for gonadotropin function in the early folliculogenesis of crocodilians.
Collapse
Affiliation(s)
- Haitao Nie
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yunlu Xu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yuqian Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yue Wen
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Jixiang Zhan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yong Xia
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China
| | - Yongkang Zhou
- Alligator Research Center of Anhui Province, Xuanzhou, 242000, People's Republic of China
| | - Renping Wang
- Alligator Research Center of Anhui Province, Xuanzhou, 242000, People's Republic of China
| | - Xiaobing Wu
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, 241000, People's Republic of China.
| |
Collapse
|
18
|
Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg CP. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biol 2023; 21:e3002146. [PMID: 37289834 DOI: 10.1371/journal.pbio.3002146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Laura Hofmann
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Irene Steccari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roland Kardos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | |
Collapse
|
19
|
Hwang H, Chen S, Ma M, Divyanshi, Fan HC, Borwick E, Böke E, Mei W, Yang J. Phase transition of maternal RNAs during vertebrate oocyte-to-embryo transition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540463. [PMID: 37214813 PMCID: PMC10197690 DOI: 10.1101/2023.05.11.540463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oocyte-to-embryo transition (OET) is regulated by maternal products stored in the oocyte cytoplasm, independent of transcription. How maternal products are precisely remodeled to dictate the OET remains an open question. In this work, we discover the dynamic phase transition of maternal RNAs during Xenopus OET. We have identified 863 maternal transcripts that transition from a soluble state to a detergent-insoluble one after oocyte maturation. These RNAs are enriched in the animal hemisphere and many of them encode key cell cycle regulators. In contrast, 165 transcripts, including nearly all Xenopus germline RNAs and some vegetally localized somatic RNAs, undergo an insoluble-to-soluble phase transition. This phenomenon is conserved in zebrafish. Our results demonstrate that the phase transition of germline RNAs influences their susceptibility to RNA degradation machinery and is mediated by the remodeling of germ plasm. This work thus uncovers novel remodeling mechanisms that act on RNAs to regulate vertebrate OET.
Collapse
Affiliation(s)
- Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Sijie Chen
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Meng Ma
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Divyanshi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Hao-Chun Fan
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Elizabeth Borwick
- School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Elvan Böke
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Wenyan Mei
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL 61802, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
20
|
Abstract
RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."
Collapse
Affiliation(s)
- Andrea Putnam
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Laura Thomas
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Geraldine Seydoux
- Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
21
|
Doyle DA, Burian FN, Aharoni B, Klinder AJ, Menzel MM, Nifras GCC, Shabazz-Henry AL, Palma BU, Hidalgo GA, Sottolano CJ, Ortega BM, Niepielko MG. Evolutionary changes in germ granule mRNA content are driven by multiple mechanisms in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529147. [PMID: 36865184 PMCID: PMC9980053 DOI: 10.1101/2023.02.21.529147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The co-packaging of mRNAs into biomolecular condensates called germ granules is a conserved strategy to post-transcriptionally regulate mRNAs that function in germline development and maintenance. In D. melanogaster, mRNAs accumulate in germ granules by forming homotypic clusters, aggregates that contain multiple transcripts from a specific gene. Nucleated by Oskar (Osk), homotypic clusters in D. melanogaster are generated through a stochastic seeding and self-recruitment process that requires the 3' UTR of germ granule mRNAs. Interestingly, the 3' UTR belonging to germ granule mRNAs, such as nanos (nos), have considerable sequence variations among Drosophila species. Thus, we hypothesized that evolutionary changes in the 3' UTR influences germ granule development. To test our hypothesis, we investigated the homotypic clustering of nos and polar granule component (pgc) in four Drosophila species and concluded that homotypic clustering is a conserved developmental process used to enrich germ granule mRNAs. Additionally, we discovered that the number of transcripts found in nos and/or pgc clusters could vary significantly among species. By integrating biological data with computational modeling, we determined that multiple mechanisms underlie naturally occurring germ granule diversity, including changes in nos, pgc, osk levels, and/or homotypic clustering efficacy. Finally, we found that the nos 3' UTR from different species can alter the efficacy of nos homotypic clustering, resulting in germ granules with reduced nos accumulation. Our findings highlight the impact that evolution has on the development of germ granules and may provide insight into processes that modify the content of other classes of biomolecular condensates.
Collapse
Affiliation(s)
- Dominique A. Doyle
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Florencia N. Burian
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Benjamin Aharoni
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Annabelle J. Klinder
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Melissa M. Menzel
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Gerard Carlo C. Nifras
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Ahad L. Shabazz-Henry
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Bianca Ulrich Palma
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Gisselle A. Hidalgo
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Christopher J. Sottolano
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Bianca M. Ortega
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Matthew G. Niepielko
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
- Department of Biological Sciences, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| |
Collapse
|
22
|
Li W, Liu W, Mo C, Yi M, Gui J. Two Novel lncRNAs Regulate Primordial Germ Cell Development in Zebrafish. Cells 2023; 12:cells12040672. [PMID: 36831339 PMCID: PMC9954370 DOI: 10.3390/cells12040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/22/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are regulatory transcripts in various biological processes. However, the role of lncRNAs in germline development remains poorly understood, especially for fish primordial germ cell (PGC) development. In this study, the lncRNA profile of zebrafish PGC was revealed by single cell RNA-sequencing and bioinformatic prediction. We established the regulation network of lncRNA-mRNA associated with PGC development, from which we identified three novel lncRNAs-lnc172, lnc196, and lnc304-highly expressing in PGCs and gonads. Fluorescent in situ hybridization indicated germline-specific localization of lnc196 and lnc304 in the cytoplasm and nucleus of spermatogonia, spermatocyte, and occyte, and they were co-localized with vasa in the cytoplasm of the spermatogonia. By contrast, lnc172 was localized in the cytoplasm of male germline, myoid cells and ovarian somatic cells. Loss- and gain-of-function experiments demonstrated that knockdown and PGC-specific overexpression of lnc304 as well as universal overexpression of lnc172 significantly disrupted PGC development. In summary, the present study revealed the lncRNA profile of zebrafish PGC and identified two novel lncRNAs associated with PGC development, providing new insights for understanding the regulatory mechanism of PGC development.
Collapse
Affiliation(s)
- Wenjing Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Wei Liu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Chengyu Mo
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China
- Correspondence: (M.Y.); (J.G.)
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 420072, China
- Correspondence: (M.Y.); (J.G.)
| |
Collapse
|
23
|
Nair S, Welch EL, Moravec CE, Trevena RL, Hansen CL, Pelegri F. The midbody component Prc1-like is required for microtubule reorganization during cytokinesis and dorsal determinant segregation in the early zebrafish embryo. Development 2023; 150:dev200564. [PMID: 36789950 PMCID: PMC10112900 DOI: 10.1242/dev.200564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/10/2023] [Indexed: 02/16/2023]
Abstract
We show that the zebrafish maternal-effect mutation too much information (tmi) corresponds to zebrafish prc1-like (prc1l), which encodes a member of the MAP65/Ase1/PRC1 family of microtubule-associated proteins. Embryos from tmi homozygous mutant mothers display cytokinesis defects in meiotic and mitotic divisions in the early embryo, indicating that Prc1l has a role in midbody formation during cell division at the egg-to-embryo transition. Unexpectedly, maternal Prc1l function is also essential for the reorganization of vegetal pole microtubules required for the segregation of dorsal determinants. Whereas Prc1 is widely regarded to crosslink microtubules in an antiparallel conformation, our studies provide evidence for an additional function of Prc1l in the bundling of parallel microtubules in the vegetal cortex of the early embryo during cortical rotation and prior to mitotic cycling. These findings highlight common yet distinct aspects of microtubule reorganization that occur during the egg-to-embryo transition, driven by maternal product for the midbody component Prc1l and required for embryonic cell division and pattern formation.
Collapse
Affiliation(s)
- Sreelaja Nair
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Elaine L. Welch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cara E. Moravec
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ryan L. Trevena
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Christina L. Hansen
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
24
|
Carver JJ, Zhu Y. Metzincin metalloproteases in PGC migration and gonadal sex conversion. Gen Comp Endocrinol 2023; 330:114137. [PMID: 36191636 DOI: 10.1016/j.ygcen.2022.114137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/13/2022] [Accepted: 09/28/2022] [Indexed: 12/14/2022]
Abstract
Development of a functional gonad includes migration of primordial germ cells (PGCs), differentiations of somatic and germ cells, formation of primary follicles or spermatogenic cysts with somatic gonadal cells, development and maturation of gametes, and subsequent releasing of mature germ cells. These processes require extensive cellular and tissue remodeling, as well as broad alterations of the surrounding extracellular matrix (ECM). Metalloproteases, including MMPs (matrix metalloproteases), ADAMs (a disintegrin and metalloproteinases), and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs), are suggested to have critical roles in the remodeling of the ECM during gonad development. However, few research articles and reviews are available on the functions and mechanisms of metalloproteases in remodeling gonadal ECM, gonadal development, or gonadal differentiation. Moreover, most studies focused on the roles of transcription and growth factors in early gonad development and primary sex determination, leaving a significant knowledge gap on how differentially expressed metalloproteases exert effects on the ECM, cell migration, development, and survival of germ cells during the development and differentiation of ovaries or testes. We will review gonad development with focus on the evidence of metalloprotease involvements, and with an emphasis on zebrafish as a model for studying gonadal sex differentiation and metalloprotease functions.
Collapse
Affiliation(s)
- Jonathan J Carver
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, NC 27858, USA.
| |
Collapse
|
25
|
Ling X, Liu X, Jiang S, Fan L, Ding J. The dynamics of three-dimensional chromatin organization and phase separation in cell fate transitions and diseases. CELL REGENERATION (LONDON, ENGLAND) 2022; 11:42. [PMID: 36539553 PMCID: PMC9768101 DOI: 10.1186/s13619-022-00145-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
Cell fate transition is a fascinating process involving complex dynamics of three-dimensional (3D) chromatin organization and phase separation, which play an essential role in cell fate decision by regulating gene expression. Phase separation is increasingly being considered a driving force of chromatin folding. In this review, we have summarized the dynamic features of 3D chromatin and phase separation during physiological and pathological cell fate transitions and systematically analyzed recent evidence of phase separation facilitating the chromatin structure. In addition, we discuss current advances in understanding how phase separation contributes to physical and functional enhancer-promoter contacts. We highlight the functional roles of 3D chromatin organization and phase separation in cell fate transitions, and more explorations are required to study the regulatory relationship between 3D chromatin organization and phase separation. 3D chromatin organization (shown by Hi-C contact map) and phase separation are highly dynamic and play functional roles during early embryonic development, cell differentiation, somatic reprogramming, cell transdifferentiation and pathogenetic process. Phase separation can regulate 3D chromatin organization directly, but whether 3D chromatin organization regulates phase separation remains unclear.
Collapse
Affiliation(s)
- Xiaoru Ling
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Xinyi Liu
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Shaoshuai Jiang
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China
| | - Lili Fan
- grid.258164.c0000 0004 1790 3548Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong China
| | - Junjun Ding
- grid.12981.330000 0001 2360 039XAdvanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XRNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.12981.330000 0001 2360 039XCenter for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong China ,grid.410737.60000 0000 8653 1072Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436 China ,grid.13291.380000 0001 0807 1581West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
26
|
Chiappetta A, Liao J, Tian S, Trcek T. Structural and functional organization of germ plasm condensates. Biochem J 2022; 479:2477-2495. [PMID: 36534469 PMCID: PMC10722471 DOI: 10.1042/bcj20210815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/23/2022]
Abstract
Reproductive success of metazoans relies on germ cells. These cells develop early during embryogenesis, divide and undergo meiosis in the adult to make sperm and oocytes. Unlike somatic cells, germ cells are immortal and transfer their genetic material to new generations. They are also totipotent, as they differentiate into different somatic cell types. The maintenance of immortality and totipotency of germ cells depends on extensive post-transcriptional and post-translational regulation coupled with epigenetic remodeling, processes that begin with the onset of embryogenesis [1, 2]. At the heart of this regulation lie germ granules, membraneless ribonucleoprotein condensates that are specific to the germline cytoplasm called the germ plasm. They are a hallmark of all germ cells and contain several proteins and RNAs that are conserved across species. Interestingly, germ granules are often structured and tend to change through development. In this review, we describe how the structure of germ granules becomes established and discuss possible functional outcomes these structures have during development.
Collapse
|
27
|
Zhang R, Tu Y, Ye D, Gu Z, Chen Z, Sun Y. A Germline-Specific Regulator of Mitochondrial Fusion is Required for Maintenance and Differentiation of Germline Stem and Progenitor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203631. [PMID: 36257818 PMCID: PMC9798980 DOI: 10.1002/advs.202203631] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/28/2022] [Indexed: 06/01/2023]
Abstract
Maintenance and differentiation of germline stem and progenitor cells (GSPCs) is important for sexual reproduction. Here, the authors identify zebrafish pld6 as a novel germline-specific gene by cross-analyzing different RNA sequencing results, and find that pld6 knockout mutants develop exclusively into infertile males. In pld6 mutants, GSPCs fail to differentiate and undergo apoptosis, leading to masculinization and infertility. Mitochondrial fusion in pld6-depleted GSPCs is severely impaired, and the mutants exhibit defects in piRNA biogenesis and transposon suppression. Overall, this work uncovers zebrafish Pld6 as a novel germline-specific regulator of mitochondrial fusion, and highlights its essential role in the maintenance and differentiation of GSPCs as well as gonadal development and gametogenesis.
Collapse
Affiliation(s)
- Ru Zhang
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Yi‐Xuan Tu
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
| | - Zhenglong Gu
- Division of Nutritional SciencesCornell UniversityIthacaNY14853USA
- Center for Mitochondrial Genetics and HealthGreater Bay Area Institute of Precision Medicine (Guangzhou)Fudan UniversityNansha DistrictGuangzhou511400China
| | - Zhen‐Xia Chen
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of Life Science and TechnologyCollege of Biomedicine and HealthInterdisciplinary Sciences InstituteHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryWuhan430070China
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityShenzhen518000China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and BiotechnologyInstitute of HydrobiologyInnovation Academy for Seed DesignChinese Academy of SciencesWuhan430072China
- Hubei Hongshan LaboratoryWuhan430070China
| |
Collapse
|
28
|
Identification of chicken LOC420478 as Bucky ball equivalent and potential germ plasm organizer in birds. Sci Rep 2022; 12:16858. [PMID: 36207377 PMCID: PMC9546911 DOI: 10.1038/s41598-022-21239-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Bucky ball was identified as germ plasm organizer in zebrafish and has proven crucial for Balbiani body condensation. A synteny comparison identified an uncharacterized gene locus in the chicken genome as predicted avian counterpart. Here, we present experimental evidence that this gene locus indeed encodes a ‘Bucky ball’ equivalent in matured oocytes and early embryos of chicken. Heterologous expression of Bucky ball fusion proteins both from zebrafish and chicken with a fluorescent reporter revealed unique patterns indicative for liquid–liquid phase separation of intrinsically disordered proteins. Immuno-labeling detected Bucky ball from oocytes to blastoderms with diffuse distribution in matured oocytes, aggregation in first cleavage furrows, and co-localization to the chicken vasa homolog (CVH). Later, Bucky ball translocated to the cytoplasm of first established cells, and showed nuclear translocation during the major zygotic activation together with CVH. Remarkably, during the phase of area pellucida formation, Bucky ball translocated back into the cytoplasm at stage EGK VI, whereas CVH remained within the nuclei. The condensation of Bucky ball and co-localization with CVH in cleavage furrows and nuclei of the centrally located cells strongly suggests chicken Bucky ball as a germ plasm organizer in birds, and indicate a special importance of the major zygotic activation for germline specification.
Collapse
|
29
|
Shiguemoto GF, Coelho GCZ, López LS, Pessoa GP, Dos Santos SCA, Senhorini JA, Monzani PS, Yasui GS. Primordial germ cell identification and traceability during the initial development of the Siluriformes fish Pseudopimelodus mangurus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1137-1153. [PMID: 35925505 DOI: 10.1007/s10695-022-01106-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Primordial germ cells (PGCs) are responsible for generating all germ cells. Therefore, they are essential targets to be used as a tool for the production of germline chimeras. The labeling and route of PGCs were evaluated during the initial embryonic development of Pseudopimelodus mangurus, using whole-mount in situ hybridization (WISH) and mRNA microinjection in zygotes. A specific antisense RNA probe constituted by a partial coding region from P. mangurus nanos3 mRNA was synthesized for the WISH method. RNA microinjection was performed using the GFP gene reporter regulated by translation regulatory P. mangurus buc and nanos3 3'UTR sequences, germline-specific markers used to describe in vivo migration of PGCs. Nanos3 and buc gene expression was evaluated in tissues for male and female adults and initial development phases and larvae from the first to seventh days post-hatching. The results from the WISH technique indicated the origin of PGCs in P. mangurus from the aggregations of nanos3 mRNA in the cleavage grooves and the signals obtained from nanos3 probes corresponded topographically to the migratory patterns of the PGCs reported for other fish species. Diffuse signals were observed in all blastomeres until the 16-cell stage, which could be related to the two sequences of the nanos3 3'UTR observed in the P. mangurus unfertilized egg transcriptome. Microinjection was not successful using GFP-Dr-nanos1 3'UTR mRNA and GFP-Pm-buc 3'UTR mRNA and allowed the identification of potential PGCs with less than 2% efficiency only and after hatching using GFP-Pm-nanos3 3'UTR. Nanos3 and buc gene expression was reported in the female gonads and from fertilized eggs until the blastula phase. These results provide information about the PGC migration of P. mangurus and the possible use of PGCs for the future generation of germline chimeras to be applied in the conservation efforts of Neotropical Siluriformes species. This study can contribute to establishing genetic banks, manipulating organisms, and assisting in biotechnologies such as transplanting germ cells in fish.
Collapse
Affiliation(s)
- Gustavo Fonseca Shiguemoto
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Geovanna Carla Zacheo Coelho
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Lucia Suárez López
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Giselle Pessanha Pessoa
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | | | - José Augusto Senhorini
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| | - Paulo Sérgio Monzani
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil.
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil.
| | - George Shigueki Yasui
- Institute of Bioscience, São Paulo State University, Botucatu, SP, Brazil
- Laboratory of Fish Biotechnology, Chico Mendes Institute for Biodiversity Conservation /National Center for Research and Conservation of Continental Aquatic Biodiversity, Pirassununga, SP, Brazil
| |
Collapse
|
30
|
Rostam N, Goloborodko A, Riemer S, Hertel A, Riedel D, Vorbrüggen G, Dosch R. The germ plasm is anchored at the cleavage furrows through interaction with tight junctions in the early zebrafish embryo. Development 2022; 149:275789. [DOI: 10.1242/dev.200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The zebrafish germline is specified during early embryogenesis by inherited maternal RNAs and proteins collectively called germ plasm. Only the cells containing germ plasm will become part of the germline, whereas the other cells will commit to somatic cell fates. Therefore, proper localization of germ plasm is key for germ cell specification and its removal is crucial for the development of the soma. The molecular mechanism underlying this process in vertebrates is largely unknown. Here, we show that germ plasm localization in zebrafish is similar to that in Xenopus but distinct from Drosophila. We identified non muscle myosin II (NMII) and tight junction (TJ) components, such as ZO2 and claudin-d (Cldn-d) as interaction candidates of Bucky ball (Buc), which is the germ plasm organizer in zebrafish. Remarkably, we also found that TJ protein ZO1 colocalizes with germ plasm, and electron microscopy of zebrafish embryos uncovered TJ-like structures at the cleavage furrows where the germ plasm is anchored. In addition, injection of the TJ receptor Cldn-d produced extra germ plasm aggregates, whereas expression of a dominant-negative version inhibited germ plasm aggregate formation. Our findings support for the first time a role for TJs in germ plasm localization.
Collapse
Affiliation(s)
- Nadia Rostam
- Institute of Human Genetics, University Medical Center 1 , 37073 Göttingen , Germany
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen 2 Department of Developmental Biology , , 37077 Göttingen , Germany
| | - Alexander Goloborodko
- Institute for Developmental Biochemistry, University Medical Center 3 , 37077 Göttingen , Germany
| | - Stephan Riemer
- Institute for Developmental Biochemistry, University Medical Center 3 , 37077 Göttingen , Germany
| | - Andres Hertel
- Max Planck Institute for Biophysical Chemistry 4 Department of Molecular Developmental Biology , , 37077 Göttingen , Germany
| | - Dietmar Riedel
- Max Planck Institute for Biophysical Chemistry 5 Laboratory of Electron Microscopy , , 37077 Göttingen , Germany
| | - Gerd Vorbrüggen
- Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen 2 Department of Developmental Biology , , 37077 Göttingen , Germany
- Max Planck Institute for Biophysical Chemistry 4 Department of Molecular Developmental Biology , , 37077 Göttingen , Germany
| | - Roland Dosch
- Institute of Human Genetics, University Medical Center 1 , 37073 Göttingen , Germany
- Institute for Developmental Biochemistry, University Medical Center 3 , 37077 Göttingen , Germany
| |
Collapse
|
31
|
Evolutionary conservation of maternal RNA localization in fishes and amphibians revealed by TOMO-Seq. Dev Biol 2022; 489:146-160. [PMID: 35752299 DOI: 10.1016/j.ydbio.2022.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and establishment of many biological processes, cell types and the body plan. However, our knowledge about evolutionary conservation of localized transcripts is still limited to a few models. Our goal was to compare localization profiles along the animal-vegetal axis of mature eggs from four vertebrate models, two amphibians (Xenopus laevis, Ambystoma mexicanum) and two fishes (Acipenser ruthenus, Danio rerio) using the spatial expression method called TOMO-Seq. We revealed that RNAs of many known important transcripts such as germ layer determinants, germ plasm factors and members of key signalling pathways, are localized in completely different profiles among the models. It was also observed that there was a poor correlation between the vegetally localized transcripts but a relatively good correlation between the animally localized transcripts. These findings indicate that the regulation of embryonic development within the animal kingdom is highly diverse and cannot be deduced based on a single model.
Collapse
|
32
|
Tao B, Hu H, Chen J, Chen L, Luo D, Sun Y, Ge F, Zhu Z, Trudeau VL, Hu W. Sinhcaf‐dependent histone deacetylation is essential for primordial germ cell specification. EMBO Rep 2022; 23:e54387. [PMID: 35532311 PMCID: PMC9171691 DOI: 10.15252/embr.202154387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/09/2022] Open
Abstract
Primordial germ cells (PGCs) are the progenitor cells that give rise to sperm and eggs. Sinhcaf is a recently identified subunit of the Sin3 histone deacetylase complex (SIN3A-HDAC). Here, we provide evidence that Sinhcaf-dependent histone deacetylation is essential for germ plasm aggregation and primordial germ cell specification. Specifically, maternal-zygotic sinhcaf zebrafish mutants exhibit germ plasm aggregation defects, decreased PGC abundance and male-biased sex ratio, which can be rescued by re-expressing sinhcaf. Overexpression of sinhcaf results in excess PGCs and a female-biased sex ratio. Sinhcaf binds to the promoter region of kif26ab. Loss of sinhcaf epigenetically switches off kif26ab expression by increasing histone 3 acetylation in the promoter region. Injection of kif26ab mRNA could partially rescue the germ plasm aggregation defects in sinhcaf mutant embryos. Taken together, we demonstrate a role of Sinhcaf in germ plasm aggregation and PGC specialization that is mediated by regulating the histone acetylation status of the kif26ab promoter to activate its transcription. Our findings provide novel insights into the function and regulatory mechanisms of Sinhcaf-mediated histone deacetylation in PGC specification.
Collapse
Affiliation(s)
- Binbin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Hongling Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Ji Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Lu Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
| | - Daji Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology Institute of Hydrobiology The Innovation Academy of Seed Design Chinese Academy of Sciences Wuhan China
- University of Chinese Academy of Sciences Beijing China
- Qingdao National Laboratory for Marine Science and Technology Qingdao China
| |
Collapse
|
33
|
Bogoch Y, Jamieson-Lucy A, Vejnar CE, Levy K, Giraldez AJ, Mullins MC, Elkouby YM. Stage Specific Transcriptomic Analysis and Database for Zebrafish Oogenesis. Front Cell Dev Biol 2022; 10:826892. [PMID: 35733854 PMCID: PMC9207522 DOI: 10.3389/fcell.2022.826892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Oogenesis produces functional eggs and is essential for fertility, embryonic development, and reproduction. The zebrafish ovary is an excellent model to study oogenesis in vertebrates, and recent studies have identified multiple regulators in oocyte development through forward genetic screens, as well as reverse genetics by CRISPR mutagenesis. However, many developmental steps in oogenesis, in zebrafish and other species, remain poorly understood, and their underlying mechanisms are unknown. Here, we take a genomic approach to systematically uncover biological activities throughout oogenesis. We performed transcriptomic analysis on five stages of oogenesis, from the onset of oocyte differentiation through Stage III, which precedes oocyte maturation. These transcriptomes revealed thousands of differentially expressed genes across stages of oogenesis. We analyzed trends of gene expression dynamics along oogenesis, as well as their expression in pair-wise comparisons between stages. We determined their functionally enriched terms, identifying uniquely characteristic biological activities in each stage. These data identified two prominent developmental phases in oocyte differentiation and traced the accumulation of maternally deposited embryonic regulator transcripts in the developing oocyte. Our analysis provides the first molecular description for oogenesis in zebrafish, which we deposit online as a resource for the community. Further, the presence of multiple gene paralogs in zebrafish, and the exclusive curation by many bioinformatic tools of the single paralogs present in humans, challenge zebrafish genomic analyses. We offer an approach for converting zebrafish gene name nomenclature to the human nomenclature for supporting genomic analyses generally in zebrafish. Altogether, our work provides a valuable resource as a first step to uncover oogenesis mechanisms and candidate regulators and track accumulating transcripts of maternal regulators of embryonic development.
Collapse
Affiliation(s)
- Yoel Bogoch
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | - Allison Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | | | - Karine Levy
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| | | | - Mary C. Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Yaniv M. Elkouby
- Department of Developmental Biology and Cancer Research, Hebrew University of Jerusalem Faculty of Medicine, Jerusalem, Israel
- Institute for Biomedical Research, Israel-Canada, Jerusalem, Israel
| |
Collapse
|
34
|
Jamieson-Lucy AH, Kobayashi M, James Aykit Y, Elkouby YM, Escobar-Aguirre M, Vejnar CE, Giraldez AJ, Mullins MC. A proteomics approach identifies novel resident zebrafish Balbiani body proteins Cirbpa and Cirbpb. Dev Biol 2022; 484:1-11. [PMID: 35065906 PMCID: PMC8967276 DOI: 10.1016/j.ydbio.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/17/2023]
Abstract
The Balbiani body (Bb) is the first marker of polarity in vertebrate oocytes. The Bb is a conserved structure found in diverse animals including insects, fish, amphibians, and mammals. During early zebrafish oogenesis, the Bb assembles as a transient aggregate of mRNA, proteins, and membrane-bound organelles at the presumptive vegetal side of the oocyte. As the early oocyte develops, the Bb appears to grow slowly, until at the end of stage I of oogenesis it disassembles and deposits its cargo of localized mRNAs and proteins. In fish and frogs, this cargo includes the germ plasm as well as gene products required to specify dorsal tissues of the future embryo. We demonstrate that the Bb is a stable, solid structure that forms a size exclusion barrier similar to other biological hydrogels. Despite its central role in oocyte polarity, little is known about the mechanism behind the Bb's action. Analysis of the few known protein components of the Bb is insufficient to explain how the Bb assembles, translocates, and disassembles. We isolated Bbs from zebrafish oocytes and performed mass spectrometry to define the Bb proteome. We successfully identified 77 proteins associated with the Bb sample, including known Bb proteins and novel RNA-binding proteins. In particular, we identified Cirbpa and Cirbpb, which have both an RNA-binding domain and a predicted self-aggregation domain. In stage I oocytes, Cirbpa and Cirbpb localize to the Bb rather than the nucleus (as in somatic cells), indicating that they may have a specialized function in the germ line. Both the RNA-binding domain and the self-aggregation domain are sufficient to localize to the Bb, suggesting that Cirbpa and Cirbpb interact with more than just their mRNA targets within the Bb. We propose that Cirbp proteins crosslink mRNA cargo and proteinaceous components of the Bb as it grows. Beyond Cirbpa and Cirbpb, our proteomics dataset presents many candidates for further study, making it a valuable resource for building a comprehensive mechanism for Bb function at a protein level.
Collapse
Affiliation(s)
- Allison H Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Y James Aykit
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yaniv M Elkouby
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Matias Escobar-Aguirre
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Valentino M, Ortega BM, Ulrich B, Doyle DA, Farnum ED, Joiner DA, Gavis ER, Niepielko MG. Computational modeling offers new insight into Drosophila germ granule development. Biophys J 2022; 121:1465-1482. [PMID: 35288123 PMCID: PMC9072583 DOI: 10.1016/j.bpj.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022] Open
Abstract
The packaging of specific mRNAs into ribonucleoprotein granules called germ granules is required for germline proliferation and maintenance. During Drosophila germ granule development, mRNAs such as nanos (nos) and polar granule component (pgc) localize to germ granules through a stochastic seeding and self-recruitment process that generates homotypic clusters: aggregates containing multiple copies of a specific transcript. Germ granules vary in mRNA composition with respect to the different transcripts that they contain and their quantity. However, what influences germ granule mRNA composition during development is unclear. To gain insight into how germ granule mRNA heterogeneity arises, we created a computational model that simulates granule development. Although the model includes known mechanisms that were converted into mathematical representations, additional unreported mechanisms proved to be essential for modeling germ granule formation. The model was validated by predicting defects caused by changes in mRNA and protein abundance. Broader application of the model was demonstrated by quantifying nos and pgc localization efficacies and the contribution that an element within the nos 3' untranslated region has on clustering. For the first time, a mathematical representation of Drosophila germ granule formation is described, offering quantitative insight into how mRNA compositions arise while providing a new tool for guiding future studies.
Collapse
|
36
|
Razmi K, Patil JG. Primordial Germ Cell Development in the Poeciliid, Gambusia holbrooki, Reveals Shared Features Between Lecithotrophs and Matrotrophs. Front Cell Dev Biol 2022; 10:793498. [PMID: 35300414 PMCID: PMC8920993 DOI: 10.3389/fcell.2022.793498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 12/02/2022] Open
Abstract
Metazoans exhibit two modes of primordial germ cell (PGC) specification that are interspersed across taxa. However, the evolutionary link between the two modes and the reproductive strategies of lecithotrophy and matrotrophy is poorly understood. As a first step to understand this, the spatio-temporal expression of teleostean germ plasm markers was investigated in Gambusia holbrooki, a poecilid with shared lecitho- and matrotrophy. A group of germ plasm components was detected in the ovum suggesting maternal inheritance mode of PGC specification. However, the strictly zygotic activation of dnd-β and nanos1 occurred relatively early, reminiscent of models with induction mode (e.g., mice). The PGC clustering, migration and colonisation patterns of G. holbrooki resembled those of zebrafish, medaka and mice at blastula, gastrula and somitogenesis, respectively-recapitulating features of advancing evolutionary nodes with progressive developmental stages. Moreover, the expression domains of PGC markers in G. holbrooki were either specific to teleost (vasa expression in developing PGCs), murine models (dnd spliced variants) or shared between the two taxa (germline and somatic expression of piwi and nanos1). Collectively, the results suggest that the reproductive developmental adaptations may reflect a transition from lecithotrophy to matrotrophy.
Collapse
Affiliation(s)
- Komeil Razmi
- Laboratory of Molecular Biology, Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS, Australia
| | - Jawahar G. Patil
- Laboratory of Molecular Biology, Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS, Australia
| |
Collapse
|
37
|
Shi DL. Circumventing Zygotic Lethality to Generate Maternal Mutants in Zebrafish. BIOLOGY 2022; 11:102. [PMID: 35053100 PMCID: PMC8773025 DOI: 10.3390/biology11010102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 11/16/2022]
Abstract
Maternal gene products accumulated during oogenesis are essential for supporting early developmental processes in both invertebrates and vertebrates. Therefore, understanding their regulatory functions should provide insights into the maternal control of embryogenesis. The CRISPR/Cas9 genome editing technology has provided a powerful tool for creating genetic mutations to study gene functions and developing disease models to identify new therapeutics. However, many maternal genes are also essential after zygotic genome activation; as a result, loss of their zygotic functions often leads to lethality or sterility, thus preventing the generation of maternal mutants by classical crossing between zygotic homozygous mutant adult animals. Although several approaches, such as the rescue of mutant phenotypes through an injection of the wild-type mRNA, germ-line replacement, and the generation of genetically mosaic females, have been developed to overcome this difficulty, they are often technically challenging and time-consuming or inappropriate for many genes that are essential for late developmental events or for germ-line formation. Recently, a method based on the oocyte transgenic expression of CRISPR/Cas9 and guide RNAs has been designed to eliminate maternal gene products in zebrafish. This approach introduces several tandem guide RNA expression cassettes and a GFP reporter into transgenic embryos expressing Cas9 to create biallelic mutations and inactivate genes of interest specifically in the developing oocytes. It is particularly accessible and allows for the elimination of maternal gene products in one fish generation. By further improving its efficiency, this method can be used for the systematic characterization of maternal-effect genes.
Collapse
Affiliation(s)
- De-Li Shi
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China;
- Laboratory of Developmental Biology, CNRS-UMR7622, Institut de Biologie Paris-Seine, Sorbonne University, 75005 Paris, France
| |
Collapse
|
38
|
Kobayashi M, Jamieson-Lucy A, Mullins MC. Microinjection Method for Analyzing Zebrafish Early Stage Oocytes. Front Cell Dev Biol 2021; 9:753642. [PMID: 34820378 PMCID: PMC8607826 DOI: 10.3389/fcell.2021.753642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal factors which accumulate and establish oocyte polarity during the early stages of oogenesis play key roles in embryonic development, as well as germ cell formation. However, vertebrate oogenesis, especially early stages of oogenesis, is not well understood due to the difficulty of accessing these oocytes and the lack of analytical methods. Here, we report on a microinjection method for analyzing zebrafish early-stage oocytes and some artifacts to be aware of when performing oocyte injections or analyzing oocytes. Using this method, we successfully injected mRNAs encoding fluorescent-tagged proteins into early-stage oocytes and observed subcellular localization in the live oocytes. This method is expected to advance the functional analysis of genes involved in oogenesis.
Collapse
Affiliation(s)
- Manami Kobayashi
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Allison Jamieson-Lucy
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| |
Collapse
|
39
|
Shi WJ, Ma DD, Fang GZ, Zhang JG, Huang GY, Xie L, Chen HX, Hou LP, Ying GG. Levonorgestrel and dydrogesterone affect sex determination via different pathways in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105972. [PMID: 34571414 DOI: 10.1016/j.aquatox.2021.105972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Levonorgestrel (LNG) and dydrogesterone (DDG) are two commonly used synthetic progestins that have been detected in aquatic environments. They could affect fish sex differentiation, but the underlying mechanisms remain unknown. Here we investigated the effects of LNG (5 ng L-1 and 50 ng L-1), DDG (100 ng L-1) and their mixtures on gonadal differentiation and sex determination in zebrafish at transcriptomic and histological levels from 2 hours post-fertilization (eleutheroembryos) to 144 days post-fertilization (sexual maturity). Germ cell development and oogenesis pathways were significantly enriched in LNG and the mixture of LNG and DDG treatments, while insulin and apoptosis pathways in the DDG treatment. LNG and the mixture of LNG and DDG strongly decreased transcripts of germ cell development and oogenesis related genes, while DDG increased the transcripts of insulin and apoptosis related genes at 28 days post fertilization (dpf) and 35 dpf. Furthermore, DDG caused ∼ 90% males, and LNG and the mixture of LNG and DDG resulted in 100% males on all sampling dates. Specifically, most males in LNG and the mixture of LNG and DDG treatments were "Type I" males without juvenile oocytes at 28 dpf and 35 dpf, while those in DDG treatment were "Type II" and "Type III" males with a few juvenile oocytes. These results indicated that LNG and DDG promoted testicular differentiation via different pathways to cause male bias. LNG and DDG mixtures have similar effect on testicular differentiation to LNG alone. The findings from this study could have significant ecological implications to fish populations.
Collapse
Affiliation(s)
- Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Gui-Zhen Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hong-Xing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Ping Hou
- School of Life Sciences, Guangzhou University, Guangzhou, 510655, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
40
|
Perera RP, Shaikhqasem A, Rostam N, Dickmanns A, Ficner R, Tittmann K, Dosch R. Bucky Ball Is a Novel Zebrafish Vasa ATPase Activator. Biomolecules 2021; 11:1507. [PMID: 34680140 PMCID: PMC8533965 DOI: 10.3390/biom11101507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
Many multicellular organisms specify germ cells during early embryogenesis by the inheritance of ribonucleoprotein (RNP) granules known as germplasm. However, the role of complex interactions of RNP granules during germ cell specification remains elusive. This study characterizes the interaction of RNP granules, Buc, and zebrafish Vasa (zfVasa) during germ cell specification. We identify a novel zfVasa-binding motif (Buc-VBM) in Buc and a Buc-binding motif (zfVasa-BBM) in zfVasa. Moreover, we show that Buc and zfVasa directly bind in vitro and that this interaction is independent of the RNA. Our circular dichroism spectroscopy data reveal that the intrinsically disordered Buc-VBM peptide forms alpha-helices in the presence of the solvent trifluoroethanol. Intriguingly, we further demonstrate that Buc-VBM enhances zfVasa ATPase activity, thereby annotating the first biochemical function of Buc as a zfVasa ATPase activator. Collectively, these results propose a model in which the activity of zfVasa is a central regulator of primordial germ cell (PGC) formation and is tightly controlled by the germplasm organizer Buc.
Collapse
Affiliation(s)
| | - Alaa Shaikhqasem
- Department for Molecular Structural Biology, University of Goettingen, 37077 Goettingen, Germany; (A.S.); (A.D.); (R.F.)
| | - Nadia Rostam
- Institute for Human Genetics, University of Goettingen, 37073 Goettingen, Germany;
| | - Achim Dickmanns
- Department for Molecular Structural Biology, University of Goettingen, 37077 Goettingen, Germany; (A.S.); (A.D.); (R.F.)
| | - Ralf Ficner
- Department for Molecular Structural Biology, University of Goettingen, 37077 Goettingen, Germany; (A.S.); (A.D.); (R.F.)
- deCluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells” (MBExC), University of Goettingen, 37073 Goettingen, Germany
| | - Kai Tittmann
- Department of Molecular Enzymology, University of Goettingen, 37077 Goettingen, Germany;
| | - Roland Dosch
- Department of Developmental Biochemistry, University of Goettingen, 37077 Goettingen, Germany;
| |
Collapse
|
41
|
Hansen CL, Chamberlain TJ, Trevena RL, Kurek JE, Pelegri F. Conserved germ plasm characteristics across the Danio and Devario lineages. Genesis 2021; 59:e23452. [PMID: 34617657 DOI: 10.1002/dvg.23452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/06/2022]
Abstract
In many animal species, germ cell specification requires the inheritance of germ plasm, a biomolecular condensate containing maternally derived RNAs and proteins. Most studies of germ plasm composition and function have been performed in widely evolutionarily divergent model organisms, such as Caenorhabditis elegans, Drosophila, Xenopus laevis, and Danio rerio (zebrafish). In zebrafish, 12 RNAs localize to germ plasm at the furrows of the early embryo. Here, we tested for the presence of these RNAs in three additional species within the Danionin clade: Danio kyathit, Danio albolineatus, and Devario aequipinnatus. By visualizing nanos RNA, we find that germ plasm segregation patterns during early embryogenesis are conserved across these species. Ten additional germ plasm RNAs exhibit localization at the furrows of early embryos in all three non-zebrafish Danionin species, consistent with germ plasm localization. One component of zebrafish germ plasm, ca15b, lacked specific localization in embryos of the more distantly related D. aequipinnatus. Our findings show that within a subset of closely related Danionin species, the vast majority of germ plasm RNA components are conserved. At the same time, the lack of ca15b localization in D. aequipinnatus germ plasm highlights the potential for the divergence of germ plasm composition across a restricted phylogenetic space.
Collapse
Affiliation(s)
- Christina L Hansen
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Trevor J Chamberlain
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Ryan L Trevena
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Jacob E Kurek
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin - Madison, Madison, Wisconsin, USA
| |
Collapse
|
42
|
Hansen CL, Pelegri F. Primordial Germ Cell Specification in Vertebrate Embryos: Phylogenetic Distribution and Conserved Molecular Features of Preformation and Induction. Front Cell Dev Biol 2021; 9:730332. [PMID: 34604230 PMCID: PMC8481613 DOI: 10.3389/fcell.2021.730332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
The differentiation of primordial germ cells (PGCs) occurs during early embryonic development and is critical for the survival and fitness of sexually reproducing species. Here, we review the two main mechanisms of PGC specification, induction, and preformation, in the context of four model vertebrate species: mouse, axolotl, Xenopus frogs, and zebrafish. We additionally discuss some notable molecular characteristics shared across PGC specification pathways, including the shared expression of products from three conserved germline gene families, DAZ (Deleted in Azoospermia) genes, nanos-related genes, and DEAD-box RNA helicases. Then, we summarize the current state of knowledge of the distribution of germ cell determination systems across kingdom Animalia, with particular attention to vertebrate species, but include several categories of invertebrates - ranging from the "proto-vertebrate" cephalochordates to arthropods, cnidarians, and ctenophores. We also briefly highlight ongoing investigations and potential lines of inquiry that aim to understand the evolutionary relationships between these modes of specification.
Collapse
Affiliation(s)
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
43
|
Urushibata H, Sasaki K, Takahashi E, Hanada T, Fujimoto T, Arai K, Yamaha E. Control of Developmental Speed in Zebrafish Embryos Using Different Incubation Temperatures. Zebrafish 2021; 18:316-325. [PMID: 34491109 DOI: 10.1089/zeb.2021.0022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The zebrafish is a valuable model organism that is widely used in studies of vertebrate development. In the laboratory, zebrafish embryonic development is normally carried out at 28.5°C. In this study, we sought to determine whether it was possible to modify the speed of embryonic development through the use of short- and long-term variations in incubation temperature. After incubation at 20°C-32°C, most early-stage embryos survived to the epiboly stage, whereas more than half of the embryos died at <20°C or >32°C. The rate of development differed between embryos incubated at the lowest (18°C) and highest (34°C) temperatures: a difference of 60 min was observed at the 2-cell stage and 290 min at the 1k-cell stage. When blastulae that had developed at 28°C were transferred to a temperature lower than 18°C for one or more hours, they developed normally after being returned to the original 28°C. Analyses using green fluorescent protein-buckyball mRNA and in situ hybridization against vasa mRNA showed that primordial germ cells increase under low-temperature culture; this response may be of use for studies involving heterochronic germ cell transplantation. Our study shows that embryonic developmental speed can be slowed, which will be of value for performing time-consuming, complicated, and delicate microsurgical operations.
Collapse
Affiliation(s)
- Hirotaro Urushibata
- Laboratory of Aquaculture Genetics and Genomics, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan.,Nanae Freshwater Station, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Japan.,Department of Cell Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Kazuaki Sasaki
- Laboratory of Aquaculture Genetics and Genomics, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Eisuke Takahashi
- Nanae Freshwater Station, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Japan
| | - Toshikatsu Hanada
- Department of Cell Biology, Faculty of Medicine, Oita University, Oita, Japan
| | - Takafumi Fujimoto
- Laboratory of Aquaculture Genetics and Genomics, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Katsutoshi Arai
- Laboratory of Aquaculture Genetics and Genomics, Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Japan
| | - Etsuro Yamaha
- Nanae Freshwater Station, Field Science Center for Northern Biosphere, Hokkaido University, Nanae, Japan
| |
Collapse
|
44
|
Vong YH, Sivashanmugam L, Leech R, Zaucker A, Jones A, Sampath K. The RNA-binding protein Igf2bp3 is critical for embryonic and germline development in zebrafish. PLoS Genet 2021; 17:e1009667. [PMID: 34214072 PMCID: PMC8282044 DOI: 10.1371/journal.pgen.1009667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 07/15/2021] [Accepted: 06/15/2021] [Indexed: 11/18/2022] Open
Abstract
The ability to reproduce is essential in all branches of life. In metazoans, this process is initiated by formation of the germline, a group of cells that are destined to form the future gonads, the tissue that will produce the gametes. The molecular mechanisms underlying germline formation differs between species. In zebrafish, development of the germline is dependent on the specification, migration and proliferation of progenitors called the primordial germ cells (PGCs). PGC specification is dependent on a maternally provided cytoplasmic complex of ribonucleoproteins (RNPs), the germplasm. Here, we show that the conserved RNA-binding protein (RBP), Igf2bp3, has an essential role during early embryonic development and germline development. Loss of Igf2bp3 leads to an expanded yolk syncytial layer (YSL) in early embryos, reduced germline RNA expression, and mis-regulated germline development. We show that loss of maternal Igf2bp3 function results in translational de-regulation of a Nodal reporter during the mid-blastula transition. Furthermore, maternal igf2bp3 mutants exhibit reduced expression of germplasm transcripts, defects in chemokine guidance, abnormal PGC behavior and germ cell death. Consistently, adult igf2bp3 mutants show a strong male bias. Our findings suggest that Igf2bp3 is essential for normal embryonic and germline development, and acts as a key regulator of sexual development.
Collapse
Affiliation(s)
- Yin Ho Vong
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Lavanya Sivashanmugam
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Rebecca Leech
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Andreas Zaucker
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Alex Jones
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Karuna Sampath
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
- Centre for Early Life, University of Warwick, Coventry, United Kingdom
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
45
|
Bertho S, Kaufman O, Lee K, Santos-Ledo A, Dellal D, Marlow FL. A transgenic system for targeted ablation of reproductive and maternal-effect genes. Development 2021; 148:269197. [PMID: 34143203 DOI: 10.1242/dev.198010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Maternally provided gene products regulate the earliest events of embryonic life, including formation of the oocyte that will develop into an egg, and eventually into an embryo. Forward genetic screens have provided invaluable insights into the molecular regulation of embryonic development, including the essential contributions of some genes whose products must be provided to the transcriptionally silent early embryo for normal embryogenesis, called maternal-effect genes. However, other maternal-effect genes are not accessible due to their essential zygotic functions during embryonic development. Identifying these regulators is essential to fill the large gaps in our understanding of the mechanisms and molecular pathways contributing to fertility and to maternally regulated developmental processes. To identify these maternal factors, it is necessary to bypass the earlier requirement for these genes so that their potential later functions can be investigated. Here, we report reverse genetic systems to identify genes with essential roles in zebrafish reproductive and maternal-effect processes. As proof of principle and to assess the efficiency and robustness of mutagenesis, we used these transgenic systems to disrupt two genes with known maternal-effect functions: kif5ba and bucky ball.
Collapse
Affiliation(s)
- Sylvain Bertho
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA
| | - Odelya Kaufman
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - KathyAnn Lee
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA
| | - Adrian Santos-Ledo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Daniel Dellal
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA
| | - Florence L Marlow
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place Box 1020 New York, NY 10029-6574, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| |
Collapse
|
46
|
Ren F, Miao R, Xiao R, Mei J. m 6A reader Igf2bp3 enables germ plasm assembly by m 6A-dependent regulation of gene expression in zebrafish. Sci Bull (Beijing) 2021; 66:1119-1128. [PMID: 36654345 DOI: 10.1016/j.scib.2021.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 01/20/2023]
Abstract
Bucky ball (Buc) is involved in germ plasm (GP) assembly during early zebrafish development by regulating GP mRNA expression via an unknown mechanism. The present study demonstrates that an m6A reader Igf2bp3 interacts and colocalizes with Buc in the GP. Similar to the loss of Buc, the genetic deletion of maternal igf2bp3 in zebrafish leads to abnormal GP assembly and insufficient germ cell specification, which can be partially restored by the injection of igf2bp3 mRNA. Igf2bp3 binds to m6A-modified GP-organizer and GP mRNAs in an m6A-dependent manner and prevents their degradation. These findings indicate that the functions of Igf2bp3, a direct effector protein of Buc, in GP mRNA expression and GP assembly involve m6A-dependent regulation; these results emphasize a critical role of m6A modification in the process of GP assembly.
Collapse
Affiliation(s)
- Fan Ren
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Ran Miao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Xiao
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China; Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
47
|
Quantifying Tissue Tension in the Granulosa Layer After Laser Surgery. Methods Mol Biol 2021. [PMID: 33606227 DOI: 10.1007/978-1-0716-0970-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Tissue morphogenesis is driven by mechanical forces triggering cell movements and shape changes. Quantitatively measuring tension within tissues is of great importance for understanding the role of mechanical signals acting on the cell and tissue level during morphogenesis. Here we introduce laser ablation as a useful tool to probe tissue tension within the granulosa layer, an epithelial monolayer of somatic cells that surround the zebrafish female gamete during folliculogenesis. We describe in detail how to isolate follicles, mount samples, perform laser surgery, and analyze the data.
Collapse
|
48
|
Filanti B, Piccinini G, Bettini S, Lazzari M, Franceschini V, Maurizii MG, Milani L. Early germline differentiation in bivalves: TDRD7 as a candidate investigational unit for Ruditapes philippinarum germ granule assembly. Histochem Cell Biol 2021; 156:19-34. [PMID: 33770286 PMCID: PMC8277629 DOI: 10.1007/s00418-021-01983-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 01/23/2023]
Abstract
The germline is a key feature of sexual animals and the ways in which it separates from the soma differ widely across Metazoa. However, at least at some point during germline differentiation, some cytoplasmic supramolecular structures (collectively called germ plasm-related structures) are present and involved in its specification and/or differentiation. The factors involved in the assembly of these granular structures are various and non-ubiquitous among animals, even if some functional patterns and the presence of certain domains appear to be shared among some. For instance, the LOTUS domain is shared by Oskar, the Holometabola germ plasm master regulator, and some Tudor-family proteins assessed as being involved in the proper assembly of germ granules of different animals. Here, we looked for the presence of LOTUS-containing proteins in the transcriptome of Ruditapes philippinarum (Bivalvia). Such species is of particular interest because it displays annual renewal of gonads, sided by the renewal of germline differentiation pathways. Moreover, previous works have identified in its early germ cells cytoplasmic granules containing germline determinants. We selected the orthologue of TDRD7 as a candidate involved in the early steps of germline differentiation through bioinformatic predictions and immunohistological patterning (immunohistochemistry and immunofluorescence). We observed the expression of the protein in putative precursors of germline cells, upstream to the germline marker Vasa. This, added to the fact that orthologues of this protein are involved in the assembly of germ granules in mouse, zebrafish, and fly, makes it a worthy study unit for investigations on the formation of such structures in bivalves.
Collapse
Affiliation(s)
- Beatrice Filanti
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Giovanni Piccinini
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Simone Bettini
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Maurizio Lazzari
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Valeria Franceschini
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Maria Gabriella Maurizii
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy
| | - Liliana Milani
- Department of Biological, Geological and Environmental Sciences, BiGeA, University of Bologna, Bologna, Italy.
| |
Collapse
|
49
|
D'Orazio FM, Balwierz PJ, González AJ, Guo Y, Hernández-Rodríguez B, Wheatley L, Jasiulewicz A, Hadzhiev Y, Vaquerizas JM, Cairns B, Lenhard B, Müller F. Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization. Dev Cell 2021; 56:641-656.e5. [PMID: 33651978 PMCID: PMC7957325 DOI: 10.1016/j.devcel.2021.02.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/25/2020] [Accepted: 02/03/2021] [Indexed: 02/09/2023]
Abstract
In many animal models, primordial germ cell (PGC) development depends on maternally deposited germ plasm, which prevents somatic cell fate. Here, we show that PGCs respond to regulatory information from the germ plasm in two distinct phases using two distinct mechanisms in zebrafish. We demonstrate that PGCs commence zygotic genome activation together with the somatic blastocysts with no demonstrable differences in transcriptional and chromatin opening. Unexpectedly, both PGC and somatic blastocysts activate germ-cell-specific genes, which are only stabilized in PGCs by cytoplasmic germ plasm determinants. Disaggregated perinuclear relocalization of germ plasm during PGC migration is regulated by the germ plasm determinant Tdrd7 and is coupled to dramatic divergence between PGC and somatic transcriptomes. This transcriptional divergence relies on PGC-specific cis-regulatory elements characterized by promoter-proximal distribution. We show that Tdrd7-dependent reconfiguration of chromatin accessibility is required for elaboration of PGC fate but not for PGC migration. No evidence for transcriptional activation delay in zebrafish PGCs Germ-plasm-associated post-transcriptional divergence during ZGA Epigenetic reprogramming marks onset of PGC migration Epigenetic reprogramming in PGCs relies on Tdrd7, coupled to germ plasm relocalization
Collapse
Affiliation(s)
- Fabio M D'Orazio
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Piotr J Balwierz
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Ada Jimenez González
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yixuan Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Lucy Wheatley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Aleksandra Jasiulewicz
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yavor Hadzhiev
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Juan M Vaquerizas
- MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, Muenster, Germany
| | - Bradley Cairns
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Boris Lenhard
- MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK.
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
50
|
Yan YL, Titus T, Desvignes T, BreMiller R, Batzel P, Sydes J, Farnsworth D, Dillon D, Wegner J, Phillips JB, Peirce J, Dowd J, Buck CL, Miller A, Westerfield M, Postlethwait JH. A fish with no sex: gonadal and adrenal functions partition between zebrafish NR5A1 co-orthologs. Genetics 2021; 217:iyaa030. [PMID: 33724412 PMCID: PMC8045690 DOI: 10.1093/genetics/iyaa030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
People with NR5A1 mutations experience testicular dysgenesis, ovotestes, or adrenal insufficiency, but we do not completely understand the origin of this phenotypic diversity. NR5A1 is expressed in gonadal soma precursor cells before expression of the sex-determining gene SRY. Many fish have two co-orthologs of NR5A1 that likely partitioned ancestral gene subfunctions between them. To explore ancestral roles of NR5A1, we knocked out nr5a1a and nr5a1b in zebrafish. Single-cell RNA-seq identified nr5a1a-expressing cells that co-expressed genes for steroid biosynthesis and the chemokine receptor Cxcl12a in 1-day postfertilization (dpf) embryos, as does the mammalian adrenal-gonadal (interrenal-gonadal) primordium. In 2dpf embryos, nr5a1a was expressed stronger in the interrenal-gonadal primordium than in the early hypothalamus but nr5a1b showed the reverse. Adult Leydig cells expressed both ohnologs and granulosa cells expressed nr5a1a stronger than nr5a1b. Mutants for nr5a1a lacked the interrenal, formed incompletely differentiated testes, had no Leydig cells, and grew far larger than normal fish. Mutants for nr5a1b formed a disorganized interrenal and their gonads completely disappeared. All homozygous mutant genotypes lacked secondary sex characteristics, including male breeding tubercles and female sex papillae, and had exceedingly low levels of estradiol, 11-ketotestosterone, and cortisol. RNA-seq showed that at 21dpf, some animals were developing as females and others were not, independent of nr5a1 genotype. By 35dpf, all mutant genotypes greatly under-expressed ovary-biased genes. Because adult nr5a1a mutants form gonads but lack an interrenal and conversely, adult nr5a1b mutants lack a gonad but have an interrenal, the adrenal, and gonadal functions of the ancestral nr5a1 gene partitioned between ohnologs after the teleost genome duplication, likely owing to reciprocal loss of ancestral tissue-specific regulatory elements. Identifying such elements could provide hints to otherwise unexplained cases of Differences in Sex Development.
Collapse
Affiliation(s)
- Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Tom Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Thomas Desvignes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Ruth BreMiller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Jason Sydes
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Dylan Farnsworth
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Danielle Dillon
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Judy Peirce
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - John Dowd
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | | - Charles Loren Buck
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Adam Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Monte Westerfield
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|