1
|
Zhang K, Jan YK, Zhang D, Cao C. Exploring visuospatial function neuroplasticity in elite speed skaters: a resting-state fMRI independent component analysis. J Sports Med Phys Fitness 2024; 64:1133-1139. [PMID: 39008282 DOI: 10.23736/s0022-4707.24.15947-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
BACKGROUND Limited research has been conducted on the neural mechanisms of visuospatial attention in closed skill sports. This research aimed to delve into the unique visuospatial attention abilities of skaters and elucidate the underlying neural mechanisms. METHODS This cross-sectional study employed an expert-novice paradigm, applying a purely data-driven approach to analyze and compare the resting-state networks (RSNs) associated with visuospatial attention in 15 elite skaters and 15 control subjects. RESULTS From the 38 components identified by independent component analysis (ICA) algorithm, five RSNs were selected, including the dorsal attention network (DAN), left and right fronto-parietal network (FPN), somatomotor network (SMN) and visual network (VIS). Elite skaters exhibited heightened functional connectivity (FC) in the right angular gyrus and left precuneus within DAN, left fusiform gyrus within left FPN, right primary motor cortex within right FPN, left supplementary motor area within SMN, and right primary visual cortex within VIS compared to the control group. Conversely, skaters demonstrated diminished FC in the bilateral superior temporal gyrus within DAN and right prefrontal cortex within the right FPN. CONCLUSIONS Statistical results demonstrated significant differences in RSNs related to visuospatial functions in a wide range of brain regions between elite skaters and controls. We further speculate that these variances could be attributable to alterations in visuospatial abilities resulting from years of devoted skating training. The findings of this study offer novel perspectives on the neural reorganization linked to motor training, contributing to an enriched comprehension of the neuroplasticity changes inherent in prolonged engagement in motor skill development.
Collapse
Affiliation(s)
- Keying Zhang
- Department of Physical Education, Southeast University, Nanjing, China
| | - Yih-Kuen Jan
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Dong Zhang
- China Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, China
| | - Chunmei Cao
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China -
| |
Collapse
|
2
|
Gooijers J, Pauwels L, Hehl M, Seer C, Cuypers K, Swinnen SP. Aging, brain plasticity, and motor learning. Ageing Res Rev 2024:102569. [PMID: 39486523 DOI: 10.1016/j.arr.2024.102569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Motor skill learning, the process of acquiring new motor skills, is critically important across the lifespan, from early development through adulthood and into older age, as well as in pathological conditions (i.e., rehabilitation). Extensive research has demonstrated that motor skill acquisition in young adults is accompanied by significant neuroplastic changes, including alterations in brain structure (gray and white matter), function (i.e., activity and connectivity), and neurochemistry (i.e., levels of neurotransmitters). In the aging population, motor performance typically declines, characterized by slower and less accurate movements. However, despite these age-related changes, older adults maintain the capacity for skill improvement through training. In this review, we explore the extent to which the aging brain retains the ability to adapt in response to motor learning, specifically whether skill acquisition is accompanied by neural changes. Furthermore, we discuss the associations between inter-individual variability in brain structure and function and the potential for future learning in older adults. Finally, we consider the use of non-invasive brain stimulation techniques aimed at optimizing motor learning in this population. Our review provides insights into the neurobiological underpinnings of motor learning in older adults and emphasizes strategies to enhance their motor skill acquisition.
Collapse
Affiliation(s)
- Jolien Gooijers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Melina Hehl
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Caroline Seer
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Koen Cuypers
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium; Neuroplasticity and Movement Control Research Group, Rehabilitation Research Institute (REVAL), Hasselt University, Diepenbeek, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, 3001 Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Cai L, Arimitsu T, Shinohara N, Takahashi T, Hakuno Y, Hata M, Hoshino EI, Watson SK, Townsend SW, Mueller JL, Minagawa Y. Functional reorganization of brain regions supporting artificial grammar learning across the first half year of life. PLoS Biol 2024; 22:e3002610. [PMID: 39436960 PMCID: PMC11495551 DOI: 10.1371/journal.pbio.3002610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024] Open
Abstract
Pre-babbling infants can track nonadjacent dependencies (NADs) in the auditory domain. While this forms a crucial prerequisite for language acquisition, the neurodevelopmental origins of this ability remain unknown. We applied functional near-infrared spectroscopy in neonates and 6- to 7-month-old infants to investigate the neural substrate supporting NAD learning and detection using tone sequences in an artificial grammar learning paradigm. Detection of NADs was indicated by left prefrontal activation in neonates while by left supramarginal gyrus (SMG), superior temporal gyrus (STG), and inferior frontal gyrus activation in 6- to 7-month-olds. Functional connectivity analyses further indicated that the neonate activation pattern during the test phase benefited from a brain network consisting of prefrontal regions, left SMG and STG during the rest and learning phases. These findings suggest a left-hemispheric learning-related functional brain network may emerge at birth and serve as the foundation for the later engagement of these regions for NAD detection, thus, providing a neural basis for language acquisition.
Collapse
Affiliation(s)
- Lin Cai
- Department of Electronics and Electrical Engineering, Keio University, Yokohama, Japan
- Global Research Center for Logic and Sensitivity, Global Research Institute, Keio University, Tokyo, Japan
| | - Takeshi Arimitsu
- Department of Pediatrics, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Naomi Shinohara
- Department of Pediatrics, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoko Hakuno
- Global Research Center for Logic and Sensitivity, Global Research Institute, Keio University, Tokyo, Japan
| | - Masahiro Hata
- Global Research Center for Logic and Sensitivity, Global Research Institute, Keio University, Tokyo, Japan
| | - Ei-ichi Hoshino
- Global Research Center for Logic and Sensitivity, Global Research Institute, Keio University, Tokyo, Japan
| | - Stuart K. Watson
- Department of Comparative Language Science, University of Zürich, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zürich, Switzerland
| | - Simon W. Townsend
- Department of Comparative Language Science, University of Zürich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution, University of Zurich, Zürich, Switzerland
- Department of Evolutionary Anthropology, University of Zurich, Zürich, Switzerland
- Department of Psychology, University of Warwick, Coventry, United Kingdom
| | - Jutta L. Mueller
- Department of Linguistics, University of Vienna, Vienna, Austria
- Vienna Cognitive Science Research HUB, Vienna, Austria
| | - Yasuyo Minagawa
- Global Research Center for Logic and Sensitivity, Global Research Institute, Keio University, Tokyo, Japan
- Department of Psychology, Faculty of Letters, Keio University, Yokohama, Japan
- Human Biology-Microbiome-Quantum Research Center, Keio University, Tokyo, Japan
| |
Collapse
|
4
|
Yuk J, Sainburg RL. Lateralization of acquisition and consolidation in direction but not amplitude of a motor skill task. Exp Brain Res 2024; 242:2341-2356. [PMID: 39110162 DOI: 10.1007/s00221-024-06900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024]
Abstract
Previous research suggests that the neural processes underlying specification of movement direction and amplitude are independently represented in the nervous system. However, our understanding of acquisition and consolidation processes in the direction and distance learning remains limited. We designed a virtual air hockey task, in which the puck direction is determined by the hand direction at impact, while the puck distance is determined by the amplitude of the velocity. In two versions of this task, participants were required to either specify the direction or the distance of the puck, while the alternate variable did not contribute to task success. Separate groups of right-handed participants were recruited for each task. Each participant was randomly assigned to one of two groups with a counter-balanced arm practice sequence (right to left, or left to right). We examined acquisition and, after 24 h, we examined two aspects of consolidation: 1) same hand performance to test the durability and 2) the opposite hand to test the effector-independent consolidation (interlimb transfer) of learning. The distance task showed symmetry between hands in the extent of acquisition as well as in both aspects of consolidation. In contrast, the direction task showed asymmetry in both acquisition and consolidation: the dominant right arm showed faster and greater acquisition and greater transfer from the opposite arm training. The asymmetric acquisition and consolidation processes shown in the direction task might be explained by lateralized control and mapping of direction, an interpretation consistent with previous findings on motor adaptation paradigms.
Collapse
Affiliation(s)
- Jisung Yuk
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| | - Robert L Sainburg
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Department of Neurology, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
5
|
Mottaz A, Savic B, Allaman L, Guggisberg AG. Neural correlates of motor learning: Network communication versus local oscillations. Netw Neurosci 2024; 8:714-733. [PMID: 39355447 PMCID: PMC11340994 DOI: 10.1162/netn_a_00374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/18/2024] [Indexed: 10/03/2024] Open
Abstract
Learning new motor skills through training, also termed motor learning, is central for everyday life. Current training strategies recommend intensive task-repetitions aimed at inducing local activation of motor areas, associated with changes in oscillation amplitudes ("event-related power") during training. More recently, another neural mechanism was suggested to influence motor learning: modulation of functional connectivity (FC), that is, how much spatially separated brain regions communicate with each other before and during training. The goal of the present study was to compare the impact of these two neural processing types on motor learning. We measured EEG before, during, and after a finger-tapping task (FTT) in 20 healthy subjects. The results showed that training gain, long-term expertise (i.e., average motor performance), and consolidation were all predicted by whole-brain alpha- and beta-band FC at motor areas, striatum, and mediotemporal lobe (MTL). Local power changes during training did not predict any dependent variable. Thus, network dynamics seem more crucial than local activity for motor sequence learning, and training techniques should attempt to facilitate network interactions rather than local cortical activation.
Collapse
Affiliation(s)
- Anaïs Mottaz
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- SIB Text Mining Group, Swiss Institute of Bioinformatics, Carouge, Switzerland
- BiTeM Group, Information Sciences, HES-SO/HEG, Carouge, Switzerland
| | - Branislav Savic
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Leslie Allaman
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
| | - Adrian G. Guggisberg
- Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, University of Geneva, Switzerland
- Division of Neurorehabilitation, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| |
Collapse
|
6
|
Fotiadis P, Parkes L, Davis KA, Satterthwaite TD, Shinohara RT, Bassett DS. Structure-function coupling in macroscale human brain networks. Nat Rev Neurosci 2024; 25:688-704. [PMID: 39103609 DOI: 10.1038/s41583-024-00846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
7
|
Petersen SE, Seitzman BA, Nelson SM, Wig GS, Gordon EM. Principles of cortical areas and their implications for neuroimaging. Neuron 2024; 112:2837-2853. [PMID: 38834069 DOI: 10.1016/j.neuron.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/11/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Cortical organization should constrain the study of how the brain performs behavior and cognition. A fundamental concept in cortical organization is that of arealization: that the cortex is parceled into discrete areas. In part one of this report, we review how non-human animal studies have illuminated principles of cortical arealization by revealing: (1) what defines a cortical area, (2) how cortical areas are formed, (3) how cortical areas interact with one another, and (4) what "computations" or "functions" areas perform. In part two, we discuss how these principles apply to neuroimaging research. In doing so, we highlight several examples where the commonly accepted interpretation of neuroimaging observations requires assumptions that violate the principles of arealization, including nonstationary areas that move on short time scales, large-scale gradients as organizing features, and cortical areas with singular functionality that perfectly map psychological constructs. Our belief is that principles of neurobiology should strongly guide the nature of computational explanations.
Collapse
Affiliation(s)
- Steven E Petersen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin A Seitzman
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gagan S Wig
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
8
|
Gonzalez-Castillo J, Spurney MA, Lam KC, Gephart IS, Pereira F, Handwerker DA, Kam J, Bandettini PA. In-Scanner Thoughts shape Resting-state Functional Connectivity: how participants "rest" matters. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.05.596482. [PMID: 38903114 PMCID: PMC11188111 DOI: 10.1101/2024.06.05.596482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Resting-state fMRI (rs-fMRI) scans-namely those lacking experimentally-controlled stimuli or cognitive demands-are often used to identify aberrant patterns of functional connectivity (FC) in clinical populations. To minimize interpretational uncertainty, researchers control for across-cohort disparities in age, gender, co-morbidities, and head motion. Yet, studies rarely, if ever, consider the possibility that systematic differences in inner experience (i.e., what subjects think and feel during the scan) may directly affect FC measures. Here we demonstrate that is the case using a rs-fMRI dataset comprising 471 scans annotated with experiential data. Wide-spread significant differences in FC are observed between scans that systematically differ in terms of reported in-scanner experience. Additionally, we show that FC can successfully predict specific aspects of in-scanner experience in a manner similar to how it predicts demographics, cognitive abilities, clinical outcomes and labels. Together, these results highlight the key role of in-scanner experience in shaping rs-fMRI estimates of FC.
Collapse
Affiliation(s)
| | - M A Spurney
- Section on Functional Imaging Methods, NIMH, NIH, Bethesda, Maryland, USA
| | - K C Lam
- Machine Learning Team, NIMH, NIH, Bethesda, Maryland, USA
| | - I S Gephart
- Section on Functional Imaging Methods, NIMH, NIH, Bethesda, Maryland, USA
| | - F Pereira
- Machine Learning Team, NIMH, NIH, Bethesda, Maryland, USA
| | - D A Handwerker
- Section on Functional Imaging Methods, NIMH, NIH, Bethesda, Maryland, USA
| | - Jwy Kam
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - P A Bandettini
- Section on Functional Imaging Methods, NIMH, NIH, Bethesda, Maryland, USA
- Functional MRI Core, NIMH, NIH, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Meng Z, Huang Y, Wang W, Zhou L, Zhou K. Orienting role of the putative human posterior infero-temporal area in visual attention. Cortex 2024; 175:54-65. [PMID: 38704919 DOI: 10.1016/j.cortex.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/27/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
The dorsal attention network (DAN) is a network of brain regions essential for attentional orienting, which includes the lateral intraparietal area (LIP) and frontal eye field (FEF). Recently, the putative human dorsal posterior infero-temporal area (phPITd) has been identified as a new node of the DAN. However, its functional relationship with other areas of the DAN and its specific role in visual attention remained unclear. In this study, we analyzed a large publicly available neuroimaging dataset to investigate the intrinsic functional connectivities (FCs) of the phPITd with other brain areas. The results showed that the intrinsic FCs of the phPITd with the areas of the visual network and the DAN were significantly stronger than those with the ventral attention network (VAN) areas and areas of other networks. We further conducted individual difference analyses with a sample size of 295 participants and a series of attentional tasks to investigate which attentional components each phPITd-based DAN edge predicts. Our findings revealed that the intrinsic FC of the left phPITd with the LIPv could predict individual ability in attentional orienting, but not in alerting, executive control, and distractor suppression. Our results not only provide direct evidence of the phPITd's functional relationship with the LIPv, but also offer a comprehensive understanding of its specific role in visual attention.
Collapse
Affiliation(s)
- Zong Meng
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Yingjie Huang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Wenbo Wang
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China
| | - Liqin Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| | - Ke Zhou
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (Beijing Normal University), Faculty of Psychology, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
10
|
Maddaluno O, Della Penna S, Pizzuti A, Spezialetti M, Corbetta M, de Pasquale F, Betti V. Encoding Manual Dexterity through Modulation of Intrinsic α Band Connectivity. J Neurosci 2024; 44:e1766232024. [PMID: 38538141 PMCID: PMC11097277 DOI: 10.1523/jneurosci.1766-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/21/2024] [Accepted: 02/20/2024] [Indexed: 05/18/2024] Open
Abstract
The human hand possesses both consolidated motor skills and remarkable flexibility in adapting to ongoing task demands. However, the underlying mechanisms by which the brain balances stability and flexibility remain unknown. In the absence of external input or behavior, spontaneous (intrinsic) brain connectivity is thought to represent a prior of stored memories. In this study, we investigated how manual dexterity modulates spontaneous functional connectivity in the motor cortex during hand movement. Using magnetoencephalography, in 47 human participants (both sexes), we examined connectivity modulations in the α and β frequency bands at rest and during two motor tasks (i.e., finger tapping or toe squeezing). The flexibility and stability of such modulations allowed us to identify two groups of participants with different levels of performance (high and low performers) on the nine-hole peg test, a test of manual dexterity. In the α band, participants with higher manual dexterity showed distributed decreases of connectivity, specifically in the motor cortex, increased segregation, and reduced nodal centrality. Participants with lower manual dexterity showed an opposite pattern. Notably, these patterns from the brain to behavior are mirrored by results from behavior to the brain. Indeed, when participants were divided using the median split of the dexterity score, we found the same connectivity patterns. In summary, this experiment shows that a long-term motor skill-manual dexterity-influences the way the motor systems respond during movements.
Collapse
Affiliation(s)
- Ottavia Maddaluno
- Department of Psychology, Sapienza University of Rome, Rome 00185, Italy
- IRCCS Santa Lucia Foundation, Rome 00179, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences and ITAB - Institute of Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti and Pescara, Chieti 66013, Italy
| | - Alessandra Pizzuti
- Department of Psychology, Sapienza University of Rome, Rome 00185, Italy
- IRCCS Santa Lucia Foundation, Rome 00179, Italy
| | - Matteo Spezialetti
- Department of Psychology, Sapienza University of Rome, Rome 00185, Italy
- IRCCS Santa Lucia Foundation, Rome 00179, Italy
| | - Maurizio Corbetta
- Department of Neuroscience and Padova Neuroscience Center, University of Padua, Padua 35131, Italy
- Veneto Institute of Molecular Medicine (VIMM), Padova 35129, Italy
| | | | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Rome 00185, Italy
- IRCCS Santa Lucia Foundation, Rome 00179, Italy
| |
Collapse
|
11
|
Wang KP, Yu CL, Shen C, Schack T, Hung TM. A longitudinal study of the effect of visuomotor learning on functional brain connectivity. Psychophysiology 2024; 61:e14510. [PMID: 38159049 DOI: 10.1111/psyp.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 01/03/2024]
Abstract
Neural adaptation in the frontoparietal and motor cortex-sensorimotor circuits is crucial for acquiring visuomotor skills. However, the specific nature of highly dynamic neural connectivity in these circuits during the acquisition of visuomotor skills remains unclear. To achieve a more comprehensive understanding of the relationship between acquisition of visuomotor skills and neural connectivity, we used electroencephalographic coherence to capture highly dynamic nature of neural connectivity. We recruited 60 male novices who were randomly assigned to either the experimental group (EG) or the control group (CG). Participants in EG were asked to engage in repeated putting practice, but CG did not engage in golf practice. In addition, we analyzed the connectivity by using 8-13 Hz imaginary inter-site phase coherence in the frontoparietal networks (Fz-P3 and Fz-P4) and the motor cortex-sensorimotor networks (Cz-C3 and Cz-C4) during a golf putting task. To gain a deeper understanding of the dynamic nature of learning trajectories, we compared data at three time points: baseline (T1), 50% improvement from baseline (T2), and 100% improvement from baseline (T3). The results primarily focused on EG, an inverted U-shaped coherence curve was observed in the connectivity of the left motor cortex-sensorimotor circuit, whereas an increase in the connectivity of the right frontoparietal circuit from T2 to T3 was revealed. These results imply that the dynamics of cortico-cortical communication, particularly involving the left motor cortex-sensorimotor and frontal-left parietal circuits. In addition, our findings partially support Hikosaka et al.'s model and provide additional insight into the specific role of these circuits in visuomotor learning.
Collapse
Affiliation(s)
- Kuo-Pin Wang
- Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
- Neurocognition and Action, Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Chien-Lin Yu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Cheng Shen
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Thomas Schack
- Center for Cognitive Interaction Technology, Bielefeld University, Bielefeld, Germany
- Neurocognition and Action, Biomechanics Research Group, Faculty of Psychology and Sports Science, Bielefeld University, Bielefeld, Germany
| | - Tsung-Min Hung
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
12
|
Lewis AF, Bohnenkamp R, Myers M, den Ouden DB, Fritz SL, Stewart JC. Effect of positive social comparative feedback on the resting state connectivity of dopaminergic neural pathways: A preliminary investigation. Neurobiol Learn Mem 2024; 212:107930. [PMID: 38692391 DOI: 10.1016/j.nlm.2024.107930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Positive social comparative feedback is hypothesized to generate a dopamine response in the brain, similar to reward, by enhancing expectancies to support motor skill learning. However, no studies have utilized neuroimaging to examine this hypothesized dopaminergic mechanism. Therefore, the aim of this preliminary study was to investigate the effect of positive social comparative feedback on dopaminergic neural pathways measured by resting state connectivity. Thirty individuals practiced an implicit, motor sequence learning task and were assigned to groups that differed in feedback type. One group received feedback about their actual response time to complete the task (RT ONLY), while the other group received feedback about their response time with positive social comparison (RT + POS). Magnetic resonance imaging was acquired at the beginning and end of repetitive motor practice with feedback to measure practice-dependent changes in resting state brain connectivity. While both groups showed improvements in task performance and increases in performance expectancies, ventral tegmental area and the left nucleus accumbens (mesolimbic dopamine pathway) resting state connectivity increased in the RT + POS group but not in the RT ONLY group. Instead, the RT ONLY group showed increased connectivity between ventral tegmental area and primary motor cortex. Positive social comparative feedback during practice of a motor sequence task may induce a dopaminergic response in the brain along the mesolimbic pathway. However, given that absence of effects on expectancies and motor learning, more robust and individualized approaches may be needed to provide beneficial psychological and behavioral effects.
Collapse
Affiliation(s)
- Allison F Lewis
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Rachel Bohnenkamp
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Makenzie Myers
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | - Dirk B den Ouden
- University of South Carolina, Department of Communication Sciences and Disorders, Columbia, SC, USA
| | - Stacy L Fritz
- University of South Carolina, Department of Exercise Science, Columbia, SC, USA
| | | |
Collapse
|
13
|
Shamay-Tsoory SG, Marton-Alper IZ, Markus A. Post-interaction neuroplasticity of inter-brain networks underlies the development of social relationship. iScience 2024; 27:108796. [PMID: 38292433 PMCID: PMC10825012 DOI: 10.1016/j.isci.2024.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/01/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Inter-brain coupling has been increasingly recognized for its role in supporting connectedness during social communication. Here we investigate whether inter-brain coupling is plastic and persists beyond the offset of social interaction, facilitating the emergence of social closeness. Dyads were concurrently scanned using functional near infrared spectroscopy (fNIRS) while engaging in a task that involved movement synchronization. To assess post-interaction neuroplasticity, participants performed a baseline condition with no interaction before and after the interaction. The results reveal heightened inter-brain coupling in neural networks comprising the inferior frontal gyrus (IFG) and dorsomedial prefrontal cortex in the post-task compared to the pre-task baseline. Critically, the right IFG emerged as a highly connected hub, with post-task inter-brain coupling in this region predicting the levels of motivation to connect socially. We suggest that post-interactions inter-brain coupling may reflect consolidation of socially related cues, underscoring the role of inter-brain plasticity in fundamental aspects of relationship development.
Collapse
Affiliation(s)
- Simone G. Shamay-Tsoory
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| | | | - Andrey Markus
- Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), Haifa, Israel
| |
Collapse
|
14
|
Seitzman BA, Reynoso FJ, Mitchell TJ, Bice AR, Jarang A, Wang X, Mpoy C, Strong L, Rogers BE, Yuede CM, Rubin JB, Perkins SM, Bauer AQ. Functional network disorganization and cognitive decline following fractionated whole-brain radiation in mice. GeroScience 2024; 46:543-562. [PMID: 37749370 PMCID: PMC10828348 DOI: 10.1007/s11357-023-00944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023] Open
Abstract
Cognitive dysfunction following radiotherapy (RT) is one of the most common complications associated with RT delivered to the brain, but the precise mechanisms behind this dysfunction are not well understood, and to date, there are no preventative measures or effective treatments. To improve patient outcomes, a better understanding of the effects of radiation on the brain's functional systems is required. Functional magnetic resonance imaging (fMRI) has shown promise in this regard, however, compared to neural activity, hemodynamic measures of brain function are slow and indirect. Understanding how RT acutely and chronically affects functional brain organization requires more direct examination of temporally evolving neural dynamics as they relate to cerebral hemodynamics for bridging with human studies. In order to adequately study the underlying mechanisms of RT-induced cognitive dysfunction, the development of clinically mimetic RT protocols in animal models is needed. To address these challenges, we developed a fractionated whole-brain RT protocol (3Gy/day for 10 days) and applied longitudinal wide field optical imaging (WFOI) of neural and hemodynamic brain activity at 1, 2, and 3 months post RT. At each time point, mice were subject to repeated behavioral testing across a variety of sensorimotor and cognitive domains. Disruptions in cortical neuronal and hemodynamic activity observed 1 month post RT were significantly worsened by 3 months. While broad changes were observed in functional brain organization post RT, brain regions most impacted by RT occurred within those overlapping with the mouse default mode network and other association areas similar to prior reports in human subjects. Further, significant cognitive deficits were observed following tests of novel object investigation and responses to auditory and contextual cues after fear conditioning. Our results fill a much-needed gap in understanding the effects of whole-brain RT on systems level brain organization and how RT affects neuronal versus hemodynamic signaling in the cortex. Having established a clinically-relevant injury model, future studies can examine therapeutic interventions designed to reduce neuroinflammation-based injury following RT. Given the overlap of sequelae that occur following RT with and without chemotherapy, these tools can also be easily incorporated to examine chemotherapy-related cognitive impairment.
Collapse
Affiliation(s)
- Benjamin A Seitzman
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Francisco J Reynoso
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Timothy J Mitchell
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Annie R Bice
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8225, St. Louis, MO, 63110, USA
| | - Anmol Jarang
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8225, St. Louis, MO, 63110, USA
| | - Xiaodan Wang
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8225, St. Louis, MO, 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Cedric Mpoy
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Lori Strong
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Buck E Rogers
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA
| | - Carla M Yuede
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Stephanie M Perkins
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, 4921 Parkview Place, Campus Box 8224, St. Louis, MO, 63110, USA.
| | - Adam Q Bauer
- Mallinckrodt Institute of Radiology, School of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, Campus Box 8225, St. Louis, MO, 63110, USA.
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
15
|
Han L, Chan MY, Agres PF, Winter-Nelson E, Zhang Z, Wig GS. Measures of resting-state brain network segregation and integration vary in relation to data quantity: implications for within and between subject comparisons of functional brain network organization. Cereb Cortex 2024; 34:bhad506. [PMID: 38385891 PMCID: PMC10883417 DOI: 10.1093/cercor/bhad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 02/23/2024] Open
Abstract
Measures of functional brain network segregation and integration vary with an individual's age, cognitive ability, and health status. Based on these relationships, these measures are frequently examined to study and quantify large-scale patterns of network organization in both basic and applied research settings. However, there is limited information on the stability and reliability of the network measures as applied to functional time-series; these measurement properties are critical to understand if the measures are to be used for individualized characterization of brain networks. We examine measurement reliability using several human datasets (Midnight Scan Club and Human Connectome Project [both Young Adult and Aging]). These datasets include participants with multiple scanning sessions, and collectively include individuals spanning a broad age range of the adult lifespan. The measurement and reliability of measures of resting-state network segregation and integration vary in relation to data quantity for a given participant's scan session; notably, both properties asymptote when estimated using adequate amounts of clean data. We demonstrate how this source of variability can systematically bias interpretation of differences and changes in brain network organization if appropriate safeguards are not included. These observations have important implications for cross-sectional, longitudinal, and interventional comparisons of functional brain network organization.
Collapse
Affiliation(s)
- Liang Han
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, United States
| | - Micaela Y Chan
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, United States
| | - Phillip F Agres
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, United States
| | - Ezra Winter-Nelson
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, United States
| | - Ziwei Zhang
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, United States
| | - Gagan S Wig
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, United States
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|
16
|
Kraeutner SN, Rubino C, Ferris JK, Rinat S, Penko L, Chiu L, Greeley B, Jones CB, Larssen BC, Boyd LA. Frontoparietal function and underlying structure reflect capacity for motor skill acquisition during healthy aging. Neurobiol Aging 2024; 133:78-86. [PMID: 37918189 DOI: 10.1016/j.neurobiolaging.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
While capacity for motor skill acquisition changes with healthy aging, there has been little consideration of how age-related changes in brain function or baseline brain structure support motor skill acquisition. We examined: (1) age-dependent changes in functional reorganization related to frontoparietal regions during motor skill acquisition, and (2) whether capacity for motor skill acquisition relates to baseline white matter microstructure in frontoparietal tracts. Healthy older and younger adults engaged in 4 weeks of skilled motor practice. Resting-state functional connectivity (rsFC) assessed functional reorganization before and after practice. Diffusion tensor imaging indexed microstructure of a frontoparietal tract at baseline, generated by rsFC seeds. Motor skill acquisition was associated with decreases in rsFC in healthy older adults and increases in rsFC in healthy younger adults. Frontoparietal tract microstructure was lower in healthy older versus younger adults, yet it was negatively associated with rate of skill acquisition regardless of group. Findings indicate that age-dependent alterations in frontoparietal function and baseline structure of a frontoparietal tract reflect capacity for motor skill acquisition.
Collapse
Affiliation(s)
- Sarah N Kraeutner
- Department of Psychology, University of British Columbia, Kelowna, British Columbia, Canada; Djavad Mowafaghian, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Cristina Rubino
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jennifer K Ferris
- Gerontology Research Centre, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Shie Rinat
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lauren Penko
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Larissa Chiu
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Greeley
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christina B Jones
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Beverley C Larssen
- Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lara A Boyd
- Djavad Mowafaghian, Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada; Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Nuernberger M, Finke K, Nuernberger L, Ruiz-Rizzo AL, Gaser C, Klingner C, Witte OW, Brodoehl S. Visual stimulation by extensive visual media consumption can be beneficial for motor learning. Sci Rep 2023; 13:22056. [PMID: 38086999 PMCID: PMC10716399 DOI: 10.1038/s41598-023-49415-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023] Open
Abstract
In this randomized controlled intervention trial, we investigated whether intense visual stimulation through television watching can enhance visual information processing and motor learning performance. 74 healthy young adults were trained in a motor skill with visual information processing demands while being accommodated in a controlled environment for five days. The experimental manipulation (n = 37) consisted of prolonged television watching (i.e., 8 h/day, + 62.5% on average) to induce intense exposure to visual stimulation. The control group (n = 37) did not consume visual media. The groups were compared by motor learning performance throughout the study as well as pre/post visual attention parameters and resting-state network connectivity in functional MRI. We found that the intervention group performed significantly better in the motor learning task (+ 8.21% (95%-CI[12.04, 4.31], t(70) = 4.23, p < 0.001) while showing an increased capacity of visual short-term memory (+ 0.254, t(58) = - 3.19, p = 0.002) and increased connectivity between visual and motor-learning associated resting-state networks. Our findings suggest that the human brain might enter a state of accentuated visuomotor integration to support the implementation of motor learning with visual information processing demands if challenged by ample input of visual stimulation. Further investigation is needed to evaluate the persistence of this effect regarding participants exposed to accustomed amounts of visual media consumption.Clinical Trials Registration: This trial was registered in the German Clinical Trials Register/Deutsches Register klinischer Studien (DRKS): DRKS00019955.
Collapse
Affiliation(s)
- Matthias Nuernberger
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | - Kathrin Finke
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Lisa Nuernberger
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Adriana L Ruiz-Rizzo
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Christian Gaser
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- German Center for Mental Health (DZPG), Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Carsten Klingner
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Stefan Brodoehl
- Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
- Biomagnetic Center, Department of Neurology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
18
|
Di Rienzo F, Debarnot U, Daligault S, Delpuech C, Doyon J, Guillot A. Brain plasticity underlying sleep-dependent motor consolidation after motor imagery. Cereb Cortex 2023; 33:11431-11445. [PMID: 37814365 DOI: 10.1093/cercor/bhad379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Motor imagery can, similarly to physical practice, improve motor performance through experience-based plasticity. Using magnetoencephalography, we investigated changes in brain activity associated with offline consolidation of motor sequence learning through physical practice or motor imagery. After an initial training session with either physical practice or motor imagery, participants underwent overnight consolidation. As control condition, participants underwent wake-related consolidation after training with motor imagery. Behavioral analyses revealed that overnight consolidation of motor learning through motor imagery outperformed wake-related consolidation (95% CI [0.02, 0.07], P < 0.001, RP2 = 0.05). As regions of interest, we selected the generators of event-related synchronization/desynchronization of alpha (8-12 Hz) and beta (15-30 Hz) oscillations, which predicted the level of performance on the motor sequence. This yielded a primary sensorimotor-premotor network for alpha oscillations and a cortico-cerebellar network for beta oscillations. The alpha network exhibited increased neural desynchronization after overnight consolidation compared to wake-related consolidation. By contrast, the beta network exhibited an increase in neural synchronization after wake-related consolidation compared to overnight consolidation. We provide the first evidence of parallel brain plasticity underlying behavioral changes associated with sleep-dependent consolidation of motor skill learning through motor imagery and physical practice.
Collapse
Affiliation(s)
- Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Ursula Debarnot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| | | | - Claude Delpuech
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, Bron 69677, France
| | - Julien Doyon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| |
Collapse
|
19
|
Stevens WD, Khan N, Anderson JAE, Grady CL, Bialystok E. A neural mechanism of cognitive reserve: The case of bilingualism. Neuroimage 2023; 281:120365. [PMID: 37683809 DOI: 10.1016/j.neuroimage.2023.120365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023] Open
Abstract
Cognitive Reserve (CR) refers to the preservation of cognitive function in the face of age- or disease-related neuroanatomical decline. While bilingualism has been shown to contribute to CR, the extent to which, and what particular aspect of, second language experience contributes to CR are debated, and the underlying neural mechanism(s) unknown. Intrinsic functional connectivity reflects experience-dependent neuroplasticity that occurs across timescales ranging from minutes to decades, and may be a neural mechanism underlying CR. To test this hypothesis, we used voxel-based morphometry and resting-state functional connectivity analyses of MRI data to compare structural and functional brain integrity between monolingual and bilingual older adults, matched on cognitive performance, and across levels of second language proficiency measured as a continuous variable. Bilingualism, and degree of second language proficiency specifically, were associated with lower gray matter integrity in a hub of the default mode network - a region that is particularly vulnerable to decline in aging and dementia - but preserved intrinsic functional network organization. Bilingualism moderated the association between neuroanatomical differences and cognitive decline, such that lower gray matter integrity was associated with lower executive function in monolinguals, but not bilinguals. Intrinsic functional network integrity predicted executive function when controlling for group differences in gray matter integrity and language status. Our findings confirm that lifelong bilingualism is a CR factor, as bilingual older adults performed just as well as their monolingual peers on tasks of executive function, despite showing signs of more advanced neuroanatomical aging, and that this is a consequence of preserved intrinsic functional network organization.
Collapse
Affiliation(s)
- W Dale Stevens
- Department of Psychology, York University, Toronto, Canada.
| | - Naail Khan
- Department of Psychology, York University, Toronto, Canada
| | - John A E Anderson
- Department of Cognitive Science, Carleton University, Ottawa, Canada
| | - Cheryl L Grady
- Rotman Research Institute at Baycrest Hospital, Toronto, Canada; Departments of Psychology and Psychiatry, University of Toronto, Toronto, Canada
| | - Ellen Bialystok
- Department of Psychology, York University, Toronto, Canada; Rotman Research Institute at Baycrest Hospital, Toronto, Canada
| |
Collapse
|
20
|
Soussi C, Berthoz S, Chirokoff V, Chanraud S. Interindividual Brain and Behavior Differences in Adaptation to Unexpected Uncertainty. BIOLOGY 2023; 12:1323. [PMID: 37887033 PMCID: PMC10604029 DOI: 10.3390/biology12101323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/28/2023]
Abstract
To adapt to a new environment, individuals must alternate between exploiting previously learned "action-consequence" combinations and exploring new actions for which the consequences are unknown: they face an exploration/exploitation trade-off. The neural substrates of these behaviors and the factors that may relate to the interindividual variability in their expression remain overlooked, in particular when considering neural connectivity patterns. Here, to trigger environmental uncertainty, false feedbacks were introduced in the second phase of an associative learning task. Indices reflecting exploitation and cost of uncertainty were computed. Changes in the intrinsic connectivity were determined using resting-state functional connectivity (rFC) analyses before and after performing the "cheated" phase of the task in the MRI. We explored their links with behavioral and psychological factors. Dispersion in the participants' cost of uncertainty was used to categorize two groups. These groups showed different patterns of rFC changes. Moreover, in the overall sample, exploitation was correlated with rFC changes between (1) the anterior cingulate cortex and the cerebellum region 3, and (2) the left frontal inferior gyrus (orbital part) and the right frontal inferior gyrus (triangular part). Anxiety and doubt about action propensity were weakly correlated with some rFC changes. These results demonstrate that the exploration/exploitation trade-off involves the modulation of cortico-cerebellar intrinsic connectivity.
Collapse
Affiliation(s)
- Célia Soussi
- INCIA CNRS 5287, University of Bordeaux, 33076 Bordeaux, France; (C.S.); (V.C.); (S.C.)
- UNICAEN, INSERM, U1237, PhIND “Physiopathology and Imaging of Neurological Disorders”, NeuroPresage Team, Cyceron, Normandy University, 14000 Caen, France
| | - Sylvie Berthoz
- INCIA CNRS 5287, University of Bordeaux, 33076 Bordeaux, France; (C.S.); (V.C.); (S.C.)
- Department of Psychiatry for Adolescents and Young Adults, Institut Mutualiste Montsouris, 75014 Paris, France
| | - Valentine Chirokoff
- INCIA CNRS 5287, University of Bordeaux, 33076 Bordeaux, France; (C.S.); (V.C.); (S.C.)
- Ecole Pratique des Hautes Etudes, Section of Life and Earth Sciences, PSL Research University, 75014 Paris, France
| | - Sandra Chanraud
- INCIA CNRS 5287, University of Bordeaux, 33076 Bordeaux, France; (C.S.); (V.C.); (S.C.)
- Ecole Pratique des Hautes Etudes, Section of Life and Earth Sciences, PSL Research University, 75014 Paris, France
| |
Collapse
|
21
|
de Pasquale F, Chiacchiaretta P, Pavone L, Sparano A, Capotosto P, Grillea G, Committeri G, Baldassarre A. Brain Topological Reorganization Associated with Visual Neglect After Stroke. Brain Connect 2023; 13:473-486. [PMID: 34269620 PMCID: PMC10618825 DOI: 10.1089/brain.2020.0969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background/Purpose: To identify brain hubs that are behaviorally relevant for neglect after stroke as well as to characterize their functional architecture of communication. Methods: Twenty acute right hemisphere damaged patients underwent neuropsychological and resting-state functional magnetic resonance imaging sessions. Spatial neglect was assessed by means of the Center of Cancellation on the Bells Cancellation Test. For each patient, resting-state functional connectivity matrices were derived by adopting a brain parcellation scheme consisting of 153 nodes. For every node, we extracted its betweenness centrality (BC) defined as the portion of all shortest paths in the connectome involving such node. Then, neglect hubs were identified as those regions showing a high correlation between their BC and neglect scores. Results: A first set of neglect hubs was identified in multiple systems including dorsal attention and ventral attention, default mode, and frontoparietal executive-control networks within the damaged hemisphere as well as in the posterior and anterior cingulate cortex. Such cortical regions exhibited a loss of BC and increased (i.e., less efficient) weighted shortest path length (WSPL) related to severe neglect. Conversely, a second group of neglect hubs found in visual and motor networks, in the undamaged hemisphere, exhibited a pathological increase of BC and reduction of WSPL associated with severe neglect. Conclusion: The topological reorganization of the brain in neglect patients might reflect a maladaptive shift in processing spatial information from higher level associative-control systems to lower level visual and sensory-motor processing areas after a right hemisphere lesion.
Collapse
Affiliation(s)
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | | | - Paolo Capotosto
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | | | - Giorgia Committeri
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- IRCCS NEUROMED, Pozzilli, Italy
| |
Collapse
|
22
|
Li Z, Athwal D, Lee HL, Sah P, Opazo P, Chuang KH. Locating causal hubs of memory consolidation in spontaneous brain network in male mice. Nat Commun 2023; 14:5399. [PMID: 37669938 PMCID: PMC10480429 DOI: 10.1038/s41467-023-41024-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/17/2023] [Indexed: 09/07/2023] Open
Abstract
Memory consolidation after learning involves spontaneous, brain-wide network reorganization during rest and sleep, but how this is achieved is still poorly understood. Current theory suggests that the hippocampus is pivotal for this reshaping of connectivity. Using fMRI in male mice, we identify that a different set of spontaneous networks and their hubs are instrumental in consolidating memory during post-learning rest. We found that two types of spatial memory training invoke distinct functional connections, but that a network of the sensory cortex and subcortical areas is common for both tasks. Furthermore, learning increased brain-wide network integration, with the prefrontal, striatal and thalamic areas being influential for this network-level reconfiguration. Chemogenetic suppression of each hub identified after learning resulted in retrograde amnesia, confirming the behavioral significance. These results demonstrate the causal and functional roles of resting-state network hubs in memory consolidation and suggest that a distributed network beyond the hippocampus subserves this process.
Collapse
Affiliation(s)
- Zengmin Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dilsher Athwal
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Hsu-Lei Lee
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Patricio Opazo
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Clem Jones Centre for Ageing Dementia Research, The University of Queensland, Brisbane, QLD, Australia
- UK Dementia Research Institute, Centre for Discovery Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | - Kai-Hsiang Chuang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- Centre of Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia.
| |
Collapse
|
23
|
Takeda S, Miyamoto R. A randomized controlled trial of changes in resting-state functional connectivity associated with short-term motor learning of chopstick use with the non-dominant hand. Behav Brain Res 2023; 452:114599. [PMID: 37506851 DOI: 10.1016/j.bbr.2023.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION This study identified the offline brain networks associated with motor learning of non-dominant hand chopstick use within-session. METHODS 40 healthy right-handed adults were randomly assigned to the practice and control groups (20 each). The performance, resting-state functional connectivity (RSFC), and their correlation were compared within and between groups. Both groups repeated 9 cycles of 30 s task and rest. During the task, the practice group performed the chopstick-use practice with their left hand, while the control group held chopsticks without acquiring any skills. During the rest, both groups fixated their gaze on a fixation point. The number of times candies were moved using chopsticks with the left hand in 30 s was used to evaluate the performance. RSFC was obtained by resting-state fMRI scanning and extracting Z-scores between the right primary motor cortex and all other brain regions. RESULTS Both the groups improved in the post-task performance; the practice group improved more. The RSFC of the two networks increased in the practice group. One network was the RSFC between the right M1 and the right cerebellar Crus I, positively correlated with performance in the post-task. Another was the RSFC between the right M1 and the left cerebellar Crus II, positively correlated with skills in the amount of change pre- and post-task. CONCLUSION Offline enhancement of RSFC in these networks was shown to contribute to early chopstick-use motor learning with the left hand. These results serve as a basis for future studies on compensatory networks in individuals with stroke.
Collapse
Affiliation(s)
- Sayori Takeda
- Department of Occupational Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo, Japan.
| | - Reiko Miyamoto
- Department of Occupational Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo, Japan; Division of Occupational Therapy, Faculty of Health Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo, Japan
| |
Collapse
|
24
|
Kreitz S, Mennecke A, Konerth L, Rösch J, Nagel AM, Laun FB, Uder M, Dörfler A, Hess A. 3T vs. 7T fMRI: capturing early human memory consolidation after motor task utilizing the observed higher functional specificity of 7T. Front Neurosci 2023; 17:1215400. [PMID: 37638321 PMCID: PMC10448826 DOI: 10.3389/fnins.2023.1215400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Functional magnetic resonance imaging (fMRI) visualizes brain structures at increasingly higher resolution and better signal-to-noise ratio (SNR) as field strength increases. Yet, mapping the blood oxygen level dependent (BOLD) response to distinct neuronal processes continues to be challenging. Here, we investigated the characteristics of 7 T-fMRI compared to 3 T-fMRI in the human brain beyond the effect of increased SNR and verified the benefits of 7 T-fMRI in the detection of tiny, highly specific modulations of functional connectivity in the resting state following a motor task. Methods 18 healthy volunteers underwent two resting state and a stimulus driven measurement using a finger tapping motor task at 3 and 7 T, respectively. The SNR for each field strength was adjusted by targeted voxel size variation to minimize the effect of SNR on the field strength specific outcome. Spatial and temporal characteristics of resting state ICA, network graphs, and motor task related activated areas were compared. Finally, a graph theoretical approach was used to detect resting state modulation subsequent to a simple motor task. Results Spatial extensions of resting state ICA and motor task related activated areas were consistent between field strengths, but temporal characteristics varied, indicating that 7 T achieved a higher functional specificity of the BOLD response than 3 T-fMRI. Following the motor task, only 7 T-fMRI enabled the detection of highly specific connectivity modulations representing an "offline replay" of previous motor activation. Modulated connections of the motor cortex were directly linked to brain regions associated with memory consolidation. Conclusion These findings reveal how memory processing is initiated even after simple motor tasks, and that it begins earlier than previously shown. Thus, the superior capability of 7 T-fMRI to detect subtle functional dynamics promises to improve diagnostics and therapeutic assessment of neurological diseases.
Collapse
Affiliation(s)
- Silke Kreitz
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Angelika Mennecke
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Laura Konerth
- Institute for Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Julie Rösch
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M. Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Hess
- Institute for Pharmacology and Toxicology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
- FAU NeW—Research Center for New Bioactive Compounds, Erlangen, Germany
| |
Collapse
|
25
|
Kanda K, Tei S, Takahashi H, Fujino J. Neural basis underlying the sense of coherence in medical professionals revealed by the fractional amplitude of low-frequency fluctuations. PLoS One 2023; 18:e0288042. [PMID: 37390054 PMCID: PMC10313006 DOI: 10.1371/journal.pone.0288042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Although mitigating burnout has long been a pressing issue in healthcare, recent global disasters, including the COVID-19 pandemic and wars, have exacerbated this problem. Medical professionals are frequently exposed to diverse job-induced distress; furthermore, the importance of people's sense of coherence (SOC) over work has been addressed to better deal with burnout. However, the neural mechanisms underlying SOC in medical professionals are not sufficiently investigated. In this study, the intrinsic fractional amplitude of low-frequency fluctuations (fALFF) were measured as an indicator of regional brain spontaneous activity using resting-state functional magnetic resonance imaging in registered nurses. The associations between participants' SOC levels and the fALFF values within brain regions were subsequently explored. The SOC scale scores were positively correlated with fALFF values in the right superior frontal gyrus (SFG) and the left inferior parietal lobule. Furthermore, the SOC levels of the participants mediated the link between their fALFF values in the right SFG and the depersonalization dimension of burnout. The results deepened the understanding of the counter role of SOC on burnout in medical professionals and may provide practical insights for developing efficient interventions.
Collapse
Affiliation(s)
- Kota Kanda
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Shisei Tei
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Institute of Applied Brain Sciences, Waseda University, Tokorozawa, Saitama, Japan
- School of Human and Social Sciences, Tokyo International University, Kawagoe, Saitama, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Kita-karasuyama, Setagaya-ku, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Medical Institute of Developmental Disabilities Research, Showa University, Kita-karasuyama, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
26
|
Anoushiravani S, Alizadehgoradel J, Iranpour A, Yousefi Bilehsavar O, Pouresmali A, Nitsche MA, Salehinejad MA, Mosayebi-Samani M, Zoghi M. The impact of bilateral anodal transcranial direct current stimulation of the premotor and cerebellar cortices on physiological and performance parameters of gymnastic athletes: a randomized, cross-over, sham-controlled study. Sci Rep 2023; 13:10611. [PMID: 37391555 PMCID: PMC10313825 DOI: 10.1038/s41598-023-37843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/28/2023] [Indexed: 07/02/2023] Open
Abstract
Professional sports performance relies critically on the interaction between the brain and muscles during movement. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique which modulates cortical excitability and can be used to improve motor performance in athletes. The present study aimed to investigate the effect of bilateral anodal tDCS (2 mA, 20 min) over the premotor cortex or cerebellum on motor and physiological functions and peak performance of professional gymnastics athletes. Seventeen professional gymnastics athletes participated in a randomized, sham-controlled, crossover study. In this study, we assessed the efficacy of two anodal tDCS protocols (2 mA, 20 min) with stimulation over the bilateral premotor cortex or cerebellum with the return electrodes placed over the opposite supraorbital areas. Power speed, strength coordination, endurance, static and dynamic strength, static and dynamic flexibility, and rating of perceived exertion were measured before and immediately after tDCS interventions (bilateral anodal tDCS over premotor cortices, anodal tDCS over the cerebellum, and sham tDCS). Additionally, physiological muscle performance parameters, including maximum voluntary isometric contraction (MVIC) of upper body muscles, were assessed during tDCS. Bilateral anodal tDCS over the premotor cortex, compared to anodal tDCS over the cerebellum and sham tDCS conditions, significantly improved power speed, strength coordination, and static and dynamic strength variables of professional gymnastics athletes. Furthermore, bilateral anodal tDCS over the cerebellum, compared to sham tDCS, significantly improved strength coordination. Moreover, bilateral premotor anodal tDCS significantly increased MVIC of all upper body muscles during stimulation, while anodal tDCS over the cerebellum increased MVIC in only some muscles. Bilateral anodal tDCS over the premotor cortex, and to a minor degree over the cerebellum, might be suited to improve some aspects of motor and physiological functions and peak performance levels of professional gymnastics athletes.Clinical Trial Registration ID: IRCT20180724040579N2.
Collapse
Affiliation(s)
- Sajjad Anoushiravani
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Jaber Alizadehgoradel
- Department of Psychology, Faculty of Humanities, University of Zanjan, Zanjan, Iran.
| | - Asgar Iranpour
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Omid Yousefi Bilehsavar
- Department of Sports Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Asghar Pouresmali
- Department of Family Health, Social Determinants of Health Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld University, Bielefeld, Germany
| | - Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Maryam Zoghi
- Discipline of Physiotherapy, Institute of Health and Wellbeing, Federation University, Victoria, Australia
| |
Collapse
|
27
|
Iester C, Biggio M, Cutini S, Brigadoi S, Papaxanthis C, Brichetto G, Bove M, Bonzano L. Time-of-day influences resting-state functional cortical connectivity. Front Neurosci 2023; 17:1192674. [PMID: 37325041 PMCID: PMC10264597 DOI: 10.3389/fnins.2023.1192674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Time-of-day is rarely considered during experimental protocols investigating motor behavior and neural activity. The goal of this work was to investigate differences in functional cortical connectivity at rest linked to the time of the day using functional Near-Infrared Spectroscopy (fNIRS). Since resting-state brain is shown to be a succession of cognitive, emotional, perceptual, and motor processes that can be both conscious and nonconscious, we studied self-generated thought with the goal to help in understanding brain dynamics. We used the New-York Cognition Questionnaire (NYC-Q) for retrospective introspection to explore a possible relationship between the ongoing experience and the brain at resting-state to gather information about the overall ongoing experience of subjects. We found differences in resting-state functional connectivity in the inter-hemispheric parietal cortices, which was significantly greater in the morning than in the afternoon, whilst the intra-hemispheric fronto-parietal functional connectivity was significantly greater in the afternoon than in the morning. When we administered the NYC-Q we found that the score of the question 27 ("during RS acquisition my thoughts were like a television program or film") was significantly greater in the afternoon with respect to the morning. High scores in question 27 point to a form of thought based on imagery. It is conceivable to think that the unique relationship found between NYC-Q question 27 and the fronto-parietal functional connectivity might be related to a mental imagery process during resting-state in the afternoon.
Collapse
Affiliation(s)
- Costanza Iester
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Monica Biggio
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Simone Cutini
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Sabrina Brigadoi
- Department of Developmental and Social Psychology, University of Padova, Padua, Italy
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Giampaolo Brichetto
- Italian Multiple Sclerosis Foundation, Scientific Research Area, Genoa, Italy
| | - Marco Bove
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Bonzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
28
|
Bracco M, Mutanen TP, Veniero D, Thut G, Robertson EM. Distinct frequencies balance segregation with interaction between different memory types within a prefrontal circuit. Curr Biol 2023:S0960-9822(23)00622-X. [PMID: 37269827 DOI: 10.1016/j.cub.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/05/2023]
Abstract
Once formed, the fate of memory is uncertain. Subsequent offline interactions between even different memory types (actions versus words) modify retention.1,2,3,4,5,6 These interactions may occur due to different oscillations functionally linking together different memory types within a circuit.7,8,9,10,11,12,13 With memory processing driving the circuit, it may become less susceptible to external influences.14 We tested this prediction by perturbing the human brain with single pulses of transcranial magnetic stimulation (TMS) and simultaneously measuring the brain activity changes with electroencephalography (EEG15,16,17). Stimulation was applied over brain areas that contribute to memory processing (dorsolateral prefrontal cortex, DLPFC; primary motor cortex, M1) at baseline and offline, after memory formation, when memory interactions are known to occur.1,4,6,10,18 The EEG response decreased offline (compared with baseline) within the alpha/beta frequency bands when stimulation was applied to the DLPFC, but not to M1. This decrease exclusively followed memory tasks that interact, revealing that it was due specifically to the interaction, not task performance. It remained even when the order of the memory tasks was changed and so was present, regardless of how the memory interaction was produced. Finally, the decrease within alpha power (but not beta) was correlated with impairment in motor memory, whereas the decrease in beta power (but not alpha) was correlated with impairment in word-list memory. Thus, different memory types are linked to different frequency bands within a DLPFC circuit, and the power of these bands shapes the balance between interaction and segregation between these memories.
Collapse
Affiliation(s)
- Martina Bracco
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. box 12200, FI-00076 Aalto, Finland
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gregor Thut
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
29
|
Wang H, Yao R, Zhang X, Chen C, Wu J, Dong M, Jin C. Visual expertise modulates resting-state brain network dynamics in radiologists: a degree centrality analysis. Front Neurosci 2023; 17:1152619. [PMID: 37266545 PMCID: PMC10229894 DOI: 10.3389/fnins.2023.1152619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Visual expertise reflects accumulated experience in reviewing domain-specific images and has been shown to modulate brain function in task-specific functional magnetic resonance imaging studies. However, little is known about how visual experience modulates resting-state brain network dynamics. To explore this, we recruited 22 radiology interns and 22 matched healthy controls and used resting-state functional magnetic resonance imaging (rs-fMRI) and the degree centrality (DC) method to investigate changes in brain network dynamics. Our results revealed significant differences in DC between the RI and control group in brain regions associated with visual processing, decision making, memory, attention control, and working memory. Using a recursive feature elimination-support vector machine algorithm, we achieved a classification accuracy of 88.64%. Our findings suggest that visual experience modulates resting-state brain network dynamics in radiologists and provide new insights into the neural mechanisms of visual expertise.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Radiology, First Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
- Department of Medical Imaging, Inner Mongolia People's Hospital, Hohhot, China
| | - Renhuan Yao
- Department of Nuclear Medicine, Inner Mongolia People's Hospital, Hohhot, China
| | - Xiaoyan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Chao Chen
- PLA Funding Payment Center, Beijing, China
| | - Jia Wu
- School of Foreign Languages, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Minghao Dong
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
- Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Chenwang Jin
- Department of Radiology, First Affiliated Hospital of Xi'an, Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Farrens AJ, Vahdat S, Sergi F. Changes in Resting State Functional Connectivity Associated with Dynamic Adaptation of Wrist Movements. J Neurosci 2023; 43:3520-3537. [PMID: 36977577 PMCID: PMC10184736 DOI: 10.1523/jneurosci.1916-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Dynamic adaptation is an error-driven process of adjusting planned motor actions to changes in task dynamics (Shadmehr, 2017). Adapted motor plans are consolidated into memories that contribute to better performance on re-exposure. Consolidation begins within 15 min following training (Criscimagna-Hemminger and Shadmehr, 2008), and can be measured via changes in resting state functional connectivity (rsFC). For dynamic adaptation, rsFC has not been quantified on this timescale, nor has its relationship to adaptative behavior been established. We used a functional magnetic resonance imaging (fMRI)-compatible robot, the MR-SoftWrist (Erwin et al., 2017), to quantify rsFC specific to dynamic adaptation of wrist movements and subsequent memory formation in a mixed-sex cohort of human participants. We acquired fMRI during a motor execution and a dynamic adaptation task to localize brain networks of interest, and quantified rsFC within these networks in three 10-min windows occurring immediately before and after each task. The next day, we assessed behavioral retention. We used a mixed model of rsFC measured in each time window to identify changes in rsFC with task performance, and linear regression to identify the relationship between rsFC and behavior. Following the dynamic adaptation task, rsFC increased within the cortico-cerebellar network and decreased interhemispherically within the cortical sensorimotor network. Increases within the cortico-cerebellar network were specific to dynamic adaptation, as they were associated with behavioral measures of adaptation and retention, indicating that this network has a functional role in consolidation. Instead, decreases in rsFC within the cortical sensorimotor network were associated with motor control processes independent from adaptation and retention.SIGNIFICANCE STATEMENT Motor memory consolidation processes have been studied via functional magnetic resonance imaging (fMRI) by analyzing changes in resting state functional connectivity (rsFC) occurring more than 30 min after adaptation. However, it is unknown whether consolidation processes are detectable immediately (<15 min) following dynamic adaptation. We used an fMRI-compatible wrist robot to localize brain regions involved in dynamic adaptation in the cortico-thalamic-cerebellar (CTC) and cortical sensorimotor networks and quantified changes in rsFC within each network immediately after adaptation. Different patterns of change in rsFC were observed compared with studies conducted at longer latencies. Increases in rsFC in the cortico-cerebellar network were specific to adaptation and retention, while interhemispheric decreases in the cortical sensorimotor network were associated with alternate motor control processes but not with memory formation.
Collapse
Affiliation(s)
- Andria J Farrens
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713
| | - Shahabeddin Vahdat
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611
| | - Fabrizio Sergi
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19713
| |
Collapse
|
31
|
Turrini S, Fiori F, Chiappini E, Lucero B, Santarnecchi E, Avenanti A. Cortico-cortical paired associative stimulation (ccPAS) over premotor-motor areas affects local circuitries in the human motor cortex via Hebbian plasticity. Neuroimage 2023; 271:120027. [PMID: 36925088 DOI: 10.1016/j.neuroimage.2023.120027] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that cortico-cortical paired associative stimulation (ccPAS) can strengthen connectivity between the ventral premotor cortex (PMv) and the primary motor cortex (M1) by modulating convergent input over M1 via Hebbian spike-timing-dependent plasticity (STDP). However, whether ccPAS locally affects M1 activity remains unclear. We tested 60 right-handed young healthy humans in two studies, using a combination of dual coil TMS and ccPAS over the left PMv and M1 to probe and manipulate PMv-to-M1 connectivity, and single- and paired-pulse TMS to assess neural activity within M1. We provide convergent evidence that ccPAS, relying on repeated activations of excitatory PMv-to-M1 connections, acts locally over M1. During ccPAS, motor-evoked potentials (MEPs) induced by paired PMv-M1 stimulation gradually increased. Following ccPAS, the threshold for inducing MEPs of different amplitudes decreased, and the input-output curve (IO) slope increased, highlighting increased M1 corticospinal excitability. Moreover, ccPAS reduced the magnitude of short-interval intracortical inhibition (SICI), reflecting suppression of GABA-ergic interneuronal mechanisms within M1, without affecting intracortical facilitation (ICF). These changes were specific to ccPAS Hebbian strengthening of PMv-to-M1 connectivity, as no modulations were observed when reversing the order of the PMv-M1 stimulation during a control ccPAS protocol. These findings expand prior ccPAS research that focused on the malleability of cortico-cortical connectivity at the network-level, and highlight local changes in the area of convergent activation (i.e., M1) during plasticity induction. These findings provide new mechanistic insights into the physiological basis of ccPAS that are relevant for protocol optimization.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States.
| | - Francesca Fiori
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; NeXT: Neurophysiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome 00128, Italy
| | - Emilio Chiappini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Institut für Klinische und Gesundheitspsychologie, Universität Wien, Vienna 1010, Austria
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States
| | - Alessio Avenanti
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile.
| |
Collapse
|
32
|
Zhang L, Pini L, Kim D, Shulman GL, Corbetta M. Spontaneous Activity Patterns in Human Attention Networks Code for Hand Movements. J Neurosci 2023; 43:1976-1986. [PMID: 36788030 PMCID: PMC10027113 DOI: 10.1523/jneurosci.1601-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Recent evidence suggests that, in the absence of any task, spontaneous brain activity patterns and connectivity in the visual and motor cortex code for natural stimuli and actions, respectively. These "resting-state" activity patterns may underlie the maintenance and consolidation (replay) of information states coding for ecological stimuli and behaviors. In this study, we examine whether replay patterns occur in resting-state activity in association cortex grouped into high-order cognitive networks not directly processing sensory inputs or motor outputs. Fifteen participants (7 females) performed four hand movements during an fMRI study. Three movements were ecological. The fourth movement as control was less ecological. Before and after the task scans, we acquired resting-state fMRI scans. The analysis examined whether multivertex task activation patterns for the four movements computed at the cortical surface in different brain networks resembled spontaneous activity patterns measured at rest. For each movement, we computed a vector of r values indicating the strength of the similarity between the mean task activation pattern and frame-by-frame resting-state patterns. We computed a cumulative distribution function of r 2 values and used the 90th percentile cutoff value for comparison. In the dorsal attention network, resting-state patterns were more likely to match task patterns for the ecological movements than the control movement. In contrast, rest-task pattern correlation was more likely for less ecological movement in the ventral attention network. These findings show that spontaneous activity patterns in human attention networks code for hand movements.SIGNIFICANCE STATEMENT fMRI indirectly measures neural activity noninvasively. Resting-state (spontaneous) fMRI signals measured in the absence of any task resemble signals evoked by task performance both in topography and inter-regional (functional) connectivity. However, the function of spontaneous brain activity is unknown. We recently showed that spatial activity patterns evoked by visual and motor tasks in visual and motor cortex, respectively, occur at rest in the absence of any stimulus or response. Here we show that activity patterns related to hand movements replay at rest in frontoparietal regions of the human attention system. These findings show that spontaneous activity in the human cortex may mediate the maintenance and consolidation of information states coding for ecological stimuli and behaviors.
Collapse
Affiliation(s)
- Lu Zhang
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - Lorenzo Pini
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
| | - DoHyun Kim
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
| | - Gordon L Shulman
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
| | - Maurizio Corbetta
- Padova Neuroscience Center, University of Padova, Padova, 35131, Italy
- Departments of Neurology and Radiology, Washington University-St Louis, St Louis, Missouri 63110
- Department of Neuroscience, University of Padova, Padova, 35131, Italy
- Venetian Institute of Molecular Medicine, Padova, 35129, Italy
| |
Collapse
|
33
|
Social navigation modulates the anterior and posterior hippocampal circuits in the resting brain. Brain Struct Funct 2023; 228:799-813. [PMID: 36813907 DOI: 10.1007/s00429-023-02622-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Social navigation is a dynamic and complex process that requires the collaboration of multiple brain regions. However, the neural networks for navigation in a social space remain largely unknown. This study aimed to investigate the role of hippocampal circuit in social navigation from a resting-state fMRI data. Here, resting-state fMRI data were acquired before and after participants performed a social navigation task. By taking the anterior and posterior hippocampus (HPC) as the seeds, we calculated their connectivity with the whole brain using the seed-based static functional connectivity (sFC) and dynamic FC (dFC) approaches. We found that the sFC and dFC between the anterior HPC and supramarginal gyrus, sFC or dFC between posterior HPC and middle cingulate cortex, inferior parietal gyrus, angular gyrus, posterior cerebellum, medial superior frontal gyrus were increased after the social navigation task. These alterations were related to social cognition of tracking location in the social navigation. Moreover, participants who had more social support or less neuroticism showed a greater increase in hippocampal connectivity. These findings may highlight a more important role of the posterior hippocampal circuit in the social navigation, which is crucial for social cognition.
Collapse
|
34
|
Paul KI, Mueller K, Rousseau PN, Glathe A, Taatgen NA, Cnossen F, Lanzer P, Villringer A, Steele CJ. Visuo-motor transformations in the intraparietal sulcus mediate the acquisition of endovascular medical skill. Neuroimage 2023; 266:119781. [PMID: 36529202 DOI: 10.1016/j.neuroimage.2022.119781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/16/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Performing endovascular medical interventions safely and efficiently requires a diverse set of skills that need to be practised in dedicated training sessions. Here, we used multimodal magnetic resonance (MR) imaging to determine the structural and functional plasticity and core skills associated with skill acquisition. A training group learned to perform a simulator-based endovascular procedure, while a control group performed a simplified version of the task; multimodal MR images were acquired before and after training. Using a well-controlled interaction design, we found strong multimodal evidence for the role of the intraparietal sulcus (IPS) in endovascular skill acquisition that is in line with previous work implicating the structure in visuospatial transformations including simple visuo-motor and mental rotation tasks. Our results provide a unique window into the multimodal nature of rapid structural and functional plasticity of the human brain while learning a multifaceted and complex clinical skill. Further, our results provide a detailed description of the plasticity process associated with endovascular skill acquisition and highlight specific facets of skills that could enhance current medical pedagogy and be useful to explicitly target during clinical resident training.
Collapse
Affiliation(s)
- Katja I Paul
- Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands.
| | - Karsten Mueller
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands; Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | - Annegret Glathe
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands; Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Niels A Taatgen
- Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Fokie Cnossen
- Department of Neurology, Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter Lanzer
- Mitteldeutsches Herzzentrum, Health Care Center Bitterfeld-Wolfen GmbH, Bitterfeld-Wolfen, Germany
| | - Arno Villringer
- Day Clinic for Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany; Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin; Faculty of Medicine, University of Leipzig, Leipzig, Germany; Center for Stroke Research Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Christopher J Steele
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, The Netherlands; Department of Psychology, Concordia University, Montreal, Canada
| |
Collapse
|
35
|
Niddam DM, Wu YT, Pan LLH, Chen YL, Wang SJ. Prediction of individual trigeminal pain sensitivity from gray matter structure within the sensorimotor network. Headache 2023; 63:146-155. [PMID: 36588467 DOI: 10.1111/head.14429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To determine whether multivariate pattern regression analysis based on gray matter (GM) images constrained to the sensorimotor network could accurately predict trigeminal heat pain sensitivity in healthy individuals. BACKGROUND Prediction of individual pain sensitivity is of clinical relevance as high pain sensitivity is associated with increased risks of postoperative pain, pain chronification, and a poor treatment response. However, as pain is a subjective experience accurate identification of such individuals can be difficult. GM structure of sensorimotor regions have been shown to vary with pain sensitivity. It is unclear whether GM structure within these regions can be used to predict pain sensitivity. METHODS In this cross-sectional study, structural magnetic resonance images and pain thresholds in response to contact heat stimulation of the left supraorbital area were obtained from 79 healthy participants. Voxel-based morphometry was used to extract segmented and normalized GM images. These were then constrained to a mask encompassing the functionally defined resting-state sensorimotor network. The masked images and pain thresholds entered a multivariate relevance vector regression analysis for quantitative prediction of the individual pain thresholds. The correspondence between predicted and actual pain thresholds was indexed by the Pearson correlation coefficient (r) and the mean squared error (MSE). The generalizability of the model was assessed by 10-fold and 5-fold cross-validation. Non-parametric permutation tests were used to estimate significance levels. RESULTS Trigeminal heat pain sensitivity could be predicted from GM structure within the sensorimotor network with significant accuracy (10-fold: r = 0.53, p < 0.001, MSE = 10.32, p = 0.001; 5-fold: r = 0.46, p = 0.001, MSE = 10.54, p < 0.001). The resulting multivariate weight maps revealed that accurate prediction relied on multiple widespread regions within the sensorimotor network. CONCLUSION A multivariate pattern of GM structure within the sensorimotor network could be used to make accurate predictions about trigeminal heat pain sensitivity at the individual level in healthy participants. Widespread regions within the sensorimotor network contributed to the predictive model.
Collapse
Affiliation(s)
- David M Niddam
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Te Wu
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Ling Hope Pan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yung-Lin Chen
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Neurology, The Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
36
|
Riahi N, D’Arcy R, Menon C. A Method for Estimating Longitudinal Change in Motor Skill from Individualized Functional-Connectivity Measures. SENSORS (BASEL, SWITZERLAND) 2022; 22:9857. [PMID: 36560228 PMCID: PMC9781498 DOI: 10.3390/s22249857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Pragmatic, objective, and accurate motor assessment tools could facilitate more frequent appraisal of longitudinal change in motor function and subsequent development of personalized therapeutic strategies. Brain functional connectivity (FC) has shown promise as an objective neurophysiological measure for this purpose. The involvement of different brain networks, along with differences across subjects due to age or existing capabilities, motivates an individualized approach towards the evaluation of FC. We advocate the use of EEG-based resting-state FC (rsFC) measures to address the pragmatic requirements. Pertaining to appraisal of accuracy, we suggest using the acquisition of motor skill by healthy individuals that could be quantified at small incremental change. Computer-based tracing tasks are a good candidate in this regard when using spatial error in tracing as an objective measure of skill. This work investigates the application of an individualized method that utilizes Partial Least Squares analysis to estimate the longitudinal change in tracing error from changes in rsFC. Longitudinal data from participants yielded an average accuracy of 98% (standard deviation of 1.2%) in estimating tracing error. The results show potential for an accurate individualized motor assessment tool that reduces the dependence on the expertise and availability of trained examiners, thereby facilitating more frequent appraisal of function and development of personalized training programs.
Collapse
Affiliation(s)
- Nader Riahi
- Schools of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Ryan D’Arcy
- Schools of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- DM Centre for Brain Health, Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- HealthTech Connex, Surrey, BC V3V 0E8, Canada
| | - Carlo Menon
- Schools of Engineering Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
37
|
Zhang W, Andrews-Hanna JR, Mair RW, Goh JOS, Gutchess A. Functional connectivity with medial temporal regions differs across cultures during post-encoding rest. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:1334-1348. [PMID: 35896854 PMCID: PMC9703377 DOI: 10.3758/s13415-022-01027-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/12/2022] [Indexed: 01/27/2023]
Abstract
Connectivity of the brain at rest can reflect individual differences and impact behavioral outcomes, including memory. The present study investigated how culture influences functional connectivity with regions of the medial temporal lobe. In this study, 46 Americans and 59 East Asians completed a resting state scan after encoding pictures of objects. To investigate cross-cultural differences in resting state functional connectivity, left parahippocampal gyrus (anterior and posterior regions) and left hippocampus were selected as seed regions. These regions were selected, because they were previously implicated in a study of cultural differences during the successful encoding of detailed memories. Results revealed that left posterior parahippocampal gyrus had stronger connectivity with temporo-occipital regions for East Asians compared with Americans and stronger connectivity with parieto-occipital regions for Americans compared with East Asians. Left anterior parahippocampal gyrus had stronger connectivity with temporal regions for East Asians than Americans and stronger connectivity with frontal regions for Americans than East Asians. Although connectivity did not relate to memory performance, patterns did relate to cultural values. The degree of independent self-construal and subjective value of tradition were associated with functional connectivity involving left anterior parahippocampal gyrus. Findings are discussed in terms of potential cultural differences in memory consolidation or more general trait or state-based processes, such as holistic versus analytic processing.
Collapse
Affiliation(s)
- Wanbing Zhang
- Department of Psychology, Brandeis University, 415 South Street, MS 062, Waltham, MA, 02453, USA
| | - Jessica R Andrews-Hanna
- Department of Psychology, University of Arizona, Tucson, AZ, USA
- Cognitive Science, University of Arizona, Tucson, AZ, USA
| | - Ross W Mair
- Center for Brain Science, Harvard University, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Joshua Oon Soo Goh
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Department of Psychology, National Taiwan University, Taipei City, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei City, Taiwan
- Center of Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei City, Taiwan
| | - Angela Gutchess
- Department of Psychology, Brandeis University, 415 South Street, MS 062, Waltham, MA, 02453, USA.
| |
Collapse
|
38
|
Dong M, Zhang P, Chai W, Zhang X, Chen BT, Wang H, Wu J, Chen C, Niu Y, Liang J, Shi G, Jin C. Early stage of radiological expertise modulates resting-state local coherence in the inferior temporal lobe. PSYCHORADIOLOGY 2022; 2:199-206. [PMID: 38665273 PMCID: PMC10917200 DOI: 10.1093/psyrad/kkac024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 04/28/2024]
Abstract
Background The visual system and its inherent functions undergo experience-dependent changes through the lifespan, enabling acquisition of new skills. Previous fMRI studies using tasks reported increased specialization in a number of cortical regions subserving visual expertise. Although ample studies focused on representation of long-term visual expertise in the brain, i.e. in terms of year, monthly-based early-stage representation of visual expertise remains unstudied. Given that spontaneous neuronal oscillations actively encode previous experience, we propose brain representations in the resting state is fundamentally important. Objective The current study aimed to investigate how monthly-based early-stage visual expertise are represented in the resting state using the expertise model of radiologists. Methods In particular, we investigated the altered local clustering pattern of spontaneous brain activity using regional homogeneity (ReHo). A cohort group of radiology interns (n = 22) after one-month training in X-ray department and matched laypersons (n = 22) were recruited after rigorous behavioral assessment. Results The results showed higher ReHo in the right hippocampus (HIP) and the right ventral anterior temporal lobe (vATL) (corrected by Alphasim correction, P < 0.05). Moreover, ReHo in the right HIP correlated with the number of cases reviewed during intern radiologists' training (corrected by Alphasim correction, P < 0.05). Conclusions In sum, our results demonstrated that the early stage of visual expertise is more concerned with stabilizing visual feature and domain-specific knowledge into long-term memory. The results provided novel evidence regarding how early-stage visual expertise is represented in the resting brain, which help further elaborate how human visual expertise is acquired. We propose that our current study may provide novel ideas for developing new training protocols in medical schools.
Collapse
Affiliation(s)
- Minghao Dong
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an City, Shaanxi 710071, China
- Xian Key Laboratory of Intelligent Sensing and Regulation of tran-Scale Life Information, Xi’an City, Shaanxi 710071, China
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Peiming Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Weilu Chai
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Xiaoyan Zhang
- Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Bihong T Chen
- City of Hope Medical Center, Duarte City, California 91010, USA
| | - Hongmei Wang
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an City, Shaanxi 710000, China
| | - Jia Wu
- School of Foreign Languages, Northwestern Polytechnical University, Xi'an City, Shaanxi 710071, China
| | - Chao Chen
- PLA Funding Payment Center, Beijing 100000, China
| | - Yi Niu
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Jimin Liang
- School of Electronics and Engineering, Xidian University, Xi'an City, Shaanxi 710071, China
| | - Guangming Shi
- Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, Xidian University, Xi’an City, Shaanxi 710071, China
| | - Chenwang Jin
- Department of Medical Imaging, First Affiliated Hospital of Medical College, Xi’an Jiaotong University, Xi’an City, Shaanxi 710000, China
| |
Collapse
|
39
|
Lee R, Kwak S, Lee D, Chey J. Cognitive control training enhances the integration of intrinsic functional networks in adolescents. Front Hum Neurosci 2022; 16:859358. [PMID: 36504634 PMCID: PMC9729882 DOI: 10.3389/fnhum.2022.859358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction We have demonstrated that intensive cognitive training can produce sustained improvements in cognitive performance in adolescents. Few studies, however, have investigated the neural basis of these training effects, leaving the underlying mechanism of cognitive plasticity during this period unexplained. Methods In this study, we trained 51 typically developing adolescents on cognitive control tasks and examined how their intrinsic brain networks changed by applying graph theoretical analysis. We hypothesized that the training would accelerate the process of network integration, which is a key feature of network development throughout adolescence. Results We found that the cognitive control training enhanced the integration of functional networks, particularly the cross-network integration of the cingulo-opercular network. Moreover, the analysis of additional data from older adolescents revealed that the cingulo-opercular network was more integrated with other networks in older adolescents than in young adolescents. Discussion These findings are consistent with the hypothesis that cognitive control training may speed up network development, such that brain networks exhibit more mature patterns after training.
Collapse
Affiliation(s)
- Raihyung Lee
- Department of Psychology, Seoul National University, Seoul, South Korea,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Seyul Kwak
- Department of Psychology, Seoul National University, Seoul, South Korea,Department of Psychology, Pusan National University, Busan, South Korea
| | - Dasom Lee
- Department of Psychology, Seoul National University, Seoul, South Korea
| | - Jeanyung Chey
- Department of Psychology, Seoul National University, Seoul, South Korea,*Correspondence: Jeanyung Chey,
| |
Collapse
|
40
|
Mitani K, Rathnayake N, Rathnayake U, Dang TL, Hoshino Y. Brain Activity Associated with the Planning Process during the Long-Time Learning of the Tower of Hanoi (ToH) Task: A Pilot Study. SENSORS (BASEL, SWITZERLAND) 2022; 22:8283. [PMID: 36365987 PMCID: PMC9654550 DOI: 10.3390/s22218283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Planning and decision-making are critical managerial functions involving the brain's executive functions. However, little is known about the effect of cerebral activity during long-time learning while planning and decision-making. This study investigated the impact of planning and decision-making processes in long-time learning, focusing on a cerebral activity before and after learning. The methodology of this study involves the Tower of Hanoi (ToH) to investigate executive functions related to the learning process. Generally, ToH is used to measure baseline performance, learning rate, offline learning (following overnight retention), and transfer. However, this study performs experiments on long-time learning effects for ToH solving. The participants were involved in learning the task over seven weeks. Learning progress was evaluated based on improvement in performance and correlations with the learning curve. All participants showed a significant improvement in planning and decision-making over seven weeks of time duration. Brain activation results from fMRI showed a statistically significant decrease in the activation degree in the dorsolateral prefrontal cortex, parietal lobe, inferior frontal gyrus, and premotor cortex between before and after learning. Our pilot study showed that updating information and shifting issue rules were found in the frontal lobe. Through monitoring performance, we can describe the effect of long-time learning initiated at the frontal lobe and then convert it to a task execution function by analyzing the frontal lobe maps. This process can be observed by comparing the learning curve and the fMRI maps. It was also clear that the degree of activation tends to decrease with the number of tasks, such as through the mid-phase and the end-phase of training. The elucidation of this structure is closely related to decision-making in human behavior, where brain dynamics differ between "thinking and behavior" during complex thinking in the early stages of training and instantaneous "thinking and behavior" after sufficient training. Since this is related to human learning, elucidating these mechanisms will allow the construction of a brain function map model that can be used universally for all training tasks.
Collapse
Affiliation(s)
- Keita Mitani
- School of Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami 782-8502, Kochi, Japan
| | - Namal Rathnayake
- School of Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami 782-8502, Kochi, Japan
| | - Upaka Rathnayake
- Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Tuan Linh Dang
- School of Information and Communications Technology, Hanoi University of Science and Technology, No. 1 Dai Co Viet Road, Hanoi 100000, Vietnam
| | - Yukinobu Hoshino
- School of Systems Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kami 782-8502, Kochi, Japan
| |
Collapse
|
41
|
Wilf M, Dupuis C, Nardo D, Huber D, Sander S, Al-Kaar J, Haroud M, Perrin H, Fornari E, Crottaz-Herbette S, Serino A. Virtual reality-based sensorimotor adaptation shapes subsequent spontaneous and naturalistic stimulus-driven brain activity. Cereb Cortex 2022; 33:5163-5180. [PMID: 36288926 PMCID: PMC10152055 DOI: 10.1093/cercor/bhac407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022] Open
Abstract
Our everyday life summons numerous novel sensorimotor experiences, to which our brain needs to adapt in order to function properly. However, tracking plasticity of naturalistic behavior and associated brain modulations is challenging. Here, we tackled this question implementing a prism adaptation-like training in virtual reality (VRPA) in combination with functional neuroimaging. Three groups of healthy participants (N = 45) underwent VRPA (with a shift either to the left/right side, or with no shift), and performed functional magnetic resonance imaging (fMRI) sessions before and after training. To capture modulations in free-flowing, task-free brain activity, the fMRI sessions included resting-state and free-viewing of naturalistic videos. We found significant decreases in spontaneous functional connectivity between attentional and default mode (DMN)/fronto-parietal networks, only for the adaptation groups, more pronouncedly in the hemisphere contralateral to the induced shift. In addition, VRPA was found to bias visual responses to naturalistic videos: Following rightward adaptation, we found upregulation of visual response in an area in the parieto-occipital sulcus (POS) only in the right hemisphere. Notably, the extent of POS upregulation correlated with the size of the VRPA-induced after-effect measured in behavioral tests. This study demonstrates that a brief VRPA exposure can change large-scale cortical connectivity and correspondingly bias visual responses to naturalistic sensory inputs.
Collapse
Affiliation(s)
- Meytal Wilf
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland.,Center of Advanced Technologies in Rehabilitation (CATR), Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Celine Dupuis
- MindMaze SA, Chemin de Roseneck 5, 1006 Lausanne, Switzerland
| | - Davide Nardo
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Rd, Cambridge CB2 7EF, United Kingdom.,Department of Education, University of Roma Tre, Rome, Italy
| | - Diana Huber
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Sibilla Sander
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Joud Al-Kaar
- Neuropsychology and Neurorehabilitation Service, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Meriem Haroud
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland.,Neuropsychology and Neurorehabilitation Service, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Henri Perrin
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Eleonora Fornari
- Biomedical Imaging Center (CIBM), Department of Radiology, Lausanne University Hospital (CHUV) and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Sonia Crottaz-Herbette
- MindMaze SA, Chemin de Roseneck 5, 1006 Lausanne, Switzerland.,Neuropsychology and Neurorehabilitation Service, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland
| | - Andrea Serino
- MySpace Lab, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Avenue Pierre Decker 5, 1011 Lausanne, Switzerland.,MindMaze SA, Chemin de Roseneck 5, 1006 Lausanne, Switzerland
| |
Collapse
|
42
|
Nettekoven C, Mitchell L, Clarke WT, Emir U, Campbell J, Johansen-Berg H, Jenkinson N, Stagg CJ. Cerebellar GABA Change during Visuomotor Adaptation Relates to Adaptation Performance and Cerebellar Network Connectivity: A Magnetic Resonance Spectroscopic Imaging Study. J Neurosci 2022; 42:7721-7732. [PMID: 36414012 PMCID: PMC9581563 DOI: 10.1523/jneurosci.0096-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 12/15/2022] Open
Abstract
Motor adaptation is crucial for performing accurate movements in a changing environment and relies on the cerebellum. Although cerebellar involvement has been well characterized, the neurochemical changes in the cerebellum underpinning human motor adaptation remain unknown. We used a novel magnetic resonance spectroscopic imaging (MRSI) technique to measure changes in the inhibitory neurotransmitter GABA in the human cerebellum during visuomotor adaptation. Participants (n = 17, six female) used their right hand to adapt to a rotated cursor in the scanner, compared with a control task requiring no adaptation. We spatially resolved adaptation-driven GABA changes at the cerebellar nuclei and cerebellar cortex in the left and the right cerebellar hemisphere independently and found that simple right-hand movements increase GABA in the right cerebellar nuclei and decreases GABA in the left. When isolating adaptation-driven GABA changes, we found that GABA in the left cerebellar nuclei and the right cerebellar nuclei diverged, although GABA change from baseline at the right cerebellar nuclei was not different from zero at the group level. Early adaptation-driven GABA fluctuations in the right cerebellar nuclei correlated with adaptation performance. Participants showing greater GABA decrease adapted better, suggesting early GABA change is behaviorally relevant. Early GABA change also correlated with functional connectivity change in a cerebellar network. Participants showing greater decreases in GABA showed greater strength increases in cerebellar network connectivity. Results were specific to GABA, to adaptation, and to the cerebellar network. This study provides first evidence for plastic changes in cerebellar neurochemistry during motor adaptation. Characterizing these naturally occurring neurochemical changes may provide a basis for developing therapeutic interventions to facilitate human motor adaptation.SIGNIFICANCE STATEMENT Despite motor adaptation being fundamental to maintaining accurate movements, its neurochemical basis remains poorly understood, perhaps because measuring neurochemicals in the human cerebellum is technically challenging. Using a novel magnetic resonance spectroscopic imaging method, this study provides evidence for GABA changes in the left compared with the right cerebellar nuclei driven by both simple movement and motor adaptation. Although right cerebellar GABA changes were not significantly different from zero at the group level, the adaptation-driven GABA fluctuations in the right cerebellar nuclei correlated with adaptation performance and with functional connectivity change in a cerebellar network. These results show the first evidence for plastic changes in cerebellar neurochemistry during a cerebellar learning task. This provides the basis for developing therapeutic interventions that facilitate these naturally occurring changes to amplify cerebellar-dependent learning.
Collapse
Affiliation(s)
- Caroline Nettekoven
- Wellcome Centre for Integrative Neuroimaging, Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH UK
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX UK
| | - Leah Mitchell
- Wellcome Centre for Integrative Neuroimaging, Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU UK
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU UK
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3TH UK
| | - Uzay Emir
- School of Health Sciences, Purdue University, Purdue, Indiana 47907
| | - Jon Campbell
- Wellcome Centre for Integrative Neuroimaging, Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU UK
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Ned Jenkinson
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham B15 2TT UK
| | - Charlotte J Stagg
- Wellcome Centre for Integrative Neuroimaging, Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| |
Collapse
|
43
|
Spontaneous activity patterns in human motor cortex replay evoked activity patterns for hand movements. Sci Rep 2022; 12:16867. [PMID: 36207360 PMCID: PMC9546868 DOI: 10.1038/s41598-022-20866-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 09/20/2022] [Indexed: 11/08/2022] Open
Abstract
Spontaneous brain activity, measured with resting state fMRI (R-fMRI), is correlated among regions that are co-activated by behavioral tasks. It is unclear, however, whether spatial patterns of spontaneous activity within a cortical region correspond to spatial patterns of activity evoked by specific stimuli, actions, or mental states. The current study investigated the hypothesis that spontaneous activity in motor cortex represents motor patterns commonly occurring in daily life. To test this hypothesis 15 healthy participants were scanned while performing four different hand movements. Three movements (Grip, Extend, Pinch) were ecological involving grip and grasp hand movements; one control movement involving the rotation of the wrist was not ecological and infrequent (Shake). They were also scanned at rest before and after the execution of the motor tasks (resting-state scans). Using the task data, we identified movement-specific patterns in the primary motor cortex. These task-defined patterns were compared to resting-state patterns in the same motor region. We also performed a control analysis within the primary visual cortex. We found that spontaneous activity patterns in the primary motor cortex were more like task patterns for ecological than control movements. In contrast, there was no difference between ecological and control hand movements in the primary visual area. These findings provide evidence that spontaneous activity in human motor cortex forms fine-scale, patterned representations associated with behaviors that frequently occur in daily life.
Collapse
|
44
|
Schintu S, Gotts SJ, Freedberg M, Shomstein S, Wassermann EM. Effective connectivity underlying neural and behavioral components of prism adaptation. Front Psychol 2022; 13:915260. [PMID: 36118425 PMCID: PMC9479732 DOI: 10.3389/fpsyg.2022.915260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Prism adaptation (PA) is a form of visuomotor training that produces both sensorimotor and cognitive aftereffects depending on the direction of the visual displacement. Recently, a neural framework explaining both types of PA-induced aftereffects has been proposed, but direct evidence for it is lacking. We employed Structural Equation Modeling (SEM), a form of effective connectivity analysis, to establish directionality among connected nodes of the brain network thought to subserve PA. The findings reveal two distinct network branches: (1) a loop involving connections from the parietal cortices to the right parahippocampal gyrus, and (2) a branch linking the lateral premotor cortex to the parahippocampal gyrus via the cerebellum. Like the sensorimotor aftereffects, the first branch exhibited qualitatively different modulations for left versus right PA, and critically, changes in these connections were correlated with the magnitude of the sensorimotor aftereffects. Like the cognitive aftereffects, changes in the second branch were qualitatively similar for left and right PA, with greater change for left PA and a trend correlation with cognitive aftereffects. These results provide direct evidence that PA is supported by two functionally distinct subnetworks, a parietal–temporal network responsible for sensorimotor aftereffects and a fronto-cerebellar network responsible for cognitive aftereffects.
Collapse
Affiliation(s)
- Selene Schintu
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
- Department of Psychological and Brain Sciences, The George Washington University, Washington, DC, United States
- Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Trentino, Italy
- *Correspondence: Selene Schintu,
| | - Stephen J. Gotts
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD, United States
| | - Michael Freedberg
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, TX, United States
| | - Sarah Shomstein
- Department of Psychological and Brain Sciences, The George Washington University, Washington, DC, United States
| | - Eric M. Wassermann
- Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
45
|
Yu M, Song Y, Liu J. The posterior middle temporal gyrus serves as a hub in syntactic comprehension: A model on the syntactic neural network. BRAIN AND LANGUAGE 2022; 232:105162. [PMID: 35908340 DOI: 10.1016/j.bandl.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/18/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Neuroimaging studies have revealed a distributed neural network involving multiple fronto-temporal regions that are active during syntactic processing. Here, we investigated how these regions work collaboratively to support syntactic comprehension by examining the behavioral relevance of the global functional integration of the syntax network (SN). We found that individuals with a stronger resting-state within-network integration in the left posterior middle temporal gyrus (lpMTG) were better at syntactic comprehension. Furthermore, the pair-wise functional connectivity between the lpMTG and the Broca's area, the middle frontal gyrus, and the angular and supramarginal gyri was positively correlated with participants' syntactic processing ability. In short, our study reveals the behavioral significance of intrinsic functional integration of the SN in syntactic comprehension, and provides empirical evidence for the hub-like role of the lpMTG. We proposed a neural model for syntactic comprehension highlighting the hub of the SN and its interactions with other regions in the network.
Collapse
Affiliation(s)
- Mengxia Yu
- Bilingual Cognition and Development Lab, Center for Linguistics and Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou 510420, China
| | - Yiying Song
- Beijing Key Laboratory of Applied Experimental Psychology, Faculty of Psychology, Beijing Normal University, Beijing 100875, China.
| | - Jia Liu
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Mapping correlated neurological deficits after stroke to distributed brain networks. Brain Struct Funct 2022; 227:3173-3187. [PMID: 35881254 DOI: 10.1007/s00429-022-02525-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 06/12/2022] [Indexed: 11/02/2022]
Abstract
Understanding the relationships between brain organization and behavior is a central goal of neuroscience. Traditional teaching emphasizes that the human cerebrum includes many distinct areas for which damage or dysfunction would lead to a unique and specific behavioral syndrome. This teaching implies that brain areas correspond to encapsulated modules that are specialized for specific cognitive operations. However, empirically, local damage from stroke more often produces one of a small number of clusters of deficits and disrupts brain-wide connectivity in a small number of predictable ways (relative to the vast complexity of behavior and brain connectivity). Behaviors that involve shared operations show correlated deficits following a stroke, consistent with a low-dimensional behavioral space. Because of the networked organization of the brain, local damage from a stroke can result in widespread functional abnormalities, matching the low dimensionality of behavioral deficit. In alignment with this, neurological disease, psychiatric disease, and altered brain states produce behavioral changes that are highly correlated across a range of behaviors. We discuss how known structural and functional network priors in addition to graph theoretical concepts such as modularity and entropy have provided inroads to understanding this more complex relationship between brain and behavior. This model for brain disease has important implications for normal brain-behavior relationships and the treatment of neurological and psychiatric diseases.
Collapse
|
47
|
Paolini M, Keeser D, Rauchmann BS, Gschwendtner S, Jeanty H, Reckenfelderbäumer A, Yaseen O, Reidler P, Rabenstein A, Engelbregt HJ, Maywald M, Blautzik J, Ertl-Wagner B, Pogarell O, Rüther T, Karch S. Correlations Between the DMN and the Smoking Cessation Outcome of a Real-Time fMRI Neurofeedback Supported Exploratory Therapy Approach: Descriptive Statistics on Tobacco-Dependent Patients. Clin EEG Neurosci 2022; 53:287-296. [PMID: 34878329 PMCID: PMC9174614 DOI: 10.1177/15500594211062703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/28/2021] [Accepted: 10/28/2021] [Indexed: 11/30/2022]
Abstract
The aim of this study was to explore the potential of default mode network (DMN) functional connectivity for predicting the success of smoking cessation in patients with tobacco dependence in the context of a real-time function al MRI (RT-fMRI) neurofeedback (NF) supported therapy.Fifty-four tobacco-dependent patients underwent three RT-fMRI-NF sessions including resting-state functional connectivity (RSFC) runs over a period of 4 weeks during professionally assisted smoking cessation. Patients were randomized into two groups that performed either active NF of an addiction-related brain region or sham NF. After preprocessing, the RSFC baseline data were statistically evaluated using seed-based ROI (SBA) approaches taking into account the smoking status of patients after 3 months (abstinence/relapse).The results of the real study group showed a widespread functional connectivity in the relapse subgroup (n = 10) exceeding the DMN template and mainly low correlations and anticorrelations in the within-seed analysis. In contrast, the connectivity pattern of the abstinence subgroup (n = 8) primarily contained the core DMN in the seed-to-whole-brain analysis and a left lateralized correlation pattern in the within-seed analysis. Calculated Multi-Subject Dictionary Learning (MSDL) matrices showed anticorrelations between DMN regions and salience regions in the abstinence group. Concerning the sham group, results of the relapse subgroup (n = 4) and the abstinence subgroup (n = 6) showed similar trends only in the within-seed analysis.In the setting of a RT-fMRI-NF-assisted therapy, a widespread intrinsic DMN connectivity and a low negative coupling between the DMN and the salience network (SN) in patients with tobacco dependency during early withdrawal may be useful as an early indicator of later therapy nonresponse.
Collapse
Affiliation(s)
- Marco Paolini
- Department of Radiology, University
Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Radiology, University
Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, University
Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Sarah Gschwendtner
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Hannah Jeanty
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Arne Reckenfelderbäumer
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Omar Yaseen
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Paul Reidler
- Department of Radiology, University
Hospital, LMU Munich, Munich, Germany
| | - Andrea Rabenstein
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Hessel Jan Engelbregt
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Hersencentrum Mental Health Institute, Amsterdam, the
Netherlands
| | - Maximilian Maywald
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Janusch Blautzik
- Department of Radiology, University
Hospital, LMU Munich, Munich, Germany
- Institute for Radiology and Nuclear
Medicine St. Anna, Luzern, Switzerland
| | - Birgit Ertl-Wagner
- Department of Radiology, University
Hospital, LMU Munich, Munich, Germany
- Division of Neuro-Radiology, The Hospital for Sick Children,
University of Toronto, Toronto, Canada
| | - Oliver Pogarell
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Tobias Rüther
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Karch
- Department of Psychiatry and
Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
48
|
Ma H, Zhou YL, Wang WJ, Chen G, Li Q, Lu YC, Wang W. Identifying Modulated Functional Connectivity in Corresponding Cerebral Networks in Facial Nerve Lesions Patients With Facial Asymmetry. Front Neurosci 2022; 16:943919. [PMID: 35833088 PMCID: PMC9271667 DOI: 10.3389/fnins.2022.943919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Facial asymmetry is the major complaint of patients with unilateral facial nerve lesions. Frustratingly, although patients experience the same etiology, the extent of oral commissure asymmetry is highly heterogeneous. Emerging evidence indicates that cerebral plasticity has a large impact on clinical severity by promoting or impeding the progressive adaption of brain function. However, the precise link between cerebral plasticity and oral asymmetry has not yet been identified. In the present study, we performed functional magnetic resonance imaging on patients with unilateral facial nerve transections to acquire in vivo neural activity. We then identified the regions of interest corresponding to oral movement control using a smiling motor paradigm. Next, we established three local networks: the ipsilesional (left) intrahemispheric, contralesional (right) intrahemispheric, and interhemispheric networks. The functional connectivity of each pair of nodes within each network was then calculated. After thresholding for sparsity, we analyzed the mean intensity of each network connection between patients and controls by averaging the functional connectivity. For the objective assessment of facial deflection, oral asymmetry was calculated using FACEgram software. There was decreased connectivity in the contralesional network but increased connectivity in the ipsilesional and interhemispheric networks in patients with facial nerve lesions. In addition, connectivity in the ipsilesional network was significantly correlated with the extent of oral asymmetry. Our results suggest that motor deafferentation of unilateral facial nerve leads to the upregulated ipsilesional hemispheric connections, and results in positive interhemispheric inhibition effects to the contralesional hemisphere. Our findings provide preliminary information about the possible cortical etiology of facial asymmetry, and deliver valuable clues regarding spatial information, which will likely be useful for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-lu Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen-jin Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Li
- MR Collaborations, Siemens Healthineers Ltd., Shanghai, China
| | - Ye-chen Lu
- Wound Healing Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ye-chen Lu,
| | - Wei Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Wei Wang,
| |
Collapse
|
49
|
Lin YC, Lien YR, Lin SHN, Kung YC, Huang CC, Lin CP, Chang LH. Baseline Cerebro-Cerebellar Functional Connectivity in Afferent and Efferent Pathways Reveal Dissociable Improvements in Visuomotor Learning. Front Neurosci 2022; 16:904564. [PMID: 35720694 PMCID: PMC9204583 DOI: 10.3389/fnins.2022.904564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
Visuomotor coordination is a complex process involving several brain regions, primarily the cerebellum and motor cortex. Studies have shown inconsistent resting-state functional magnetic resonance imaging (rsfMRI) results in the cerebellar cortex and dentate nucleus of the cerebro-cerebellar connections. Echoing anatomical pathways, these two different cerebellar regions are differentially responsible for afferent and efferent cerebro-cerebellar functional connections. The aim of this study was to measure the baseline resting-state functional connectivity of different cerebellar afferent and efferent pathways and to investigate their relationship to visuomotor learning abilities. We used different cerebellar repetitive transcranial magnetic stimulation (rTMS) frequencies before a pursuit rotor task to influence visuomotor performance. Thirty-eight right-handed participants were included and randomly assigned to three different rTMS frequency groups (1 Hz, 10 Hz and sham) and underwent baseline rsfMRI and pursuit rotor task assessments. We report that greater baseline functional connectivity in the afferent cerebro-cerebellar pathways was associated with greater accuracy improvements. Interestingly, lower baseline functional connectivity in the efferent dentato-thalamo-cortical pathways was associated with greater stability in visuomotor performance, possibly associated with the inhibitory role of the dentate nucleus and caused a reduction in the efferent functional connectivity. The functional dissociation of the cerebellar cortex and dentate nucleus and their connections, suggests that distinct mechanisms in the cerebellum regarding visuomotor learning, which should be investigated in future research.
Collapse
Affiliation(s)
- Yi-Cheng Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| | - Yun R Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shang-Hua N Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chia Kung
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chu-Chung Huang
- Institute of Brain and Education Innovation, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Hung Chang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
50
|
Chirokoff V, Di Scala G, Swendsen J, Dilharreguy B, Berthoz S, Chanraud S. Impact of Metacognitive and Psychological Factors in Learning-Induced Plasticity of Resting State Networks. BIOLOGY 2022; 11:biology11060896. [PMID: 35741416 PMCID: PMC9219664 DOI: 10.3390/biology11060896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022]
Abstract
Simple Summary Connections within the brain can reshape themselves to rapidly adapt to new learning. We aimed to demonstrate that these reconfigurations do not only reflect a memory trace but a more global response to other processes involved in learning. Furthermore, we investigated why individuals do not present the same ability both in learning and in connection plasticity. Present results indicate that brain rapid reconfiguration is not only linked to learning abilities but also to the process of confidence in learning. Factors such as age, education, and anxiety also appear to influence the brain’s response to learning and explain part of the variability observed between subjects. This study revealed important links between brain and psychological functioning and how they influence each other which highlights the need for considering psychological factors both in education and in psychiatric disorders. Abstract While resting-state networks are able to rapidly adapt to experiences and stimuli, it is currently unknown whether metacognitive processes such as confidence in learning and psychological temperament may influence this process. We explore the neural traces of confidence in learning and their variability by: (1) targeting rs-networks in which functional connectivity (FC) modifications induced by a learning task were associated either with the participant’s performance or confidence in learning; and (2) investigating the links between FC changes and psychological temperament. Thirty healthy individuals underwent neuropsychological and psychometric evaluations as well as rs-fMRI scans before and after a visuomotor associative learning task. Confidence in learning was positively associated with the degree of FC changes in 11 connections including the cerebellar, frontal, parietal, and subcortical areas. Variability in FC changes was linked to the individual’s level of anxiety sensitivity. The present findings indicate that reconfigurations of resting state networks linked to confidence in learning differ from those linked to learning accuracy. In addition, certain temperament characteristics appear to influence these reconfigurations.
Collapse
Affiliation(s)
- Valentine Chirokoff
- Section of Life and Earth Sciences, Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France; (J.S.); (S.C.)
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
- Correspondence: ; +33-6-74-80-25-05
| | - Georges Di Scala
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
| | - Joel Swendsen
- Section of Life and Earth Sciences, Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France; (J.S.); (S.C.)
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
| | - Bixente Dilharreguy
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
| | - Sylvie Berthoz
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
- Psychiatry Unit, Institut Mutualiste Montsouris 42, Boulevard Jourdan, 75014 Paris, France
| | - Sandra Chanraud
- Section of Life and Earth Sciences, Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France; (J.S.); (S.C.)
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine-Bordeaux University, 33076 Bordeaux, France; (G.D.S.); (B.D.); (S.B.)
| |
Collapse
|