1
|
Liu X, Rao L, Qiu W, Berger F, Gennerich A. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. Nat Commun 2024; 15:6564. [PMID: 39095439 PMCID: PMC11297315 DOI: 10.1038/s41467-024-50990-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. In this study, we investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA. Our findings reveal that both motors are non-processive, producing single load-dependent power strokes per MT encounter, with estimated load-free power strokes of ~30 and ~35 nm, respectively. Each homodimeric motor generates forces of ~0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Notably, the cooperative activity among multiple motors leads to increased MT-sliding velocities. These results quantitatively elucidate the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Weihong Qiu
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, CH, Utrecht, The Netherlands
| | - Florian Berger
- Department of Biochemistry & Biophysics and Department of Physics, Oregon State University, Corvallis, OR, USA.
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
Wang Y, Liu YR, Wang PY, Xie P. Computational Studies Reveal How Passive Cross-Linkers Regulate Anaphase Spindle Elongation. J Phys Chem B 2024; 128:1194-1204. [PMID: 38287918 DOI: 10.1021/acs.jpcb.3c07655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
In eukaryotic cell division, a series of events are organized to produce two daughter cells. The spindle elongation in anaphase B is essential for providing enough space to maintain cell size and distribute sister chromatids properly, which is associated with microtubules and microtubule-associated proteins such as kinesin-5 Eg5 and the Ase1-related protein, PRC1. The available experimental data indicated that after the start of anaphase B more PRC1 proteins can bind to the antiparallel microtubule pairs in the spindle but the excess amount of PRC1 proteins can lead to the failure of cell division, indicating that PRC1 proteins can regulate the spindle elongation in a concentration-dependent manner. However, the underlying mechanism of the PRC1 proteins regulating the spindle elongation has not been explained up to now. Here, we use a simplified model, where only the two important participants (kinesin-5 Eg5 motors and PRC1 proteins) are considered, to study the spindle elongation during anaphase B. We first show that only in the appropriate range of the PRC1 concentration can the spindle elongation complete properly. Furthermore, we explore the underlying mechanism of PRC1 as a regulator for spindle elongation.
Collapse
Affiliation(s)
- Yao Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ru Liu
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Ye Wang
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Zimyanin V, Magaj M, Yu CH, Gibney T, Mustafa B, Horton X, Siller K, Cueff L, Bouvrais H, Pécréaux J, Needleman D, Redemann S. Lack of chromokinesin Klp-19 creates a more rigid midzone and affects force transmission during anaphase in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564275. [PMID: 37961478 PMCID: PMC10634869 DOI: 10.1101/2023.10.26.564275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Recent studies have highlighted the significance of the spindle midzone - the region positioned between chromosomes - in ensuring proper chromosome segregation. By combining advanced 3D electron tomography and cutting-edge light microscopy we have discovered a previously unknown role of the regulation of microtubule dynamics within the spindle midzone of C. elegans. Using Fluorescence recovery after photobleaching and a combination of second harmonic generation and two-photon fluorescence microscopy, we found that the length of the antiparallel microtubule overlap zone in the spindle midzone is constant throughout anaphase, and independent of cortical pulling forces as well as the presence of the microtubule bundling protein SPD-1. Further investigations of SPD-1 and the chromokinesin KLP-19 in C. elegans suggest that KLP-19 regulates the overlap length and functions independently of SPD-1. Our data shows that KLP-19 plays an active role in regulating the length and turn-over of microtubules within the midzone as well as the size of the antiparallel overlap region throughout mitosis. Depletion of KLP-19 in mitosis leads to an increase in microtubule length in the spindle midzone, which also leads to increased microtubule - microtubule interaction, thus building up a more robust microtubule network. The spindle is globally stiffer and more stable, which has implications for the transmission of forces within the spindle affecting chromosome segregation dynamics. Our data shows that by localizing KLP-19 to the spindle midzone in anaphase microtubule dynamics can be locally controlled allowing the formation of a functional midzone.
Collapse
Affiliation(s)
- Vitaly Zimyanin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Magdalena Magaj
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Che-Hang Yu
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA, USA
| | - Theresa Gibney
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Basaran Mustafa
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Xavier Horton
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Karsten Siller
- IT-Research Computing, University of Virginia, Charlottesville, VA, USA
| | - Louis Cueff
- CNRS, Univ Rennes, IGDR (Institut de Génétique et Dévelopement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Hélène Bouvrais
- CNRS, Univ Rennes, IGDR (Institut de Génétique et Dévelopement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Jacques Pécréaux
- CNRS, Univ Rennes, IGDR (Institut de Génétique et Dévelopement de Rennes) - UMR 6290, F-35000 Rennes, France
| | - Daniel Needleman
- Molecular and Cellular Biology and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Center for Computational Biology, Flatiron Institute, New York, NY, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
4
|
Liu X, Rao L, Qiu W, Gennerich A. Kinesin-14 HSET and KlpA are non-processive microtubule motors with load-dependent power strokes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544415. [PMID: 37333225 PMCID: PMC10274885 DOI: 10.1101/2023.06.09.544415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Accurate chromosome segregation during cell division relies on coordinated actions of microtubule (MT)-based motor proteins in the mitotic spindle. Kinesin-14 motors play vital roles in spindle assembly and maintenance by crosslinking antiparallel MTs at the spindle midzone and anchoring spindle MTs' minus ends at the poles. We investigate the force generation and motility of the Kinesin-14 motors HSET and KlpA, revealing that both motors function as non-processive motors under load, producing single power strokes per MT encounter. Each homodimeric motor generates forces of ∼0.5 pN, but when assembled in teams, they cooperate to generate forces of 1 pN or more. Importantly, cooperative activity among multiple motors leads to increased MT-sliding velocities. Our findings deepen our understanding of the structure-function relationship of Kinesin-14 motors and underscore the significance of cooperative behavior in their cellular functions.
Collapse
|
5
|
Nikam D, Jain A. Advances in the discovery of DHPMs as Eg5 inhibitors for the management of breast cancer and glioblastoma: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
6
|
CellDynaMo–stochastic reaction-diffusion-dynamics model: Application to search-and-capture process of mitotic spindle assembly. PLoS Comput Biol 2022; 18:e1010165. [PMID: 35657997 PMCID: PMC9200364 DOI: 10.1371/journal.pcbi.1010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 06/15/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
We introduce a Stochastic Reaction-Diffusion-Dynamics Model (SRDDM) for simulations of cellular mechanochemical processes with high spatial and temporal resolution. The SRDDM is mapped into the CellDynaMo package, which couples the spatially inhomogeneous reaction-diffusion master equation to account for biochemical reactions and molecular transport within the Langevin Dynamics (LD) framework to describe dynamic mechanical processes. This computational infrastructure allows the simulation of hours of molecular machine dynamics in reasonable wall-clock time. We apply SRDDM to test performance of the Search-and-Capture of mitotic spindle assembly by simulating, in three spatial dimensions, dynamic instability of elastic microtubules anchored in two centrosomes, movement and deformations of geometrically realistic centromeres with flexible kinetochores and chromosome arms. Furthermore, the SRDDM describes the mechanics and kinetics of Ndc80 linkers mediating transient attachments of microtubules to the chromosomal kinetochores. The rates of these attachments and detachments depend upon phosphorylation states of the Ndc80 linkers, which are regulated in the model by explicitly accounting for the reactions of Aurora A and B kinase enzymes undergoing restricted diffusion. We find that there is an optimal rate of microtubule-kinetochore detachments which maximizes the accuracy of the chromosome connections, that adding chromosome arms to kinetochores improve the accuracy by slowing down chromosome movements, that Aurora A and kinetochore deformations have a small positive effect on the attachment accuracy, and that thermal fluctuations of the microtubules increase the rates of kinetochore capture and also improve the accuracy of spindle assembly. The CellDynaMo package models, in 3D, any cellular subsystem where sufficient detail of the macromolecular players and the kinetics of relevant reactions are available. The package is based on the Stochastic Reaction-Diffusion-Dynamics model that combines the stochastic description of chemical kinetics, Brownian diffusion-based description of molecular transport, and Langevin dynamics-based representation of mechanical processes most pertinent to the system. We apply the model to test the Search-and-Capture mechanism of mitotic spindle assembly. We find that there is an optimal rate of microtubule-kinetochore detachments which maximizes the accuracy of chromosome connections, that chromosome arms improve the attachment accuracy by slowing down chromosome movements, that Aurora A kinase and kinetochore deformations have small positive effects on the accuracy, and that thermal fluctuations of the microtubules increase the rates of kinetochore capture and also improve the accuracy.
Collapse
|
7
|
Tripathy SK, Demidov VM, Gonchar IV, Wu S, Ataullakhanov FI, Grishchuk EL. Ultrafast Force-Clamp Spectroscopy of Microtubule-Binding Proteins. Methods Mol Biol 2022; 2478:609-650. [PMID: 36063336 PMCID: PMC9662813 DOI: 10.1007/978-1-0716-2229-2_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Optical trapping has been instrumental for deciphering translocation mechanisms of the force-generating cytoskeletal proteins. However, studies of the dynamic interactions between microtubules (MTs) and MT-associated proteins (MAPs) with no motor activity are lagging. Investigating the motility of MAPs that can diffuse along MT walls is a particular challenge for optical-trapping assays because thermally driven motions rely on weak and highly transient interactions. Three-bead, ultrafast force-clamp (UFFC) spectroscopy has the potential to resolve static and diffusive translocations of different MAPs with sub-millisecond temporal resolution and sub-nanometer spatial precision. In this report, we present detailed procedures for implementing UFFC, including setup of the optical instrument and feedback control, immobilization and functionalization of pedestal beads, and preparation of MT dumbbells. Example results for strong static interactions were generated using the Kinesin-7 motor CENP-E in the presence of AMP-PNP. Time resolution for MAP-MT interactions in the UFFC assay is limited by the MT dumbbell relaxation time, which is significantly longer than reported for analogous experiments using actin filaments. UFFC, however, provides a unique opportunity for quantitative studies on MAPs that glide along MTs under a dragging force, as illustrated using the kinetochore-associated Ska complex.
Collapse
Affiliation(s)
- Suvranta K Tripathy
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, USA
| | - Vladimir M Demidov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan V Gonchar
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Shaowen Wu
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Fazly I Ataullakhanov
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina L Grishchuk
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Mercadante DL, Manning AL, Olson SD. Modeling reveals cortical dynein-dependent fluctuations in bipolar spindle length. Biophys J 2021; 120:3192-3210. [PMID: 34197801 DOI: 10.1016/j.bpj.2021.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022] Open
Abstract
Proper formation and maintenance of the mitotic spindle is required for faithful cell division. Although much work has been done to understand the roles of the key molecular components of the mitotic spindle, identifying the consequences of force perturbations in the spindle remains a challenge. We develop a computational framework accounting for the minimal force requirements of mitotic progression. To reflect early spindle formation, we model microtubule dynamics and interactions with major force-generating motors, excluding chromosome interactions that dominate later in mitosis. We directly integrate our experimental data to define and validate the model. We then use simulations to analyze individual force components over time and their relationship to spindle dynamics, making it distinct from previously published models. We show through both model predictions and biological manipulation that rather than achieving and maintaining a constant bipolar spindle length, fluctuations in pole-to-pole distance occur that coincide with microtubule binding and force generation by cortical dynein. Our model further predicts that high dynein activity is required for spindle bipolarity when kinesin-14 (HSET) activity is also high. To the best of our knowledge, our results provide novel insight into the role of cortical dynein in the regulation of spindle bipolarity.
Collapse
Affiliation(s)
- Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester, Massachusetts
| | - Amity L Manning
- Department of Biology and Biotechnology, Worcester, Massachusetts.
| | - Sarah D Olson
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
9
|
Mani N, Wijeratne SS, Subramanian R. Micron-scale geometrical features of microtubules as regulators of microtubule organization. eLife 2021; 10:e63880. [PMID: 34114950 PMCID: PMC8195601 DOI: 10.7554/elife.63880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
The organization of micron-sized, multi-microtubule arrays from individual microtubules is essential for diverse cellular functions. The microtubule polymer is largely viewed as a passive building block during the organization process. An exception is the 'tubulin code' where alterations to tubulin at the amino acid level can influence the activity of microtubule-associated proteins. Recent studies reveal that micron-scale geometrical features of individual microtubules and polymer networks, such as microtubule length, overlap length, contact angle, and lattice defects, can also regulate the activity of microtubule-associated proteins and modulate polymer dynamics. We discuss how the interplay between such geometrical properties of the microtubule lattice and the activity of associated proteins direct multiple aspects of array organization, from microtubule nucleation and coalignment to specification of array dimensions and remodeling of dynamic networks. The mechanisms reviewed here highlight micron-sized features of microtubules as critical parameters to be routinely investigated in the study of microtubule self-organization.
Collapse
Affiliation(s)
- Nandini Mani
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Sithara S Wijeratne
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
10
|
Al Azzam O, Trussell CL, Reinemann DN. Measuring force generation within reconstituted microtubule bundle assemblies using optical tweezers. Cytoskeleton (Hoboken) 2021; 78:111-125. [PMID: 34051127 DOI: 10.1002/cm.21678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
Kinesins and microtubule associated proteins (MAPs) are critical to sustain life, facilitating cargo transport, cell division, and motility. To interrogate the mechanistic underpinnings of their function, these microtubule-based motors and proteins have been studied extensively at the single molecule level. However, a long-standing issue in the single molecule biophysics field has been how to investigate motors and associated proteins within a physiologically relevant environment in vitro. While the one motor/one filament orientation of a traditional optical trapping assay has revolutionized our knowledge of motor protein mechanics, this reductionist geometry does not reflect the structural hierarchy in which many motors work within the cellular environment. Here, we review approaches that combine the precision of optical tweezers with reconstituted ensemble systems of microtubules, MAPs, and kinesins to understand how each of these unique elements work together to perform large scale cellular tasks, such as but not limited to building the mitotic spindle. Not only did these studies develop novel techniques for investigating motor proteins in vitro, but they also illuminate ensemble filament and motor synergy that helps bridge the mechanistic knowledge gap between previous single molecule and cell level studies.
Collapse
Affiliation(s)
- Omayma Al Azzam
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA
| | - Cameron Lee Trussell
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA
| | - Dana N Reinemann
- Department of Chemical Engineering, University of Mississippi, University, Mississippi, USA.,Department of Biomedical Engineering, University of Mississippi, University, Mississippi, USA
| |
Collapse
|
11
|
Lian N, Wang X, Jing Y, Lin J. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:241-250. [PMID: 33274838 DOI: 10.1111/jipb.13046] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 05/24/2023]
Abstract
The plant cytoskeleton undergoes dynamic remodeling in response to diverse developmental and environmental cues. Remodeling of the cytoskeleton coordinates growth in plant cells, including trafficking and exocytosis of membrane and wall components during cell expansion, and regulation of hypocotyl elongation in response to light. Cytoskeletal remodeling also has key functions in disease resistance and abiotic stress responses. Many stimuli result in altered activity of cytoskeleton-associated proteins, microtubule-associated proteins (MAPs) and actin-binding proteins (ABPs). MAPs and ABPs are the main players determining the spatiotemporally dynamic nature of the cytoskeleton, functioning in a sensory hub that decodes signals to modulate plant cytoskeletal behavior. Moreover, MAP and ABP activities and levels are precisely regulated during development and environmental responses, but our understanding of this process remains limited. In this review, we summarize the evidence linking multiple signaling pathways, MAP and ABP activities and levels, and cytoskeletal rearrangements in plant cells. We highlight advances in elucidating the multiple mechanisms that regulate MAP and ABP activities and levels, including calcium and calmodulin signaling, ROP GTPase activity, phospholipid signaling, and post-translational modifications.
Collapse
Affiliation(s)
- Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
12
|
Kumar N, Singh AK. The anatomy, movement, and functions of human sperm tail: an evolving mystery. Biol Reprod 2020; 104:508-520. [PMID: 33238303 DOI: 10.1093/biolre/ioaa213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Sperms have attracted attention of many researchers since it was discovered by Antonie van Leeuwenhoek in 1677. Though a small cell, its every part has complex structure and different function to play in carrying life. Sperm tail is most complicated structure with more than 1000 proteins involved in its functioning. With the advent of three-dimensional microscopes, many studies are undergoing to understand exact mechanism of sperm tail movement. Most recent studies have shown that sperms move by spinning rather than swimming. Each subunit of tail, including axonemal, peri-axonemal structures, plays essential roles in sperm motility, capacitation, hyperactivation, fertilization. Furthermore, over 2300 genes are involved in spermatogenesis. A number of genetic mutations have been linked with abnormal sperm flagellar development leading to motility defects and male infertility. It was found that 6% of male infertility cases are related to genetic causes, and 4% of couples undergoing intracytoplasmic sperm injection for male subfertility have chromosomal abnormalities. Hence, an understanding of sperm tail development and genes associated with its normal functioning can help in better diagnosis of male infertility and its management. There is still a lot that needs to be discovered about genes, proteins contributing to normal human sperm tail development, movement, and role in male fertility. Sperm tail has complex anatomy, with surrounding axoneme having 9 + 2 microtubules arrangement along its entire length and peri-axonemal structures that contribute in sperm motility and fertilization. In future sperm tail-associated genes, proteins and subunits can be used as markers of male fertility.
Collapse
Affiliation(s)
- Naina Kumar
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Guntur, Andhra Pradesh 522503, India
| | - Amit Kant Singh
- Department of Physiology, U.P. University of Medical Sciences, Etawah 206130, Uttar Pradesh, India
| |
Collapse
|
13
|
Fang CT, Kuo HH, Hsu SC, Yih LH. HSP70 regulates Eg5 distribution within the mitotic spindle and modulates the cytotoxicity of Eg5 inhibitors. Cell Death Dis 2020; 11:715. [PMID: 32873777 PMCID: PMC7462862 DOI: 10.1038/s41419-020-02919-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The heat shock protein 70 (HSP70) is a conserved molecular chaperone and proteostasis regulator that protects cells from pharmacological stress and promotes drug resistance in cancer cells. In this study, we found that HSP70 may promote resistance to anticancer drugs that target the mitotic kinesin, Eg5, which is essential for assembly and maintenance of the mitotic spindle and cell proliferation. Our data show that loss of HSP70 activity enhances Eg5 inhibitor-induced cytotoxicity and spindle abnormalities. Furthermore, HSP70 colocalizes with Eg5 in the mitotic spindle, and inhibition of HSP70 disrupts this colocalization. Inhibition or depletion of HSP70 also causes Eg5 to accumulate at the spindle pole, altering microtubule dynamics and leading to chromosome misalignment. Using ground state depletion microscopy followed by individual molecule return (GSDIM), we found that HSP70 inhibition reduces the size of Eg5 ensembles and prevents their localization to the inter-polar region of the spindle. In addition, bis(maleimido)hexane-mediated protein-protein crosslinking and proximity ligation assays revealed that HSP70 inhibition deregulates the interaction between Eg5 tetramers and TPX2 at the spindle pole, leading to their accumulation in high-molecular-weight complexes. Finally, we showed that the passive substrate-binding activity of HSP70 is required for appropriate Eg5 distribution and function. Together, our results show that HSP70 substrate-binding activity may regulate proper assembly of Eg5 ensembles and Eg5-TPX2 complexes to modulate mitotic distribution/function of Eg5. Thus, HSP70 inhibition may sensitize cancer cells to Eg5 inhibitor-induced cytotoxicity.
Collapse
Affiliation(s)
- Chieh-Ting Fang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
14
|
Zheng F, Dong F, Yu S, Li T, Jian Y, Nie L, Fu C. Klp2 and Ase1 synergize to maintain meiotic spindle stability during metaphase I. J Biol Chem 2020; 295:13287-13298. [PMID: 32723864 DOI: 10.1074/jbc.ra120.012905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/24/2020] [Indexed: 11/06/2022] Open
Abstract
The spindle apparatus segregates bi-oriented sister chromatids during mitosis but mono-oriented homologous chromosomes during meiosis I. It has remained unclear if similar molecular mechanisms operate to regulate spindle dynamics during mitosis and meiosis I. Here, we employed live-cell microscopy to compare the spindle dynamics of mitosis and meiosis I in fission yeast cells and demonstrated that the conserved kinesin-14 motor Klp2 plays a specific role in maintaining metaphase spindle length during meiosis I but not during mitosis. Moreover, the maintenance of metaphase spindle stability during meiosis I requires the synergism between Klp2 and the conserved microtubule cross-linker Ase1, as the absence of both proteins causes exacerbated defects in metaphase spindle stability. The synergism is not necessary for regulating mitotic spindle dynamics. Hence, our work reveals a new molecular mechanism underlying meiotic spindle dynamics and provides insights into understanding differential regulation of meiotic and mitotic events.
Collapse
Affiliation(s)
- Fan Zheng
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fenfen Dong
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shuo Yu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tianpeng Li
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yanze Jian
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lingyun Nie
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, CAS Center for Excellence in Molecular Cell Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
15
|
Microtubule Minus-End Binding Protein CAMSAP2 and Kinesin-14 Motor KIFC3 Control Dendritic Microtubule Organization. Curr Biol 2020; 30:899-908.e6. [PMID: 32084403 PMCID: PMC7063570 DOI: 10.1016/j.cub.2019.12.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/28/2019] [Accepted: 12/18/2019] [Indexed: 12/21/2022]
Abstract
Neuronal dendrites are characterized by an anti-parallel microtubule organization. The mixed oriented microtubules promote dendrite development and facilitate polarized cargo trafficking; however, the mechanism that regulates dendritic microtubule organization is still unclear. Here, we found that the kinesin-14 motor KIFC3 is important for organizing dendritic microtubules and to control dendrite development. The kinesin-14 motor proteins (Drosophila melanogaster Ncd, Saccharomyces cerevisiae Kar3, Saccharomyces pombe Pkl1, and Xenopus laevis XCTK2) are characterized by a C-terminal motor domain and are well described to organize the spindle microtubule during mitosis using an additional microtubule binding site in the N terminus [1-4]. In mammals, there are three kinesin-14 members, KIFC1, KIFC2, and KIFC3. It was recently shown that KIFC1 is important for organizing axonal microtubules in neurons, a process that depends on the two microtubule-interacting domains [5]. Unlike KIFC1, KIFC2 and KIFC3 lack the N-terminal microtubule binding domain and only have one microtubule-interacting domain, the motor domain [6, 7]. Thus, in order to regulate microtubule-microtubule crosslinking or sliding, KIFC2 and KIFC3 need to interact with additional microtubule binding proteins to connect two microtubules. We found that KIFC3 has a dendrite-specific distribution and interacts with microtubule minus-end binding protein CAMSAP2. Depletion of KIFC3 or CAMSAP2 results in increased microtubule dynamics during dendritic development. We propose a model in which CAMSAP2 anchors KIFC3 at microtubule minus ends and immobilizes microtubule arrays in dendrites.
Collapse
|
16
|
Belsham HR, Friel CT. Identification of key residues that regulate the interaction of kinesins with microtubule ends. Cytoskeleton (Hoboken) 2019; 76:440-446. [PMID: 31574569 PMCID: PMC6899999 DOI: 10.1002/cm.21568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
Abstract
Kinesins are molecular motors that use energy derived from ATP turnover to walk along microtubules, or when at the microtubule end, regulate growth or shrinkage. All kinesins that regulate microtubule dynamics have long residence times at microtubule ends, whereas those that only walk have short end‐residence times. Here, we identify key amino acids involved in end binding by showing that when critical residues from Kinesin‐13, which depolymerises microtubules, are introduced into Kinesin‐1, a walking kinesin with no effect on microtubule dynamics, the end‐residence time is increased up to several‐fold. This indicates that the interface between the kinesin motor domain and the microtubule is malleable and can be tuned to favour either lattice or end binding.
Collapse
Affiliation(s)
- Hannah R Belsham
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, NG7 2UH, United Kingdom
| | - Claire T Friel
- School of Life Sciences, University of Nottingham, Medical School, QMC, Nottingham, NG7 2UH, United Kingdom
| |
Collapse
|
17
|
Abstract
The assembly of the mitotic spindle and the subsequent segregation of sister chromatids are based on the self-organized action of microtubule filaments, motor proteins, and other microtubule-associated proteins, which constitute the fundamental force-generating elements in the system. Many of the components in the spindle have been identified, but until recently it remained unclear how their collective behaviors resulted in such a robust bipolar structure. Here, we review the current understanding of the physics of the metaphase spindle that is only now starting to emerge.
Collapse
Affiliation(s)
- David Oriola
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; .,Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.,Center for Systems Biology Dresden, 01307, Dresden, Germany
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Department of Molecular and Cellular Biology, and FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 021382, USA
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307, Dresden, Germany; .,Max Planck Institute for the Physics of Complex Systems, 01187, Dresden, Germany.,Center for Systems Biology Dresden, 01307, Dresden, Germany
| |
Collapse
|
18
|
Wijeratne S, Subramanian R. Geometry of antiparallel microtubule bundles regulates relative sliding and stalling by PRC1 and Kif4A. eLife 2018; 7:32595. [PMID: 30353849 PMCID: PMC6200392 DOI: 10.7554/elife.32595] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 09/28/2018] [Indexed: 12/12/2022] Open
Abstract
Motor and non-motor crosslinking proteins play critical roles in determining the size and stability of microtubule-based architectures. Currently, we have a limited understanding of how geometrical properties of microtubule arrays, in turn, regulate the output of crosslinking proteins. Here we investigate this problem in the context of microtubule sliding by two interacting proteins: the non-motor crosslinker PRC1 and the kinesin Kif4A. The collective activity of PRC1 and Kif4A also results in their accumulation at microtubule plus-ends (‘end-tag’). Sliding stalls when the end-tags on antiparallel microtubules collide, forming a stable overlap. Interestingly, we find that structural properties of the initial array regulate microtubule organization by PRC1-Kif4A. First, sliding velocity scales with initial microtubule-overlap length. Second, the width of the final overlap scales with microtubule lengths. Our analyses reveal how micron-scale geometrical features of antiparallel microtubules can regulate the activity of nanometer-sized proteins to define the structure and mechanics of microtubule-based architectures.
Collapse
Affiliation(s)
- Sithara Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States
| |
Collapse
|
19
|
Gunes S, Sengupta P, Henkel R, Alguraigari A, Sinigaglia MM, Kayal M, Joumah A, Agarwal A. Microtubular Dysfunction and Male Infertility. World J Mens Health 2018; 38:9-23. [PMID: 30350487 PMCID: PMC6920067 DOI: 10.5534/wjmh.180066] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 01/27/2023] Open
Abstract
Microtubules are the prime component of the cytoskeleton along with microfilaments. Being vital for organelle transport and cellular divisions during spermatogenesis and sperm motility process, microtubules ascertain functional capacity of sperm. Also, microtubule based structures such as axoneme and manchette are crucial for sperm head and tail formation. This review (a) presents a concise, yet detailed structural overview of the microtubules, (b) analyses the role of microtubule structures in various male reproductive functions, and (c) presents the association of microtubular dysfunctions with male infertility. Considering the immense importance of microtubule structures in the formation and maintenance of physiological functions of sperm cells, this review serves as a scientific trigger in stimulating further male infertility research in this direction.
Collapse
Affiliation(s)
- Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, Selangor, Malaysia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Aabed Alguraigari
- Batterjee Medical College, Jeddah, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Mariana Marques Sinigaglia
- University of Sao Paulo, Sao Paulo, Brazil.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Malik Kayal
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ahmad Joumah
- Alfaisal University Medical School, Riyadh, Saudi Arabia.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
20
|
Juniper MPN, Weiss M, Platzman I, Spatz JP, Surrey T. Spherical network contraction forms microtubule asters in confinement. SOFT MATTER 2018; 14:901-909. [PMID: 29364311 DOI: 10.1039/c7sm01718a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Microtubules and motor proteins form active filament networks that are critical for a variety of functions in living cells. Network topology and dynamics are the result of a self-organisation process that takes place within the boundaries of the cell. Previous biochemical in vitro studies with biomimetic systems consisting of purified motors and microtubules have demonstrated that confinement has an important effect on the outcome of the self-organisation process. However, the pathway of motor/microtubule self-organisation under confinement and its effects on network morphology are still poorly understood. Here, we have investigated how minus-end directed microtubule cross-linking kinesins organise microtubules inside polymer-stabilised microfluidic droplets of well-controlled size. We find that confinement can impose a novel pathway of microtubule aster formation proceeding via the constriction of an initially spherical motor/microtubule network. This mechanism illustrates the close relationship between confinement, network contraction, and aster formation. The spherical constriction pathway robustly produces single, well-centred asters with remarkable reproducibility across thousands of droplets. These results show that the additional constraint of well-defined confinement can improve the robustness of active network self-organisation, providing insight into the design principles of self-organising active networks in micro-scale confinement.
Collapse
Affiliation(s)
| | - Marian Weiss
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Germany and Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Germany and Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Joachim P Spatz
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Germany and Department of Biophysical Chemistry, University of Heidelberg, Im Neuenheimer Feld 253, 69120 Heidelberg, Germany
| | - Thomas Surrey
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
21
|
Insight into microtubule disassembly by kinesin-13s from the structure of Kif2C bound to tubulin. Nat Commun 2017; 8:70. [PMID: 28694425 PMCID: PMC5503940 DOI: 10.1038/s41467-017-00091-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/31/2017] [Indexed: 12/20/2022] Open
Abstract
Kinesin-13s are critical microtubule regulators which induce microtubule disassembly in an ATP dependent manner. To clarify their mechanism, we report here the crystal structure of a functional construct of the kinesin-13 Kif2C/MCAK in an ATP-like state and bound to the αβ-tubulin heterodimer, a complex mimicking the species that dissociates from microtubule ends during catalytic disassembly. Our results picture how Kif2C stabilizes a curved tubulin conformation. The Kif2C α4-L12-α5 region undergoes a remarkable 25° rotation upon tubulin binding to target the αβ-tubulin hinge. This movement leads the β5a–β5b motif to interact with the distal end of β-tubulin, whereas the neck and the KVD motif, two specific elements of kinesin-13s, target the α-tubulin distal end. Taken together with the study of Kif2C mutants, our data suggest that stabilization of a curved tubulin is an important contribution to the Kif2C mechanism. Kinesin-13s are microtubule depolymerizing enzymes. Here the authors present the crystal structure of a DARPin fused construct comprising the short neck region and motor domain of kinesin-13 in complex with an αβ-tubulin heterodimer, which shows that kinesin-13 functions by stabilizing a curved tubulin conformation.
Collapse
|
22
|
She ZY, Yang WX. Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 2017; 130:2097-2110. [DOI: 10.1242/jcs.200261] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
ABSTRACT
During eukaryote cell division, molecular motors are crucial regulators of microtubule organization, spindle assembly, chromosome segregation and intracellular transport. The kinesin-14 motors are evolutionarily conserved minus-end-directed kinesin motors that occur in diverse organisms from simple yeasts to higher eukaryotes. Members of the kinesin-14 motor family can bind to, crosslink or slide microtubules and, thus, regulate microtubule organization and spindle assembly. In this Commentary, we present the common subthemes that have emerged from studies of the molecular kinetics and mechanics of kinesin-14 motors, particularly with regard to their non-processive movement, their ability to crosslink microtubules and interact with the minus- and plus-ends of microtubules, and with microtubule-organizing center proteins. In particular, counteracting forces between minus-end-directed kinesin-14 and plus-end-directed kinesin-5 motors have recently been implicated in the regulation of microtubule nucleation. We also discuss recent progress in our current understanding of the multiple and fundamental functions that kinesin-14 motors family members have in important aspects of cell division, including the spindle pole, spindle organization and chromosome segregation.
Collapse
Affiliation(s)
- Zhen-Yu She
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
23
|
C. elegans chromosomes connect to centrosomes by anchoring into the spindle network. Nat Commun 2017; 8:15288. [PMID: 28492281 PMCID: PMC5437269 DOI: 10.1038/ncomms15288] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/10/2017] [Indexed: 11/19/2022] Open
Abstract
The mitotic spindle ensures the faithful segregation of chromosomes. Here we combine the first large-scale serial electron tomography of whole mitotic spindles in early C. elegans embryos with live-cell imaging to reconstruct all microtubules in 3D and identify their plus- and minus-ends. We classify them as kinetochore (KMTs), spindle (SMTs) or astral microtubules (AMTs) according to their positions, and quantify distinct properties of each class. While our light microscopy and mutant studies show that microtubules are nucleated from the centrosomes, we find only a few KMTs directly connected to the centrosomes. Indeed, by quantitatively analysing several models of microtubule growth, we conclude that minus-ends of KMTs have selectively detached and depolymerized from the centrosome. In toto, our results show that the connection between centrosomes and chromosomes is mediated by an anchoring into the entire spindle network and that any direct connections through KMTs are few and likely very transient. A connection between centrosomes and chromosomes is a key feature of mitotic spindles. Here the authors generate 3D reconstructions of whole mitotic spindles in early C. elegans embryos and show that chromosomes are anchored by the entire spindle network and that connections through kinetochore microtubules are few and likely very transient.
Collapse
|
24
|
Scholey JM, Civelekoglu-Scholey G, Brust-Mascher I. Anaphase B. BIOLOGY 2016; 5:biology5040051. [PMID: 27941648 PMCID: PMC5192431 DOI: 10.3390/biology5040051] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 11/16/2022]
Abstract
Anaphase B spindle elongation is characterized by the sliding apart of overlapping antiparallel interpolar (ip) microtubules (MTs) as the two opposite spindle poles separate, pulling along disjoined sister chromatids, thereby contributing to chromosome segregation and the propagation of all cellular life. The major biochemical “modules” that cooperate to mediate pole–pole separation include: (i) midzone pushing or (ii) braking by MT crosslinkers, such as kinesin-5 motors, which facilitate or restrict the outward sliding of antiparallel interpolar MTs (ipMTs); (iii) cortical pulling by disassembling astral MTs (aMTs) and/or dynein motors that pull aMTs outwards; (iv) ipMT plus end dynamics, notably net polymerization; and (v) ipMT minus end depolymerization manifest as poleward flux. The differential combination of these modules in different cell types produces diversity in the anaphase B mechanism. Combinations of antagonist modules can create a force balance that maintains the dynamic pre-anaphase B spindle at constant length. Tipping such a force balance at anaphase B onset can initiate and control the rate of spindle elongation. The activities of the basic motor filament components of the anaphase B machinery are controlled by a network of non-motor MT-associated proteins (MAPs), for example the key MT cross-linker, Ase1p/PRC1, and various cell-cycle kinases, phosphatases, and proteases. This review focuses on the molecular mechanisms of anaphase B spindle elongation in eukaryotic cells and briefly mentions bacterial DNA segregation systems that operate by spindle elongation.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California, Davis, CA 95616, USA.
| | | | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
25
|
Chu X, Chen X, Wan Q, Zheng Z, Du Q. Nuclear Mitotic Apparatus (NuMA) Interacts with and Regulates Astrin at the Mitotic Spindle. J Biol Chem 2016; 291:20055-67. [PMID: 27462074 DOI: 10.1074/jbc.m116.724831] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Indexed: 11/06/2022] Open
Abstract
The large nuclear mitotic apparatus (NuMA) protein is an essential player in mitotic spindle assembly and maintenance. We report here the identification of Astrin, a spindle- and kinetochore-associated protein, as a novel interactor of NuMA. We show that the C-terminal tail of NuMA can directly bind to the C terminus of Astrin and that this interaction helps to recruit Astrin to microtubules. Knockdown of NuMA by RNA interference dramatically impaired Astrin recruitment to the mitotic spindle. Overexpression of the N terminus of mammalian homologue of Drosophila Pins (LGN), which blocks the microtubule binding of NuMA and competes with Astrin for NuMA binding, also led to similar results. Furthermore, we found that cytoplasmic dynein is required for the spindle pole accumulation of Astrin, and dynein-mediated transport is important for balanced distribution of Astrin between spindle poles and kinetochores. On the other hand, if Astrin levels are reduced, then NuMA could not efficiently concentrate at the spindle poles. Our findings reveal a direct physical link between two important regulators of mitotic progression and demonstrate the critical role of the NuMA-Astrin interaction for accurate cell division.
Collapse
Affiliation(s)
- Xiaogang Chu
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Xuanyu Chen
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Qingwen Wan
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Zhen Zheng
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Quansheng Du
- From the Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
26
|
Chavali PL, Chandrasekaran G, Barr AR, Tátrai P, Taylor C, Papachristou EK, Woods CG, Chavali S, Gergely F. A CEP215-HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer. Nat Commun 2016; 7:11005. [PMID: 26987684 PMCID: PMC4802056 DOI: 10.1038/ncomms11005] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 02/10/2016] [Indexed: 01/09/2023] Open
Abstract
Numerical centrosome aberrations underlie certain developmental abnormalities and may promote cancer. A cell maintains normal centrosome numbers by coupling centrosome duplication with segregation, which is achieved through sustained association of each centrosome with a mitotic spindle pole. Although the microcephaly- and primordial dwarfism-linked centrosomal protein CEP215 has been implicated in this process, the molecular mechanism responsible remains unclear. Here, using proteomic profiling, we identify the minus end-directed microtubule motor protein HSET as a direct binding partner of CEP215. Targeted deletion of the HSET-binding domain of CEP215 in vertebrate cells causes centrosome detachment and results in HSET depletion at centrosomes, a phenotype also observed in CEP215-deficient patient-derived cells. Moreover, in cancer cells with centrosome amplification, the CEP215-HSET complex promotes the clustering of extra centrosomes into pseudo-bipolar spindles, thereby ensuring viable cell division. Therefore, stabilization of the centrosome-spindle pole interface by the CEP215-HSET complex could promote survival of cancer cells containing supernumerary centrosomes.
Collapse
Affiliation(s)
- Pavithra L. Chavali
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Gayathri Chandrasekaran
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Alexis R. Barr
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Péter Tátrai
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Chris Taylor
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - Evaggelia K. Papachristou
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| | - C. Geoffrey Woods
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Fanni Gergely
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
27
|
Spatiotemporal Regulation of Nuclear Transport Machinery and Microtubule Organization. Cells 2015; 4:406-26. [PMID: 26308057 PMCID: PMC4588043 DOI: 10.3390/cells4030406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/23/2022] Open
Abstract
Spindle microtubules capture and segregate chromosomes and, therefore, their assembly is an essential event in mitosis. To carry out their mission, many key players for microtubule formation need to be strictly orchestrated. Particularly, proteins that assemble the spindle need to be translocated at appropriate sites during mitosis. A small GTPase (hydrolase enzyme of guanosine triphosphate), Ran, controls this translocation. Ran plays many roles in many cellular events: nucleocytoplasmic shuttling through the nuclear envelope, assembly of the mitotic spindle, and reorganization of the nuclear envelope at the mitotic exit. Although these events are seemingly distinct, recent studies demonstrate that the mechanisms underlying these phenomena are substantially the same as explained by molecular interplay of the master regulator Ran, the transport factor importin, and its cargo proteins. Our review focuses on how the transport machinery regulates mitotic progression of cells. We summarize translocation mechanisms governed by Ran and its regulatory proteins, and particularly focus on Ran-GTP targets in fission yeast that promote spindle formation. We also discuss the coordination of the spatial and temporal regulation of proteins from the viewpoint of transport machinery. We propose that the transport machinery is an essential key that couples the spatial and temporal events in cells.
Collapse
|
28
|
Lansky Z, Braun M, Lüdecke A, Schlierf M, ten Wolde P, Janson M, Diez S. Diffusible Crosslinkers Generate Directed Forces in Microtubule Networks. Cell 2015; 160:1159-68. [DOI: 10.1016/j.cell.2015.01.051] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/11/2014] [Accepted: 01/06/2015] [Indexed: 10/23/2022]
|
29
|
Wang H, Brust-Mascher I, Scholey JM. The microtubule cross-linker Feo controls the midzone stability, motor composition, and elongation of the anaphase B spindle in Drosophila embryos. Mol Biol Cell 2015; 26:1452-62. [PMID: 25694445 PMCID: PMC4395126 DOI: 10.1091/mbc.e14-12-1631] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 02/13/2015] [Indexed: 01/19/2023] Open
Abstract
The antiparallel MT-MT cross-linking nonmotor MAP, Feo, controls the organization, stability, and motor composition of the Drosophila embryo anaphase B spindle midzone, thereby facilitating the kinesin-5-driven sliding filament mechanism underlying proper anaphase B spindle elongation and chromosome segregation. Chromosome segregation during anaphase depends on chromosome-to-pole motility and pole-to-pole separation. We propose that in Drosophila embryos, the latter process (anaphase B) depends on a persistent kinesin-5–generated interpolar (ip) microtubule (MT) sliding filament mechanism that “engages” to push apart the spindle poles when poleward flux is turned off. Here we investigated the contribution of the midzonal, antiparallel MT-cross-linking nonmotor MAP, Feo, to this “slide-and-flux-or-elongate” mechanism. Whereas Feo homologues in other systems enhance the midzone localization of the MT-MT cross-linking motors kinesin-4, -5 and -6, the midzone localization of these motors is respectively enhanced, reduced, and unaffected by Feo. Strikingly, kinesin-5 localizes all along ipMTs of the anaphase B spindle in the presence of Feo, including at the midzone, but the antibody-induced dissociation of Feo increases kinesin-5 association with the midzone, which becomes abnormally narrow, leading to impaired anaphase B and incomplete chromosome segregation. Thus, although Feo and kinesin-5 both preferentially cross-link MTs into antiparallel polarity patterns, kinesin-5 cannot substitute for loss of Feo function. We propose that Feo controls the organization, stability, and motor composition of antiparallel ipMTs at the midzone, thereby facilitating the kinesin-5–driven sliding filament mechanism underlying proper anaphase B spindle elongation and chromosome segregation.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616
| | - Ingrid Brust-Mascher
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616
| | - Jonathan M Scholey
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616
| |
Collapse
|
30
|
Cheeseman LP, Booth DG, Hood FE, Prior IA, Royle SJ. Aurora A kinase activity is required for localization of TACC3/ch-TOG/clathrin inter-microtubule bridges. Commun Integr Biol 2014. [DOI: 10.4161/cib.15250] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
31
|
Hood FE, Royle SJ. Pulling it together: The mitotic function of TACC3. BIOARCHITECTURE 2014; 1:105-109. [PMID: 21922039 DOI: 10.4161/bioa.1.3.16518] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 12/29/2022]
Abstract
Transforming acidic coiled coil 3 (TACC3) is a non-motor microtubule-associated protein (MAP) that is important for mitotic spindle stability and organization. The exact mechanism by which TACC3 acts at microtubules to stabilize the spindle has been unclear. However, several recent studies identified that the TACC3 complex at microtubules contains clathrin in addition to its previously identified binding partner, colonic and hepatic tumor overexpressed gene (ch-TOG). In this complex, phosphorylated TACC3 interacts directly with both ch-TOG and clathrin heavy chain, promoting accumulation of all complex members at the mitotic spindle. This complex stabilizes kinetochore fibers within the spindle by forming cross-bridges that link adjacent microtubules in these bundles. So, TACC3 is an adaptor that recruits ch-TOG and clathrin to mitotic microtubules, in an Aurora A kinase-regulated manner. In this mini-review we will describe the recent advances in the understanding of TACC 3 function and present a model that pulls together these new data with previous observations.
Collapse
Affiliation(s)
- Fiona E Hood
- The Physiological Laboratory; University of Liverpool; Liverpool, UK
| | | |
Collapse
|
32
|
Zheng F, Li T, Jin DY, Syrovatkina V, Scheffler K, Tran PT, Fu C. Csi1p recruits alp7p/TACC to the spindle pole bodies for bipolar spindle formation. Mol Biol Cell 2014; 25:2750-60. [PMID: 25057016 PMCID: PMC4161510 DOI: 10.1091/mbc.e14-03-0786] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The spindle pole body (SPB) localization of the fission yeast Schizosaccharomyces pombe TACC orthologue alp7p depends on the SPB protein csi1p. Compromised interaction between csi1p and alp7p delays bipolar spindle formation and leads to abnormal chromosome segregation. Accurate chromosome segregation requires timely bipolar spindle formation during mitosis. The transforming acidic coiled-coil (TACC) family proteins and the ch-TOG family proteins are key players in bipolar spindle formation. They form a complex to stabilize spindle microtubules, mainly dependent on their localization to the centrosome (the spindle pole body [SPB] in yeast). The molecular mechanism underlying the targeting of the TACC–ch-TOG complex to the centrosome remains unclear. Here we show that the fission yeast Schizosaccharomyces pombe TACC orthologue alp7p is recruited to the SPB by csi1p. The csi1p-interacting region lies within the conserved TACC domain of alp7p, and the carboxyl-terminal domain of csi1p is responsible for interacting with alp7p. Compromised interaction between csi1p and alp7p impairs the localization of alp7p to the SPB during mitosis, thus delaying bipolar spindle formation and leading to anaphase B lagging chromosomes. Hence our study establishes that csi1p serves as a linking molecule tethering spindle-stabilizing factors to the SPB for promoting bipolar spindle assembly.
Collapse
Affiliation(s)
- Fan Zheng
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China HKU-Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Tianpeng Li
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China HKU-Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| | - Dong-Yan Jin
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China
| | | | - Kathleen Scheffler
- Institut Curie, Centre National de la Recherche Scientifique, Paris 75005, France
| | - Phong T Tran
- Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 10104 Institut Curie, Centre National de la Recherche Scientifique, Paris 75005, France
| | - Chuanhai Fu
- Department of Biochemistry, University of Hong Kong, Pokfulam, Hong Kong, China HKU-Shenzhen Institute of Research and Innovation, University of Hong Kong, Shenzhen, China
| |
Collapse
|
33
|
Forth S, Hsia KC, Shimamoto Y, Kapoor TM. Asymmetric friction of nonmotor MAPs can lead to their directional motion in active microtubule networks. Cell 2014; 157:420-432. [PMID: 24725408 DOI: 10.1016/j.cell.2014.02.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 11/25/2013] [Accepted: 02/03/2014] [Indexed: 01/13/2023]
Abstract
Diverse cellular processes require microtubules to be organized into distinct structures, such as asters or bundles. Within these dynamic motifs, microtubule-associated proteins (MAPs) are frequently under load, but how force modulates these proteins' function is poorly understood. Here, we combine optical trapping with TIRF-based microscopy to measure the force dependence of microtubule interaction for three nonmotor MAPs (NuMA, PRC1, and EB1) required for cell division. We find that frictional forces increase nonlinearly with MAP velocity across microtubules and depend on filament polarity, with NuMA's friction being lower when moving toward minus ends, EB1's lower toward plus ends, and PRC1's exhibiting no directional preference. Mathematical models predict, and experiments confirm, that MAPs with asymmetric friction can move directionally within actively moving microtubule pairs they crosslink. Our findings reveal how nonmotor MAPs can generate frictional resistance in dynamic cytoskeletal networks via micromechanical adaptations whose anisotropy may be optimized for MAP localization and function within cellular structures.
Collapse
Affiliation(s)
- Scott Forth
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kuo-Chiang Hsia
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yuta Shimamoto
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
34
|
Microtubule networks for plant cell division. SYSTEMS AND SYNTHETIC BIOLOGY 2014; 8:187-94. [PMID: 25136380 DOI: 10.1007/s11693-014-9142-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants.
Collapse
|
35
|
Chowdhury D. Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules. Biophys J 2014; 104:2331-41. [PMID: 23746505 DOI: 10.1016/j.bpj.2013.04.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 04/16/2013] [Accepted: 04/17/2013] [Indexed: 01/14/2023] Open
Abstract
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here.
Collapse
|
36
|
Gonzalez MA, Cope J, Rank KC, Chen CJ, Tittmann P, Rayment I, Gilbert SP, Hoenger A. Common mechanistic themes for the powerstroke of kinesin-14 motors. J Struct Biol 2013; 184:335-44. [PMID: 24099757 PMCID: PMC3851574 DOI: 10.1016/j.jsb.2013.09.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 09/19/2013] [Accepted: 09/25/2013] [Indexed: 01/06/2023]
Abstract
Kar3Cik1 is a heterodimeric kinesin-14 from Saccharomyces cerevisiae involved in spindle formation during mitosis and karyogamy in mating cells. Kar3 represents a canonical kinesin motor domain that interacts with microtubules under the control of ATP-hydrolysis. In vivo, the localization and function of Kar3 is differentially regulated by its interacting stoichiometrically with either Cik1 or Vik1, two closely related motor homology domains that lack the nucleotide-binding site. Indeed, Vik1 structurally resembles the core of a kinesin head. Despite being closely related, Kar3Cik1 and Kar3Vik1 are each responsible for a distinct set of functions in vivo and also display different biochemical behavior in vitro. To determine a structural basis for their distinct functional abilities, we used cryo-electron microscopy and helical reconstruction to investigate the 3-D structure of Kar3Cik1 complexed to microtubules in various nucleotide states and compared our 3-D data of Kar3Cik1 with that of Kar3Vik1 and the homodimeric kinesin-14 Ncd from Drosophila melanogaster. Due to the lack of an X-ray crystal structure of the Cik1 motor homology domain, we predicted the structure of this Cik1 domain based on sequence similarity to its relatives Vik1, Kar3 and Ncd. By molecular docking into our 3-D maps, we produced a detailed near-atomic model of Kar3Cik1 complexed to microtubules in two distinct nucleotide states, a nucleotide-free state and an ATP-bound state. Our data show that despite their functional differences, heterodimeric Kar3Cik1 and Kar3Vik1 and homodimeric Ncd, all share striking structural similarities at distinct nucleotide states indicating a common mechanistic theme within the kinesin-14 family.
Collapse
Affiliation(s)
- Miguel A. Gonzalez
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Julia Cope
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | - Katherine C. Rank
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Chun Ju Chen
- Department of Biology and the Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Peter Tittmann
- EMEZ, Swiss Federal Institute of Technology, Hoenggerberg, 8093 Zuerich, Switzerland
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Susan P. Gilbert
- Department of Biology and the Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Andreas Hoenger
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
37
|
Atherton J, Houdusse A, Moores C. MAPping out distribution routes for kinesin couriers. Biol Cell 2013; 105:465-87. [PMID: 23796124 DOI: 10.1111/boc.201300012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 06/17/2013] [Indexed: 12/14/2022]
Abstract
In the crowded environment of eukaryotic cells, diffusion is an inefficient distribution mechanism for cellular components. Long-distance active transport is required and is performed by molecular motors including kinesins. Furthermore, in highly polarised, compartmentalised and plastic cells such as neurons, regulatory mechanisms are required to ensure appropriate spatio-temporal delivery of neuronal components. The kinesin machinery has diversified into a large number of kinesin motor proteins as well as adaptor proteins that are associated with subsets of cargo. However, many mechanisms contribute to the correct delivery of these cargos to their target domains. One mechanism is through motor recognition of sub-domain-specific microtubule (MT) tracks, sign-posted by different tubulin isoforms, tubulin post-translational modifications, tubulin GTPase activity and MT-associated proteins (MAPs). With neurons as a model system, a critical review of these regulatory mechanisms is presented here, with a particular focus on the emerging contribution of compartmentalised MAPs. Overall, we conclude that - especially for axonal cargo - alterations to the MT track can influence transport, although in vivo, it is likely that multiple track-based effects act synergistically to ensure accurate cargo distribution.
Collapse
Affiliation(s)
- Joseph Atherton
- Institute of Structural and Molecular Biology, Birkbeck College, London, WC1E 7HX, UK
| | | | | |
Collapse
|
38
|
McGrath MJ, Kuo IFW, Hayashi S, Takada S. Adenosine triphosphate hydrolysis mechanism in kinesin studied by combined quantum-mechanical/molecular-mechanical metadynamics simulations. J Am Chem Soc 2013; 135:8908-19. [PMID: 23751065 DOI: 10.1021/ja401540g] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinesin is a molecular motor that hydrolyzes adenosine triphosphate (ATP) and moves along microtubules against load. While motility and atomic structures have been well-characterized for various members of the kinesin family, not much is known about ATP hydrolysis inside the active site. Here, we study ATP hydrolysis mechanisms in the kinesin-5 protein Eg5 by using combined quantum mechanics/molecular mechanics metadynamics simulations. Approximately 200 atoms at the catalytic site are treated by a dispersion-corrected density functional and, in total, 13 metadynamics simulations are performed with their cumulative time reaching ~0.7 ns. Using the converged runs, we compute free energy surfaces and obtain a few hydrolysis pathways. The pathway with the lowest free energy barrier involves a two-water chain and is initiated by the Pγ-Oβ dissociation concerted with approach of the lytic water to PγO3-. This immediately induces a proton transfer from the lytic water to another water, which then gives a proton to the conserved Glu270. Later, the proton is transferred back from Glu270 to HPO(4)2- via another hydrogen-bonded chain. We find that the reaction is favorable when the salt bridge between Glu270 in switch II and Arg234 in switch I is transiently broken, which facilitates the ability of Glu270 to accept a proton. When ATP is placed in the ADP-bound conformation of Eg5, the ATP-Mg moiety is surrounded by many water molecules and Thr107 blocks the water chain, which together make the hydrolysis reaction less favorable. The observed two-water chain mechanisms are rather similar to those suggested in two other motors, myosin and F1-ATPase, raising the possibility of a common mechanism.
Collapse
Affiliation(s)
- Matthew J McGrath
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
39
|
Abstract
Clathrin, a protein best known for its role in membrane trafficking, has been recognised for many years as localising to the spindle apparatus during mitosis, but its function at the spindle remained unclear. Recent work has better defined the role of clathrin in the function of the mitotic spindle and proposed that clathrin crosslinks the microtubules (MTs) comprising the kinetochore fibres (K-fibres) in the mitotic spindle. This mitotic function is unrelated to the role of clathrin in membrane trafficking and occurs in partnership with two other spindle proteins: transforming acidic coiled-coil protein 3 (TACC3) and colonic hepatic tumour overexpressed gene (ch-TOG; also known as cytoskeleton-associated protein 5, CKAP5). This review summarises the role of clathrin in mitotic spindle organisation with an emphasis on the recent discovery of the TACC3-ch-TOG-clathrin complex.
Collapse
Affiliation(s)
- Stephen J Royle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK.
| |
Collapse
|
40
|
Cheeseman LP, Harry EF, McAinsh AD, Prior IA, Royle SJ. Specific removal of TACC3-ch-TOG-clathrin at metaphase deregulates kinetochore fiber tension. J Cell Sci 2013; 126:2102-13. [PMID: 23532825 PMCID: PMC3666260 DOI: 10.1242/jcs.124834] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2013] [Indexed: 12/19/2022] Open
Abstract
Microtubule-associated proteins of the mitotic spindle are thought to be important for the initial assembly and the maintenance of spindle structure and function. However, distinguishing assembly and maintenance roles for a given protein is difficult. Most experimental methods for protein inactivation are slow and therefore affect both assembly and maintenance. Here, we have used 'knocksideways' to rapidly (∼5 minutes) and specifically remove TACC3-ch-TOG-clathrin non-motor complexes from kinetochore fibers (K-fibers). This method allows the complex to be inactivated at defined stages of mitosis. Removal of TACC3-ch-TOG-clathrin after nuclear envelope breakdown caused severe delays in chromosome alignment. Inactivation at metaphase, following a normal prometaphase, significantly delayed progression to anaphase. In these cells, K-fiber tension was reduced and the spindle checkpoint was not satisfied. Surprisingly, there was no significant loss of K-fiber microtubules, even after prolonged removal. TACC3-ch-TOG-clathrin removal during metaphase also resulted in a decrease in spindle length and significant alteration in kinetochore dynamics. Our results indicate that TACC3-ch-TOG-clathrin complexes are important for the maintenance of spindle structure and function as well as for initial spindle assembly.
Collapse
Affiliation(s)
- Liam P. Cheeseman
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Edward F. Harry
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- Molecular Organization and Assembly in Cells Doctoral Training Centre, University of Warwick, Coventry CV4 7AL, UK
| | - Andrew D. McAinsh
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Ian A. Prior
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
| | - Stephen J. Royle
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool L69 3BX, UK
- Centre for Mechanochemical Cell Biology, Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| |
Collapse
|
41
|
Sheykhani R, Baker N, Gomez-Godinez V, Liaw LH, Shah J, Berns MW, Forer A. The role of actin and myosin in PtK2 spindle length changes induced by laser microbeam irradiations across the spindle. Cytoskeleton (Hoboken) 2013; 70:241-59. [PMID: 23475753 DOI: 10.1002/cm.21104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 11/08/2022]
Abstract
This study investigates spindle biomechanical properties to better understand how spindles function. In this report, laser microbeam cutting across mitotic spindles resulted in movement of spindle poles toward the spindle equator. The pole on the cut side moved first, the other pole moved later, resulting in a shorter but symmetric spindle. Intervening spindle microtubules bent and buckled during the equatorial movement of the poles. Because of this and because there were no detectable microtubules within the ablation zone, other cytoskeletal elements would seem to be involved in the equatorial movement of the poles. One possibility is actin and myosin since pharmacological poisoning of the actin-myosin system altered the equatorial movements of both irradiated and unirradiated poles. Immunofluorescence microscopy confirmed that actin, myosin and monophosphorylated myosin are associated with spindle fibers and showed that some actin and monophosphorylated myosin remained in the irradiated regions. Overall, our experiments suggest that actin, myosin and microtubules interact to control spindle length. We suggest that actin and myosin, possibly in conjunction with the spindle matrix, cause the irradiated pole to move toward the equator and that cross-talk between the two half spindles causes the unirradiated pole to move toward the equator until a balanced length is obtained.
Collapse
Affiliation(s)
- Rozhan Sheykhani
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhang G, Beati H, Nilsson J, Wodarz A. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region. PLoS One 2013; 8:e60596. [PMID: 23593258 PMCID: PMC3617137 DOI: 10.1371/journal.pone.0060596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/28/2013] [Indexed: 12/27/2022] Open
Abstract
Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.
Collapse
Affiliation(s)
- Gang Zhang
- Stem Cell Biology, Dept. of Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hamze Beati
- Stem Cell Biology, Dept. of Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JN); (AW)
| | - Andreas Wodarz
- Stem Cell Biology, Dept. of Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
- * E-mail: (JN); (AW)
| |
Collapse
|
43
|
Abstract
Successful completion of diverse cellular functions, such as mitosis, positioning organelles, and assembling cilia, depends on the proper assembly of microtubule-based structures. While essentially all of the proteins needed to assemble these structures are now known, we cannot explain how even simple features such as size and shape are determined. As steps toward filling this knowledge gap, there have been several recent efforts toward reconstituting, with purified proteins, the basic structural motifs that recur in diverse cytoskeletal arrays. We discuss these studies and highlight how they shed light on the self-organized assembly of complex and dynamic cytoskeleton-based cellular structures.
Collapse
|
44
|
Asthana J, Kuchibhatla A, Jana SC, Ray K, Panda D. Dynein light chain 1 (LC8) association enhances microtubule stability and promotes microtubule bundling. J Biol Chem 2012; 287:40793-805. [PMID: 23038268 DOI: 10.1074/jbc.m112.394353] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Dynein Light Chain 1 (LC8) has been shown to pull down tubulin subunits, suggesting that it interacts with microtubules. RESULTS LC8 decorates microtubules in vitro and in Drosophila embryos, promotes microtubule assembly, and stabilizes microtubules both in vitro and in tissue-cultured cells. CONCLUSION LC8 stabilizes microtubules. SIGNIFICANCE Data provide the first evidence of a novel MAP-like function of LC8. Dynein light chain 1 (LC8), a highly conserved protein, is known to bind to a variety of different polypeptides. It functions as a dimer, which is inactivated through phosphorylation at the Ser-88 residue. A loss of LC8 function causes apoptosis in Drosophila embryos, and its overexpression induces malignant transformation of breast cancer cells. Here we show that LC8 binds to tubulin, promotes microtubule assembly, and induces the bundling of reconstituted microtubules in vitro. Furthermore, LC8 decorates microtubules both in Drosophila embryos and in HeLa cells, increases the microtubule stability, and promotes microtubule bundling in these cells. Microtubule stability influences a number of different cellular functions including mitosis and cell differentiation. The LC8 overexpression reduces the susceptibility of microtubules to cold and nocodazole-induced depolymerization in tissue-cultured cells and increases microtubule acetylation, suggesting that LC8 stabilizes microtubules. We also show that LC8 knockdown or transfection with inhibitory peptides destabilizes microtubules and inhibits bipolar spindle assembly in HeLa cells. In addition, LC8 knockdown leads to the mitotic block in HeLa cells. Furthermore, molecular docking analysis using the crystal structures of tubulin and LC8 dimer indicated that the latter may bind at α-β tubulin junction in a protofilament at sites distinct from the kinesin and dynein binding sites. Together, we provide the first evidence of a novel microtubule-associated protein-like function of LC8 that could explain its reported roles in cellular metastasis and differentiation.
Collapse
Affiliation(s)
- Jayant Asthana
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | | | |
Collapse
|
45
|
Abstract
Dense populations of microtubules driven by axonemal dynein form large vortices, providing insights into how simple interactions between individuals can give rise to large-scale coordinated movement, such as that seen in schools of fish and flocks of birds.
Collapse
Affiliation(s)
- William O Hancock
- Department of Bioengineering, 229 Hallowell Building, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
46
|
Muresan V, Muresan Z. Unconventional functions of microtubule motors. Arch Biochem Biophys 2012; 520:17-29. [PMID: 22306515 PMCID: PMC3307959 DOI: 10.1016/j.abb.2011.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 11/21/2022]
Abstract
With the functional characterization of proteins advancing at fast pace, the notion that one protein performs different functions - often with no relation to each other - emerges as a novel principle of how cells work. Molecular motors are no exception to this new development. Here, we provide an account on recent findings revealing that microtubule motors are multifunctional proteins that regulate many cellular processes, in addition to their main function in transport. Some of these functions rely on their motor activity, but others are independent of it. Of the first category, we focus on the role of microtubule motors in organelle biogenesis, and in the remodeling of the cytoskeleton, especially through the regulation of microtubule dynamics. Of the second category, we discuss the function of microtubule motors as static anchors of the cargo at the destination, and their participation in regulating signaling cascades by modulating interactions between signaling proteins, including transcription factors. We also review atypical forms of transport, such as the cytoplasmic streaming in the oocyte, and the movement of cargo by microtubule fluctuations. Our goal is to provide an overview of these unexpected functions of microtubule motors, and to incite future research in this expanding field.
Collapse
Affiliation(s)
- Virgil Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| | - Zoia Muresan
- Department of Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey 07103, U.S.A
| |
Collapse
|
47
|
Friel CT, Howard J. Coupling of kinesin ATP turnover to translocation and microtubule regulation: one engine, many machines. J Muscle Res Cell Motil 2012; 33:377-83. [PMID: 22447431 PMCID: PMC3521643 DOI: 10.1007/s10974-012-9289-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/08/2012] [Indexed: 12/20/2022]
Abstract
The cycle of ATP turnover is integral to the action of motor proteins. Here we discuss how variation in this cycle leads to variation of function observed amongst members of the kinesin superfamily of microtubule associated motor proteins. Variation in the ATP turnover cycle among superfamily members can tune the characteristic kinesin motor to one of the range of microtubule-based functions performed by kinesins. The speed at which ATP is hydrolysed affects the speed of translocation. The ratio of rate constants of ATP turnover in relation to association and dissociation from the microtubule influence the processivity of translocation. Variation in the rate-limiting step of the cycle can reverse the way in which the motor domain interacts with the microtubule producing non-motile kinesins. Because the ATP turnover cycle is not fully understood for the majority of kinesins, much work remains to show how the kinesin engine functions in such a wide variety of molecular machines.
Collapse
Affiliation(s)
- Claire T Friel
- School of Biomedical Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
48
|
Abstract
Mitosis is the process by which eukaryotic cells organize and segregate their chromosomes in preparation for cell division. It is accomplished by a cellular machine composed largely of microtubules (MTs) and their associated proteins. This article reviews literature on mitosis from a biophysical point of view, drawing attention to the assembly and motility processes required to do this complex job with precision. Work from both the recent and the older literature is integrated into a description of relevant biological events and the experiments that probe their mechanisms. Theoretical work on specific subprocesses is also reviewed. Our goal is to provide a document that will expose biophysicists to the fascination of this quite amazing process and provide them with a good background from which they can pursue their own research interests in the subject.
Collapse
|
49
|
Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat Cell Biol 2011; 13:1259-64. [DOI: 10.1038/ncb2323] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/20/2011] [Indexed: 12/15/2022]
|
50
|
The kinesin-13 MCAK has an unconventional ATPase cycle adapted for microtubule depolymerization. EMBO J 2011; 30:3928-39. [PMID: 21873978 PMCID: PMC3209780 DOI: 10.1038/emboj.2011.290] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 07/18/2011] [Indexed: 01/11/2023] Open
Abstract
Most kinesins move directionally along microtubules, but MCAK instead depolymerizes them. This study analyses the ATPase cycle of MCAK, identifying unusual kinetic features that fit with its unconventional activity. Unlike other kinesins, members of the kinesin-13 subfamily do not move directionally along microtubules but, instead, depolymerize them. To understand how kinesins with structurally similar motor domains can have such dissimilar functions, we elucidated the ATP turnover cycle of the kinesin-13, MCAK. In contrast to translocating kinesins, ATP cleavage, rather than product release, is the rate-limiting step for ATP turnover by MCAK; unpolymerized tubulin and microtubules accelerate this step. Further, microtubule ends fully activate the ATPase by accelerating the exchange of ADP for ATP. This tuning of the cycle adapts MCAK for its depolymerization activity: lattice-stimulated ATP cleavage drives MCAK into a weakly bound nucleotide state that reaches microtubule ends by diffusion, and end-specific acceleration of nucleotide exchange drives MCAK into a strongly bound state that promotes depolymerization. This altered cycle accounts well for the different mechanical behaviour of this kinesin, which depolymerizes microtubules from their ends, compared to translocating kinesins that walk along microtubules. Thus, the kinesin motor domain is a nucleotide-dependent engine that can be differentially tuned for transport or depolymerization functions.
Collapse
|