1
|
Lee K, O’Neill KM, Ku J, Shvartsman SY, Kim Y. Patterning potential of the terminal system in the Drosophila embryo. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
2
|
Abstract
Markers for the endoderm and mesoderm germ layers are commonly expressed together in the early embryo, potentially reflecting cells' ability to explore potential fates before fully committing. It remains unclear when commitment to a single-germ layer is reached and how it is impacted by external signals. Here, we address this important question in Drosophila, a convenient model system in which mesodermal and endodermal fates are associated with distinct cellular movements during gastrulation. Systematically applying endoderm-inducing extracellular signal-regulated kinase (ERK) signals to the ventral medial embryo-which normally only receives a mesoderm-inducing cue-reveals a critical time window during which mesodermal cell movements and gene expression are suppressed by proendoderm signaling. We identify the ERK target gene huckebein (hkb) as the main cause of the ventral furrow suppression and use computational modeling to show that Hkb repression of the mesoderm-associated gene snail is sufficient to account for a broad range of transcriptional and morphogenetic effects. Our approach, pairing precise signaling perturbations with observation of transcriptional dynamics and cell movements, provides a general framework for dissecting the complexities of combinatorial tissue patterning.
Collapse
|
3
|
Retroactivity induced operating regime transition in an enzymatic futile cycle. PLoS One 2021; 16:e0250830. [PMID: 33930059 PMCID: PMC8087108 DOI: 10.1371/journal.pone.0250830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/14/2021] [Indexed: 11/19/2022] Open
Abstract
Activated phosphorylation-dephosphorylation biochemical reaction cycles are a class of enzymatic futile cycles. A futile cycle such as a single MAPK cascade governed by two underlying enzymatic reactions permits Hyperbolic (H), Signal transducing (ST), Threshold-hyperbolic (TH) and Ultrasensitive (U) operating regimes that characterize input-output behaviour. Retroactive signalling caused by load due to sequestration of phosphorylated or unphosphorylated form of the substrate in a single enzymatic cascade without explicit feedback can introduce two-way communication, a feature not possible otherwise. We systematically characterize the operating regimes of a futile cycle subject to retroactivity in either of the substrate forms. We demonstrate that increasing retroactivity strength, which quantifies the downstream load, can trigger five possible regime transitions. Retroactivity strength is a reflection of the fraction of the substrate sequestered by its downstream target. Remarkably, the minimum required retroactivity strength to evidence any sequestration triggered regime transition demands 23% of the substrate bound to its downstream target. This minimum retroactivity strength corresponds to the transition of the dose-response curve from ST to H regime. We show that modulation of the saturation and unsaturation levels of the enzymatic reactions by retroactivity is the fundamental mechanism governing operating regime transition.
Collapse
|
4
|
Etienne TA, Cocaign-Bousquet M, Ropers D. Competitive effects in bacterial mRNA decay. J Theor Biol 2020; 504:110333. [PMID: 32615126 DOI: 10.1016/j.jtbi.2020.110333] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
In living organisms, the same enzyme catalyses the degradation of thousands of different mRNAs, but the possible influence of competing substrates has been largely ignored so far. We develop a simple mechanistic model of the coupled degradation of all cell mRNAs using the total quasi-steady-state approximation of the Michaelis-Menten framework. Numerical simulations of the model using carefully chosen parameters and analyses of rate sensitivity coefficients show how substrate competition alters mRNA decay. The model predictions reproduce and explain a number of experimental observations on mRNA decay following transcription arrest, such as delays before the onset of degradation, the occurrence of variable degradation profiles with increased non linearities and the negative correlation between mRNA half-life and concentration. The competition acts at different levels, through the initial concentration of cell mRNAs and by modifying the enzyme affinity for its targets. The consequence is a global slow down of mRNA decay due to enzyme titration and the amplification of its apparent affinity. Competition happens to stabilize weakly affine mRNAs and to destabilize the most affine ones. We believe that this mechanistic model is an interesting alternative to the exponential models commonly used for the determination of mRNA half-lives. It allows analysing regulatory mechanisms of mRNA degradation and its predictions are directly comparable to experimental data.
Collapse
Affiliation(s)
- Thibault A Etienne
- TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France; Univ. Grenoble Alpes, Inria, 38000 Grenoble, France
| | | | | |
Collapse
|
5
|
Gawne R, McKenna KZ, Levin M. Competitive and Coordinative Interactions between Body Parts Produce Adaptive Developmental Outcomes. Bioessays 2020; 42:e1900245. [DOI: 10.1002/bies.201900245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Richard Gawne
- Allen Discovery Center at Tufts University Medford MA 02155
| | - Kenneth Z. McKenna
- Division of Biological SciencesSection of Cellular and Developmental BiologyUniversity of California San Diego La Jolla CA 92093
| | - Michael Levin
- Allen Discovery Center at Tufts University Medford MA 02155
| |
Collapse
|
6
|
Liu M, Ju X, Zou J, Shi J, Jia G. Recent researches for dual Aurora target inhibitors in antitumor field. Eur J Med Chem 2020; 203:112498. [PMID: 32693295 DOI: 10.1016/j.ejmech.2020.112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/05/2020] [Accepted: 05/28/2020] [Indexed: 11/17/2022]
Abstract
Non-infectious and chronic diseases such as malignant tumors are now one of the main causes of human death. Its occurrence is a multi-factor, multi-step complex process with biological characteristics such as cell differentiation, abnormal proliferation, uncontrolled growth, and metastasis. It has been found that a variety of human malignant tumors are accompanied by over-expression and proliferation of Aurora kinase, which causes abnormalities in the mitotic process and is related to the instability of the genome that causes tumors. Therefore, the use of Aurora kinase inhibitors to target tumors is becoming a research hotspot. However, in cancer, because of the complexity of signal transduction system and the participation of different proteins and enzymes, the anticancer effect of selective single-target drugs is limited. After inhibiting one pathway, signal molecules can be conducted through other pathways, resulting in poor therapeutic effect of single-target drug treatment. Multi-target drugs can solve this problem very well. It can regulate the various links that cause disease at the same time without completely eliminating the relationship between the signal transmission systems, and it is not easy to cause drug resistance. Currently, studies have shown that Aurora dual-target inhibitors generated with the co-inhibition of Aurora and another target (such as CDK, PLK, JAK2, etc.) have better therapeutic effects on tumors. In this paper, we reviewed the studies of dual Aurora inhibitors that have been discovered in recent years.
Collapse
Affiliation(s)
- Maoyu Liu
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xueming Ju
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jing Zou
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
7
|
Abstract
Terminal regions of the early Drosophila embryo are patterned by the highly conserved ERK cascade, giving rise to the nonsegmented terminal structures of the future larva. In less than an hour, this signaling event establishes several gene expression boundaries and sets in motion a sequence of elaborate morphogenetic events. Genetic studies of terminal patterning discovered signaling components and transcription factors that are involved in numerous developmental contexts and deregulated in human diseases. This review summarizes current understanding of signaling and morphogenesis during terminal patterning and discusses several open questions that can now be rigorously investigated using live imaging, omics, and optogenetic approaches. The anatomical simplicity of the terminal patterning system and its amenability to a broad range of increasingly sophisticated genetic perturbations will continue to make it a premier quantitative model for studying multiple aspects of tissue patterning by dynamically controlled cell signaling pathways.
Collapse
|
8
|
Paul S, Yang L, Mattingly H, Goyal Y, Shvartsman SY, Veraksa A. Activation-induced substrate engagement in ERK signaling. Mol Biol Cell 2020; 31:235-243. [PMID: 31913744 PMCID: PMC7183763 DOI: 10.1091/mbc.e19-07-0355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) pathway is an essential component of developmental signaling in metazoans. Previous models of pathway activation suggested that dissociation of activated dually phosphorylated ERK (dpERK) from MAPK/ERK kinase (MEK), a kinase that phosphorylates ERK, and other cytoplasmic anchors, is sufficient for allowing ERK interactions with its substrates. Here, we provide evidence for an additional step controlling ERK’s access to substrates. Specifically, we demonstrate that interaction of ERK with its substrate Capicua (Cic) is controlled at the level of ERK phosphorylation, whereby Cic binds to dpERK much stronger than to unphosphorylated ERK, both in vitro and in vivo. Mathematical modeling suggests that the differential affinity of Cic for dpERK versus ERK is required for both down-regulation of Cic and stabilizing phosphorylated ERK. Preferential association of Cic with dpERK serves two functions: it prevents unproductive competition of Cic with unphosphorylated ERK and contributes to efficient signal propagation. We propose that high-affinity substrate binding increases the specificity and efficiency of signal transduction through the ERK pathway.
Collapse
Affiliation(s)
- Sayantanee Paul
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125
| | - Liu Yang
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125.,Lewis-Sigler Institute for Integrative Genomics
| | - Henry Mattingly
- Lewis-Sigler Institute for Integrative Genomics.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Yogesh Goyal
- Lewis-Sigler Institute for Integrative Genomics.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics.,Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts, Boston, Boston, MA 02125
| |
Collapse
|
9
|
Suwanmajo T, Krishnan J. Exploring the intrinsic behaviour of multisite phosphorylation systems as part of signalling pathways. J R Soc Interface 2019; 15:rsif.2018.0109. [PMID: 29950514 DOI: 10.1098/rsif.2018.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/31/2018] [Indexed: 01/13/2023] Open
Abstract
Multisite phosphorylation is a basic way of chemically encoding substrate function and a recurring feature of cell signalling pathways. A number of studies have explored information processing characteristics of multisite phosphorylation, through studies of the intrinsic kinetics. Many of these studies focus on the module in isolation. In this paper, we build a bridge to connect the behaviour of multisite modification in isolation to that as part of pathways. We study the effect of activation of the enzymes (which are basic ways in which the module may be regulated), as well the effects of the modified substrates being involved in further modifications or exiting reaction compartments. We find that these effects can induce multiple kinds of transitions, including to behaviour not seen intrinsically in the multisite modification module. We then build on these insights to investigate how these multisite modification systems can be tuned by enzyme activation to realize a range of information processing outcomes for the design of synthetic phosphorylation circuits. Connecting the complexity of multisite modification kinetics, with the pathways in which they are embedded, serves as a basis for teasing out many aspects of their interaction, providing insights of relevance in systems biology, synthetic biology/chemistry and chemical information processing.
Collapse
Affiliation(s)
- Thapanar Suwanmajo
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK.,Centre of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK .,Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
10
|
Paul D, Radde N. The role of stochastic sequestration dynamics for intrinsic noise filtering in signaling network motifs. J Theor Biol 2018; 455:86-96. [PMID: 30017944 DOI: 10.1016/j.jtbi.2018.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/29/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022]
Abstract
The relation between design principles of signaling network motifs and their robustness against intrinsic noise still remains illusive. In this work we investigate the role of cascading for coping with intrinsic noise due to stochasticity in molecular reactions. We use stochastic approaches to quantify fluctuations in the terminal kinase of phosphorylation-dephosphorylation cascade motifs and demonstrate that cascading highly affects these fluctuations. We show that this purely stochastic effect can be explained by time-varying sequestration of upstream kinase molecules. In particular, we discuss conditions on time scales and parameter regimes which lead to a reduction of output fluctuations. Our results are put into biological context by adapting rate parameters of our modeling approach to biologically feasible ranges for general binding-unbinding and phosphorylation-dephosphorylation mechanisms. Overall, this study reveals a novel role of stochastic sequestration for dynamic noise filtering in signaling cascade motifs.
Collapse
Affiliation(s)
- Debdas Paul
- Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany.
| | - Nicole Radde
- Institute for Systems Theory and Automatic Control, University of Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany
| |
Collapse
|
11
|
Goyal Y, Schüpbach T, Shvartsman SY. A quantitative model of developmental RTK signaling. Dev Biol 2018; 442:80-86. [PMID: 30026122 DOI: 10.1016/j.ydbio.2018.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/22/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023]
Abstract
Receptor tyrosine kinases (RTKs) control a wide range of developmental processes, from the first stages of embryogenesis to postnatal growth and neurocognitive development in the adult. A significant share of our knowledge about RTKs comes from genetic screens in model organisms, which provided numerous examples demonstrating how specific cell fates and morphologies are abolished when RTK activation is either abrogated or significantly reduced. Aberrant activation of such pathways has also been recognized in many forms of cancer. More recently, studies of human developmental syndromes established that excessive activation of RTKs and their downstream signaling effectors, most notably the Ras signaling pathway, can also lead to structural and functional defects. Given that both insufficient and excessive pathway activation can lead to abnormalities, mechanistic analysis of developmental RTK signaling must address quantitative questions about its regulation and function. Patterning events controlled by the RTK Torso in the early Drosophila embryo are well-suited for this purpose. This mini review summarizes current state of knowledge about Torso-dependent Ras activation and discusses its potential to serve as a quantitative model for studying the general principles of Ras signaling in development and disease.
Collapse
Affiliation(s)
- Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States
| | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, United States; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, United States; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, United States.
| |
Collapse
|
12
|
Straube R. Analysis of network motifs in cellular regulation: Structural similarities, input-output relations and signal integration. Biosystems 2017; 162:215-232. [PMID: 29107640 DOI: 10.1016/j.biosystems.2017.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023]
Abstract
Much of the complexity of regulatory networks derives from the necessity to integrate multiple signals and to avoid malfunction due to cross-talk or harmful perturbations. Hence, one may expect that the input-output behavior of larger networks is not necessarily more complex than that of smaller network motifs which suggests that both can, under certain conditions, be described by similar equations. In this review, we illustrate this approach by discussing the similarities that exist in the steady state descriptions of a simple bimolecular reaction, covalent modification cycles and bacterial two-component systems. Interestingly, in all three systems fundamental input-output characteristics such as thresholds, ultrasensitivity or concentration robustness are described by structurally similar equations. Depending on the system the meaning of the parameters can differ ranging from protein concentrations and affinity constants to complex parameter combinations which allows for a quantitative understanding of signal integration in these systems. We argue that this approach may also be extended to larger regulatory networks.
Collapse
Affiliation(s)
- Ronny Straube
- Max Planck Institute for Dynamics of Complex Technical Systems Magdeburg, Sandtorstr. 1, D-39106 Magdeburg, Germany
| |
Collapse
|
13
|
Tanaka M, Yoshimoto T, Nakamura T. A double-edged sword: The world according to Capicua in cancer. Cancer Sci 2017; 108:2319-2325. [PMID: 28985030 PMCID: PMC5715262 DOI: 10.1111/cas.13413] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/24/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
CIC/Capicua is an HMG‐box transcription factor that is well conserved during evolution. CIC recognizes the T(G/C)AATG(A/G)A sequence and represses its target genes, such as PEA3 family genes. The receptor tyrosine kinase/RAS/MAPK signals downregulate CIC and relieves CIC's target genes from the transrepressional activity; CIC thus acts as an important downstream molecule of the pathway and as a tumor suppressor. CIC loss‐of‐function mutations are frequently observed in several human neoplasms such as oligodendroglioma, and lung and gastric carcinoma. CIC is also involved in chromosomal translocation‐associated gene fusions in highly aggressive small round cell sarcoma that is biologically and clinically distinct from Ewing sarcoma. In these mutations, PEA3 family genes and other important target genes are upregulated, inducing malignant phenotypes. Downregulation of CIC abrogates the effect of MAPK inhibitors, suggesting its potential role as an important modifier of molecular target therapies for cancer. These data reveal the importance of CIC as a key molecule in signal transduction, carcinogenesis, and developing novel therapies.
Collapse
Affiliation(s)
- Miwa Tanaka
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Toyoki Yoshimoto
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan.,Department of Pathology, Toranomon Hospital, Tokyo, Japan
| | - Takuro Nakamura
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
14
|
Han H, Thériault JF, Chen G, Lin SX. Substrate inhibition of 17β-HSD1 in living cells and regulation of 17β-HSD7 by 17β-HSD1 knockdown. J Steroid Biochem Mol Biol 2017; 172:36-45. [PMID: 28554725 DOI: 10.1016/j.jsbmb.2017.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 12/28/2022]
Abstract
This study addresses first the role of human 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) in breast cancer (BC) cells. The enzyme has a high estrone-activating activity that is subject to strong substrate inhibition as shown by enzyme kinetics at the molecular level. We used BC cells to verify this phenomenon in living cells: estrone concentration increase did reduce the reaction with 0.025 to 4μM substrate. Moreover, 5α-dihydrotestosterone (DHT) demonstrated some inhibition of estrogen activation at both the molecular and cellular levels. The presence of DHT did not change the tendency toward substrate inhibition for estrone conversion, but shifted the inhibition toward higher substrate concentrations. Moreover, a binding study demonstrated that both DHT and dehydroepiandrosterone (DHEA) can be bound to the enzyme, thereby supporting the multi-specificity of 17β-HSD1. We then followed the concentrations of estradiol and performed q-RT-PCR measurements of reductive 17β-HSDs after 17β-HSD1 inhibition. The estradiol decrease by the 17β-HSD1 inhibition was demonstrated lending support to this observation. Knockdown and inhibition of 17β-HSD1 produced reduction in estradiol levels and the down-regulation of another reductive enzyme 17β-HSD7, thus "amplifying" the reduction of estradiol by the 17β-HSD1 modulation itself. The critical positioning of 17β-HSD7 in sex-hormone-regulation as well as the mutual regulation of steroid enzymes via estradiol in BC, are clearly demonstrated. Our study demonstrates that fundamental enzymological mechanisms are relevant in living cells. Moreover, further enzyme study in cells is merited to advance biological and medical research. We also demonstrated the central role of 17β-HSD7 in sex-hormone conversion and regulation, supporting it as a novel target for estrogen-dependent (ER+) BC.
Collapse
Affiliation(s)
- Hui Han
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada; Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Jean-François Thériault
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada
| | - Guang Chen
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, Centre Hospitalier Universitaire (CHU) de Quebec Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada.
| |
Collapse
|
15
|
Shah R, Del Vecchio D. Signaling Architectures that Transmit Unidirectional Information Despite Retroactivity. Biophys J 2017; 113:728-742. [PMID: 28793226 PMCID: PMC5549655 DOI: 10.1016/j.bpj.2017.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 01/15/2023] Open
Abstract
A signaling pathway transmits information from an upstream system to downstream systems, ideally in a unidirectional fashion. A key obstacle to unidirectional transmission is retroactivity, the additional reaction flux that affects a system once its species interact with those of downstream systems. This raises the fundamental question of whether signaling pathways have developed specialized architectures that overcome retroactivity and transmit unidirectional signals. Here, we propose a general procedure based on mathematical analysis that provides an answer to this question. Using this procedure, we analyze the ability of a variety of signaling architectures to transmit one-way (from upstream to downstream) signals, as key biological parameters are tuned. We find that single stage phosphorylation and phosphotransfer systems that transmit signals from a kinase show a stringent design tradeoff that hampers their ability to overcome retroactivity. Interestingly, cascades of these architectures, which are highly represented in nature, can overcome this tradeoff and thus enable unidirectional transmission. By contrast, phosphotransfer systems, and single and double phosphorylation cycles that transmit signals from a substrate, are unable to mitigate retroactivity effects, even when cascaded, and hence are not well suited for unidirectional information transmission. These results are largely independent of the specific reaction-rate constant values, and depend on the topology of the architectures. Our results therefore identify signaling architectures that, allowing unidirectional transmission of signals, embody modular processes that conserve their input/output behavior across multiple contexts. These findings can be used to decompose natural signal transduction networks into modules, and at the same time, they establish a library of devices that can be used in synthetic biology to facilitate modular circuit design.
Collapse
Affiliation(s)
- Rushina Shah
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
16
|
Jang Y, Kim MA, Kim Y. Two faces of competition: target-mediated reverse signalling in microRNA and mitogen-activated protein kinase regulatory networks. IET Syst Biol 2017; 11:105-113. [PMID: 28721939 PMCID: PMC8687413 DOI: 10.1049/iet-syb.2016.0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/19/2022] Open
Abstract
Biomolecular regulatory networks are organised around hubs, which can interact with a large number of targets. These targets compete with each other for access to their common hubs, but whether the effect of this competition would be significant in magnitude and in function is not clear. In this review, the authors discuss recent in vivo studies that analysed the system level retroactive effects induced by target competition in microRNA and mitogen-activated protein kinase regulatory networks. The results of these studies suggest that downstream targets can regulate the overall state of their upstream regulators, and thus cannot be ignored in analysing biomolecular networks.
Collapse
Affiliation(s)
- Yongjin Jang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Min A Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yoosik Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
| |
Collapse
|
17
|
Zahavi T, Maimon A, Kushnir T, Lange R, Berger E, Kornspan D, Grossman R, Anzi S, Shaulian E, Karni R, Nechushtan H, Paroush Z. Ras-Erk signaling induces phosphorylation of human TLE1 and downregulates its repressor function. Oncogene 2017; 36:3729-3739. [PMID: 28192406 DOI: 10.1038/onc.2016.517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 12/11/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022]
Abstract
Signaling mediated by the Ras-extracellular signal-regulated kinase (Erk) pathway often leads to the phosphorylation of transcriptional regulators, thereby modulating their activity and causing concerted changes in gene expression. In Drosophila, the induction of multiple Ras-Erk pathway target genes depends on prior phosphorylation of the general co-repressor Groucho, a modification that downregulates its repressive function. Here, we show that TLE1, one of the four human Groucho orthologs, is similarly phosphorylated in response to Ras-Erk pathway activation, and that this modification attenuates its capacity to repress transcription. Specifically, unphosphorylated TLE1 dominantly suppresses the induction of Ras-Erk pathway target genes in cultured human cells, and the expression of an unphosphorylatable TLE1 derivative causes severe phenotypes in a transgenic Drosophila model system, whereas a phosphomimetic variant of TLE1 exerts only negligible effects. We present data indicating that TLE1 is rapidly excluded from the nucleus following epidermal growth factor receptor pathway activation, an effect that likely accounts for its inability to mediate effective repression under such conditions. Significantly, we find that unphosphorylated TLE1 blocks oncogenic phenotypes induced by mutated H-Ras in human mammary cells, both in vitro and following their implantation in mice. Collectively, our data strongly indicate that phosphorylation of TLE family members and the consequent downregulation of their repressor function is a key conserved step in the transcriptional responses to Ras-Erk signaling, and possibly a critical event in the tumorigenic effects caused by excessive Ras-Erk pathway activity.
Collapse
Affiliation(s)
- T Zahavi
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - A Maimon
- Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - T Kushnir
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - R Lange
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - E Berger
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - D Kornspan
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.,Department of Oncology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - R Grossman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - S Anzi
- Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - E Shaulian
- Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - R Karni
- Department of Biochemistry and Molecular Biology, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - H Nechushtan
- Department of Oncology, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Z Paroush
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
18
|
Yang L, Paul S, Trieu KG, Dent LG, Froldi F, Forés M, Webster K, Siegfried KR, Kondo S, Harvey K, Cheng L, Jiménez G, Shvartsman SY, Veraksa A. Minibrain and Wings apart control organ growth and tissue patterning through down-regulation of Capicua. Proc Natl Acad Sci U S A 2016; 113:10583-8. [PMID: 27601662 PMCID: PMC5035877 DOI: 10.1073/pnas.1609417113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transcriptional repressor Capicua (Cic) controls tissue patterning and restricts organ growth, and has been recently implicated in several cancers. Cic has emerged as a primary sensor of signaling downstream of the receptor tyrosine kinase (RTK)/extracellular signal-regulated kinase (ERK) pathway, but how Cic activity is regulated in different cellular contexts remains poorly understood. We found that the kinase Minibrain (Mnb, ortholog of mammalian DYRK1A), acting through the adaptor protein Wings apart (Wap), physically interacts with and phosphorylates the Cic protein. Mnb and Wap inhibit Cic function by limiting its transcriptional repressor activity. Down-regulation of Cic by Mnb/Wap is necessary for promoting the growth of multiple organs, including the wings, eyes, and the brain, and for proper tissue patterning in the wing. We have thus uncovered a previously unknown mechanism of down-regulation of Cic activity by Mnb and Wap, which operates independently from the ERK-mediated control of Cic. Therefore, Cic functions as an integrator of upstream signals that are essential for tissue patterning and organ growth. Finally, because DYRK1A and CIC exhibit, respectively, prooncogenic vs. tumor suppressor activities in human oligodendroglioma, our results raise the possibility that DYRK1A may also down-regulate CIC in human cells.
Collapse
Affiliation(s)
- Liu Yang
- Department of Biology, University of Massachusetts, Boston, MA 02125
| | - Sayantanee Paul
- Department of Biology, University of Massachusetts, Boston, MA 02125
| | - Kenneth G Trieu
- Department of Biology, University of Massachusetts, Boston, MA 02125
| | - Lucas G Dent
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Francesca Froldi
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Marta Forés
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain
| | - Kaitlyn Webster
- Department of Biology, University of Massachusetts, Boston, MA 02125
| | | | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
| | - Kieran Harvey
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Louise Cheng
- Cell Growth and Proliferation Laboratory, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002, Australia
| | - Gerardo Jiménez
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, 08028 Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts, Boston, MA 02125;
| |
Collapse
|
19
|
Del Vecchio D, Dy AJ, Qian Y. Control theory meets synthetic biology. J R Soc Interface 2016; 13:rsif.2016.0380. [PMID: 27440256 DOI: 10.1098/rsif.2016.0380] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/20/2016] [Indexed: 12/15/2022] Open
Abstract
The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology.
Collapse
Affiliation(s)
- Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aaron J Dy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Yili Qian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Cursons J, Gao J, Hurley DG, Print CG, Dunbar PR, Jacobs MD, Crampin EJ. Regulation of ERK-MAPK signaling in human epidermis. BMC SYSTEMS BIOLOGY 2015. [PMID: 26209520 PMCID: PMC4514964 DOI: 10.1186/s12918-015-0187-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background The skin is largely comprised of keratinocytes within the interfollicular epidermis. Over approximately two weeks these cells differentiate and traverse the thickness of the skin. The stage of differentiation is therefore reflected in the positions of cells within the tissue, providing a convenient axis along which to study the signaling events that occur in situ during keratinocyte terminal differentiation, over this extended two-week timescale. The canonical ERK-MAPK signaling cascade (Raf-1, MEK-1/2 and ERK-1/2) has been implicated in controlling diverse cellular behaviors, including proliferation and differentiation. While the molecular interactions involved in signal transduction through this cascade have been well characterized in cell culture experiments, our understanding of how this sequence of events unfolds to determine cell fate within a homeostatic tissue environment has not been fully characterized. Methods We measured the abundance of total and phosphorylated ERK-MAPK signaling proteins within interfollicular keratinocytes in transverse cross-sections of human epidermis using immunofluorescence microscopy. To investigate these data we developed a mathematical model of the signaling cascade using a normalized-Hill differential equation formalism. Results These data show coordinated variation in the abundance of phosphorylated ERK-MAPK components across the epidermis. Statistical analysis of these data shows that associations between phosphorylated ERK-MAPK components which correspond to canonical molecular interactions are dependent upon spatial position within the epidermis. The model demonstrates that the spatial profile of activation for ERK-MAPK signaling components across the epidermis may be maintained in a cell-autonomous fashion by an underlying spatial gradient in calcium signaling. Conclusions Our data demonstrate an extended phospho-protein profile of ERK-MAPK signaling cascade components across the epidermis in situ, and statistical associations in these data indicate canonical ERK-MAPK interactions underlie this spatial profile of ERK-MAPK activation. Using mathematical modelling we have demonstrated that spatially varying calcium signaling components across the epidermis may be sufficient to maintain the spatial profile of ERK-MAPK signaling cascade components in a cell-autonomous manner. These findings may have significant implications for the wide range of cancer drugs which therapeutically target ERK-MAPK signaling components. Electronic supplementary material The online version of this article (doi:10.1186/s12918-015-0187-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Joseph Cursons
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,NICTA Victoria Research Lab, Melbourne, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand.
| | - Jerry Gao
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia.
| | - Daniel G Hurley
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,NICTA Victoria Research Lab, Melbourne, Australia. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,Bioinformatics Institute, University of Auckland, Auckland, New Zealand. .,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Cristin G Print
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,Bioinformatics Institute, University of Auckland, Auckland, New Zealand. .,Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - P Rod Dunbar
- Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Marc D Jacobs
- Department of Biology, New Zealand International College, ACG New Zealand, Auckland, New Zealand.
| | - Edmund J Crampin
- Systems Biology Laboratory, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Melbourne School of Engineering, University of Melbourne, Melbourne, Australia. .,Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand. .,Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand. .,School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia. .,School of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
21
|
Niklas KJ, Bondos SE, Dunker AK, Newman SA. Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Front Cell Dev Biol 2015; 3:8. [PMID: 25767796 PMCID: PMC4341551 DOI: 10.3389/fcell.2015.00008] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/26/2015] [Indexed: 11/16/2022] Open
Abstract
Models for genetic regulation and cell fate specification characteristically assume that gene regulatory networks (GRNs) are essentially deterministic and exhibit multiple stable states specifying alternative, but pre-figured cell fates. Mounting evidence shows, however, that most eukaryotic precursor RNAs undergo alternative splicing (AS) and that the majority of transcription factors contain intrinsically disordered protein (IDP) domains whose functionalities are context dependent as well as subject to post-translational modification (PTM). Consequently, many transcription factors do not have fixed cis-acting regulatory targets, and developmental determination by GRNs alone is untenable. Modeling these phenomena requires a multi-scale approach to explain how GRNs operationally interact with the intra- and intercellular environments. Evidence shows that AS, IDP, and PTM complicate gene expression and act synergistically to facilitate and promote time- and cell-specific protein modifications involved in cell signaling and cell fate specification and thereby disrupt a strict deterministic GRN-phenotype mapping. The combined effects of AS, IDP, and PTM give proteomes physiological plasticity, adaptive responsiveness, and developmental versatility without inefficiently expanding genome size. They also help us understand how protein functionalities can undergo major evolutionary changes by buffering mutational consequences.
Collapse
Affiliation(s)
- Karl J Niklas
- Plant Biology Section, School of Integrative Plant Science, Cornell University Ithaca, NY, USA
| | - Sarah E Bondos
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center College Station, TX, USA
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, School of Medicine, Indiana University Indianapolis, IN, USA
| | - Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College Valhalla, NY, USA
| |
Collapse
|
22
|
Del Vecchio D. Modularity, context-dependence, and insulation in engineered biological circuits. Trends Biotechnol 2015; 33:111-9. [DOI: 10.1016/j.tibtech.2014.11.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/06/2014] [Accepted: 11/19/2014] [Indexed: 01/21/2023]
|
23
|
Auer JS, Nagel AC, Schulz A, Wahl V, Preiss A. MAPK-dependent phosphorylation modulates the activity of Suppressor of Hairless in Drosophila. Cell Signal 2014; 27:115-24. [PMID: 25452105 DOI: 10.1016/j.cellsig.2014.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/16/2014] [Indexed: 02/08/2023]
Abstract
Cell differentiation strictly depends on the epidermal growth factor receptor (EGFR)- and Notch-signalling pathways, which are closely intertwined. Here we address the molecular cross talk at the level of Suppressor of Hairless [Su(H)]. The Drosophila transcription factor Su(H) mediates Notch signalling at the DNA level: in the presence of signalling input Su(H) assembles an activator complex on Notch target genes and a repressor complex in its absence. Su(H) contains a highly conserved mitogen activated protein kinase (MAPK) target sequence. Here we provide evidence that Su(H) is phosphorylated in response to MAPK activity. Mutation of the Su(H) MAPK-site modulated the Notch signalling output: whereas a phospho-deficient Su(H)(MAPK-ko) isoform provoked a stronger Notch signalling activity, a phospho-mimetic Su(H)(MAPK-ac) mutant resulted in its attenuation. In vivo assays in Drosophila cell culture as well as in flies support the idea that Su(H) phosphorylation affects the dynamics of repressor or activator complex formation or the transition from the one into the other complex. In summary, the phosphorylation of Su(H) attenuates Notch signalling in vivo in several developmental settings. Consequently, a decrease of EGFR signal causes an increase of Notch signalling intensity. Hence, the antagonistic relationship between EGFR- and Notch-signalling pathways may involve a direct modification of Su(H) by MAPK in several developmental contexts of fly development. The high sequence conservation of the MAPK target site in the mammalian Su(H) homologues supports the idea that EGFR signalling impacts on Notch activity in a similar way in humans as well.
Collapse
Affiliation(s)
- Jasmin S Auer
- Institut für Genetik (240A), Universität Hohenheim, Garbenstr. 30 Stuttgart, 70599, Germany
| | - Anja C Nagel
- Institut für Genetik (240A), Universität Hohenheim, Garbenstr. 30 Stuttgart, 70599, Germany
| | - Adriana Schulz
- Institut für Genetik (240A), Universität Hohenheim, Garbenstr. 30 Stuttgart, 70599, Germany
| | - Vanessa Wahl
- Institut für Genetik (240A), Universität Hohenheim, Garbenstr. 30 Stuttgart, 70599, Germany
| | - Anette Preiss
- Institut für Genetik (240A), Universität Hohenheim, Garbenstr. 30 Stuttgart, 70599, Germany.
| |
Collapse
|
24
|
Futran AS, Link AJ, Seger R, Shvartsman SY. ERK as a model for systems biology of enzyme kinetics in cells. Curr Biol 2014; 23:R972-9. [PMID: 24200329 DOI: 10.1016/j.cub.2013.09.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A key step towards a chemical picture of enzyme catalysis was taken in 1913, when Leonor Michaelis and Maud Menten published their studies of sucrose hydrolysis by invertase. Based on a novel experimental design and a mathematical model, their work offered a quantitative view of biochemical kinetics well before the protein nature of enzymes was established and complexes with substrates could be detected. Michaelis-Menten kinetics provides a solid framework for enzyme kinetics in vitro, but what about kinetics in cells, where enzymes can be highly regulated and participate in a multitude of interactions? We discuss this question using the Extracellular Signal Regulated Kinase (ERK), which controls a myriad functions in cells, as a model of an important enzyme for which we have crystal structures, quantitative in vitro assays, and a vast list of binding partners. Despite great progress, we still cannot quantitatively predict how the rates of ERK-dependent reactions respond to genetic and pharmacological perturbations. Achieving this goal, which is important from both fundamental and practical standpoints, requires measuring the rates of enzyme reactions in their native environment and interpreting these measurements using simple but realistic mathematical models--the two elements which served as the cornerstones for Michaelis' and Menten's seminal 1913 paper.
Collapse
Affiliation(s)
- Alan S Futran
- Department of Chemical and Biological Engineering, Princeton University, Princeton, USA
| | | | | | | |
Collapse
|
25
|
Schoppmann SF, Ricken G, Ilhan-Mutlu A, Nirtl N, Streubel B, Preusser M, Birner P. Downregulation of CIC does not associate with overexpression of ETV1 or MAP kinase pathway activation in gastrointestinal stromal tumors. Cancer Invest 2014; 32:363-7. [PMID: 24897389 DOI: 10.3109/07357907.2014.919304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
ETV1 is a key factor in gastrointestinal stromal tumors (GIST), and is promoted by CIC downregulation in melanoma. We investigated CIC, ETV1, and the MAPK pathway in GIST. Downregulation of CIC protein levels as assessed by immunostaining was seen in 17/144 GIST, but was not associated with ETV1 or pMEK1/2 expression, KIT and PDGFRA mutations, copy number variations (CNV) of 19q13, and clinical factors. However, the data indicate that the incidence of CIC downregulation may differ for GISTs in different locations in the gastrointestinal tract, and that CNV of 19q13 is associated with shorter disease-free survival.
Collapse
|
26
|
Shilo BZ. The regulation and functions of MAPK pathways in Drosophila. Methods 2014; 68:151-9. [DOI: 10.1016/j.ymeth.2014.01.020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 01/30/2014] [Accepted: 01/31/2014] [Indexed: 11/26/2022] Open
|
27
|
Formosa-Jordan P, Ibañes M. Competition in notch signaling with cis enriches cell fate decisions. PLoS One 2014; 9:e95744. [PMID: 24781918 PMCID: PMC4004554 DOI: 10.1371/journal.pone.0095744] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/31/2014] [Indexed: 12/05/2022] Open
Abstract
Notch signaling is involved in cell fate choices during the embryonic development of Metazoa. Commonly, Notch signaling arises from the binding of the Notch receptor to its ligands in adjacent cells driving cell-to-cell communication. Yet, cell-autonomous control of Notch signaling through both ligand-dependent and ligand-independent mechanisms is known to occur as well. Examples include Notch signaling arising in the absence of ligand binding, and cis-inhibition of Notch signaling by titration of the Notch receptor upon binding to its ligands within a single cell. Increasing experimental evidences support that the binding of the Notch receptor with its ligands within a cell (cis-interactions) can also trigger a cell-autonomous Notch signal (cis-signaling), whose potential effects on cell fate decisions and patterning remain poorly understood. To address this question, herein we mathematically and computationally investigate the cell states arising from the combination of cis-signaling with additional Notch signaling sources, which are either cell-autonomous or involve cell-to-cell communication. Our study shows that cis-signaling can switch from driving cis-activation to effectively perform cis-inhibition and identifies under which conditions this switch occurs. This switch relies on the competition between Notch signaling sources, which share the same receptor but differ in their signaling efficiency. We propose that the role of cis-interactions and their signaling on fine-grained patterning and cell fate decisions is dependent on whether they drive cis-inhibition or cis-activation, which could be controlled during development. Specifically, cis-inhibition and not cis-activation facilitates patterning and enriches it by modulating the ratio of cells in the high-ligand expression state, by enabling additional periodic patterns like stripes and by allowing localized patterning highly sensitive to the precursor state and cell-autonomous bistability. Our study exemplifies the complexity of regulations when multiple signaling sources share the same receptor and provides the tools for their characterization.
Collapse
Affiliation(s)
- Pau Formosa-Jordan
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
| | - Marta Ibañes
- Dept. Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
28
|
Boisclair Lachance JF, Peláez N, Cassidy JJ, Webber JL, Rebay I, Carthew RW. A comparative study of Pointed and Yan expression reveals new complexity to the transcriptional networks downstream of receptor tyrosine kinase signaling. Dev Biol 2013; 385:263-78. [PMID: 24240101 DOI: 10.1016/j.ydbio.2013.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 11/05/2013] [Indexed: 11/29/2022]
Abstract
The biochemical regulatory network downstream of receptor tyrosine kinase (RTK) signaling is controlled by two opposing ETS family members: the transcriptional activator Pointed (Pnt) and the transcriptional repressor Yan. A bistable switch model has been invoked to explain how pathway activation can drive differentiation by shifting the system from a high-Yan/low-Pnt activity state to a low-Yan/high-Pnt activity state. Although the model explains yan and pnt loss-of-function phenotypes in several different cell types, how Yan and Pointed protein expression dynamics contribute to these and other developmental transitions remains poorly understood. Toward this goal we have used a functional GFP-tagged Pnt transgene (Pnt-GFP) to perform a comparative study of Yan and Pnt protein expression throughout Drosophila development. Consistent with the prevailing model of the Pnt-Yan network, we found numerous instances where Pnt-GFP and Yan adopt a mutually exclusive pattern of expression. However we also observed many examples of co-expression. While some co-expression occurred in cells where RTK signaling is presumed low, other co-expression occurred in cells with high RTK signaling. The instances of co-expressed Yan and Pnt-GFP in tissues with high RTK signaling cannot be explained by the current model, and thus they provide important contexts for future investigation of how context-specific differences in RTK signaling, network topology, or responsiveness to other signaling inputs, affect the transcriptional response.
Collapse
Affiliation(s)
- Jean-François Boisclair Lachance
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Nicolás Peláez
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Justin J Cassidy
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jemma L Webber
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - Richard W Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chicago Center for Systems Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
29
|
Suwanmajo T, Krishnan J. Biphasic responses in multi-site phosphorylation systems. J R Soc Interface 2013; 10:20130742. [PMID: 24108693 DOI: 10.1098/rsif.2013.0742] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-site phosphorylation systems are repeatedly encountered in cellular biology and multi-site modification is a basic building block of post-translational modification. In this paper, we demonstrate how distributive multi-site modification mechanisms by a single kinase/phosphatase pair can lead to biphasic/partial biphasic dose-response characteristics for the maximally phosphorylated substrate at steady state. We use simulations and analysis to uncover a hidden competing effect which is responsible for this and analyse how it may be accentuated. We build on this to analyse different variants of multi-site phosphorylation mechanisms showing that some mechanisms are intrinsically not capable of displaying this behaviour. This provides both a consolidated understanding of how and under what conditions biphasic responses are obtained in multi-site phosphorylation and a basis for discriminating between different mechanisms based on this. We also demonstrate how this behaviour may be combined with other behaviour such as threshold and bistable responses, demonstrating the capacity of multi-site phosphorylation systems to act as complex molecular signal processors.
Collapse
Affiliation(s)
- Thapanar Suwanmajo
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, , South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
30
|
Jayanthi S, Nilgiriwala KS, Del Vecchio D. Retroactivity controls the temporal dynamics of gene transcription. ACS Synth Biol 2013; 2:431-41. [PMID: 23654274 DOI: 10.1021/sb300098w] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Just like in many engineering systems, impedance-like effects, called retroactivity, arise at the interconnection of biomolecular circuits, leading to unexpected changes in a circuit's behavior. In this paper, we provide a combined experimental and theoretical study to characterize the effects of retroactivity on the temporal dynamics of a gene transcription module in vivo. The response of the module to an inducer was measured both in isolation and when the module was connected to downstream clients. The connected module, when compared to the isolated module, responded selectively to the introduction of the inducer versus its withdrawal. Specifically, a "sign-sensitive delay" appeared, in which the connected module displayed a time delay in the response to induction and anticipation in the response to de-induction. The extent of these effects can be made larger by increasing the amounts of downstream clients and/or their binding affinity to the output protein of the module. Our experimental results and mathematical formulas make it possible to predict the extent of the change in the dynamic behavior of a module after interconnection. They can be employed to both recover the predictive power of a modular approach to understand systems or as an additional design tool to shape the temporal behavior of gene transcription.
Collapse
Affiliation(s)
- Shridhar Jayanthi
- Electrical Engineering, University of Michigan, Ann Arbor, Michigan, United
States
- Mechanical Engineering
Department, Massachusetts Institute of Technology, Cambridge, Massachusetts,
United States
| | - Kayzad Soli Nilgiriwala
- Mechanical Engineering
Department, Massachusetts Institute of Technology, Cambridge, Massachusetts,
United States
| | - Domitilla Del Vecchio
- Mechanical Engineering
Department, Massachusetts Institute of Technology, Cambridge, Massachusetts,
United States
| |
Collapse
|
31
|
Kim Y, Iagovitina A, Ishihara K, Fitzgerald KM, Deplancke B, Papatsenko D, Shvartsman SY. Context-dependent transcriptional interpretation of mitogen activated protein kinase signaling in the Drosophila embryo. CHAOS (WOODBURY, N.Y.) 2013; 23:025105. [PMID: 23822503 PMCID: PMC3689791 DOI: 10.1063/1.4808157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Terminal regions of the Drosophila embryo are patterned by the localized activation of Mitogen Activated Protein Kinase (MAPK), which induces zygotic genes through relief of their repression by transcriptional repressor Capicua. The levels of MAPK activation at the anterior and posterior termini are close to each other, but the expression patterns of MAPK-target genes, such as zerknüllt (zen) and tailless (tll), display strong anterior-posterior (AP) asymmetry. This region-specific response to MAPK activation provides a clear example of context-dependent interpretation of inductive signaling, a common developmental effect that remains poorly understood. In the past, the AP asymmetry of zen expression was attributed to a mechanism that depends on MAPK substrate competition. We present data suggesting that the asymmetric expression of tll is generated by a different mechanism, based on feedforward control and multiple enhancers of the tll gene. A simple mathematical model of this mechanism correctly predicts how the wild-type expression pattern of tll changes in mutants affecting the anterior, dorsoventral, and terminal patterning systems and some of their direct targets.
Collapse
Affiliation(s)
- Yoosik Kim
- Department of Chemical and Biological Engineering and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
SUN KEKANG, ZHONG NING, YANG YANG, ZHAO LIN, JIAO YANG. Enhanced radiosensitivity of NSCLC cells by transducer of erbB2.1 (TOB1) through modulation of the MAPK/ERK pathway. Oncol Rep 2013; 29:2385-91. [DOI: 10.3892/or.2013.2403] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/26/2013] [Indexed: 11/06/2022] Open
|
33
|
Jiménez G, Shvartsman SY, Paroush Z. The Capicua repressor--a general sensor of RTK signaling in development and disease. J Cell Sci 2013; 125:1383-91. [PMID: 22526417 DOI: 10.1242/jcs.092965] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Receptor tyrosine kinase (RTK) signaling pathways control multiple cellular decisions in metazoans, often by regulating the expression of downstream genes. In Drosophila melanogaster and other systems, E-twenty-six (ETS) transcription factors are considered to be the predominant nuclear effectors of RTK pathways. Here, we highlight recent progress in identifying the HMG-box protein Capicua (CIC) as a key sensor of RTK signaling in both Drosophila and mammals. Several studies have shown that CIC functions as a repressor of RTK-responsive genes, keeping them silent in the absence of signaling. Following the activation of RTK signaling, CIC repression is relieved, and this allows the expression of the targeted gene in response to local or ubiquitous activators. This regulatory switch is essential for several RTK responses in Drosophila, from the determination of cell fate to cell proliferation. Furthermore, increasing evidence supports the notion that this mechanism is conserved in mammals, where CIC has been implicated in cancer and neurodegeneration. In addition to summarizing our current knowledge on CIC, we also discuss the implications of these findings for our understanding of RTK signaling specificity in different biological processes.
Collapse
Affiliation(s)
- Gerardo Jiménez
- Institució Catalana de Recerca i Estudis Avançats and Institut de Biologia Molecular de Barcelona-CSIC, Parc Científic de Barcelona, Barcelona 08028, Spain.
| | | | | |
Collapse
|
34
|
Janssens H, Crombach A, Richard Wotton K, Cicin-Sain D, Surkova S, Lu Lim C, Samsonova M, Akam M, Jaeger J. Lack of tailless leads to an increase in expression variability in Drosophila embryos. Dev Biol 2013; 377:305-17. [PMID: 23333944 PMCID: PMC3635121 DOI: 10.1016/j.ydbio.2013.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 12/24/2012] [Accepted: 01/09/2013] [Indexed: 11/30/2022]
Abstract
Developmental processes are robust, or canalised: dynamic patterns of gene expression across space and time are regulated reliably and precisely in the presence of genetic and environmental perturbations. It remains unclear whether canalisation relies on specific regulatory factors (such as heat-shock proteins), or whether it is based on more general redundancy and distributed robustness at the network level. The latter explanation implies that mutations in many regulatory factors should exhibit loss of canalisation. Here, we present a quantitative characterisation of segmentation gene expression patterns in mutants of the terminal gap gene tailless (tll) in Drosophila melanogaster. Our analysis provides new insights into the dynamic mechanisms underlying gap gene regulation, and reveals significantly increased variability of gene expression in the mutant compared to the wild-type background. We show that both position and timing of posterior segmentation gene expression domains vary strongly from embryo-to-embryo in tll mutants. This variability must be caused by a vulnerability in the regulatory system which is hidden or buffered in the wild-type, but becomes uncovered by the deletion of tll. Our analysis provides evidence that loss of canalisation in mutants could be more widespread than previously thought.
Collapse
Affiliation(s)
- Hilde Janssens
- EMBL/CRG Research Unit in Systems Biology, CRG—Centre de Regulació Genòmica, and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Anton Crombach
- EMBL/CRG Research Unit in Systems Biology, CRG—Centre de Regulació Genòmica, and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Karl Richard Wotton
- EMBL/CRG Research Unit in Systems Biology, CRG—Centre de Regulació Genòmica, and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Damjan Cicin-Sain
- EMBL/CRG Research Unit in Systems Biology, CRG—Centre de Regulació Genòmica, and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Svetlana Surkova
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnical University, 29 Polytehnicheskaya Street, St. Petersburg 195251, Russia
| | - Chea Lu Lim
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | - Maria Samsonova
- Department of Computational Biology, Center for Advanced Studies, St. Petersburg State Polytechnical University, 29 Polytehnicheskaya Street, St. Petersburg 195251, Russia
| | - Michael Akam
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | - Johannes Jaeger
- EMBL/CRG Research Unit in Systems Biology, CRG—Centre de Regulació Genòmica, and Universitat Pompeu Fabra (UPF), Dr. Aiguader 88, 08003 Barcelona, Spain
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
- Corresponding author at: Centre for Genomic Regulation (CRG), EMBL/CRG Research Unit in Systems Biology, Dr. Aiguader 88, 08003 Barcelona, Spain. Fax: +34 93 396 99 83.
| |
Collapse
|
35
|
Grimm O, Sanchez Zini V, Kim Y, Casanova J, Shvartsman SY, Wieschaus E. Torso RTK controls Capicua degradation by changing its subcellular localization. Development 2012; 139:3962-8. [PMID: 23048183 DOI: 10.1242/dev.084327] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The transcriptional repressor Capicua (Cic) controls multiple aspects of Drosophila embryogenesis and has been implicated in vertebrate development and human diseases. Receptor tyrosine kinases (RTKs) can antagonize Cic-dependent gene repression, but the mechanisms responsible for this effect are not fully understood. Based on genetic and imaging studies in the early Drosophila embryo, we found that Torso RTK signaling can increase the rate of Cic degradation by changing its subcellular localization. We propose that Cic is degraded predominantly in the cytoplasm and show that Torso reduces the stability of Cic by controlling the rates of its nucleocytoplasmic transport. This model accounts for the experimentally observed spatiotemporal dynamics of Cic in the early embryo and might explain RTK-dependent control of Cic in other developmental contexts.
Collapse
Affiliation(s)
- Oliver Grimm
- Howard Hughes Medical Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | | | |
Collapse
|
36
|
Koizumi Y, Iwasa Y, Hirashima T. Mathematical study of the role of Delta/Notch lateral inhibition during primary branching of Drosophila trachea development. Biophys J 2012; 103:2549-59. [PMID: 23260057 DOI: 10.1016/j.bpj.2012.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 07/06/2012] [Accepted: 11/06/2012] [Indexed: 12/18/2022] Open
Abstract
A wide range of cellular developmental processes employ intercellular signaling via the Delta/Notch lateral inhibitory pathway to achieve stable spatial patterning. Recent genetic experiments have shown the importance of Delta/Notch lateral inhibition for regulating the number of tip cells in the tracheal primary branching of Drosophila. To examine the role of Delta/Notch regulation in the tip-cell selection, we analyzed a mathematical model of a simple lateral inhibitory system having input signals. Mathematical and numerical analyses revealed that the lateral inhibition did not amplify the signal difference between neighboring cells over the parameter ranges in which the spatial pattern of tip selection was realized. We also show that the number of tip cells becomes less affected by a fluctuation of the input gradient signal as the lateral inhibition becomes stronger. In addition, we demonstrate that the lateral inhibitory regulation enhances the robustness of the tip-cell selection compared with a system regulated by self-inhibition, an alternative means of inhibitory regulation. These results suggest that the lateral inhibition promotes the robustness of tip-cell selection in the tracheal development of Drosophila.
Collapse
Affiliation(s)
- Yoshiki Koizumi
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
37
|
Jaeger J, Manu, Reinitz J. Drosophila blastoderm patterning. Curr Opin Genet Dev 2012; 22:533-41. [DOI: 10.1016/j.gde.2012.10.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 10/16/2012] [Accepted: 10/24/2012] [Indexed: 12/29/2022]
|
38
|
Yang SH, Sharrocks AD, Whitmarsh AJ. MAP kinase signalling cascades and transcriptional regulation. Gene 2012; 513:1-13. [PMID: 23123731 DOI: 10.1016/j.gene.2012.10.033] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/08/2012] [Accepted: 10/18/2012] [Indexed: 02/06/2023]
Abstract
The MAP kinase (MAPK) signalling pathways play fundamental roles in a wide range of cellular processes and are often deregulated in disease states. One major mode of action for these pathways is in controlling gene expression, in particular through regulating transcription. In this review, we discuss recent significant advances in this area. In particular we focus on the mechanisms by which MAPKs are targeted to the nucleus and chromatin, and once there, how they impact on chromatin structure and subsequent gene regulation. We also discuss how systems biology approaches have contributed to our understanding of MAPK signaling networks, and also how the MAPK pathways intersect with other regulatory pathways in the nucleus. Finally, we summarise progress in studying the physiological functions of key MAPK transcriptional targets.
Collapse
Affiliation(s)
- Shen-Hsi Yang
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
39
|
|
40
|
Seaton DD, Krishnan J. Effects of multiple enzyme-substrate interactions in basic units of cellular signal processing. Phys Biol 2012; 9:045009. [PMID: 22872009 DOI: 10.1088/1478-3975/9/4/045009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covalent modification cycles are a ubiquitous feature of cellular signalling networks. In these systems, the interaction of an active enzyme with the unmodified form of its substrate is essential for signalling to occur. However, this interaction is not necessarily the only enzyme-substrate interaction possible. In this paper, we analyse the behaviour of a basic model of signalling in which additional, non-essential enzyme-substrate interactions are possible. These interactions include those between the inactive form of an enzyme and its substrate, and between the active form of an enzyme and its product. We find that these additional interactions can result in increased sensitivity and biphasic responses, respectively. The dynamics of the responses are also significantly altered by the presence of additional interactions. Finally, we evaluate the consequences of these interactions in two variations of our basic model, involving double modification of substrate and scaffold-mediated signalling, respectively. We conclude that the molecular details of protein-protein interactions are important in determining the signalling properties of enzymatic signalling pathways.
Collapse
Affiliation(s)
- D D Seaton
- Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, UK
| | | |
Collapse
|
41
|
Sepulchre JA, Merajver SD, Ventura AC. Retroactive signaling in short signaling pathways. PLoS One 2012; 7:e40806. [PMID: 22848403 PMCID: PMC3406091 DOI: 10.1371/journal.pone.0040806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/13/2012] [Indexed: 11/18/2022] Open
Abstract
In biochemical signaling pathways without explicit feedback connections, the core signal transduction is usually described as a one-way communication, going from upstream to downstream in a feedforward chain or network of covalent modification cycles. In this paper we explore the possibility of a new type of signaling called retroactive signaling, offered by the recently demonstrated property of retroactivity in signaling cascades. The possibility of retroactive signaling is analysed in the simplest case of the stationary states of a bicyclic cascade of signaling cycles. In this case, we work out the conditions for which variables of the upstream cycle are affected by a change of the total amount of protein in the downstream cycle, or by a variation of the phosphatase deactivating the same protein. Particularly, we predict the characteristic ranges of the downstream protein, or of the downstream phosphatase, for which a retroactive effect can be observed on the upstream cycle variables. Next, we extend the possibility of retroactive signaling in short but nonlinear signaling pathways involving a few covalent modification cycles.
Collapse
|
42
|
Hirashima T. A kinetic model of ERK cyclic pathway on substrate control. Math Biosci 2012; 239:207-12. [PMID: 22705338 DOI: 10.1016/j.mbs.2012.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/20/2012] [Accepted: 05/22/2012] [Indexed: 12/23/2022]
Abstract
Extracellular signal-regulated kinase (ERK) is a key factor in the widely used signaling cascade of phosphorylation-dephosphorylation cycles and plays pivotal roles in many aspects of biological processes. Experimental studies in yeast and in Drosophila embryo have suggested that the phosphorylation and spatial localization of ERK are influenced by the level of its downstream substrates. However, the mechanism, through which these substrates control properties of ERK signaling, has been unclear. I propose a mass-action kinetic model of ERK cycle with its substrate, and demonstrate that the substrate can modulate the ERK activity by directly interacting with ERK. The model shows that the addition of substrate controls the level of ERK phosphorylation positively or negatively, depending on the balance between dissociation constants of ERK-substrate interaction and properties of ERK cyclic signaling in the absence of the substrate. In addition, by considering cellular compartments, cytosol and nucleus, the substrate can lead to nuclear accumulation of ERK, suggesting that the substrate can act as a nuclear anchor of ERK. The model gives a possible mechanism that can account for substrate-mediated modulation of ERK signaling.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- Department of Anatomy and Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
43
|
Andriunas FA, Zhang HM, Xia X, Offler CE, McCurdy DW, Patrick JW. Reactive oxygen species form part of a regulatory pathway initiating trans-differentiation of epidermal transfer cells in Vicia faba cotyledons. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3617-29. [PMID: 22442421 PMCID: PMC3388844 DOI: 10.1093/jxb/ers029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2011] [Revised: 01/15/2012] [Accepted: 01/18/2012] [Indexed: 05/21/2023]
Abstract
Various cell types can trans-differentiate to a transfer cell (TC) morphology characterized by deposition of polarized ingrowth walls comprised of a uniform layer on which wall ingrowths (WIs) develop. WIs form scaffolds supporting amplified plasma membrane areas enriched in transporters conferring a cellular capacity for high rates of nutrient exchange across apo- and symplasmic interfaces. The hypothesis that reactive oxygen species (ROS) are a component of the regulatory pathway inducing ingrowth wall formation was tested using Vicia faba cotyledons. Vicia faba cotyledons offer a robust experimental model to examine TC induction as, on being placed into culture, their adaxial epidermal cells rapidly (hours) form ingrowth walls on their outer periclinal walls. These are readily visualized by electron microscopy, and epidermal peels of their trans-differentiating cells allow measures of cell-specific gene expression. Ingrowth wall formation responded inversely to pharmacological manipulation of ROS levels, indicating that a flavin-containing enzyme (NADPH oxidase) and superoxide dismutase cooperatively generate a regulatory H(2)O(2) signature. Extracellular H(2)O(2) fluxes peaked prior to the appearance of WIs and were followed by a slower rise in H(2)O(2) flux that occurred concomitantly, and co-localized, with ingrowth wall formation. De-localizing the H(2)O(2) signature caused a corresponding de-localization of cell wall deposition. Temporal and epidermal cell-specific expression profiles of VfrbohA and VfrbohC coincided with those of extracellular H(2)O(2) production and were regulated by cross-talk with ethylene. It is concluded that H(2)O(2) functions, downstream of ethylene, to activate cell wall biosynthesis and direct polarized deposition of a uniform wall on which WIs form.
Collapse
Affiliation(s)
| | | | | | | | | | - John W. Patrick
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308 Australia
| |
Collapse
|
44
|
Liu P, Kevrekidis IG, Shvartsman SY. Substrate-dependent control of ERK phosphorylation can lead to oscillations. Biophys J 2012; 101:2572-81. [PMID: 22261044 DOI: 10.1016/j.bpj.2011.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/13/2011] [Accepted: 10/07/2011] [Indexed: 01/01/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) controls cellular processes by phosphorylating multiple substrates. The ERK protein can use the same domains to interact with phosphatases, which dephosphorylate and deactivate ERK, and with substrates, which connect ERK to its downstream effects. As a consequence, substrates can compete with phosphatases and control the level of ERK phosphorylation. We propose that this effect can qualitatively change the dynamics of a network that controls ERK activation. On its own, this network can be bistable, but in a larger system, where ERK accelerates the degradation of a substrate competing with a phosphatase, this network can oscillate. Previous studies proposed that oscillatory ERK signaling requires a negative feedback in which active ERK reduces the rate at which it is phosphorylated by upstream kinase. We argue that oscillations can also emerge even when this rate is constant, due to substrate-dependent control of ERK phosphorylation.
Collapse
Affiliation(s)
- Ping Liu
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | | | | |
Collapse
|
45
|
Shvartsman SY, Baker RE. Mathematical models of morphogen gradients and their effects on gene expression. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:715-30. [DOI: 10.1002/wdev.55] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Nir R, Grossman R, Paroush Z, Volk T. Phosphorylation of the Drosophila melanogaster RNA-binding protein HOW by MAPK/ERK enhances its dimerization and activity. PLoS Genet 2012; 8:e1002632. [PMID: 22479211 PMCID: PMC3315481 DOI: 10.1371/journal.pgen.1002632] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 02/20/2012] [Indexed: 11/18/2022] Open
Abstract
Drosophila melanogaster Held Out Wings (HOW) is a conserved RNA-binding protein (RBP) belonging to the STAR family, whose closest mammalian ortholog Quaking (QKI) has been implicated in embryonic development and nervous system myelination. The HOW RBP modulates a variety of developmental processes by controlling mRNA levels and the splicing profile of multiple key regulatory genes; however, mechanisms regulating its activity in tissues have yet to be elucidated. Here, we link receptor tyrosine kinase (RTK) signaling to the regulation of QKI subfamily of STAR proteins, by showing that HOW undergoes phosphorylation by MAPK/ERK. Importantly, we show that this modification facilitates HOW dimerization and potentiates its ability to bind RNA and regulate its levels. Employing an antibody that specifically recognizes phosphorylated HOW, we show that HOW is phosphorylated in embryonic muscles and heart cardioblasts in vivo, thus documenting for the first time Serine/Threonine (Ser/Thr) phosphorylation of a STAR protein in the context of an intact organism. We also identify the sallimus/D-titin (sls) gene as a novel muscle target of HOW-mediated negative regulation and further show that this regulation is phosphorylation-dependent, underscoring the physiological relevance of this modification. Importantly, we demonstrate that HOW Thr phosphorylation is reduced following muscle-specific knock down of Drosophila MAPK rolled and that, correspondingly, Sls is elevated in these muscles, similarly to the HOW RNAi effect. Taken together, our results provide a coherent mechanism of differential HOW activation; MAPK/ERK-dependent phosphorylation of HOW promotes the formation of HOW dimers and thus enhances its activity in controlling mRNA levels of key muscle-specific genes. Hence, our findings bridge between MAPK/ERK signaling and RNA regulation in developing muscles.
Collapse
Affiliation(s)
- Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rona Grossman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
47
|
Drosophila embryo syncytial blastoderm cellular architecture and morphogen gradient dynamics: Is there a correlation? ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1160-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
48
|
Wortzel I, Seger R. The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer 2011; 2:195-209. [PMID: 21779493 DOI: 10.1177/1947601911407328] [Citation(s) in RCA: 379] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The extracellular signal-regulated kinase 1/2 (ERK1/2) cascade is a central signaling pathway that regulates a wide variety of stimulated cellular processes, including mainly proliferation, differentiation, and survival, but apoptosis and stress response as well. The ability of this linear cascade to induce so many distinct and even opposing effects after various stimulations raises the question as to how the signaling specificity of the cascade is regulated. Over the past years, several specificity-mediating mechanisms have been elucidated, including temporal regulation, scaffolding interactions, crosstalks with other signaling components, substrate competition, and multiple components in each tier of the cascade. In addition, spatial regulation of various components of the cascade is probably one of the main ways by which signals can be directed to some downstream targets and not to others. In this review, we describe first the components of the ERK1/2 cascade and their mode of regulation by kinases, phosphatases, and scaffold proteins. In the second part, we focus on the role of MEK1/2 and ERK1/2 compartmentalization in the nucleus, mitochondria, endosomes, plasma membrane, cytoskeleton, and Golgi apparatus. We explain that this spatial distribution may direct ERK1/2 signals to regulate the organelles' activities. However, it can also direct the activity of the cascade's components to the outer surface of the organelles in order to bring them to close proximity to specific cytoplasmic targets. We conclude that the dynamic localization of the ERK1/2 cascade components is an important regulatory mechanism in determining the signaling specificity of the cascade, and its understanding should shed a new light on the understanding of many stimulus-dependent processes.
Collapse
Affiliation(s)
- Inbal Wortzel
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
49
|
Jiang P, Ventura AC, Sontag ED, Merajver SD, Ninfa AJ, Vecchio DD. Load-induced modulation of signal transduction networks. Sci Signal 2011; 4:ra67. [PMID: 21990429 PMCID: PMC8760836 DOI: 10.1126/scisignal.2002152] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Biological signal transduction networks are commonly viewed as circuits that pass along information--in the process amplifying signals, enhancing sensitivity, or performing other signal-processing tasks--to transcriptional and other components. Here, we report on a "reverse-causality" phenomenon, which we call load-induced modulation. Through a combination of analytical and experimental tools, we discovered that signaling was modulated, in a surprising way, by downstream targets that receive the signal and, in doing so, apply what in physics is called a load. Specifically, we found that non-intuitive changes in response dynamics occurred for a covalent modification cycle when load was present. Loading altered the response time of a system, depending on whether the activity of one of the enzymes was maximal and the other was operating at its minimal rate or whether both enzymes were operating at submaximal rates. These two conditions, which we call "limit regime" and "intermediate regime," were associated with increased or decreased response times, respectively. The bandwidth, the range of frequency in which the system can process information, decreased in the presence of load, suggesting that downstream targets participate in establishing a balance between noise-filtering capabilities and a circuit's ability to process high-frequency stimulation. Nodes in a signaling network are not independent relay devices, but rather are modulated by their downstream targets.
Collapse
Affiliation(s)
- Peng. Jiang
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Alejandra C. Ventura
- Institute for Physiology, Molecular Biology, and Neuroscience, Department of Biology/Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, Argentina
| | | | - Sofia D. Merajver
- Department of Internal Medicine, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | - Alexander J. Ninfa
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
50
|
|