1
|
Urciuoli A, Martínez I, Quam R, Arsuaga JL, Keeling BA, Diez-Valero J, Conde-Valverde M. Semicircular canals shed light on bottleneck events in the evolution of the Neanderthal clade. Nat Commun 2025; 16:972. [PMID: 39979299 PMCID: PMC11842635 DOI: 10.1038/s41467-025-56155-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/10/2025] [Indexed: 02/22/2025] Open
Abstract
Revealing the evolutionary processes which resulted in the derived morphologies that characterize the Neanderthal clade has been an important task for paleoanthropologists. One critical method to quantify evolutionary changes in the morphology of hominin populations is through evaluating morphological phenotypic diversity (i.e., disparity) in phylogenetically informative bones as a close proxy to neutral evolutionary processes. The goal of this study is to quantify the degree of disparity in the Neanderthal clade. We hypothesize that a reduction in bony labyrinth disparity is indicative of the underlying genetic variation resulting from bottleneck events. We apply a deformation-based geometric morphometric approach to investigate semicircular canal and vestibule shape of a chronologically broad sample of individuals belonging to the Neanderthal lineage. Our results identify a significant reduction in disparity after the start of Marine Isotope Stage 5 supporting our hypothesis of a late bottleneck, possibly leading to the derived morphology of Late Pleistocene Neanderthals.
Collapse
Affiliation(s)
- Alessandro Urciuoli
- Universitat Autònoma de Barcelona, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain.
- Division of Palaeoanthropology, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany.
- Institut Català de Paleontologia Miquel Crusafont (ICP-CERCA), Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/ns/n, Campus de la UAB, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain.
| | - Ignacio Martínez
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain
| | - Rolf Quam
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, 13902-6000, USA
- Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Madrid, Spain
- Division of Anthropology, American Museum of Natural History, New York, NY, USA
| | - Juan Luis Arsuaga
- Centro Mixto (UCM-ISCIII) de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodinámica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Brian A Keeling
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, 13902-6000, USA
| | - Julia Diez-Valero
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain
| | - Mercedes Conde-Valverde
- Universidad de Alcalá, Cátedra de Otoacústica Evolutiva y Paleoantropología (HM Hospitales-UAH), Departamento de Ciencias de la Vida, 28871 Alcalá de Henares, Madrid, Spain.
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, 13902-6000, USA.
| |
Collapse
|
2
|
Caporale N, Leonardi O, Villa CE, Vitriolo A, Boeckx C, Testa G. Tile by tile: capturing the evolutionary mosaic of human conditions. Curr Opin Genet Dev 2025; 90:102297. [PMID: 39705881 DOI: 10.1016/j.gde.2024.102297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/05/2024] [Accepted: 11/27/2024] [Indexed: 12/23/2024]
Abstract
The collection of Homo sapiens anatomical hallmarks hypothesized to support the 'human condition' did not appear at one specific time and place, but gradually, creating a reticulate evolutionary trajectory. The recent reconstruction of migration patterns and gene flows across different hominin species and populations draws a mosaic that we contend can be illuminated by genomic comparisons and specific experiments. Here, we first review key discoveries that could allow this experimental endeavor by describing recent advances in a variety of fields, stressing the importance of charting the current human neurodiversity as an interpretive substrate for evolutionary changes. Then, we identify key cellular and molecular observables. Finally, given the vast amount of possible variants, we focus the discussion on technologies that could allow their interrogation in a way that is compatible with the staggering amount of contemporary genomic and phenotypic characterization.
Collapse
Affiliation(s)
- Nicolò Caporale
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@NicoloCaporale
| | - Oliviero Leonardi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@OlivieroLeonar2
| | - Carlo Emanuele Villa
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@CarloEmanueleV1
| | - Alessandro Vitriolo
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. https://twitter.com/@AVitriolScience
| | - Cedric Boeckx
- University of Barcelona, 08007 Barcelona, Spain; University of Barcelona Institute of Complex Systems, 08007 Barcelona, Spain; University of Barcelona Institute of Neurosciences, 08007 Barcelona, Spain; Catalan Institute for Research and Advanced Studies (ICREA), 08007 Barcelona, Spain.
| | - Giuseppe Testa
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy.
| |
Collapse
|
3
|
Blumer J, Arney I, Hardin A, Nichols M, Arsenault L, Petrucci J. Comparing cranial suture interdigitation in humans and non-human primates: unearthing links to osteopathic cranial concept. J Osteopath Med 2025; 125:87-94. [PMID: 39248349 DOI: 10.1515/jom-2023-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
CONTEXT Since William Garner Sutherland's inception of osteopathic cranial manipulative medicine (OCMM), osteopathic physicians have practiced with the knowledge that cranial sutures exhibit motion. We hypothesize that the complexity of suture interdigitation in humans may provide clues to elucidate the concept of OCMM. OBJECTIVES We compared the interdigitation of sagittal, coronal (left and right), and lambdoid (left and right) sutures in computed tomography (CT) scans of humans and five nonhuman primate species (Gorilla gorilla, Pongo pygmaeus, Pan troglodytes, Hylobates lar, and Nasalis larvatus). METHODS Human ages are evenly distributed between 10 and 65 years of age, with an equal number of males (n=16) and females (n=16) in the sample. Nonhuman primates are all females, and the sample includes juveniles (n=6) and adults (n=34). Sutures were evaluated on a scale ranging from 0 to 3 (0: fused sutures; 1: no interdigitation; 2: low complexity; and 3: representing the highest degree of interdigitation and complexity). RESULTS Based on ordinary least squares linear regression, we found no significant relationship between suture interdigitation and age in humans. Chi-square tests were utilized to assess sex differences within humans, species-level differences, and differences between humans and nonhuman primates across all five sutures. Humans exhibited a statistically significant greater degree of suture complexity than all five nonhuman species across all five sutures. CONCLUSIONS These findings indicate that human suture interdigitation is more complex than their closest living relatives (African apes) and other primates (Asian monkeys and apes). We theorize that this would enable subtle movement and serve to transmit forces at the cranial sutures from dietary or ethological behaviors, similar to the pattern observed in other mammals. While humans have a softer diet compared to other living primates, the uniqueness of human craniofacial growth and extended developmental period could contribute to the necessity for complex cranial sutures. More studies are needed to understand variation in human and nonhuman sutural complexity and its relationship to cranial motion.
Collapse
Affiliation(s)
- Janice Blumer
- Western University of Health Sciences, COMP Northwest, Lebanon, OR, USA
| | - Irisa Arney
- Western University of Health Sciences, COMP Northwest, Lebanon, OR, USA
| | - Anna Hardin
- Western University of Health Sciences, COMP Northwest, Lebanon, OR, USA
| | - Morgan Nichols
- Western University of Health Sciences, COMP Northwest, Lebanon, OR, USA
| | - Luke Arsenault
- Western University of Health Sciences, COMP Northwest, Lebanon, OR, USA
| | - John Petrucci
- Western University of Health Sciences, COMP Northwest, Lebanon, OR, USA
| |
Collapse
|
4
|
McGovern-Lind BR, Proffitt KA, King SEE, Rader HM, Violi DA, Llera Martin CJ, Searight K, Kehrer M, Yeropoli BA, Young JW, Vinyard CJ, DeLeon VB, Smith TD. Developmental milestones in captive Galago moholi. Am J Primatol 2025; 87:e23634. [PMID: 38715226 DOI: 10.1002/ajp.23634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 02/05/2025]
Abstract
Systems of the body develop in a modular manner. For example, neural development in primates is generally rapid, whereas dental development varies much more. In the present study, we examined development of the skull, teeth, and postcrania in a highly specialized leaping primate, Galago moholi. Eighteen specimens ranging from birth to adult were studied. Bones, teeth, and the cranial cavity (i.e., endocast) were reconstructed with Amira software based on microCT cross-referenced to histology. Amira was also used to compute endocast volume (as a proxy for brain size). Reconstructions of the wrist and ankle show that ossification is complete at 1 month postnatally, consistent with the onset of leaping locomotion in this species. Endocranial volume is less than 50% of adult volume at birth, ~80% by 1 month, and has reached adult volume by 2 months postnatal age. Full deciduous dentition eruption occurs by 2 weeks, and the young are known to begin capturing and consuming arthropods on their own by 4 weeks, contemporaneous with the timing of bone and ankle ossification that accompanies successful hunting. The modular pattern of development of body systems in Galago moholi provides an interesting view of a "race" to adult morphology for some joints that are critical for specialized leaping and clinging, rapid crown mineralization to begin a transitional diet, but perhaps more prolonged reliance on nursing to support brain growth.
Collapse
Affiliation(s)
| | - Kathryn A Proffitt
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Scot E E King
- Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hannah M Rader
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Dominic A Violi
- Department of Physician Assistant, Carlow University, Pittsburgh, Pennsylvania, USA
| | | | - Katherine Searight
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Matthew Kehrer
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Brandon A Yeropoli
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Jesse W Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | | | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| | - Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| |
Collapse
|
5
|
Mahon S. Variation and convergence in the morpho-functional properties of the mammalian neocortex. Front Syst Neurosci 2024; 18:1413780. [PMID: 38966330 PMCID: PMC11222651 DOI: 10.3389/fnsys.2024.1413780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Man's natural inclination to classify and hierarchize the living world has prompted neurophysiologists to explore possible differences in brain organisation between mammals, with the aim of understanding the diversity of their behavioural repertoires. But what really distinguishes the human brain from that of a platypus, an opossum or a rodent? In this review, we compare the structural and electrical properties of neocortical neurons in the main mammalian radiations and examine their impact on the functioning of the networks they form. We discuss variations in overall brain size, number of neurons, length of their dendritic trees and density of spines, acknowledging their increase in humans as in most large-brained species. Our comparative analysis also highlights a remarkable consistency, particularly pronounced in marsupial and placental mammals, in the cell typology, intrinsic and synaptic electrical properties of pyramidal neuron subtypes, and in their organisation into functional circuits. These shared cellular and network characteristics contribute to the emergence of strikingly similar large-scale physiological and pathological brain dynamics across a wide range of species. These findings support the existence of a core set of neural principles and processes conserved throughout mammalian evolution, from which a number of species-specific adaptations appear, likely allowing distinct functional needs to be met in a variety of environmental contexts.
Collapse
Affiliation(s)
- Séverine Mahon
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
6
|
Frémondière P, Haeusler M, Thollon L, Webb NM, Marchal F. Obstetrical Constraints and the Origin of Extended Postnatal Brain Maturation in Hominin Evolution. BIOLOGY 2024; 13:398. [PMID: 38927278 PMCID: PMC11201025 DOI: 10.3390/biology13060398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
The origin of difficult birth is still a matter of debate in obstetrics. Recent studies hypothesized that early hominins already experienced obstructed labor even with reduced neonatal head sizes. The aim of this work is to test this hypothesis using an extant obstetrical sample with known delivery outcomes. Three delivery outcomes (i.e., instrument-assisted, Caesarean section, and vaginal birth) were evaluated using a discriminant analysis based on 131 mother-baby dyads and 36 feto-pelvic variables. This obstetrical sample was compared with 20 australopithecine "dyads" generated from the combination of six pelvic reconstructions (three for Australopithecus afarensis, two for A. africanus, and one for A. sediba) and three fetal head size estimations. The obstetrical analysis revealed that dystocic births can be predicted by pelvic features such as an anteroposteriorly flattened pelvic inlet. Australopithecines shared these pelvic morphologies with humans and had eutocic birth only for infants of 110 g brain size or smaller, equaling a human-like neonatal/adult brain size ratio of 25-28%. Although birth mechanism cannot be deduced, the newborn/adult brain size ratio was likely more human-like than previously thought, suggesting that australopithecines were secondarily altricial to circumvent instances of obstructed labor and subsequently require a prolonged postnatal brain growth period, implying some aspects of life history pattern similar to modern humans.
Collapse
Affiliation(s)
- Pierre Frémondière
- Faculty of Medical and Paramedical Sciences, School of Midwifery, Aix Marseille University, 51 Boulevard Pierre Dramard, 13344 Marseille CEDEX 15, France
- UMR 7268 ADES, Aix Marseille University, EFS, CNRS, 51 Boulevard Pierre Dramard, 13344 Marseille CEDEX 15, France;
| | - Martin Haeusler
- Institute of Evolutionary Medicine, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
| | - Lionel Thollon
- LBA, Aix Marseille University, Gustave Eiffel University, 51 Boulevard Pierre Dramard, 13344 Marseille CEDEX 15, France;
| | - Nicole M. Webb
- Institute of Evolutionary Medicine, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland;
- Department of Palaeoanthropology, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - François Marchal
- UMR 7268 ADES, Aix Marseille University, EFS, CNRS, 51 Boulevard Pierre Dramard, 13344 Marseille CEDEX 15, France;
| |
Collapse
|
7
|
Bruner E. Cognitive archaeology, and the psychological assessment of extinct minds. J Comp Neurol 2024; 532:e25583. [PMID: 38289186 DOI: 10.1002/cne.25583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/21/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
Evolutionary anthropology relies on both neontological and paleontological information. In the latter case, fields such as paleoneurology, neuroarchaeology, and cognitive archaeology are supplying new perspectives in prehistory and neuroscience. Cognitive archaeology, in particular, investigates the behaviors associated with extinct species or cultures according to specific psychological models. For example, changes in working memory, attention, or visuospatial integration can be postulated when related behavioral changes are described in the archaeological record. However, cognition is a process based on different and partially independent functional elements, and extinct species could hence have evolved distinct combinations of cognitive abilities or features, based on both quantitative and qualitative differences. Accordingly, differences in working memory can lead to more conceptual or more holistic mindsets, with important changes in the perception and management of the mental experience. The parietal cortex is particularly interesting, in this sense, being involved in functions associated with body-tool integration, attention, and visual imaging. In some cases, evolutionary mismatches among these elements can induce drawbacks that, despite their positive effects on natural selection, can introduce important constraints in our own mental skills. Beyond the theoretical background, some hypotheses can be tested following methods in experimental psychology. In any case, theories in cognitive evolution must acknowledge that, beyond the brain and its biology, the human mind is also deeply rooted in body perception, in social networks, and in technological extension.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| |
Collapse
|
8
|
Magielse N, Heuer K, Toro R, Schutter DJLG, Valk SL. A Comparative Perspective on the Cerebello-Cerebral System and Its Link to Cognition. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1293-1307. [PMID: 36417091 PMCID: PMC10657313 DOI: 10.1007/s12311-022-01495-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 11/24/2022]
Abstract
The longstanding idea that the cerebral cortex is the main neural correlate of human cognition can be elaborated by comparative analyses along the vertebrate phylogenetic tree that support the view that the cerebello-cerebral system is suited to support non-motor functions more generally. In humans, diverse accounts have illustrated cerebellar involvement in cognitive functions. Although the neocortex, and its transmodal association cortices such as the prefrontal cortex, have become disproportionately large over primate evolution specifically, human neocortical volume does not appear to be exceptional relative to the variability within primates. Rather, several lines of evidence indicate that the exceptional volumetric increase of the lateral cerebellum in conjunction with its connectivity with the cerebral cortical system may be linked to non-motor functions and mental operation in primates. This idea is supported by diverging cerebello-cerebral adaptations that potentially coevolve with cognitive abilities across other vertebrates such as dolphins, parrots, and elephants. Modular adaptations upon the vertebrate cerebello-cerebral system may thus help better understand the neuroevolutionary trajectory of the primate brain and its relation to cognition in humans. Lateral cerebellar lobules crura I-II and their reciprocal connections to the cerebral cortical association areas appear to have substantially expanded in great apes, and humans. This, along with the notable increase in the ventral portions of the dentate nucleus and a shift to increased relative prefrontal-cerebellar connectivity, suggests that modular cerebellar adaptations support cognitive functions in humans. In sum, we show how comparative neuroscience provides new avenues to broaden our understanding of cerebellar and cerebello-cerebral functions in the context of cognition.
Collapse
Affiliation(s)
- Neville Magielse
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany
| | - Katja Heuer
- Institute Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, Paris, France
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Roberto Toro
- Institute Pasteur, Unité de Neuroanatomie Appliquée et Théorique, Université Paris Cité, Paris, France
| | - Dennis J L G Schutter
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Center Jülich, Jülich, Germany.
- Otto Hahn Cognitive Neurogenetics Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
9
|
Smith TD, Prufrock KA, DeLeon VB. How to make a vampire. Anat Rec (Hoboken) 2023; 306:2872-2887. [PMID: 36806921 DOI: 10.1002/ar.25179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/23/2023]
Abstract
Herein, we compared the developmental maturity of the cranium, limbs, and feeding apparatus in a perinatal common vampire bat relative to its mother. In addition, we introduce a method for combining two computed tomographic imaging techniques to three-dimensionally reconstruct endocasts in poorly ossified crania. The Desmodus specimens were scanned using microcomputed tomography (microCT) and diffusible iodine-based contrast-enhanced CT to image bone and soft tissues. Muscles of the jaw and limbs, and the endocranial cavity were segmented using imaging software. Endocranial volume (ECV) of the perinatal Desmodus is 74% of adult ECV. The facial skeletal is less developed (e.g., palatal length 60% of adult length), but volumes for alveolar crypts/sockets of permanent teeth are nearly identical. The forelimb skeleton is uniformly less ossified than the distal hind limb, with no secondary centers ossified and an entirely cartilaginous carpus. All epiphyseal growth zones are active in the brachium and antebrachium, with the distal radius exhibiting the greatest number of proliferating chondrocytes arranged in columns. The hind limb skeleton is precociously ossified from the knee distally. The musculature of the fore limb, temporalis, and masseter muscles appear weakly developed (6-11% of the adult volume). In contrast, the leg and foot musculature is better developed (23-25% of adult volume), possibly enhancing the newborn's capability to grip the mother's fur. Desmodus is born relatively large, and our results suggest they are born neurally and dentally precocious, with generally underdeveloped limbs, especially the fore limb.
Collapse
Affiliation(s)
- Timothy D Smith
- School of Physical Therapy, Slippery Rock University, Slippery Rock, Pennsylvania, USA
| | - Kristen A Prufrock
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Valerie B DeLeon
- Department of Anthropology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Sripad S. ChatGPT-interesting responses: not so terrifying yet? Indian J Thorac Cardiovasc Surg 2023; 39:557-559. [PMID: 37609613 PMCID: PMC10441978 DOI: 10.1007/s12055-023-01545-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 08/24/2023] Open
Affiliation(s)
- Sushila Sripad
- Department of Cardiothoracic and Vascular Surgery, Retired HOD, The Medical College Calcutta, 88 College Streeet, Kolkata, West Bengal 700073 India
- R N Tagore International Institute of Cardiac Sciences, 124 Mukundapur, Kolkata, 700099 India
| |
Collapse
|
11
|
Richards GD, Jabbour RS, Guipert G, Defleur A. Endocranial anatomy of the Guercy 1 early Neanderthal from Baume Moula-Guercy (Soyons, Ardèche, France). Anat Rec (Hoboken) 2023; 306:564-593. [PMID: 36336759 DOI: 10.1002/ar.25118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
We provide the first comparative description of the endocranium of the Guercy 1 Early Neanderthal and examine its affinities to Preneanderthals, Neanderthals, and Homo sapiens. The Guercy 1 cranium derives from deposits chronostratigraphically and biostratigraphically dated to the Eemian Interglacial (MIS 5e). For comparative purposes, we compiled a sample of European and Southwest Asian subadult and adult Middle-to-Late Pleistocene hominins (≈MIS 12-MIS 1; N = 65). We sampled both a Preneanderthal-Neanderthal group and a Homo sapiens group. The Preneanderthal-Neanderthal group was further divided into three time-successive subgroups defined by associated MIS stages. Metric and morphological observations were made on original fossils and physical and virtual endocranial reconstructions. Guercy 1 and other Early Neanderthals, differ from Preneanderthals by increased development of the prefrontal cortex, precentral and postcentral gyri, inferior parietal lobule, and frontoparietal operculum. Early Neanderthal differ, in general, from Late Neanderthals by exhibiting less development in most of the latter brain structures. The late group additionally differentiates itself from the early group by a greater development of the rostral superior parietal lobule, angular gyrus, superior and middle temporal gyri, and caudal branches of the superior temporal gyrus. Endocranial morphology assessed along the Preneanderthal-Neanderthal sequence show that brain structures prominent in Preneanderthals are accentuated in Early-to-Late Neanderthals. However, both the Early and Late groups differentiate themselves by also showing regionally specific changes in brain development. This pattern of morphological change is consistent with a mosaic pattern of neural evolution in these Middle-to-Late Pleistocene hominins.
Collapse
Affiliation(s)
- Gary D Richards
- Department of Biomedical Sciences, A. A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California, USA
| | - Rebecca S Jabbour
- Department of Biology, Saint Mary's College of California, Moraga, California, USA
| | - Gaspard Guipert
- Institut de Paléontologie Humaine, Fondation Albert Ier Prince de Monaco, Paris, France
| | - Alban Defleur
- CEPAM - UMR 7264 CNRS, Université de Nice, Nice Cedex 4, France
| |
Collapse
|
12
|
Ganapathee DS, Gunz P. Insights into brain evolution through the genotype-phenotype connection. PROGRESS IN BRAIN RESEARCH 2023; 275:73-92. [PMID: 36841571 DOI: 10.1016/bs.pbr.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has recently become possible to start exploring how the genotype translates into human brain morphology and behavior by combining detailed genomic and phenotypic data from thousands of present-day people with archaic genomes of extinct humans, and gene expression data. As a starting point into this emerging interdisciplinary domain, we highlight current debates about which aspects of the modern human brain are unique. We review recent developments from (1) comparative primate neuroscience-a fast-growing field offering an invaluable framework for understanding general mechanisms and the evolution of human-specific traits. (2) paleoanthropology-based on evidence from endocranial imprints in fossil skulls, we trace the evolution from the ape-like brain phenotype of early hominins more than 3 million years ago to the unusual globular brain shape of present-day people. (3) Genomics of present-day and extinct humans. The morphological and genetic differences between modern humans and our closest extinct cousins, the Neandertals, offer important clues about the genetic underpinnings of brain morphology and behavior. The functional consequences of these genetic differences can be tested in animal models, and brain organoids.
Collapse
Affiliation(s)
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
13
|
Boeckx C. What made us "hunter-gatherers of words". Front Neurosci 2023; 17:1080861. [PMID: 36845441 PMCID: PMC9947416 DOI: 10.3389/fnins.2023.1080861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
This paper makes three interconnected claims: (i) the "human condition" cannot be captured by evolutionary narratives that reduce it to a recent 'cognitive modernity', nor by narratives that eliminates all cognitive differences between us and out closest extinct relatives, (ii) signals from paleogenomics, especially coming from deserts of introgression but also from signatures of positive selection, point to the importance of mutations that impact neurodevelopment, plausibly leading to temperamental differences, which may impact cultural evolutionary trajectories in specific ways, and (iii) these trajectories are expected to affect the language phenotypes, modifying what is being learned and how it is put to use. In particular, I hypothesize that these different trajectories influence the development of symbolic systems, the flexible ways in which symbols combine, and the size and configurations of the communities in which these systems are put to use.
Collapse
Affiliation(s)
- Cedric Boeckx
- Section of General Linguistics, Universitat de Barcelona, Barcelona, Spain
- Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
14
|
Homo sapiens and Neanderthals share high cerebral cortex integration into adulthood. Nat Ecol Evol 2023; 7:42-50. [PMID: 36604552 DOI: 10.1038/s41559-022-01933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/11/2022] [Indexed: 01/07/2023]
Abstract
There is controversy around the mechanisms that guided the change in brain shape during the evolution of modern humans. It has long been held that different cortical areas evolved independently from each other to develop their unique functional specializations. However, some recent studies suggest that high integration between different cortical areas could facilitate the emergence of equally extreme, highly specialized brain functions. Here, we analyse the evolution of brain shape in primates using three-dimensional geometric morphometrics of endocasts. We aim to determine, firstly, whether modern humans present unique developmental patterns of covariation between brain cortical areas; and secondly, whether hominins experienced unusually high rates of evolution in brain covariation as compared to other primates. On the basis of analyses including modern humans and other extant great apes at different developmental stages, we first demonstrate that, unlike our closest living relatives, Homo sapiens retain high levels of covariation between cortical areas into adulthood. Among the other great apes, high levels of covariation are only found in immature individuals. Secondly, at the macro-evolutionary level, our analysis of 400 endocasts, representing 148 extant primate species and 6 fossil hominins, shows that strong covariation between different areas of the brain in H. sapiens and Homo neanderthalensis evolved under distinctly higher evolutionary rates than in any other primate, suggesting that natural selection favoured a greatly integrated brain in both species. These results hold when extinct species are excluded and allometric effects are accounted for. Our findings demonstrate that high covariation in the brain may have played a critical role in the evolution of unique cognitive capacities and complex behaviours in both modern humans and Neanderthals.
Collapse
|
15
|
Bone Tissue and the Nervous System: What Do They Have in Common? Cells 2022; 12:cells12010051. [PMID: 36611845 PMCID: PMC9818711 DOI: 10.3390/cells12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/25/2022] Open
Abstract
Degenerative diseases affecting bone tissues and the brain represent important problems with high socio-economic impact. Certain bone diseases, such as osteoporosis, are considered risk factors for the progression of neurological disorders. Often, patients with neurodegenerative diseases have bone fractures or reduced mobility linked to osteoarthritis. The bone is a dynamic tissue involved not only in movement but also in the maintenance of mineral metabolism. Bone is also associated with the generation of both hematopoietic stem cells (HSCs), and thus the generation of the immune system, and mesenchymal stem cells (MSCs). Bone marrow is a lymphoid organ and contains MSCs and HSCs, both of which are involved in brain health via the production of cytokines with endocrine functions. Hence, it seems clear that bone is involved in the regulation of the neuronal system and vice versa. This review summarizes the recent knowledge on the interactions between the nervous system and bone and highlights the importance of the interaction between nerve and bone cells. In addition, experimental models that study the interaction between nerve and skeletal cells are discussed, and innovative models are suggested to better evaluate the molecular interactions between these two cell types.
Collapse
|
16
|
Hublin JJ, Changeux JP. Paleoanthropology of cognition: an overview on Hominins brain evolution. C R Biol 2022; 345:57-75. [PMID: 36847465 DOI: 10.5802/crbiol.92] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
Abstract
Recent advances in neurobiology, paleontology, and paleogenetics allow us to associate changes in brain size and organization with three main "moments" of increased behavioral complexity and, more speculatively, language development. First, Australopiths display a significant increase in brain size relative to the great apes and an incipient extension of postnatal brain development. However, their cortical organization remains essentially similar to that of apes. Second, over the last 2 My, with two notable exceptions, brain size increases dramatically, partly in relation to changes in body size. Differential enlargements and reorganizations of cortical areas lay the foundation for the "language-ready" brain and cumulative culture of later Homo species. Third, in Homo sapiens, brain size remains fairly stable over the last 300,000 years but an important cerebral reorganization takes place. It affects the frontal and temporal lobes, the parietal areas and the cerebellum and resulted in a more globular shape of the brain. These changes are associated, among others, with an increased development of long-distance-horizontal-connections. A few regulatory genetic events took place in the course of this hominization process with, in particular, enhanced neuronal proliferation and global brain connectivity.
Collapse
|
17
|
Reilly PF, Tjahjadi A, Miller SL, Akey JM, Tucci S. The contribution of Neanderthal introgression to modern human traits. Curr Biol 2022; 32:R970-R983. [PMID: 36167050 PMCID: PMC9741939 DOI: 10.1016/j.cub.2022.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neanderthals, our closest extinct relatives, lived in western Eurasia from 400,000 years ago until they went extinct around 40,000 years ago. DNA retrieved from ancient specimens revealed that Neanderthals mated with modern human contemporaries. As a consequence, introgressed Neanderthal DNA survives scattered across the human genome such that 1-4% of the genome of present-day people outside Africa are inherited from Neanderthal ancestors. Patterns of Neanderthal introgressed genomic sequences suggest that Neanderthal alleles had distinct fates in the modern human genetic background. Some Neanderthal alleles facilitated human adaptation to new environments such as novel climate conditions, UV exposure levels and pathogens, while others had deleterious consequences. Here, we review the body of work on Neanderthal introgression over the past decade. We describe how evolutionary forces shaped the genomic landscape of Neanderthal introgression and highlight the impact of introgressed alleles on human biology and phenotypic variation.
Collapse
Affiliation(s)
| | - Audrey Tjahjadi
- Department of Anthropology, Yale University, New Haven, CT, USA
| | | | - Joshua M Akey
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Serena Tucci
- Department of Anthropology, Yale University, New Haven, CT, USA; Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
| |
Collapse
|
18
|
Zollikofer CPE, Bienvenu T, Beyene Y, Suwa G, Asfaw B, White TD, Ponce de León MS. Endocranial ontogeny and evolution in early Homo sapiens: The evidence from Herto, Ethiopia. Proc Natl Acad Sci U S A 2022; 119:e2123553119. [PMID: 35914174 PMCID: PMC9371682 DOI: 10.1073/pnas.2123553119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/05/2022] [Indexed: 11/21/2022] Open
Abstract
Fossils and artifacts from Herto, Ethiopia, include the most complete child and adult crania of early Homo sapiens. The endocranial cavities of the Herto individuals show that by 160,000 y ago, brain size, inferred from endocranial size, was similar to that seen in modern human populations. However, endocranial shape differed from ours. This gave rise to the hypothesis that the brain itself evolved substantially during the past ∼200,000 y, possibly in tandem with the transition from Middle to Upper Paleolithic techno-cultures. However, it remains unclear whether evolutionary changes in endocranial shape mostly reflect changes in brain morphology rather than changes related to interaction with maxillofacial morphology. To discriminate between these effects, we make use of the ontogenetic fact that brain growth nearly ceases by the time the first permanent molars fully erupt, but the face and cranial base continue to grow until adulthood. Here we use morphometric data derived from digitally restored immature and adult H. sapiens fossils from Herto, Qafzeh, and Skhul (HQS) to track endocranial development in early H. sapiens. Until the completion of brain growth, endocasts of HQS children were similar in shape to those of modern human children. The similarly shaped endocasts of fossil and modern children indicate that our brains did not evolve substantially over the past 200,000 y. Differences between the endocranial shapes of modern and fossil H. sapiens adults developed only with continuing facial and basicranial growth, possibly reflecting substantial differences in masticatory and/or respiratory function.
Collapse
Affiliation(s)
| | - Thibault Bienvenu
- Department of Anthropology, University of Zurich, Zurich 8057, Switzerland
| | - Yonas Beyene
- French Center for Ethiopian Studies (CFEE), Addis Ababa, Ethiopia
| | - Gen Suwa
- University Museum, The University of Tokyo, Tokyo 113-0033, Japan
| | | | - Tim D. White
- Human Evolution Research Center, The University of California at Berkeley, Berkeley, CA 94720
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Burgos 09002, Spain
- Department of Integrative Biology, The University of California at Berkeley, Berkeley, CA 94720
| | | |
Collapse
|
19
|
Meneganzin A, Pievani T, Manzi G. Pan-Africanism vs. single-origin of Homo sapiens: Putting the debate in the light of evolutionary biology. Evol Anthropol 2022; 31:199-212. [PMID: 35848454 PMCID: PMC9540121 DOI: 10.1002/evan.21955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 02/23/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The scenario of Homo sapiens origin/s within Africa has become increasingly complex, with a pan-African perspective currently challenging the long-established single-origin hypothesis. In this paper, we review the lines of evidence employed in support of each model, highlighting inferential limitations and possible terminological misunderstandings. We argue that the metapopulation scenario envisaged by pan-African proponents well describes a mosaic diversification among late Middle Pleistocene groups. However, this does not rule out a major contribution that emerged from a single population where crucial derived features-notably, a globular braincase-appeared as the result of a punctuated, cladogenetic event. Thus, we suggest that a synthesis is possible and propose a scenario that, in our view, better reconciles with consolidated expectations in evolutionary theory. These indicate cladogenesis in allopatry as an ordinary pattern for the origin of a new species, particularly during phases of marked climatic and environmental instability.
Collapse
Affiliation(s)
| | | | - Giorgio Manzi
- Department of Environmental BiologySapienza University of RomeRomeItaly
| |
Collapse
|
20
|
Andirkó A, Boeckx C. Brain region-specific effects of nearly fixed sapiens-derived alleles. BMC Genom Data 2022; 23:36. [PMID: 35546225 PMCID: PMC9097168 DOI: 10.1186/s12863-022-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
The availability of high-coverage genomes of our extinct relatives, the Neanderthals and Denisovans, and the emergence of large, tissue-specific databases of modern human genetic variation, offer the possibility of probing the effects of modern-derived alleles in specific tissues, such as the brain, and its specific regions. While previous research has explored the effects of introgressed variants in gene expression, the effects of Homo sapiens-specific gene expression variability are still understudied. Here we identify derived, Homo sapiens-specific high-frequency (≥90%) alleles that are associated with differential gene expression across 15 brain structures derived from the GTEx database. We show that regulation by these derived variants targets regions under positive selection more often than expected by chance, and that high-frequency derived alleles lie in functional categories related to transcriptional regulation. Our results highlight the role of these variants in gene regulation in specific regions like the cerebellum and pituitary.
Collapse
Affiliation(s)
- Alejandro Andirkó
- University of Barcelona, Barcelona, Spain.,University of Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Cedric Boeckx
- University of Barcelona, Barcelona, Spain. .,University of Barcelona Institute of Complex Systems, Barcelona, Spain. .,ICREA, Barcelona, Spain.
| |
Collapse
|
21
|
Buisan R, Moriano J, Andirkó A, Boeckx C. A Brain Region-Specific Expression Profile for Genes Within Large Introgression Deserts and Under Positive Selection in Homo sapiens. Front Cell Dev Biol 2022; 10:824740. [PMID: 35557944 PMCID: PMC9086289 DOI: 10.3389/fcell.2022.824740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Analyses of ancient DNA from extinct hominins have provided unique insights into the complex evolutionary history of Homo sapiens, intricately related to that of the Neanderthals and the Denisovans as revealed by several instances of admixture events. These analyses have also allowed the identification of introgression deserts: genomic regions in our species that are depleted of "archaic" haplotypes. The presence of genes like FOXP2 in these deserts has been taken to be suggestive of brain-related functional differences between Homo species. Here, we seek a deeper characterization of these regions and the specific expression trajectories of genes within them, taking into account signals of positive selection in our lineage. Analyzing publicly available transcriptomic data from the human brain at different developmental stages, we found that structures outside the cerebral neocortex, in particular the cerebellum, the striatum and the mediodorsal nucleus of the thalamus show the most divergent transcriptomic profiles when considering genes within large introgression deserts and under positive selection.
Collapse
Affiliation(s)
| | - Juan Moriano
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Alejandro Andirkó
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain
| | - Cedric Boeckx
- Universitat de Barcelona, Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems, Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
22
|
Variation in cross-sectional indicator of femoral robusticity in Homo sapiens and Neandertals. Sci Rep 2022; 12:4739. [PMID: 35304879 PMCID: PMC8933494 DOI: 10.1038/s41598-022-08405-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/02/2022] [Indexed: 11/11/2022] Open
Abstract
Variations in the cross-sectional properties of long bones are used to reconstruct the activity of human groups and differences in their respective habitual behaviors. Knowledge of what factors influence bone structure in Homo sapiens and Neandertals is still insufficient thus, this study investigated which biological and environmental variables influence variations in the femoral robusticity indicator of these two species. The sample consisted of 13 adult Neandertals from the Middle Paleolithic and 1959 adult individuals of H. sapiens ranging chronologically from the Upper Paleolithic to recent times. The femoral biomechanical properties were derived from the European data set, the subject literature, and new CT scans. The material was tested using a Mantel test and statistical models. In the models, the polar moment of area (J) was the dependent variable; sex, age, chronological period, type of lifestyle, percentage of the cortical area (%CA), the ratio of second moment areas of inertia about the X and Y axes (Ix/Iy), and maximum slope of the terrain were independent covariates. The Mantel tests revealed spatial autocorrelation of the femoral index in H. sapiens but not in Neandertals. A generalized additive mixed model showed that sex, %CA, Ix/Iy, chronological period, and terrain significantly influenced variation in the robusticity indicator of H. sapiens femora. A linear mixed model revealed that none of the analyzed variables correlated with the femoral robusticity indicator of Neandertals. We did not confirm that the gradual decline in the femoral robusticity indicator of H. sapiens from the Middle Paleolithic to recent times is related to the type of lifestyle; however, it may be associated with lower levels of mechanical loading during adolescence. The lack of correlation between the analysed variables and the indicator of femoral robusticity in Neandertals may suggest that they needed a different level of mechanical stimulus to produce a morphological response in the long bone than H. sapiens.
Collapse
|
23
|
Li Z, Pang Z, Qiu J, Zhang Z, Liu X, Bai C, Wang Y, Guo Y. Quantification and statistical analysis on the cranial vault morphology for Chinese children 3-10 years old. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 215:106591. [PMID: 34979294 DOI: 10.1016/j.cmpb.2021.106591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Head injury is the leading cause of fatalities and disabilities in children. Characterizing the variation in cranial size/shape and thickness during growth is important for developing finite element models of child heads and evaluating head injury risk at different ages. However, the quantitative morphological features of the cranial vault (size/shape and non-uniform thickness distribution) have not been accounted for in children aged between 3 and 10 years old (YO). METHODS Geometrically equivalent discrete points were identified on 42 head CT scans of 3-10 YO children by separation, curve dividing, and point fitting. Based on discrete points, the principal component analysis and regression (PCA&R) method was used to develop a statistical model of the cranial vault as a function of age and head circumference. RESULTS The ontogeny of three-dimensional cranial morphology and non-uniform thickness from 3 to 10 years of age was quantified and cranial vault morphologies for 3-10 YO children were generated in 1 year intervals. CONCLUSIONS The automatic method, the procedure of identifying discrete points from CT scans, and the developed quantitative cranial vault model are reliable and accurate.
Collapse
Affiliation(s)
- Zhigang Li
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, Beijing 100044, China; Key Laboratory of Vehicle Advanced Manufacturing, Ministry of Education, Measuring and Control Technology, Beijing Jiaotong University, China.
| | - Ziqiang Pang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, Beijing 100044, China
| | - Jinlong Qiu
- Daping Hospital of Army Medical University, PLA, 400042, China
| | - Zhenhao Zhang
- School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, No.3 Shangyuancun, Haidian District, Beijing 100044, China
| | - Xiaochuan Liu
- Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, China Aircraft Strength Research Institute, Xi'an 710065, China
| | - Chunyu Bai
- Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, China Aircraft Strength Research Institute, Xi'an 710065, China
| | - Yafeng Wang
- Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, China Aircraft Strength Research Institute, Xi'an 710065, China
| | - Yazhou Guo
- Aviation Key Laboratory of Science and Technology on Structures Impact Dynamics, China Aircraft Strength Research Institute, Xi'an 710065, China
| |
Collapse
|
24
|
Burger B, Nenning KH, Schwartz E, Margulies DS, Goulas A, Liu H, Neubauer S, Dauwels J, Prayer D, Langs G. Disentangling cortical functional connectivity strength and topography reveals divergent roles of genes and environment. Neuroimage 2021; 247:118770. [PMID: 34861392 DOI: 10.1016/j.neuroimage.2021.118770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/10/2021] [Accepted: 11/29/2021] [Indexed: 10/19/2022] Open
Abstract
The human brain varies across individuals in its morphology, function, and cognitive capacities. Variability is particularly high in phylogenetically modern regions associated with higher order cognitive abilities, but its relationship to the layout and strength of functional networks is poorly understood. In this study we disentangled the variability of two key aspects of functional connectivity: strength and topography. We then compared the genetic and environmental influences on these two features. Genetic contribution is heterogeneously distributed across the cortex and differs for strength and topography. In heteromodal areas genes predominantly affect the topography of networks, while their connectivity strength is shaped primarily by random environmental influence such as learning. We identified peak areas of genetic control of topography overlapping with parts of the processing stream from primary areas to network hubs in the default mode network, suggesting the coordination of spatial configurations across those processing pathways. These findings provide a detailed map of the diverse contribution of heritability and individual experience to the strength and topography of functional brain architecture.
Collapse
Affiliation(s)
- Bianca Burger
- Department of Biomedical Imaging and Image-Guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna 1090, Austria
| | - Karl-Heinz Nenning
- Department of Biomedical Imaging and Image-Guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna 1090, Austria; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, United States
| | - Ernst Schwartz
- Department of Biomedical Imaging and Image-Guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna 1090, Austria
| | - Daniel S Margulies
- Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, 75006 Paris, France; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Alexandros Goulas
- Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Martinstr. 52, 20246 Hamburg, Germany
| | - Hesheng Liu
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, 29466, USAs
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| | - Justin Dauwels
- TU Delft Fac. EEMCS Mekelweg 4 2628 CD Delft; Nayang Technological University, 639798, Singapore
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Neuroradiology and Musculo-skeletal Radiology, Medical University of Vienna, Vienna 1090, Austria
| | - Georg Langs
- Department of Biomedical Imaging and Image-Guided Therapy, Computational Imaging Research Lab, Medical University of Vienna, Vienna 1090, Austria; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
25
|
Abstract
We are interested here in the central organ of our thoughts: the brain. Advances in neuroscience have made it possible to obtain increasing information on the anatomy of this organ, at ever-higher resolutions, with different imaging techniques, on ever-larger samples. At the same time, paleoanthropology has to deal with partial reflections on the shape of the brain, on fragmentary specimens and small samples in an attempt to approach the morphology of the brain of past human species. It undeniably emerges from the perspective we propose here that paleoanthropology has much to gain from interacting more with the field of neuroimaging. Improving our understanding of the morphology of the endocast necessarily involves studying the external surface of the brain and the link it maintains with the internal surface of the skull. The contribution of neuroimaging will allow us to better define the relationship between brain and endocast. Models of intra- and inter-species variability in brain morphology inferred from large neuroimaging databases will help make the most of the rare endocasts of extinct species. We also conclude that exchanges between these two disciplines will also be beneficial to our knowledge of the Homo sapiens brain. Documenting the anatomy among other human species and including the variation over time within our own species are approaches that offer us a new perspective through which to appreciate what really characterizes the brain of humanity today.
Collapse
|
26
|
Hershkovitz I, May H, Sarig R, Pokhojaev A, Grimaud-Hervé D, Bruner E, Fornai C, Quam R, Arsuaga JL, Krenn VA, Martinón-Torres M, de Castro JMB, Martín-Francés L, Slon V, Albessard-Ball L, Vialet A, Schüler T, Manzi G, Profico A, Di Vincenzo F, Weber GW, Zaidner Y. A Middle Pleistocene
Homo
from Nesher Ramla, Israel. Science 2021. [DOI: 10.1126/science.abh3169] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Israel Hershkovitz
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hila May
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rachel Sarig
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oral Biology, the Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ariel Pokhojaev
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oral Biology, the Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dominique Grimaud-Hervé
- UMR7194, HNHP, Département Homme et Environnement, Muséum national d’Histoire naturelle, CNRS, UPVD, Paris, France
| | - Emiliano Bruner
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
| | - Cinzia Fornai
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Rolf Quam
- Department of Anthropology, Binghamton University (SUNY), Binghamton, NY, USA
- Centro UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Division of Anthropology, American Museum of Natural History, New York, NY, USA
| | - Juan Luis Arsuaga
- Centro UCM-ISCIII de Evolución y Comportamiento Humanos, Madrid, Spain
- Departamento de Geodináica, Estratigrafía y Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Viktoria A. Krenn
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Maria Martinón-Torres
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
- Department of Anthropology, University College London, London, UK
| | - José María Bermúdez de Castro
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
- Department of Anthropology, University College London, London, UK
| | - Laura Martín-Francés
- CENIEH (National Research Center on Human Evolution), Burgos, Spain
- Department of Anthropology, University College London, London, UK
| | - Viviane Slon
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Shmunis Family Anthropology Institute, the Dan David Center for Human Evolution and Biohistory Research, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lou Albessard-Ball
- UMR7194, HNHP, Département Homme et Environnement, Muséum national d’Histoire naturelle, CNRS, UPVD, Paris, France
- PalaeoHub, Department of Archaeology, University of York, York, UK
| | - Amélie Vialet
- UMR7194, HNHP, Département Homme et Environnement, Muséum national d’Histoire naturelle, CNRS, UPVD, Paris, France
| | - Tim Schüler
- Thuringian State Office for the Preservation of Historical Monuments and Archaeology Weimar, Germany
| | - Giorgio Manzi
- Department of Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Antonio Profico
- PalaeoHub, Department of Archaeology, University of York, York, UK
- Department of Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Fabio Di Vincenzo
- Department of Environmental Biology, Sapienza University of Rome, Roma, Italy
| | - Gerhard W. Weber
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Core Facility for Micro-Computed Tomography, University of Vienna, Vienna, Austria
| | - Yossi Zaidner
- Institute of Archaeology, The Hebrew University of Jerusalem, Jerusalem, Israel
- Zinman Institute of Archaeology, University of Haifa, Haifa, Mount Carmel, Israel
| |
Collapse
|
27
|
Baab KL, Nesbitt A, Hublin JJ, Neubauer S. Assessing the status of the KNM-ER 42700 fossil using Homo erectus neurocranial development. J Hum Evol 2021; 154:102980. [PMID: 33794419 DOI: 10.1016/j.jhevol.2021.102980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 10/21/2022]
Abstract
Based on ontogenetic data of endocranial shape, it has been proposed that a younger than previously assumed developmental status of the 1.5-Myr-old KNM-ER 42700 calvaria could explain why the calvaria of this fossil does not conform to the shape of other Homo erectus individuals. Here, we investigate (ecto)neurocranial ontogeny in H. erectus and assess the proposed juvenile status of this fossil using recent Homo sapiens, chimpanzees (Pan troglodytes), and Neanderthals (Homo neanderthalensis) to model and discuss changes in neurocranial shape from the juvenile to adult stages. We show that all four species share common patterns of developmental shape change resulting in a relatively lower cranial vault and expanded supraorbital torus at later developmental stages. This finding suggests that ectoneurocranial data from extant hominids can be used to model the ontogenetic trajectory for H. erectus, for which only one well-preserved very young individual is known. However, our study also reveals differences in the magnitudes and, to a lesser extent, directions of the species-specific trajectories that add to the overall shared pattern of neurocranial shape changes. We demonstrate that the very young H. erectus juvenile from Mojokerto together with subadult and adult H. erectus individuals cannot be accommodated within the pattern of the postnatal neurocranial trajectory for humans. Instead, the chimpanzee pattern might be a better 'fit' for H. erectus despite their more distant phylogenetic relatedness. The data are also compatible with an ontogenetic shape trajectory that is in some regards intermediate between that of recent H. sapiens and chimpanzees, implying a unique trajectory for H. erectus that combines elements of both extant species. Based on this new knowledge, neurocranial shape supports the assessment that KNM-ER 42700 is a young juvenile H. erectus if H. erectus followed an ontogenetic shape trajectory that was more similar to chimpanzees than humans.
Collapse
Affiliation(s)
- Karen L Baab
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ, 85308, USA; NYCEP Morphometrics Group, New York, NY, 10016, USA.
| | - Allison Nesbitt
- Pathology and Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany; Collège de France, Paris, France
| | - Simon Neubauer
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
28
|
Matsuura S, Suzuki S, Motoki K, Yamazaki S, Kawashima R, Sugiura M. Ventral-Dorsal Subregions in the Posterior Cingulate Cortex Represent Pay and Interest, Two Key Attributes of Job Value. Cereb Cortex Commun 2021; 2:tgab018. [PMID: 34296163 PMCID: PMC8152834 DOI: 10.1093/texcom/tgab018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Career choices affect not only our financial status but also our future well-being. When making these choices, individuals evaluate their willingness to obtain a job (i.e., job values), primarily driven by simulation of future pay and interest. Despite the importance of these decisions, their underlying neural mechanisms remain unclear. In this study, we examined the neural representation of pay and interest. Forty students were presented with 80 job names and asked to evaluate their job values while undergoing functional magnetic resonance imaging (fMRI). Following fMRI, participants rated the jobs in terms of pay and interest. The fMRI data revealed that the ventromedial prefrontal cortex (vmPFC) was associated with job value representation, and the ventral and dorsal regions of the posterior cingulate cortex (PCC) were associated with pay and interest representations, respectively. These findings suggest that the neural computations underlying job valuation conform to a multi-attribute decision-making framework, with overall value signals represented in the vmPFC and the attribute values (i.e., pay and interest) represented in specific regions outside the vmPFC, in the PCC. Furthermore, anatomically distinct representations of pay and interest in the PCC may reflect the differing roles of the two subregions in future simulations.
Collapse
Affiliation(s)
- Shunsui Matsuura
- Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Shinsuke Suzuki
- Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-0845, Japan.,Brain, Mind and Markets Laboratory, Department of Finance, Faculty of Business and Economics, The University of Melbourne, Carlton, VIC 3053, Australia
| | - Kosuke Motoki
- Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,Department of Food Management, Miyagi University, Sendai 982-0215, Japan
| | - Shohei Yamazaki
- Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ryuta Kawashima
- Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Motoaki Sugiura
- Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.,International Research Institute of Disaster Science, Tohoku University, Sendai 980-8572, Japan
| |
Collapse
|
29
|
Zuarez-Chamba M, Puma L, Bermeo J, Andrade E, Bermúdez-Puga SA, Naranjo-Briceño L. Genomic benchmarking studies reveal variations of the polyubiquitination domain of the PSD95 protein in Homo neanderthalensis and other primates of the Hominidae family: Possible implications in cognitive functions? BIONATURA 2021. [DOI: 10.21931/rb/2021.06.01.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Modern humans' unique cognitive abilities regarding Neanderthals and other primate's lineages are frequently attributed to the differences in brain size development and evolution. However, recent studies have established the critical role of genomic and genetic benchmarking in analyzing the cognitive evolution between modern humans and primates, focused mainly on searching for involved genes in neurogenesis. PSD95 protein (named PSD95p) has a key role in modulating synaptic plasticity, learning, and memory skills. Thus, the present study aimed to determine the possible variations of the PSD95 gene between modern humans, Neanderthals, and other hominid primate species using bioinformatics tools. The results showed 14 polymorphisms compared with the contemporary human PSD95 gene, of which 13 were silent mutations, and only one was a non-silent mutation at the nucleotide position 281. Despite polymorphisms found at the nucleotide sequences, the PSD95p of humans and chimpanzees are 100% identical. Likewise, the gorilla and orangutan PSD95p are 100% identical, although a 103-amino acid deletion characterizes them at the N-terminal end (1-103), suggesting that it behaves like a non-functional protein. Interestingly, the single nucleotide polymorphism (SNP) found at position 281 in the Neanderthal PSD95 gene leads to a change of the E94 to valine V94 in the polyubiquitination domain (PEST) and variation in the three-dimensional structure of PSD95 protein. We prompt that this structural change in the PEST domain could induce a loss of PSD95p function and, therefore, an alteration in synaptic plasticity forms such as long-term potentiation (LTP) and long-term depression (LTD). These findings open a possible hypothesis supporting the idea that humans' cognitive evolution after separating our last common ancestor with Neanderthals lineage could have been accompanied by discrete changes in the PSD95p polyubiquitination domain.
Collapse
Affiliation(s)
- Michael Zuarez-Chamba
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Luis Puma
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Jorge Bermeo
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Eugenio Andrade
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Stalin A. Bermúdez-Puga
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| | - Leopoldo Naranjo-Briceño
- Facultad de Ciencias de la Vida, Ingeniería en Biotecnología. Universidad Regional Amazónica Ikiam, vía Muyuna, km. 7, CP 150150, Tena, Ecuador
| |
Collapse
|
30
|
Abstract
AbstractThe geometric morphometric (GMM) construction of Procrustes shape coordinates from a data set of homologous landmark configurations puts exact algebraic constraints on position, orientation, and geometric scale. While position as digitized is not ordinarily a biologically meaningful quantity, and orientation is relevant mainly when some organismal function interacts with a Cartesian positional gradient such as horizontality, size per se is a crucially important biometric concept, especially in contexts like growth, biomechanics, or bioenergetics. “Normalizing” or “standardizing” size (usually by dividing the square root of the summed squared distances from the centroid out of all the Cartesian coordinates specimen by specimen), while associated with the elegant symmetries of the Mardia–Dryden distribution in shape space, nevertheless can substantially impeach the validity of any organismal inferences that ensue. This paper adapts two variants of standard morphometric least-squares, principal components and uniform strains, to circumvent size standardization while still accommodating an analytic toolkit for studies of differential growth that supports landmark-by-landmark graphics and thin-plate splines. Standardization of position and orientation but not size yields the coordinates Franz Boas first discussed in 1905. In studies of growth, a first principal component of these coordinates often appears to involve most landmarks shifting almost directly away from their centroid, hence the proposed model’s name, “centric allometry.” There is also a joint standardization of shear and dilation resulting in a variant of standard GMM’s “nonaffine shape coordinates” where scale information is subsumed in the affine term. Studies of growth allometry should go better in the Boas system than in the Procrustes shape space that is the current conventional workbench for GMM analyses. I demonstrate two examples of this revised approach (one developmental, one phylogenetic) that retrieve all the findings of a conventional shape-space-based approach while focusing much more closely on the phenomenon of allometric growth per se. A three-part Appendix provides an overview of the algebra, highlighting both similarities to the Procrustes approach and contrasts with it.
Collapse
|
31
|
Fornaro S, Patrikelis P, Lucci G. When having a limb means feeling overcomplete. Xenomelia, the chronic sense of disownership and the right parietal lobe hypothesis. Laterality 2020; 26:564-583. [PMID: 33373552 DOI: 10.1080/1357650x.2020.1866000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ABSTRACTXenomelia is a rare condition characterized by a persistent and intense desire for amputation of one or more healthy limbs. Some frequent clinical manifestations suggest the involvement of distinct neural substrates. Specifically, recent aetiopathological hypotheses about xenomelia propose a neurodevelopmental origin, highlighting the putative contribution of the right parietal lobe and right insula, known to subserve the construction of a coherent representation of the body as a whole. This literature review is aimed at analysing relevant findings about structural and functional brain correlates of xenomelia, focusing on the identification of key regions and their hemispheric distribution. Finally, implications about the potential link between xenomelia and phylogenetic development of the right parietal lobe are discussed. Despite a certain degree of heterogeneity and the spatial extension of networks involved, signs of partial right-sided lateralization of cortical nodes and left-sided lateralization of subcortical nodes emerged. Indeed, some areas-rsPL, riPL, PMC and rInsula-have been consistently found altered in xenomelia. In conclusion, the presence of both structural and functional multi-layered brain abnormalities in xenomelia suggests a multifactorial aetiology; however, as the prevalence of correlational studies, causal relationships remain to be investigated.
Collapse
Affiliation(s)
- Silvia Fornaro
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Panayiotis Patrikelis
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy.,First Department of Neurosurgery, Medical School, National and Kapodistrian, University of Athens, Athens, Greece
| | - Giuliana Lucci
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| |
Collapse
|
32
|
Schuh A, Gunz P, Villa C, Kupczik K, Hublin JJ, Freidline SE. Intraspecific variability in human maxillary bone modeling patterns during ontogeny. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:655-670. [PMID: 33029815 DOI: 10.1002/ajpa.24153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 08/12/2020] [Accepted: 09/15/2020] [Indexed: 11/08/2022]
Abstract
OBJECTIVES This study compares the ontogenetic bone modeling patterns of the maxilla to the related morphological changes in three human populations to better understand how morphological variability within a species is established during ontogeny at both micro- and macroscopic levels. MATERIALS AND METHODS The maxillary bones of an ontogenetic sample of 145 subadult and adult individuals from Greenland (Inuit), Western Europe (France, Germany, and Portugal), and South Africa (Khoekhoe and San) were analyzed. Bone formation and resorption were quantified using histological methods to visualize the bone modeling patterns. In parallel, semilandmark geometric morphometric techniques were used on 3D models of the same individuals to capture the morphological changes. Multivariate statistics were applied and shape differences between age groups were visualized through heat maps. RESULTS The three populations show differences in the degree of shape change acquired during ontogeny, leading to divergences in the developmental trajectories. Only subtle population differences in the bone modeling patterns were found, which were maintained throughout ontogeny. Bone resorption in adults mirrors the pattern found in subadults, but is expressed at lower intensities. DISCUSSION Our data demonstrate that maxillary morphological differences observed in three geographically distinct human populations are also reflected at the microscopic scale. However, we suggest that these differences are mostly driven by changes in rates and timings of the cellular activities, as only slight discrepancies in the location of bone resorption could be observed. The shared general bone modeling pattern is likely characteristic of all Homo sapiens, and can be observed throughout ontogeny.
Collapse
Affiliation(s)
- Alexandra Schuh
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Philipp Gunz
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Chiara Villa
- Laboratory of Advanced Imaging and 3D modelling, Section of Forensic Pathology, Department of Forensic Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kornelius Kupczik
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.,Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Jean-Jacques Hublin
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sarah E Freidline
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
33
|
García-Martínez D, Bastir M, Gómez-Olivencia A, Maureille B, Golovanova L, Doronichev V, Akazawa T, Kondo O, Ishida H, Gascho D, Zollikofer CPE, de León MP, Heuzé Y. Early development of the Neanderthal ribcage reveals a different body shape at birth compared to modern humans. SCIENCE ADVANCES 2020; 6:6/41/eabb4377. [PMID: 33028520 PMCID: PMC7541074 DOI: 10.1126/sciadv.abb4377] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/25/2020] [Indexed: 05/12/2023]
Abstract
Ontogenetic studies provide clues for understanding important paleobiological aspects of extinct species. When compared to that of modern humans, the adult Neanderthal thorax was shorter, deeper, and wider. This is related to the wide Neanderthal body and is consistent with their hypothetical large requirements for energy and oxygen. Whether these differences were already established at birth or appeared later during development is unknown. To delve into this question, we use virtual reconstruction tools and geometric morphometrics to recover the 3D morphology of the ribcages of four Neanderthal individuals from birth to around 3 years old: Mezmaiskaya 1, Le Moustier 2, Dederiyeh 1, and Roc de Marsal. Our results indicate that the comparatively deep and short ribcage of the Neanderthals was already present at birth, as were other skeletal species-specific traits. This morphology possibly represents the plesiomorphic condition shared with Homo erectus, and it is likely linked to large energetic requirements.
Collapse
Affiliation(s)
- Daniel García-Martínez
- University of Bordeaux, CNRS, MCC, PACEA, UMR5199, Pessac, France.
- Paleobiology Department, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
- Centro Nacional de Investigación sobre la Evolución Humana (CENIEH), Pso. Sierra de Atapuerca 3, 09002 Burgos, Spain
| | - Markus Bastir
- Paleobiology Department, Museo Nacional de Ciencias Naturales (MNCN-CSIC), c/ José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Asier Gómez-Olivencia
- Departamento de Estratigrafía y Paleontología, Facultad de Ciencia y Tecnología, Universidad del País Vasco-Euskal Herriko Unibertsitatea (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
- Sociedad de Ciencias Aranzadi, Zorroagagaina 11, 20014 Donostia-San Sebastián, Spain
- Centro Mixto UCM-ISCIII de Investigación sobre Evolución y Comportamiento Humanos, c/ Avda. Monforte de Lemos 5 (Pabellón 14), 28029 Madrid, Spain
| | - Bruno Maureille
- University of Bordeaux, CNRS, MCC, PACEA, UMR5199, Pessac, France
| | | | | | | | - Osamu Kondo
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus Nishihara, Okinawa 903-0215, Japan
| | - Dominic Gascho
- Institute of Forensic Medicine, University of Zurich, CH-8057 Zurich, Switzerland
| | | | | | - Yann Heuzé
- University of Bordeaux, CNRS, MCC, PACEA, UMR5199, Pessac, France
| |
Collapse
|
34
|
The vulnerability of the immature brain. HANDBOOK OF CLINICAL NEUROLOGY 2020. [PMID: 32958197 DOI: 10.1016/b978-0-444-64150-2.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The concept of vulnerability of the immature brain is multifactorial by definition. Newer scientific work in this area has shifted and enlarged the concept from theoretical frameworks to the multiple levels (molecular, cellular, anatomic, network, behavioral) of the organization of the growing brain. The concept of vulnerability was first introduced by Donald O. Hebb in the 1950s and referred to the inability of the immature brain to completely recover normal development after a brain insult. The concept of vulnerability was further extended to the limitations of the brain in the development of specific skills in neuronal substrates originally used for other functions. We present an overview of some neurodevelopmental processes that characterize the immature brain and that can predict vulnerability in the case of disturbances: Hebb's principle, synaptic homeostasis, selective vulnerability of immature cells in mammals, and inherited constraint networks. A better understanding of the vulnerability mechanisms may help in early detection and prevention and further proposed individualized therapeutic approaches to enhance children's developmental outcomes.
Collapse
|
35
|
Pomeroy E, Hunt CO, Reynolds T, Abdulmutalb D, Asouti E, Bennett P, Bosch M, Burke A, Farr L, Foley R, French C, Frumkin A, Goldberg P, Hill E, Kabukcu C, Lahr MM, Lane R, Marean C, Maureille B, Mutri G, Miller CE, Mustafa KA, Nymark A, Pettitt P, Sala N, Sandgathe D, Stringer C, Tilby E, Barker G. Issues of theory and method in the analysis of Paleolithic mortuary behavior: A view from Shanidar Cave. Evol Anthropol 2020; 29:263-279. [PMID: 32652819 DOI: 10.1002/evan.21854] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/17/2019] [Accepted: 06/06/2020] [Indexed: 02/02/2023]
Abstract
Mortuary behavior (activities concerning dead conspecifics) is one of many traits that were previously widely considered to have been uniquely human, but on which perspectives have changed markedly in recent years. Theoretical approaches to hominin mortuary activity and its evolution have undergone major revision, and advances in diverse archeological and paleoanthropological methods have brought new ways of identifying behaviors such as intentional burial. Despite these advances, debates concerning the nature of hominin mortuary activity, particularly among the Neanderthals, rely heavily on the rereading of old excavations as new finds are relatively rare, limiting the extent to which such debates can benefit from advances in the field. The recent discovery of in situ articulated Neanderthal remains at Shanidar Cave offers a rare opportunity to take full advantage of these methodological and theoretical developments to understand Neanderthal mortuary activity, making a review of these advances relevant and timely.
Collapse
Affiliation(s)
- Emma Pomeroy
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Chris O Hunt
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Tim Reynolds
- Department of History, Classics and Archaeology Birkbeck, University of London, London, UK
| | | | - Eleni Asouti
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | | | - Marjolein Bosch
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Ariane Burke
- Département d'Anthropologie, Université de Montréal, Montreal, Quebec, Canada
| | - Lucy Farr
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Robert Foley
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Charles French
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Amos Frumkin
- Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paul Goldberg
- Centre for Archaeological Science, University of Wollongong, Wollongong, New South Wales, Australia.,Institute for Archaeological Sciences, Senckenberg Centre for Human Evolution and Paleoenvironment, University of Tübingen, Tübingen, Germany
| | - Evan Hill
- School of Natural and Built Environment, Queen's University Belfast, Belfast, UK
| | - Ceren Kabukcu
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool, UK
| | - Marta Mirazón Lahr
- Leverhulme Centre for Human Evolutionary Studies, Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Ross Lane
- Canterbury Archaeological Trust, Canterbury, UK
| | - Curtis Marean
- Institute of Human Origins, School of Human Evolution and Social Change, Tempe, Arizona, USA
| | - Bruno Maureille
- CNRS, UMR5199 PACEA, Université de Bordeaux, Ministry of Culture, Pessac Cedex, France
| | - Giuseppina Mutri
- The Cyprus Institute, Nicosia, Cyprus.,International Association for Mediterranean and Oriental Studies (ISMEO), Rome, Italy
| | - Christopher E Miller
- SFF Centre for Early Sapiens Behaviour (SapienCE), University of Bergen, Bergen, Norway
| | - Kaify Ali Mustafa
- General Directorate of Antiquities in Kurdistan, Kurdish Regional Government, Erbil, Iraq
| | - Andreas Nymark
- Department of History, Classics and Archaeology Birkbeck, University of London, London, UK
| | - Paul Pettitt
- Department of Archaeology, Durham University, Durham, UK
| | - Nohemi Sala
- Centro Nacional de Investigación sobre Evolución Humana (CENIEH), Paseo Sierra de Atapuerca, Burgos, Spain
| | - Dennis Sandgathe
- Department of Archaeology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Chris Stringer
- CHER, Department of Earth Sciences, Natural History Museum, London, UK
| | - Emily Tilby
- Department of Archaeology, University of Cambridge, Cambridge, UK
| | - Graeme Barker
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
36
|
Rangel‐de Lázaro G, Neubauer S, Gunz P, Bruner E. Ontogenetic changes of diploic channels in modern humans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:96-111. [DOI: 10.1002/ajpa.24085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/26/2020] [Accepted: 05/10/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Gizéh Rangel‐de Lázaro
- Department of Earth SciencesNatural History Museum London UK
- Institut Català de Paleoecologia Humana i Evolució Social Tarragona Spain
- Departament d'Història i Història de l'ArtUniversitat Rovira i Virgili Tarragona Spain
| | - Simon Neubauer
- Department of Human EvolutionMax Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Philipp Gunz
- Department of Human EvolutionMax Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana Burgos Spain
| |
Collapse
|
37
|
Pereira-Pedro AS, Bruner E, Gunz P, Neubauer S. A morphometric comparison of the parietal lobe in modern humans and Neanderthals. J Hum Evol 2020; 142:102770. [DOI: 10.1016/j.jhevol.2020.102770] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
|
38
|
Langley MC, Benítez‐Burraco A, Kempe V. Playing with language, creating complexity: Has play contributed to the evolution of complex language? Evol Anthropol 2019; 29:29-40. [DOI: 10.1002/evan.21810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Michelle C. Langley
- Australian Research Centre for Human Evolution, Environmental Futures Research InstituteGriffith University Brisbane Queensland Australia
| | - Antonio Benítez‐Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of PhilologyUniversity of Seville Seville Spain
| | - Vera Kempe
- Division of Psychology, School of Applied SciencesAbertay University Dundee UK
| |
Collapse
|
39
|
The Skull Integration Pattern and Internal Constraints in Myotis myotis–Myotis blythii Species Group (Vespertilionidae, Chiroptera) Might be Shaped by Natural Selection During Evolution Along the Genetic Line of Least Resistance. Evol Biol 2019. [DOI: 10.1007/s11692-019-09488-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Mori T, Harvati K. Basicranial ontogeny comparison in
Pan troglodytes
and
Homo sapiens
and its use for developmental stage definition of KNM‐ER 42700. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 170:579-594. [DOI: 10.1002/ajpa.23926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 07/29/2019] [Accepted: 08/25/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Tommaso Mori
- Palaeoanthropology, Senckenberg Centre for Human Evolution and PalaeoenvironmentEberhard Karls Universität Tübingen Tübingen Germany
| | - Katerina Harvati
- Palaeoanthropology, Senckenberg Centre for Human Evolution and PalaeoenvironmentEberhard Karls Universität Tübingen Tübingen Germany
- DFG Centre for Advanced Studies “Words, Bones, Genes, Tools: Tracking Linguistic, Cultural and Biological Trajectories of the Human Past”Eberhard Karls Universität Tübingen Tübingen Germany
| |
Collapse
|
41
|
de Jager EJ, van Schoor AN, Hoffman JW, Oettlé AC, Fonta C, Mescam M, Risser L, Beaudet A. Sulcal pattern variation in extant human endocasts. J Anat 2019; 235:803-810. [PMID: 31206664 PMCID: PMC6742888 DOI: 10.1111/joa.13030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 12/27/2022] Open
Abstract
Our knowledge of human brain evolution primarily relies on the interpretation of palaeoneurological evidence. In this context, an endocast or replica of the inside of the bony braincase can be used to reconstruct a timeline of cerebral changes that occurred during human evolution, including changes in topographic extension and structural organisation of cortical areas. These changes can be tracked by identifying cerebral imprints, particularly cortical sulci. The description of these crucial landmarks in fossil endocasts is, however, challenging. High-resolution imaging techniques in palaeoneurology offer new opportunities for tracking detailed endocranial neural characteristics. In this study, we use high-resolution imaging techniques to document the variation in extant human endocranial sulcal patterns for subsequent use as a platform for comparison with the fossil record. We selected 20 extant human crania from the Pretoria Bone Collection (University of Pretoria, South Africa), which were detailed using X-ray microtomography at a spatial resolution ranging from 94 to 123 μm (isometric). We used Endex to extract, and Matlab to analyse the cortical imprints on the endocasts. We consistently identified superior, middle and inferior sulci on the frontal lobe; and superior and inferior sulci on the temporal lobe. We were able to label sulci bordering critical functional areas such as Broca's cap. Mapping the sulcal patterns on extant endocasts is a prerequisite for constructing an atlas which can be used for automatic sulci recognition.
Collapse
Affiliation(s)
- Edwin J. de Jager
- Department of AnatomyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Albert N. van Schoor
- Department of AnatomyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | | | - Anna C. Oettlé
- Department of AnatomyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Department of Anatomy and HistologySefako Makgatho Health Sciences UniversityPretoriaSouth Africa
| | - Caroline Fonta
- Centre de Recherche Cerveau et CognitionUniversité de ToulouseUPSToulouseFrance
| | - Muriel Mescam
- Centre de Recherche Cerveau et CognitionUniversité de ToulouseUPSToulouseFrance
| | - Laurent Risser
- Institute de mathématiques de ToulouseUniversité de ToulouseUPSToulouseFrance
| | - Amélie Beaudet
- Department of AnatomyFaculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- School of Geography, Archaeology and Environmental StudiesUniversity of the WitwatersrandJohannesburgSouth Africa
| |
Collapse
|
42
|
Schuh A, Kupczik K, Gunz P, Hublin J, Freidline SE. Ontogeny of the human maxilla: a study of intra-population variability combining surface bone histology and geometric morphometrics. J Anat 2019; 235:233-245. [PMID: 31070788 PMCID: PMC6637443 DOI: 10.1111/joa.13002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2019] [Indexed: 01/21/2023] Open
Abstract
Bone modeling is the process by which bone grows in size and models its shape via the cellular activities of the osteoblasts and osteoclasts that respectively form and remove bone. The patterns of expression of these two activities, visible on bone surfaces, are poorly understood during facial ontogeny in Homo sapiens; this is due mainly to small sample sizes and a lack of quantitative data. Furthermore, how microscopic activities are related to the development of morphological features, like the uniquely human-canine fossa, has been rarely explored. We developed novel techniques for quantifying and visualizing variability in bone modeling patterns and applied these methods to the human maxilla to better understand its development at the micro- and macroscopic levels. We used a cross-sectional ontogenetic series of 47 skulls of known calendar age, ranging from birth to 12 years, from a population of European ancestry. Surface histology was employed to record and quantify formation and resorption on the maxilla, and digital maps representing each individual's bone modeling patterns were created. Semilandmark geometric morphometric (GM) methods and multivariate statistics were used to analyze facial growth. Our results demonstrate that surface histology and GM methods give complementary results, and can be used as an integrative approach in ontogenetic studies. The bone modeling patterns specific to our sample are expressed early in ontogeny, and fairly constant through time. Bone resorption varies in the size of its fields, but not in location. Consequently, absence of bone resorption in extinct species with small sample sizes should be interpreted with caution. At the macroscopic level, maxillary growth is predominant in the top half of the bone where bone formation is mostly present. Our results suggest that maxillary growth in humans is highly constrained from early stages in ontogeny, and morphological changes are likely driven by changes in osteoblastic and osteoclastic rates of expression rather than differences in the bone modeling patterns (i.e. changes in location of formation and resorption). Finally, the results of the micro- and macroscopic analyses suggest that the development of the canine fossa results from a combination of bone resorption and bone growth in the surrounding region.
Collapse
Affiliation(s)
- Alexandra Schuh
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and AnthropologyMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Philipp Gunz
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Jean‐Jacques Hublin
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Sarah E. Freidline
- Department of Human EvolutionMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| |
Collapse
|
43
|
Bruner E. Human paleoneurology: Shaping cortical evolution in fossil hominids. J Comp Neurol 2019; 527:1753-1765. [PMID: 30520032 DOI: 10.1002/cne.24591] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/22/2018] [Accepted: 11/26/2018] [Indexed: 12/22/2022]
Abstract
Evolutionary neuroanatomy must integrate two different sources of information, namely from fossil and from living species. Fossils supply information concerning the process of evolution, whereas living species supply information on the product of evolution. Unfortunately, the fossil record is partial and fragmented, and often cannot support validations for specific evolutionary hypotheses. Living species can provide more comprehensive indications, but they do not represent ancestral groups or primitive forms. Macaques or chimpanzees are frequently used as proxy for human ancestral conditions, despite the fact they are divergent and specialized lineages, with their own biological features. Similarly, in paleoanthropology independent lineages (such as Neanderthals) should not be confused with ancestral modern human stages. In this comparative framework, paleoneurology deals with the analysis of the endocranial cavity in extinct species, in order to make inferences on brain evolution. A main target of this field is to distinguish the endocranial variations due to brain changes, from those due to cranial constraints. Digital anatomy and computed morphometrics have provided major advances in this field. However, brains and endocasts can be hard to analyze with geometrical models, because of uncertainties due to the localization of cortical landmarks and boundaries. The study of the evolution of the parietal cortex supplies an interesting case-study in which paleontological and neontological data can integrate and test evolutionary hypotheses based on multiple sources of evidence. The relationships with visuospatial functions and brain-body-tool integration stress further that the analysis of the cognitive system should go beyond the neural boundaries of the brain.
Collapse
Affiliation(s)
- Emiliano Bruner
- Programa de Paleobiología de Homínidos, Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| |
Collapse
|
44
|
Kuhlwilm M, Boeckx C. A catalog of single nucleotide changes distinguishing modern humans from archaic hominins. Sci Rep 2019; 9:8463. [PMID: 31186485 PMCID: PMC6560109 DOI: 10.1038/s41598-019-44877-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Throughout the past decade, studying ancient genomes has provided unique insights into human prehistory, and differences between modern humans and other branches like Neanderthals can enrich our understanding of the molecular basis of unique modern human traits. Modern human variation and the interactions between different hominin lineages are now well studied, making it reasonable to go beyond fixed genetic changes and explore changes that are observed at high frequency in present-day humans. Here, we identify 571 genes with non-synonymous changes at high frequency. We suggest that molecular mechanisms in cell division and networks affecting cellular features of neurons were prominently modified by these changes. Complex phenotypes in brain growth trajectory and cognitive traits are likely influenced by these networks and other non-coding changes presented here. We propose that at least some of these changes contributed to uniquely human traits, and should be prioritized for experimental validation.
Collapse
Affiliation(s)
- Martin Kuhlwilm
- Institut de Biologia Evolutiva, (CSIC-Universitat Pompeu Fabra), PRBB, Barcelona, Spain
| | - Cedric Boeckx
- ICREA, Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
- UB Institute of Complex Systems, Barcelona, Spain.
| |
Collapse
|
45
|
Degioanni A, Bonenfant C, Cabut S, Condemi S. Living on the edge: Was demographic weakness the cause of Neanderthal demise? PLoS One 2019; 14:e0216742. [PMID: 31141515 PMCID: PMC6541251 DOI: 10.1371/journal.pone.0216742] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/27/2019] [Indexed: 12/23/2022] Open
Abstract
The causes of disappearance of the Neanderthals, the only human population living in Europe before the arrival of Homo sapiens, have been debated for decades by the scientific community. Different hypotheses have been advanced to explain this demise, such as cognitive, adaptive and cultural inferiority of Neanderthals. Here, we investigate the disappearance of Neanderthals by examining the extent of demographic changes needed over a period of 10,000 years (yrs) to lead to their extinction. In regard to such fossil populations, we inferred demographic parameters from present day and past hunter-gatherer populations, and from bio-anthropological rules. We used demographic modeling and simulations to identify the set of plausible demographic parameters of the Neanderthal population compatible with the observed dynamics, and to explore the circumstances under which they might have led to the disappearance of Neanderthals. A slight (<4%) but continuous decrease in the fertility rate of younger Neanderthal women could have had a significant impact on these dynamics, and could have precipitated their demise. Our results open the way to non-catastrophic events as plausible explanations for Neanderthal extinction.
Collapse
Affiliation(s)
- Anna Degioanni
- Aix Marseille Université, CNRS, Minist Culture, LAMPEA, Aix-en-Provence, France
- * E-mail:
| | - Christophe Bonenfant
- UMR CNRS Laboratoire Biométrie et Biologie Évolutive, Université Claude Bernard Lyon Villeurbanne, Villeurbanne, France
| | - Sandrine Cabut
- Aix Marseille Université, CNRS, Minist Culture, LAMPEA, Aix-en-Provence, France
| | - Silvana Condemi
- Aix Marseille Université, CNRS, EFS, ADES, Marseille, France
| |
Collapse
|
46
|
Poza-Rey EM, Gómez-Robles A, Arsuaga JL. Brain size and organization in the Middle Pleistocene hominins from Sima de los Huesos. Inferences from endocranial variation. J Hum Evol 2019; 129:67-90. [DOI: 10.1016/j.jhevol.2019.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/19/2018] [Accepted: 01/01/2019] [Indexed: 12/30/2022]
|
47
|
Sherwood CC, Bradley BJ. Brain Evolution: Mapping the Inner Neandertal. Curr Biol 2019; 29:R95-R97. [DOI: 10.1016/j.cub.2018.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Lesciotto KM, Richtsmeier JT. Craniofacial skeletal response to encephalization: How do we know what we think we know? AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 168 Suppl 67:27-46. [PMID: 30680710 PMCID: PMC6424107 DOI: 10.1002/ajpa.23766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Abstract
Dramatic changes in cranial capacity have characterized human evolution. Important evolutionary hypotheses, such as the spatial packing hypothesis, assert that increases in relative brain size (encephalization) have caused alterations to the modern human skull, resulting in a suite of traits unique among extant primates, including a domed cranial vault, highly flexed cranial base, and retracted facial skeleton. Most prior studies have used fossil or comparative primate data to establish correlations between brain size and cranial form, but the mechanistic basis for how changes in brain size impact the overall shape of the skull resulting in these cranial traits remains obscure and has only rarely been investigated critically. We argue that understanding how changes in human skull morphology could have resulted from increased encephalization requires the direct testing of hypotheses relating to interaction of embryonic development of the bones of the skull and the brain. Fossil and comparative primate data have thoroughly described the patterns of association between brain size and skull morphology. Here we suggest complementing such existing datasets with experiments focused on mechanisms responsible for producing the observed patterns to more thoroughly understand the role of encephalization in shaping the modern human skull.
Collapse
Affiliation(s)
- Kate M Lesciotto
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| | - Joan T Richtsmeier
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
49
|
Beaudet A, Du A, Wood B. Evolution of the modern human brain. PROGRESS IN BRAIN RESEARCH 2019; 250:219-250. [DOI: 10.1016/bs.pbr.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Bruner E, Fedato A, Silva-Gago M, Alonso-Alcalde R, Terradillos-Bernal M, Fernández-Durantes MÁ, Martín-Guerra E. Visuospatial Integration and Hand-Tool Interaction in Cognitive Archaeology. Curr Top Behav Neurosci 2019; 41:13-36. [PMID: 30547431 DOI: 10.1007/7854_2018_71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Testing cognitive hypotheses in extinct species can be challenging, but it can be done through the integration of independent sources of information (e.g., anatomy, archaeology, neurobiology, psychology), and validated with quantitative and experimental approaches. The parietal cortex has undergone changes and specializations in humans, probably in regions involved in visuospatial integration. Visual imagery and hand-eye coordination are crucial for a species with a remarkable technological and symbolic capacity. Hand-tool relationships are not only a matter of spatial planning but involve deeper cognitive levels that concern body cognition, self-awareness, and the ability to integrate tools into body schemes, extending the body's functional and structural range. Therefore, a co-evolution between body and technology is to be expected not only in terms of anatomical correspondence but also in terms of cognitive integration. In prehistory, lithic tools are crucial in the interpretation of the cognitive abilities of extinct human species. The shape of tools and the grasping patterns associated with the corresponding haptic experience can supply some basic quantitative approaches to evaluate changes in the archaeological record. At the physiological level, electrodermal activity can be used as proxy to investigate the cognitive response during haptic experiences, revealing differences between tools and between subjects. These approaches can be also useful to evaluate whether and to what extent our complex cognitive resources are based on the capacity to export and delegate functions to external technological components.
Collapse
Affiliation(s)
- Emiliano Bruner
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain.
| | - Annapaola Fedato
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | - María Silva-Gago
- Centro Nacional de Investigación sobre la Evolución Humana, Burgos, Spain
| | | | | | | | | |
Collapse
|