1
|
Lu Y, Niu S, Zhang G, Guo Y, Fu B, Wang M, Liu J, Zhang H, Lu W, Zhang M. Antagonistic interaction between miR-143 and KRAS gene regulating male mouse germ cell apoptosis. Theriogenology 2025; 235:121-133. [PMID: 39823829 DOI: 10.1016/j.theriogenology.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/21/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
Precisely regulated spermatocyte growth, differentiation, and apoptosis are crucial for sustainable male fertility. miR-143 has been demonstrated to regulate gene expression and cell apoptosis in various human cancers. However, the function of mmu-mir-143 (miR-143) in mammalian testes and its underlying mechanism remains unexplored. In this study, the expression of miR-143 was detected in C57BL/6 mice spermatocytes by in situ hybridization (ISH) and immunofluorescence (IF) co-staining and transfecting miR-143 inhibitor into GC-2 cells (mouse spermatogenic cells) shows that miR-143 inhibits cleaved Caspase 3 (CC3)-induced male germ cell death. The current study used IF co-staining of KI67 and γ-H2A.X in the testes of C57BL/6 mice at different developmental stages, revealing that active proliferation and apoptosis of spermatocytes occurred simultaneously in the testes at 14 day post-partum (dpp). Kras was predicted as a potential target of miR-143 in mice using of the online database TargetScan, verified by quantitative real-time PCR (qPCR), western blotting (WB), and Dual-luciferase reporter gene assay. Co-transfection of miR-143 inhibitor and Kras siRNA into GC-2 cells revealed an antagonistic correlation between miR-143 and Kras in regulating male germ cell death. Finally, miR-143 inhibitor and mimics were administered into the seminiferous tubule of 3-week-old C57BL/6 mice. The histomorphology, IF co-staining, and WB data indicated that the testes treated with the miR-143 inhibitor showed significantly aberrant phenotypes, including damaged seminiferous tubules, reduced spermatocyte quantity, and elevated levels of apoptosis. This study uncovered the mechanism by which miR-143 inhibits male germ cell apoptosis through the repression of Kras/KRAS levels and the inhibition of Caspase 3 activation, providing insight into the role of miRNA in spermatogenesis and the maintenance of male fertility.
Collapse
Affiliation(s)
- Yu Lu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Shudong Niu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Guisheng Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Yanfeng Guo
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Baotong Fu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Miaomiao Wang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Jianan Liu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Haili Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Wen Lu
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China
| | - Ming Zhang
- College of Agriculture and Bioengineering, Heze University, Heze, 274000, China.
| |
Collapse
|
2
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Xu J, Jiang Y, Sherrard R, Ikegami K, Conradt B. PUF-8, a C. elegans ortholog of the RNA-binding proteins PUM1 and PUM2, is required for robustness of the cell death fate. Development 2023; 150:dev201167. [PMID: 37747106 PMCID: PMC10565243 DOI: 10.1242/dev.201167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
During C. elegans development, 1090 somatic cells are generated, of which 959 survive and 131 die, many through apoptosis. We present evidence that PUF-8, a C. elegans ortholog of the mammalian RNA-binding proteins PUM1 and PUM2, is required for the robustness of this 'survival and death' pattern. We found that PUF-8 prevents the inappropriate death of cells that normally survive, and we present evidence that this anti-apoptotic activity of PUF-8 is dependent on the ability of PUF-8 to interact with ced-3 (a C. elegans ortholog of caspase) mRNA, thereby repressing the activity of the pro-apoptotic ced-3 gene. PUF-8 also promotes the death of cells that are programmed to die, and we propose that this pro-apoptotic activity of PUF-8 may depend on the ability of PUF-8 to repress the expression of the anti-apoptotic ced-9 gene (a C. elegans ortholog of Bcl2). Our results suggest that stochastic differences in the expression of genes within the apoptosis pathway can disrupt the highly reproducible and robust survival and death pattern during C. elegans development, and that PUF-8 acts at the post-transcriptional level to level out these differences, thereby ensuring proper cell number homeostasis.
Collapse
Affiliation(s)
- Jimei Xu
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Yanwen Jiang
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ryan Sherrard
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Kyoko Ikegami
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
4
|
Chukrallah LG, Potgieter S, Chueh L, Snyder EM. Two RNA binding proteins, ADAD2 and RNF17, interact to form a heterogeneous population of novel meiotic germ cell granules with developmentally dependent organelle association. PLoS Genet 2023; 19:e1010519. [PMID: 37428816 PMCID: PMC10359003 DOI: 10.1371/journal.pgen.1010519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 07/20/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023] Open
Abstract
Mammalian male germ cell differentiation relies on complex RNA biogenesis events, many of which occur in non-membrane bound organelles termed RNA germ cell granules that are rich in RNA binding proteins (RBPs). Though known to be required for male germ cell differentiation, we understand little of the relationships between the numerous granule subtypes. ADAD2, a testis specific RBP, is required for normal male fertility and forms a poorly characterized granule in meiotic germ cells. This work aimed to understand the role of ADAD2 granules in male germ cell differentiation by clearly defining their molecular composition and relationship to other granules. Biochemical analyses identified RNF17, a testis specific RBP that forms meiotic male germ cell granules, as an ADAD2-interacting protein. Phenotypic analysis of Adad2 and Rnf17 mutants identified a rare post-meiotic chromatin defect, suggesting shared biological roles. ADAD2 and RNF17 were found to be dependent on one another for granularization and together form a previously unstudied set of germ cell granules. Based on co-localization studies with well-characterized granule RBPs and organelle-specific markers, a subset of the ADAD2-RNF17 granules are found to be associated with the intermitochondrial cement and piRNA biogenesis. In contrast, a second, morphologically distinct population of ADAD2-RNF17 granules co-localized with the translation regulators NANOS1 and PUM1, along with the molecular chaperone PDI. These large granules form a unique funnel-shaped structure that displays distinct protein subdomains and is tightly associated with the endoplasmic reticulum. Developmental studies suggest the different granule populations represent different phases of a granule maturation process. Lastly, a double Adad2-Rnf17 mutant model suggests the interaction between ADAD2 and RNF17, as opposed to loss of either, is the likely driver of the Adad2 and Rnf17 mutant phenotypes. These findings shed light on the relationship between germ cell granule pools and define new genetic approaches to their study.
Collapse
Affiliation(s)
- Lauren G. Chukrallah
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Sarah Potgieter
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Lisa Chueh
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Elizabeth M. Snyder
- Department of Animal Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| |
Collapse
|
5
|
Ozadam H, Tonn T, Han CM, Segura A, Hoskins I, Rao S, Ghatpande V, Tran D, Catoe D, Salit M, Cenik C. Single-cell quantification of ribosome occupancy in early mouse development. Nature 2023:10.1038/s41586-023-06228-9. [PMID: 37344592 DOI: 10.1038/s41586-023-06228-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
Translation regulation is critical for early mammalian embryonic development1. However, previous studies had been restricted to bulk measurements2, precluding precise determination of translation regulation including allele-specific analyses. Here, to address this challenge, we developed a novel microfluidic isotachophoresis (ITP) approach, named RIBOsome profiling via ITP (Ribo-ITP), and characterized translation in single oocytes and embryos during early mouse development. We identified differential translation efficiency as a key mechanism regulating genes involved in centrosome organization and N6-methyladenosine modification of RNAs. Our high-coverage measurements enabled, to our knowledge, the first analysis of allele-specific ribosome engagement in early development. These led to the discovery of stage-specific differential engagement of zygotic RNAs with ribosomes and reduced translation efficiency of transcripts exhibiting allele-biased expression. By integrating our measurements with proteomics data, we discovered that ribosome occupancy in germinal vesicle-stage oocytes is the predominant determinant of protein abundance in the zygote. The Ribo-ITP approach will enable numerous applications by providing high-coverage and high-resolution ribosome occupancy measurements from ultra-low input samples including single cells.
Collapse
Affiliation(s)
- Hakan Ozadam
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Tori Tonn
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Crystal M Han
- Department of Mechanical Engineering, San Jose State University, San Jose, CA, USA
| | - Alia Segura
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Ian Hoskins
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Shilpa Rao
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Vighnesh Ghatpande
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Duc Tran
- Department of Chemical and Materials Engineering, San Jose State University, San Jose, CA, USA
| | - David Catoe
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Marc Salit
- Joint Initiative for Metrology in Biology, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Can Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Botta S, de Prisco N, Chemiakine A, Brandt V, Cabaj M, Patel P, Doron‐Mandel E, Treadway CJ, Jovanovic M, Brown NG, Soni RK, Gennarino VA. Dosage sensitivity to Pumilio1 variants in the mouse brain reflects distinct molecular mechanisms. EMBO J 2023; 42:e112721. [PMID: 37070548 PMCID: PMC10233381 DOI: 10.15252/embj.2022112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
Different mutations in the RNA-binding protein Pumilio1 (PUM1) cause divergent phenotypes whose severity tracks with dosage: a mutation that reduces PUM1 levels by 25% causes late-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Yet PUM1 targets are derepressed to equal degrees in both cases, and the more severe mutation does not hinder PUM1's RNA-binding ability. We therefore considered the possibility that the severe mutation might disrupt PUM1 interactions, and identified PUM1 interactors in the murine brain. We find that mild PUM1 loss derepresses PUM1-specific targets, but the severe mutation disrupts interactions with several RNA-binding proteins and the regulation of their targets. In patient-derived cell lines, restoring PUM1 levels restores these interactors and their targets to normal levels. Our results demonstrate that dosage sensitivity does not always signify a linear relationship with protein abundance but can involve distinct mechanisms. We propose that to understand the functions of RNA-binding proteins in a physiological context will require studying their interactions as well as their targets.
Collapse
Affiliation(s)
- Salvatore Botta
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Translational Medical ScienceUniversity of Campania Luigi VanvitelliCasertaItaly
| | - Nicola de Prisco
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Alexei Chemiakine
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Vicky Brandt
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Maximilian Cabaj
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Colton J Treadway
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Marko Jovanovic
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Vincenzo A Gennarino
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
- Departments of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
- Columbia Stem Cell InitiativeColumbia University Irving Medical CenterNew YorkNYUSA
- Initiative for Columbia Ataxia and TremorColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
7
|
Yoon DS, Choi Y, Lee KM, Ko EA, Kim EJ, Park KH, Lee JW. Downregulation of the RNA-binding protein PUM2 facilitates MSC-driven bone regeneration and prevents OVX-induced bone loss. J Biomed Sci 2023; 30:26. [PMID: 37088847 PMCID: PMC10122812 DOI: 10.1186/s12929-023-00920-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/14/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Although mRNA dysregulation can induce changes in mesenchymal stem cell (MSC) homeostasis, the mechanisms by which post-transcriptional regulation influences MSC differentiation potential remain understudied. PUMILIO2 (PUM2) represses translation by binding target mRNAs in a sequence-specific manner. METHODS In vitro osteogenic differentiation assays were conducted using human bone marrow-derived MSCs. Alkaline phosphatase and alizarin red S staining were used to evaluate the osteogenic potential of MSCs. A rat xenograft model featuring a calvarial defect to examine effects of MSC-driven bone regeneration. RNA-immunoprecipitation (RNA-IP) assay was used to determine the interaction between PUM2 protein and Distal-Less Homeobox 5 (DLX5) mRNA. Ovariectomized (OVX) mice were employed to evaluate the effect of gene therapy for postmenopausal osteoporosis. RESULTS Here, we elucidated the molecular mechanism of PUM2 in MSC osteogenesis and evaluated the applicability of PUM2 knockdown (KD) as a potential cell-based or gene therapy. PUM2 level was downregulated during MSC osteogenic differentiation, and PUM2 KD enhanced MSC osteogenic potential. Following PUM2 KD, MSCs were transplanted onto calvarial defects in 12-week-old rats; after 8 weeks, transplanted MSCs promoted bone regeneration. PUM2 KD upregulated the expression of DLX5 mRNA and protein and the reporter activity of its 3'-untranslated region. RNA-IP revealed direct binding of PUM2 to DLX5 mRNA. We then evaluated the potential of adeno-associated virus serotype 9 (AAV9)-siPum2 as a gene therapy for osteoporosis in OVX mice. CONCLUSION Our findings suggest a novel role for PUM2 in MSC osteogenesis and highlight the potential of PUM2 KD-MSCs in bone regeneration. Additionally, we showed that AAV9-siPum2 is a potential gene therapy for osteoporosis.
Collapse
Affiliation(s)
- Dong Suk Yoon
- Department of Biomedical Science, Hwasung Medi-Science University, Hwaseong-Si 18274, Gyeonggi-Do, South Korea
| | - Yoorim Choi
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kyoung-Mi Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eun Ae Ko
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Eun-Ji Kim
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Kwang Hwan Park
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Woo Lee
- Department of Orthopaedic Surgery, Yonsei University College of Medicine, Seoul, 03722, South Korea.
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| |
Collapse
|
8
|
Mammalian pumilio proteins control cellular morphology, migration, and adhesion. Sci Rep 2023; 13:3002. [PMID: 36810759 PMCID: PMC9944931 DOI: 10.1038/s41598-023-30004-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Pumilio proteins are RNA-binding proteins that control mRNA translation and stability by binding to the 3' UTR of target mRNAs. Mammals have two canonical Pumilio proteins, PUM1 and PUM2, which are known to act in many biological processes, including embryonic development, neurogenesis, cell cycle regulation and genomic stability. Here, we characterized a new role of both PUM1 and PUM2 in regulating cell morphology, migration, and adhesion in T-REx-293 cells, in addition to previously known defects in growth rate. Gene ontology analysis of differentially expressed genes in PUM double knockout (PDKO) cells for both cellular component and biological process showed enrichment in categories related to adhesion and migration. PDKO cells had a collective cell migration rate significantly lower than that of WT cells and displayed changes in actin morphology. In addition, during growth, PDKO cells aggregated into clusters (clumps) due to an inability to escape cell-cell contacts. Addition of extracellular matrix (Matrigel) alleviated the clumping phenotype. Collagen IV (ColIV), a major component of Matrigel, was shown to be the driving force in allowing PDKO cells to monolayer appropriately, however, ColIV protein levels remained unperturbed in PDKO cells. This study characterizes a novel cellular phenotype associated with cellular morphology, migration, and adhesion which can aid in developing better models for PUM function in both developmental processes and disease.
Collapse
|
9
|
Satoh R, Tanaka T, Yoshida N, Tanaka C, Takasaki T, Sugiura R. Fission Yeast PUF Proteins Puf3 and Puf4 Are Novel Regulators of PI4P5K Signaling. Biol Pharm Bull 2023; 46:163-169. [PMID: 36724944 DOI: 10.1248/bpb.b22-00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phosphatidylinositol-4-phosphate 5-kinase (PI4P5K) is a highly conserved enzyme that generates phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) by phosphorylating phosphatidylinositol 4-phosphate (PI(4)P). Schizosaccharomyces pombe (S. pombe) its3-1 is a loss-of-function mutation in the essential its3+ gene that encodes a PI4P5K. Its3 regulates cell proliferation, cytokinesis, cell integrity, and membrane trafficking, but little is known about the regulatory mechanisms of Its3. To identify regulators of Its3, we performed a genetic screening utilizing the high-temperature sensitivity (TS) of its3-1 and identified puf3+ and puf4+, encoding Pumilio/PUF family RNA-binding proteins as multicopy suppressors of its3-1 cells. The deletions of the PUF domains in the puf3+ and puf4+ genes resulted in the reduced ability to suppress its3-1, suggesting that the suppression by Puf3 and Puf4 may involve their RNA-binding activities. The gene knockout of Puf4, but not that of Puf3, exacerbated the TS of its3-1. Interestingly, mutant Its3 expression levels both at mRNA and protein levels were lower than those of the wild-type (WT) Its3. Consistently, the overexpression of the mutant its3-1 gene suppressed the its3-1 phenotypes. Notably, Puf3 and Puf4 overexpression increased the mRNA and protein expression levels of both Its3 and Its3-1. Collectively, our genetic screening revealed a functional relationship between the Pumilio/PUF family RNA-binding proteins and PI4P5K.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Taemi Tanaka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Nobuyasu Yoshida
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Chiaki Tanaka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University
| |
Collapse
|
10
|
Park Y, Gaddy M, Hyun M, Jones ME, Aslam HM, Lee MH. Genetic and Chemical Controls of Sperm Fate and Spermatocyte Dedifferentiation via PUF-8 and MPK-1 in Caenorhabditis elegans. Cells 2023; 12:cells12030434. [PMID: 36766775 PMCID: PMC9913519 DOI: 10.3390/cells12030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Using the nematode C. elegans germline as a model system, we previously reported that PUF-8 (a PUF RNA-binding protein) and LIP-1 (a dual-specificity phosphatase) repress sperm fate at 20 °C and the dedifferentiation of spermatocytes into mitotic cells (termed "spermatocyte dedifferentiation") at 25 °C. Thus, double mutants lacking both PUF-8 and LIP-1 produce excess sperm at 20 °C, and their spermatocytes return to mitotically dividing cells via dedifferentiation at 25 °C, resulting in germline tumors. To gain insight into the molecular competence for spermatocyte dedifferentiation, we compared the germline phenotypes of three mutant strains that produce excess sperm-fem-3(q20gf), puf-8(q725); fem-3(q20gf), and puf-8(q725); lip-1(zh15). Spermatocyte dedifferentiation was not observed in fem-3(q20gf) mutants, but it was more severe in puf-8(q725); lip-1(zh15) than in puf-8(q725); fem-3(q20gf) mutants. These results suggest that MPK-1 (the C. elegans ERK1/2 MAPK ortholog) activation in the absence of PUF-8 is required to promote spermatocyte dedifferentiation. This idea was confirmed using Resveratrol (RSV), a potential activator of MPK-1 and ERK1/2 in C. elegans and human cells, respectively. Notably, spermatocyte dedifferentiation was significantly enhanced by RSV treatment in the absence of PUF-8, and its effect was blocked by mpk-1 RNAi. We, therefore, conclude that PUF-8 and MPK-1 are essential regulators for spermatocyte dedifferentiation and tumorigenesis. Since these regulators are broadly conserved, we suggest that similar regulatory circuitry may control cellular dedifferentiation and tumorigenesis in other organisms, including humans.
Collapse
Affiliation(s)
- Youngyong Park
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Matthew Gaddy
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Moonjung Hyun
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Korea Institute of Toxicology, Jinju 52834, Gyeongsangnam-do, Republic of Korea
| | - Mariah E. Jones
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Hafiz M. Aslam
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| |
Collapse
|
11
|
Elagooz R, Dhara AR, Gott RM, Adams SE, White RA, Ghosh A, Ganguly S, Man Y, Owusu-Ansah A, Mian OY, Gurkan UA, Komar AA, Ramamoorthy M, Gnanapragasam MN. PUM1 mediates the posttranscriptional regulation of human fetal hemoglobin. Blood Adv 2022; 6:6016-6022. [PMID: 35667093 PMCID: PMC9699939 DOI: 10.1182/bloodadvances.2021006730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/30/2022] [Indexed: 12/14/2022] Open
Abstract
The fetal-to-adult hemoglobin switching at about the time of birth involves a shift in expression from γ-globin to β-globin in erythroid cells. Effective re-expression of fetal γ-globin can ameliorate sickle cell anemia and β-thalassemia. Despite the physiological and clinical relevance of this switch, its posttranscriptional regulation is poorly understood. Here, we identify Pumilo 1 (PUM1), an RNA-binding protein with no previously reported functions in erythropoiesis, as a direct posttranscriptional regulator of β-globin switching. PUM1, whose expression is regulated by the erythroid master transcription factor erythroid Krüppel-like factor (EKLF/KLF1), peaks during erythroid differentiation, binds γ-globin messenger RNA (mRNA), and reduces γ-globin (HBG1) mRNA stability and translational efficiency, which culminates in reduced γ-globin protein levels. Knockdown of PUM1 leads to a robust increase in fetal hemoglobin (∼22% HbF) without affecting β-globin levels in human erythroid cells. Importantly, targeting PUM1 does not limit the progression of erythropoiesis, which provides a potentially safe and effective treatment strategy for sickle cell anemia and β-thalassemia. In support of this idea, we report elevated levels of HbF in the absence of anemia in an individual with a novel heterozygous PUM1 mutation in the RNA-binding domain (p.(His1090Profs∗16); c.3267_3270delTCAC), which suggests that PUM1-mediated posttranscriptional regulation is a critical player during human hemoglobin switching.
Collapse
Affiliation(s)
- Reem Elagooz
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Anita R. Dhara
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Rose M. Gott
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Sarah E. Adams
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Rachael A. White
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
| | - Arnab Ghosh
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH
| | - Shinjini Ganguly
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, University Hospitals Rainbow Babies and Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | - Amma Owusu-Ansah
- Department of Pediatrics, Division of Hematology and Oncology, University Hospitals Rainbow Babies and Children’s Hospital, Case Western Reserve University, Cleveland, OH
| | - Omar Y. Mian
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, University Hospitals Rainbow Babies and Children’s Hospital, Case Western Reserve University, Cleveland, OH
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH
| | - Anton A. Komar
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH
| | - Mahesh Ramamoorthy
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH
| | - Merlin Nithya Gnanapragasam
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH
- Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
12
|
Liu Z, Lv C. RNA binding protein PUM2 promotes hepatocellular carcinoma proliferation and apoptosis via binding to the 3'UTR of BTG3. Oncol Lett 2022; 24:346. [PMID: 36072004 PMCID: PMC9434726 DOI: 10.3892/ol.2022.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/27/2022] [Indexed: 12/09/2022] Open
Affiliation(s)
- Zhenhua Liu
- Department of General Surgery, The First People's Hospital of Lin Ping District, Hangzhou, Zhejiang 311100, P.R. China
| | - Chunye Lv
- Department of General Surgery, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu 211100, P.R. China
| |
Collapse
|
13
|
Rajasekaran S, Khan E, Ching SR, Khan M, Siddiqui J, Gradia DF, Lin C, Bouley SJ, Mercadante D, Manning AL, Gerber AP, Walker J, Miles W. PUMILIO competes with AUF1 to control DICER1 RNA levels and miRNA processing. Nucleic Acids Res 2022; 50:7048-7066. [PMID: 35736218 PMCID: PMC9262620 DOI: 10.1093/nar/gkac499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
DICER1 syndrome is a cancer pre-disposition disorder caused by mutations that disrupt the function of DICER1 in miRNA processing. Studying the molecular, cellular and oncogenic effects of these mutations can reveal novel mechanisms that control cell homeostasis and tumor biology. Here, we conduct the first analysis of pathogenic DICER1 syndrome allele from the DICER1 3'UTR. We find that the DICER1 syndrome allele, rs1252940486, abolishes interaction with the PUMILIO RNA binding protein with the DICER1 3'UTR, resulting in the degradation of the DICER1 mRNA by AUF1. This single mutational event leads to diminished DICER1 mRNA and protein levels, and widespread reprogramming of miRNA networks. The in-depth characterization of the rs1252940486 DICER1 allele, reveals important post-transcriptional regulatory events that control DICER1 levels.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Samuel R Ching
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Misbah Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Jalal K Siddiqui
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Daniela F Gradia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Department of Genetics, Federal University of Parana, Curitiba, Brazil
| | - Chenyu Lin
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Stephanie J Bouley
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Amity L Manning
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wayne O Miles
- To whom correspondence should be addressed. Tel: +1 614 366 2869;
| |
Collapse
|
14
|
de Prisco N, Chemiakine A, Lee W, Botta S, Gennarino VA. Protocol to assess the effect of disease-driving variants on mouse brain morphology and primary hippocampal neurons. STAR Protoc 2022; 3:101244. [PMID: 35310074 PMCID: PMC8931472 DOI: 10.1016/j.xpro.2022.101244] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genetic variants that affect neurological function will often produce changes visible at the level of gross morphology, either of the whole brain or of specific neuronal types. Here we describe how to perfuse and dissect the brain in preparation for Nissl staining. Then we outline steps for culturing mouse primary hippocampal neurons to evaluate dendritic arborization (Sholl analysis). For complete details on the use and execution of this protocol, please refer to Gennarino et al. (2018).
Collapse
Affiliation(s)
- Nicola de Prisco
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexei Chemiakine
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Winston Lee
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Salvatore Botta
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Translational Medical Science, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Vincenzo A. Gennarino
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
- Departments of Pediatrics and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
15
|
Zhao T, Xiao T, Cao D, Xia W, Gao L, Cheng L, Zang M, Li X, Xu EY. Sertoli cell PUMILIO proteins modulate mouse testis size through translational control of cell cycle regulators. Biol Reprod 2022; 107:135-147. [PMID: 35678316 DOI: 10.1093/biolre/ioac118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Testis size determination is an important question of reproductive biology. Sertoli cells are known to be a key determinant of mammalian testis size but the underlying molecular mechanisms remain incompletely understood. Previously we showed that highly conserved germ cell RNA binding proteins, PUMILIO1(PUM1) and PUMILIO2 (PUM2), control mouse organ and body size through translational regulation, but how different cell types of the organs contribute to their organ size regulation has not been established. Here we report a somatic role of PUM in gonad size determination. PUM1 is highly expressed in the Sertoli cells of the developing testis from embryonic and postnatal mice as well as in germ cells. Removal of Sertoli cell, but not germ cell, Pum1 gene, led to reduced testis size without significantly affecting sperm number or fertility. Knockout of PUM1 target, Cdkn1b, rescued the phenotype of reduced testis size, supporting a key role of Sertoli cell PUM1 mediated Cdkn1b repression in the testis size control. Furthermore, removal of Pum2 or both Pum1 and Pum2 in the Sertoli cells also only affected the testis size, not sperm development, with the biggest size reduction in Pum1/2 double knockout mice. We propose that PUM1 and PUM2 modulate the testis size through their synergistic translational regulation of cell cycle regulators in the Sertoli cell. Further investigation of the ovary or other organs could reveal if PUM-mediated translational control of cell proliferation of the supporting cell represents a general mechanism for organ size modulation.
Collapse
Affiliation(s)
- Tingting Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Tianheng Xiao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Dandan Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Wenjuan Xia
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liuze Gao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Liping Cheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Min Zang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurology, and Center for Reproductive Sciences, Feinberg School of Medicine, Northwestern University, Chicago, USA
| |
Collapse
|
16
|
Li X, Zhu M, Zang M, Cao D, Xie Z, Liang H, Bian Z, Zhao T, Hu Z, Xu EY. PUMILIO-mediated translational control of somatic cell cycle program promotes folliculogenesis and contributes to ovarian cancer progression. Cell Mol Life Sci 2022; 79:279. [PMID: 35507203 PMCID: PMC11072887 DOI: 10.1007/s00018-022-04254-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Translational control is a fundamental mechanism regulating animal germ cell development. Gonadal somatic cells provide support and microenvironment for germ cell development to ensure fertility, yet the roles of translational control in gonadal somatic compartment remain largely undefined. We found that mouse homolog of conserved fly germline stem cell factor Pumilio, PUM1, is absent in oocytes of all growing follicles after the primordial follicle stage, instead, it is highly expressed in somatic compartments of ovaries. Global loss of Pum1, not oocyte-specific loss of Pum1, led to a significant reduction in follicular number and size as well as fertility. Whole-genome identification of PUM1 targets in ovarian somatic cells revealed an enrichment of cell proliferation pathway, including 48 key regulators of cell phase transition. Consistently granulosa cells proliferation is reduced and the protein expression of the PUM-bound Cell Cycle Regulators (PCCR) were altered accordingly in mutant ovaries, and specifically in granulosa cells. Increase in negative regulator expression and decrease in positive regulators in the mutant ovaries support a coordinated translational control of somatic cell cycle program via PUM proteins. Furthermore, postnatal knockdown, but not postnatal oocyte-specific loss, of Pum1 in Pum2 knockout mice reduced follicular growth and led to similar expression alteration of PCCR genes, supporting a critical role of PUM-mediated translational control in ovarian somatic cells for mammalian female fertility. Finally, expression of human PUM protein and its regulated cell cycle targets exhibited significant correlation with ovarian cancer and prognosis for cancer survival. Hence, PUMILIO-mediated cell cycle regulation represents an important mechanism in mammalian female reproduction and human cancer biology.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Mengyi Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Min Zang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Dandan Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhengyao Xie
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Haibo Liang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zexin Bian
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Tingting Zhao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Zhibin Hu
- State Key Laboratory of Reproductive Medicine (Suzhou Centre), The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Department of Neurology, Center for Reproductive Science, Feinberg School of Medicine, Northwestern University Feinberg School of Medicine, Chicago, USA.
| |
Collapse
|
17
|
Ko CF, Chang YC, Cho HC, Yu J. The Puf-A Protein Is Required for Primordial Germ Cell Development. Cells 2022; 11:cells11091476. [PMID: 35563782 PMCID: PMC9105799 DOI: 10.3390/cells11091476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Puf-A, a nucleolar Puf domain protein, is required for ribosome biogenesis. A study of Puf-A in zebrafish has shown that Puf-A is highly expressed in primordial germ cells (PGCs) and participates in PGC development. However, it remains unclear how Puf-A governs PGC development in mammals. Here, we generated transgenic mice carrying inducible Puf-A shRNA and obtained double heterozygous mice with Puf-A shRNA and Oct4-EGFP to examine the behavior of PGCs. It was found that the knockdown of Puf-A led to the loss of a considerable number of PGCs and a slowdown of the movement of the remaining PGCs. Puf-A and NPM1 colocalized in clusters in the nuclei of the PGCs. The silencing of Puf-A resulted in the translocation of NPM1 from nucleolus to nucleoplasm and the hyperactivation of p53 in the PGCs. The PGCs in Puf-A knockdown embryos showed a significant increase in subpopulations of PGCs at G1 arrest and apoptosis. Moreover, the expression of essential genes associated with PGC maintenance was decreased in the Puf-A knockdown PGCs. Our study showed that Puf-A governed PGC development by regulating the growth, survival, and maintenance of PGCs. We also observed the alterations of NPM1 and p53 upon Puf-A knockdown to be consistent with the previous study in cancer cells, which might explain the molecular mechanism for the role of Puf-A in PGC development.
Collapse
|
18
|
PUMILIO proteins promote colorectal cancer growth via suppressing p21. Nat Commun 2022; 13:1627. [PMID: 35338151 PMCID: PMC8956581 DOI: 10.1038/s41467-022-29309-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/02/2022] [Indexed: 12/17/2022] Open
Abstract
PUMILIO (PUM) proteins belong to the highly conserved PUF family post-transcriptional regulators involved in diverse biological processes. However, their function in carcinogenesis remains under-explored. Here, we report that Pum1 and Pum2 display increased expression in human colorectal cancer (CRC). Intestine-specific knockout of Pum1 and Pum2 in mice significantly inhibits the progression of colitis-associated cancer in the AOM/DSS model. Knockout or knockdown of Pum1 and/or Pum2 in human CRC cells result in a significant decrease in the tumorigenicity and delayed G1/S transition. We identify p21/Cdkn1a as a direct target of PUM1. Abrogation of the PUM1 binding site in the p21 mRNA also results in decreased cancer cell growth and delayed G1/S transition. Furthermore, intravenous injection of nanoparticle-encapsulated anti-Pum1 and Pum2 siRNAs reduces colorectal tumor growth in murine orthotopic colon cancer models. These findings reveal the requirement of PUM proteins for CRC progression and their potential as therapeutic targets. RNA binding proteins can contribute to colorectal cancer (CRC) initiation and development. Here the authors show that PUMILIO proteins, PUM1 and PUM2 contribute to CRC growth by inhibiting p21 expression.
Collapse
|
19
|
Wang X, Li G, Ruan D, Zhuang Z, Ding R, Quan J, Wang S, Jiang Y, Huang J, Gu T, Hong L, Zheng E, Li Z, Cai G, Wu Z, Yang J. Runs of Homozygosity Uncover Potential Functional-Altering Mutation Associated With Body Weight and Length in Two Duroc Pig Lines. Front Vet Sci 2022; 9:832633. [PMID: 35350434 PMCID: PMC8957889 DOI: 10.3389/fvets.2022.832633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Runs of homozygosity (ROH) are widely used to investigate genetic diversity, demographic history, and positive selection signatures of livestock. Commercial breeds provide excellent materials to reveal the landscape of ROH shaped during the intense selection process. Here, we used the GeneSeek Porcine 50K single-nucleotide polymorphism (SNP) Chip data of 3,770 American Duroc (AD) and 2,096 Canadian Duroc (CD) pigs to analyze the genome-wide ROH. First, we showed that AD had a moderate genetic differentiation with CD pigs, and AD had more abundant genetic diversity and significantly lower level of inbreeding than CD pigs. In addition, sows had larger levels of homozygosity than boars in AD pigs. These differences may be caused by differences in the selective intensity. Next, ROH hotspots revealed that many candidate genes are putatively under selection for growth, sperm, and muscle development in two lines. Population-specific ROHs inferred that AD pigs may have a special selection for female reproduction, while CD pigs may have a special selection for immunity. Moreover, in the overlapping ROH hotspots of two Duroc populations, we observed a missense mutation (rs81216249) located in the growth and fat deposition-related supergene (ARSB-DMGDH-BHMT) region. The derived allele of this variant originated from European pigs and was nearly fixed in Duroc pigs. Further selective sweep and association analyses indicated that this supergene was subjected to strong selection and probably contributed to the improvement of body weight and length in Duroc pigs. These findings will enhance our understanding of ROH patterns in different Duroc lines and provide promising trait-related genes and a functional-altering marker that can be used for genetic improvement of pigs.
Collapse
Affiliation(s)
- Xiaopeng Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Guixin Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shiyuan Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jinyan Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| |
Collapse
|
20
|
Mercer M, Jang S, Ni C, Buszczak M. The Dynamic Regulation of mRNA Translation and Ribosome Biogenesis During Germ Cell Development and Reproductive Aging. Front Cell Dev Biol 2021; 9:710186. [PMID: 34805139 PMCID: PMC8595405 DOI: 10.3389/fcell.2021.710186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.
Collapse
Affiliation(s)
- Marianne Mercer
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Seoyeon Jang
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chunyang Ni
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michael Buszczak
- Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
21
|
Wang Y, Sun L, Wang L, Yu H, Yu X, Zou Y. PUM1 modulates trophoblast cell proliferation and migration through LRP6. Biochem Cell Biol 2021; 99:735-740. [PMID: 34734756 DOI: 10.1139/bcb-2021-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preeclampsia is a severe pregnancy complication characterized by hypertension and may cause maternal morbidity and mortality. A better understanding of the essential genes involved in preeclampsia pathophysiology is urgently needed. This study investigated the function and molecular mechanisms of pumilio RNA binding family member 1 (PUM1) in extravillous trophoblast cells (EVTs). The interaction between protein and mRNA was verified by RNA pull-down assays, RNA immunoprecipitation assays, and luciferase reporter assays. The mRNA and protein levels of the genes involved were determined by RT-qPCR and western blot assays, respectively. Our results demonstrated that PUM1 could bind to the 3'-untranslated region of low-density lipoprotein receptor-related protein 6 (LRP6) mRNA, resulting in reduced expression of LRP6 mRNA and protein. Repression of PUM1 resulted in enhanced colony formation, cell proliferation, migration, and invasion of EVTs. The PUM1-depletion-mediated promotion effects on EVTs could be abrogated by LRP6 knockdown. PUM1 regulates the growth and mobility of EVTs by modulating LRP6 expression. Developing strategies to balance PUM1 and LRP6 levels may be beneficial for the management of preeclampsia patients.
Collapse
Affiliation(s)
- Yuping Wang
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Li Sun
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Lanlan Wang
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Hui Yu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Xiaoyan Yu
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| | - Yanfen Zou
- Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China.,Department of Obstetrics and Gynecology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangding East Road, Yantai, Shandong 264000, China
| |
Collapse
|
22
|
Campbell KM, Xu Y, Patel C, Rayl JM, Zomer HD, Osuru HP, Pratt M, Pramoonjago P, Timken M, Miller LM, Ralph A, Storey KM, Peng Y, Drnevich J, Lagier-Tourenne C, Wong PC, Qiao H, Reddi PP. Loss of TDP-43 in male germ cells causes meiotic failure and impairs fertility in mice. J Biol Chem 2021; 297:101231. [PMID: 34599968 PMCID: PMC8569592 DOI: 10.1016/j.jbc.2021.101231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/07/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Meiotic arrest is a common cause of human male infertility, but the causes of this arrest are poorly understood. Transactive response DNA-binding protein of 43 kDa (TDP-43) is highly expressed in spermatocytes in the preleptotene and pachytene stages of meiosis. TDP-43 is linked to several human neurodegenerative disorders wherein its nuclear clearance accompanied by cytoplasmic aggregates underlies neurodegeneration. Exploring the functional requirement for TDP-43 for spermatogenesis for the first time, we show here that conditional KO (cKO) of the Tardbp gene (encoding TDP-43) in male germ cells of mice leads to reduced testis size, depletion of germ cells, vacuole formation within the seminiferous epithelium, and reduced sperm production. Fertility trials also indicated severe subfertility. Spermatocytes of cKO mice showed failure to complete prophase I of meiosis with arrest at the midpachytene stage. Staining of synaptonemal complex protein 3 and γH2AX, markers of the meiotic synaptonemal complex and DNA damage, respectively, and super illumination microscopy revealed nonhomologous pairing and synapsis defects. Quantitative RT-PCR showed reduction in the expression of genes critical for prophase I of meiosis, including Spo11 (initiator of meiotic double-stranded breaks), Rec8 (meiotic recombination protein), and Rad21L (RAD21-like, cohesin complex component), as well as those involved in the retinoic acid pathway critical for entry into meiosis. RNA-Seq showed 1036 upregulated and 1638 downregulated genes (false discovery rate <0.05) in the Tardbp cKO testis, impacting meiosis pathways. Our work reveals a crucial role for TDP-43 in male meiosis and suggests that some forms of meiotic arrest seen in infertile men may result from the loss of function of TDP-43.
Collapse
Affiliation(s)
- Kaitlyn M Campbell
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiding Xu
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Chintan Patel
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jeremy M Rayl
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Helena D Zomer
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Hari Prasad Osuru
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Michael Pratt
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Patcharin Pramoonjago
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Madeline Timken
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Lyndzi M Miller
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Abigail Ralph
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Kathryn M Storey
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Yiheng Peng
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jenny Drnevich
- High-Performance Biological Computing (HPCBio) Group, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Prabhakara P Reddi
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
23
|
Codino A, Turowski T, van de Lagemaat LN, Ivanova I, Tavosanis A, Much C, Auchynnikava T, Vasiliauskaitė L, Morgan M, Rappsilber J, Allshire RC, Kranc KR, Tollervey D, O'Carroll D. NANOS2 is a sequence-specific mRNA-binding protein that promotes transcript degradation in spermatogonial stem cells. iScience 2021; 24:102762. [PMID: 34278268 PMCID: PMC8271163 DOI: 10.1016/j.isci.2021.102762] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 01/15/2023] Open
Abstract
Spermatogonial stem cells (SSCs) sustain spermatogenesis and fertility throughout adult male life. The conserved RNA-binding protein NANOS2 is essential for the maintenance of SSCs, but its targets and mechanisms of function are not fully understood. Here, we generated a fully functional epitope-tagged Nanos2 mouse allele and applied the highly stringent cross-linking and analysis of cDNAs to define NANOS2 RNA occupancy in SSC lines. NANOS2 recognizes the AUKAAWU consensus motif, mostly found in the 3' untranslated region of defined messenger RNAs (mRNAs). We find that NANOS2 is a regulator of key signaling and metabolic pathways whose dosage or activity are known to be critical for SSC maintenance. NANOS2 interacts with components of CCR4-NOT deadenylase complex in SSC lines, and consequently, NANOS2 binding reduces the half-lives of target transcripts. In summary, NANOS2 contributes to SSC maintenance through the regulation of target mRNA stability and key self-renewal pathways.
Collapse
Affiliation(s)
- Azzurra Codino
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Tomasz Turowski
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Louie N. van de Lagemaat
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ivayla Ivanova
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Andrea Tavosanis
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Christian Much
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Lina Vasiliauskaitė
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Marcos Morgan
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Robin C. Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kamil R. Kranc
- Laboratory of Haematopoietic Stem Cell & Leukaemia Biology, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
24
|
Li X, Yang J, Chen X, Cao D, Xu EY. PUM1 represses CDKN1B translation and contributes to prostate cancer progression. J Biomed Res 2021; 35:371-382. [PMID: 34531333 PMCID: PMC8502688 DOI: 10.7555/jbr.35.20210067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Posttranscriptional regulation of cancer gene expression programs plays a vital role in carcinogenesis; identifying the critical regulators of tumorigenesis and their molecular targets may provide novel strategies for cancer diagnosis and therapeutics. Highly conserved RNA-binding protein Pumilio-1 (PUM1) regulates mouse growth and cell proliferation, propelling us to examine its role in cancer. We found human PUM1 is highly expressed in a diverse group of cancer, including prostate cancer; enhanced PUM1 expression is also correlated with reduced survival among prostate cancer patients. Detailed expression analysis in twenty prostate cancer tissues showed enhanced expression of PUM1 at mRNA and protein levels. Knockdown of PUM1 reduced prostate cancer cell proliferation and colony formation, and subcutaneous injection of PUM1 knockdown cells led to reduced tumor size. Downregulation of PUM1 in prostate cancer cells consistently elevated cyclin-dependent kinase inhibitor 1B (CDKN1B) protein expression through increased translation but did not impact its mRNA level, while overexpression of PUM1 reduced CDKN1B protein level. Our finding established a critical role of PUM1 mediated translational control, particularly the PUM1-CDKN1B axis, in prostate cancer cell growth and tumorigenesis. We proposed that PUM1-CDKN1B regulatory axis may represent a novel mechanism for the loss of CDKN1B protein expression in diverse cancers and potential targets for therapeutics development.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jian Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Urology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xia Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dandan Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Systematic Analysis of Targets of Pumilio-Mediated mRNA Decay Reveals that PUM1 Repression by DNA Damage Activates Translesion Synthesis. Cell Rep 2021; 31:107542. [PMID: 32375027 DOI: 10.1016/j.celrep.2020.107542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/28/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
RNA-binding proteins (RBPs) play a pivotal role in gene expression by modulating the stability of transcripts. However, the identification of degradation target mRNAs of RBPs remains difficult. By the combined analysis of transcriptome-wide mRNA stabilities and the binding of mRNAs to human Pumilio 1 (PUM1), we identify 48 mRNAs that both bind to PUM1 and exhibit PUM1-dependent degradation. Analysis of changes in the abundance of PUM1 and its degradation target mRNAs in RNA-seq data indicate that DNA-damaging agents negatively regulate PUM1-mediated mRNA decay. Cells exposed to cisplatin have reduced PUM1 abundance and increased PCNA and UBE2A mRNAs encoding proteins involved in DNA damage tolerance by translesion synthesis (TLS). Cells overexpressing PUM1 exhibit impaired DNA synthesis and TLS and increased sensitivity to the cytotoxic effect of cisplatin. Thus, our method identifies target mRNAs of PUM1-mediated decay and reveals that cells respond to DNA damage by inhibiting PUM1-mediated mRNA decay to activate TLS.
Collapse
|
26
|
Ruthig VA, Yokonishi T, Friedersdorf MB, Batchvarova S, Hardy J, Garness JA, Keene JD, Capel B. A transgenic DND1GFP fusion allele reports in vivo expression and RNA-binding targets in undifferentiated mouse germ cells†. Biol Reprod 2021; 104:861-874. [PMID: 33394034 PMCID: PMC8324984 DOI: 10.1093/biolre/ioaa233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/23/2020] [Accepted: 12/30/2020] [Indexed: 01/20/2023] Open
Abstract
In vertebrates, the RNA-binding protein (RBP) dead end 1 (DND1) is essential for primordial germ cell (PGC) survival and maintenance of cell identity. In multiple species, Dnd1 loss or mutation leads to severe PGC loss soon after specification or, in some species, germ cell transformation to somatic lineages. Our investigations into the role of DND1 in PGC specification and differentiation have been limited by the absence of an available antibody. To address this problem, we used CRISPR/Cas9 gene editing to establish a transgenic mouse line carrying a DND1GFP fusion allele. We present imaging analysis of DND1GFP expression showing that DND1GFP expression is heterogeneous among male germ cells (MGCs) and female germ cells (FGCs). DND1GFP was detected in MGCs throughout fetal life but lost from FGCs at meiotic entry. In postnatal and adult testes, DND1GFP expression correlated with classic markers for the premeiotic spermatogonial population. Utilizing the GFP tag for RNA immunoprecipitation (RIP) analysis in MGCs validated this transgenic as a tool for identifying in vivo transcript targets of DND1. The DND1GFP mouse line is a novel tool for isolation and analysis of embryonic and fetal germ cells, and the spermatogonial population of the postnatal and adult testis.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Matthew B Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Sofia Batchvarova
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Josiah Hardy
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jason A Garness
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
27
|
E3 Ubiquitin Ligase ASB17 Promotes Apoptosis by Ubiquitylating and Degrading BCLW and MCL1. BIOLOGY 2021; 10:biology10030234. [PMID: 33803505 PMCID: PMC8003104 DOI: 10.3390/biology10030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary B-cell lymphoma-2 family proteins have been widely accepted as the critical regulators in cell apoptosis, often found to be abnormally expressed in many cancers. Among them, B-cell leukemia/lymphoma w and myeloid cell leukemia-1 are two pro-survival proteins. Here, we reported that the ankyrin repeat and SOCS box protein 17 can degrade the two proteins in a ubiquitylation -dependent way. Furthermore, we generated the first ASB17 knockout C57BL/6J mice line. The results revealed that ASB17 deficiency inhibited apoptosis but did not affect testes development. Moreover, the ASB17-deficient mice were more resistant to the stimuli of etoposide, Altogether, these findings indicate that ASB17 is a novel positive mediator of cell apoptosis. Abstract Apoptosis is a very important process of cell death controlled by multiple genes during which cells undergo certain events before dying. Apoptosis helps to clean the unnecessary cells and has critical physiological significance. Altered apoptosis results in a disorder of cell death and is associated with many diseases such as neurodegenerative diseases and cancers. Here, we reported that the ankyrin repeat and SOCS box protein 17 (ASB17) was mainly expressed in the testis and promoted apoptosis both in vivo and in vitro. Analyzing ASB17-deficient mice generated by using the CRISPR/Cas9 system, we demonstrated that ASB17 deficiency resulted in the reduction of apoptosis in spermatogenic cells, but it did not affect the development of spermatozoa or normal fertility. Next, in an in vivo model, ASB17 deficiency prevented the apoptosis of spermatogonia induced by etoposide in male mice. We noted that ASB17 promoted apoptosis in a caspase-dependent manner in vitro. Moreover, ASB17 interacted with the members of the BCL2 family, including BCL2, BCLX, BCLW, and MCL1. Interestingly, ASB17 specifically degraded the two anti-apoptotic factors, BCLW and MCL1, in a ubiquitylation-dependent fashion. Collectively, our findings suggested that ASB17 acted as a distinct positive regulator of cell apoptosis.
Collapse
|
28
|
Takei N, Takada Y, Kawamura S, Sato K, Saitoh A, Bormann J, Yuen WS, Carroll J, Kotani T. Changes in subcellular structures and states of pumilio 1 regulate the translation of target Mad2 and cyclin B1 mRNAs. J Cell Sci 2020; 133:jcs249128. [PMID: 33148609 DOI: 10.1242/jcs.249128] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Temporal and spatial control of mRNA translation has emerged as a major mechanism for promoting diverse biological processes. However, the molecular nature of temporal and spatial control of translation remains unclear. In oocytes, many mRNAs are deposited as a translationally repressed form and are translated at appropriate times to promote the progression of meiosis and development. Here, we show that changes in subcellular structures and states of the RNA-binding protein pumilio 1 (Pum1) regulate the translation of target mRNAs and progression of oocyte maturation. Pum1 was shown to bind to Mad2 (also known as Mad2l1) and cyclin B1 mRNAs, assemble highly clustered aggregates, and surround Mad2 and cyclin B1 RNA granules in mouse oocytes. These Pum1 aggregates were dissolved prior to the translational activation of target mRNAs, possibly through phosphorylation. Stabilization of Pum1 aggregates prevented the translational activation of target mRNAs and progression of oocyte maturation. Together, our results provide an aggregation-dissolution model for the temporal and spatial control of translation.
Collapse
Affiliation(s)
- Natsumi Takei
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yuki Takada
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Shohei Kawamura
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Keisuke Sato
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Saitoh
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Jenny Bormann
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Wai Shan Yuen
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - John Carroll
- Development and Stem Cells Program and Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria 3800, Australia
| | - Tomoya Kotani
- Biosystems Science Course, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
29
|
Wolfe MB, Schagat TL, Paulsen MT, Magnuson B, Ljungman M, Park D, Zhang C, Campbell ZT, Goldstrohm AC, Freddolino PL. Principles of mRNA control by human PUM proteins elucidated from multimodal experiments and integrative data analysis. RNA (NEW YORK, N.Y.) 2020; 26:1680-1703. [PMID: 32753408 PMCID: PMC7566576 DOI: 10.1261/rna.077362.120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 05/27/2023]
Abstract
The human PUF-family proteins, PUM1 and PUM2, posttranscriptionally regulate gene expression by binding to a PUM recognition element (PRE) in the 3'-UTR of target mRNAs. Hundreds of PUM1/2 targets have been identified from changes in steady-state RNA levels; however, prior studies could not differentiate between the contributions of changes in transcription and RNA decay rates. We applied metabolic labeling to measure changes in RNA turnover in response to depletion of PUM1/2, showing that human PUM proteins regulate expression almost exclusively by changing RNA stability. We also applied an in vitro selection workflow to precisely identify the binding preferences of PUM1 and PUM2. By integrating our results with prior knowledge, we developed a "rulebook" of key contextual features that differentiate functional versus nonfunctional PREs, allowing us to train machine learning models that accurately predict the functional regulation of RNA targets by the human PUM proteins.
Collapse
Affiliation(s)
- Michael B Wolfe
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brian Magnuson
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
- Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Daeyoon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Chi Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter L Freddolino
- Department of Biological Chemistry and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
30
|
Shropshire JD, Kalra M, Bordenstein SR. Evolution-guided mutagenesis of the cytoplasmic incompatibility proteins: Identifying CifA's complex functional repertoire and new essential regions in CifB. PLoS Pathog 2020; 16:e1008794. [PMID: 32813725 PMCID: PMC7458348 DOI: 10.1371/journal.ppat.1008794] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/31/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022] Open
Abstract
Wolbachia are the world's most common, maternally-inherited, arthropod endosymbionts. Their worldwide distribution is due, in part, to a selfish drive system termed cytoplasmic incompatibility (CI) that confers a relative fitness advantage to females that transmit Wolbachia to their offspring. CI results in embryonic death when infected males mate with uninfected females but not infected females. Under the Two-by-One genetic model of CI, males expressing the two phage WO proteins CifA and CifB cause CI, and females expressing CifA rescue CI. While each protein is predicted to harbor three functional domains, there is no knowledge on how sites across these Cif domains, rather than in any one particular domain, contribute to CI and rescue. Here, we use evolution-guided, substitution mutagenesis of conserved amino acids across the Cif proteins, coupled with transgenic expression in uninfected Drosophila melanogaster, to determine the functional impacts of conserved residues evolving mostly under purifying selection. We report that amino acids in CifA's N-terminal unannotated region and annotated catalase-related domain are important for both complete CI and rescue, whereas C-terminal residues in CifA's putative domain of unknown function are solely important for CI. Moreover, conserved CifB amino acids in the predicted nucleases, peptidase, and unannotated regions are essential for CI. Taken together, these findings indicate that (i) all CifA amino acids determined to be crucial in rescue are correspondingly crucial in CI, (ii) an additional set of CifA amino acids are uniquely important in CI, and (iii) CifB amino acids across the protein, rather than in one particular domain, are all crucial for CI. We discuss how these findings advance an expanded view of Cif protein evolution and function, inform the mechanistic and biochemical bases of Cif-induced CI/rescue, and continue to substantiate the Two-by-One genetic model of CI.
Collapse
Affiliation(s)
- J. Dylan Shropshire
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JDS); (SRB)
| | - Mahip Kalra
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail: (JDS); (SRB)
| |
Collapse
|
31
|
Wang X, Ellenbecker M, Hickey B, Day NJ, Osterli E, Terzo M, Voronina E. Antagonistic control of Caenorhabditis elegans germline stem cell proliferation and differentiation by PUF proteins FBF-1 and FBF-2. eLife 2020; 9:52788. [PMID: 32804074 PMCID: PMC7467723 DOI: 10.7554/elife.52788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Stem cells support tissue maintenance, but the mechanisms that coordinate the rate of stem cell self-renewal with differentiation at a population level remain uncharacterized. We find that two PUF family RNA-binding proteins FBF-1 and FBF-2 have opposite effects on Caenorhabditis elegans germline stem cell dynamics: FBF-1 restricts the rate of meiotic entry, while FBF-2 promotes both cell division and meiotic entry rates. Antagonistic effects of FBFs are mediated by their distinct activities toward the shared set of target mRNAs, where FBF-1-mediated post-transcriptional control requires the activity of CCR4-NOT deadenylase, while FBF-2 is deadenylase-independent and might protect the targets from deadenylation. These regulatory differences depend on protein sequences outside of the conserved PUF family RNA-binding domain. We propose that the opposing FBF-1 and FBF-2 activities serve to modulate stem cell division rate simultaneously with the rate of meiotic entry.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Mary Ellenbecker
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Benjamin Hickey
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Nicholas J Day
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Emily Osterli
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Mikaya Terzo
- Division of Biological Sciences, University of Montana, Missoula, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, United States
| |
Collapse
|
32
|
Silva ILZ, Robert AW, Cabo GC, Spangenberg L, Stimamiglio MA, Dallagiovanna B, Gradia DF, Shigunov P. Effects of PUMILIO1 and PUMILIO2 knockdown on cardiomyogenic differentiation of human embryonic stem cells culture. PLoS One 2020; 15:e0222373. [PMID: 32437472 PMCID: PMC7241771 DOI: 10.1371/journal.pone.0222373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 04/28/2020] [Indexed: 01/31/2023] Open
Abstract
Posttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA-binding proteins (RBPs) that orchestrate mRNA expression. A family of RBPs, which is known as the Pumilio-FBF (PUF) family, is highly conserved among different species and has been associated with the undifferentiated and differentiated states of different cell lines. In humans, two homologs of the PUF family have been found: Pumilio 1 (PUM1) and Pumilio 2 (PUM2). To understand the role of these proteins in human ESCs (hESCs), we first assessed the influence of the silencing of PUM1 and PUM2 on pluripotency genes and found that the knockdown of Pumilio genes significantly decreased the OCT4 and NANOG mRNA levels and reduced the amount of nuclear OCT4, which suggests that Pumilio proteins play a role in the maintenance of pluripotency in hESCs. Furthermore, we observed that PUM1-and-PUM2-silenced hESCs exhibited improved efficiency of in vitro cardiomyogenic differentiation. Through an in silico analysis, we identified mRNA targets of PUM1 and PUM2 that are expressed at the early stages of cardiomyogenesis, and further investigation will determine whether these target mRNAs are active and involved in the progression of cardiomyogenesis. Our findings contribute to the understanding of the role of Pumilio proteins in hESC maintenance and differentiation.
Collapse
Affiliation(s)
| | - Anny Waloski Robert
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | | | - Lucia Spangenberg
- Bioinformatics Unit, Instituto Pasteur de Montevideo, Montevideo, Uruguay
| | - Marco Augusto Stimamiglio
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| | - Daniela Fiori Gradia
- Department of Genetics, Federal University of Parana (UFPR), Curitiba, Paraná, Brazil
| | - Patrícia Shigunov
- Laboratory of Basic Biology of Stem Cells (LABCET), Instituto Carlos Chagas—FIOCRUZ-PR, Curitiba, Paraná, Brazil
| |
Collapse
|
33
|
Lin K, Qiang W, Zhu M, Ding Y, Shi Q, Chen X, Zsiros E, Wang K, Yang X, Kurita T, Xu EY. Mammalian Pum1 and Pum2 Control Body Size via Translational Regulation of the Cell Cycle Inhibitor Cdkn1b. Cell Rep 2020; 26:2434-2450.e6. [PMID: 30811992 PMCID: PMC6444939 DOI: 10.1016/j.celrep.2019.01.111] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 12/20/2018] [Accepted: 01/29/2019] [Indexed: 11/24/2022] Open
Abstract
Body and organ size regulation in mammals involves multiple signaling pathways and remains largely enigmatic. Here, we report that Pum1 and Pum2, which encode highly conserved PUF RNA-binding proteins, regulate mouse body and organ size by post-transcriptional repression of the cell cycle inhibitor Cdkn1b. Binding of PUM1 or PUM2 to Pumilio binding elements (PBEs) in the 3’ UTR of Cdkn1b inhibits translation, promoting G1-S transition and cell proliferation. Mice with null mutations in Pum1 and Pum2 exhibit gene dosage-dependent reductions in body and organ size, and deficiency for Cdkn1b partially rescues postnatal growth defects in Pum1−/− mice. We propose that coordinated tissue-specific expression of Pum1 and Pum2, which involves auto-regulatory and reciprocal post-transcriptional repression, contributes to the precise regulation of body and organ size. Hence PUM-mediated post-transcriptional control of cell cycle regulators represents an additional layer of control in the genetic regulation of organ and body size. Lin et al. show that the RNA-binding proteins PUM1 and PUM2 regulate translation of cell cycle proteins such as CDKN1B by binding to their 3’ UTR and achieve precise control of organ and body size in a gene dosage-sensitive manner via auto and reciprocal gene expression regulation.
Collapse
Affiliation(s)
- Kaibo Lin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Wenan Qiang
- Department of Obstetrics and Gynecology (Reproductive Science in Medicine), Center for Developmental Therapeutics, Northwestern University, Chicago, IL 60611, USA
| | - Mengyi Zhu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Yan Ding
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qinghua Shi
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xia Chen
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Emese Zsiros
- Department of Obstetrics and Gynecology (Reproductive Science in Medicine), Center for Developmental Therapeutics, Northwestern University, Chicago, IL 60611, USA
| | - Kun Wang
- Department of Chemistry, Nanjing Normal University, Nanjing 210023, China
| | - Xiaodi Yang
- Department of Chemistry, Nanjing Normal University, Nanjing 210023, China
| | - Takeshi Kurita
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Eugene Yujun Xu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
34
|
Smialek MJ, Kuczynska B, Ilaslan E, Janecki DM, Sajek MP, Kusz-Zamelczyk K, Jaruzelska J. Kinesin KIF18A is a novel PUM-regulated target promoting mitotic progression and survival of a human male germ cell line. J Cell Sci 2020; 133:jcs240986. [PMID: 32094263 DOI: 10.1242/jcs.240986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/14/2020] [Indexed: 12/29/2022] Open
Abstract
Regulation of proliferation, apoptosis and cell cycle is crucial for the physiology of germ cells. Their malfunction contributes to infertility and germ cell tumours. The kinesin KIF18A is an important regulator of those processes in animal germ cells. Post-transcriptional regulation of KIF18A has not been extensively explored. Owing to the presence of PUM-binding elements (PBEs), KIF18A mRNA is a potential target of PUM proteins, where PUM refers to Pumilio proteins, RNA-binding proteins that act in post-transcriptional gene regulation. We conducted RNA co-immunoprecipitation combined with RT-qPCR, as well as luciferase reporter assays, by applying an appropriate luciferase construct encoding wild-type KIF18A 3'-UTR, upon PUM overexpression or knockdown in TCam-2 cells, representing human male germ cells. We found that KIF18A is repressed by PUM1 and PUM2. To study how this regulation influences KIF18A function, an MTS proliferation assay, and apoptosis and cell cycle analysis using flow cytometry, was performed upon KIF18A mRNA siRNA knockdown. KIF18A significantly influences proliferation, apoptosis and the cell cycle, with its effects being opposite to PUM effects. Repression by PUM proteins might represent one of mechanisms influencing KIF18A level in controlling proliferation, cell cycle and apoptosis in TCam-2 cells.
Collapse
Affiliation(s)
- Maciej Jerzy Smialek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Bogna Kuczynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Erkut Ilaslan
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Damian Mikolaj Janecki
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Marcin Piotr Sajek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Kamila Kusz-Zamelczyk
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| | - Jadwiga Jaruzelska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
| |
Collapse
|
35
|
Tietz KT, Gallagher TL, Mannings MC, Morrow ZT, Derr NL, Amacher SL. Pumilio response and AU-rich elements drive rapid decay of Pnrc2-regulated cyclic gene transcripts. Dev Biol 2020; 462:129-140. [PMID: 32246943 DOI: 10.1016/j.ydbio.2020.03.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/18/2020] [Accepted: 03/20/2020] [Indexed: 01/06/2023]
Abstract
Vertebrate segmentation is regulated by the segmentation clock, a biological oscillator that controls periodic formation of somites, or embryonic segments, which give rise to many mesodermal tissue types. This molecular oscillator generates cyclic gene expression with the same periodicity as somite formation in the presomitic mesoderm (PSM), an area of mesenchymal cells that give rise to mature somites. Molecular components of the clock include the Hes/her family of genes that encode transcriptional repressors, but additional genes cycle. Cyclic gene transcripts are cleared rapidly, and clearance depends upon the pnrc2 (proline-rich nuclear receptor co-activator 2) gene that encodes an mRNA decay adaptor. Previously, we showed that the her1 3'UTR confers instability to otherwise stable transcripts in a Pnrc2-dependent manner, however, the molecular mechanism(s) by which cyclic gene transcripts are cleared remained largely unknown. To identify features of the her1 3'UTR that are critical for Pnrc2-mediated decay, we developed an array of transgenic inducible reporter lines carrying different regions of the 3'UTR. We find that the terminal 179 nucleotides (nts) of the her1 3'UTR are necessary and sufficient to confer rapid instability. Additionally, we show that the 3'UTR of another cyclic gene, deltaC (dlc), also confers Pnrc2-dependent instability. Motif analysis reveals that both her1 and dlc 3'UTRs contain terminally-located Pumilio response elements (PREs) and AU-rich elements (AREs), and we show that the PRE and ARE in the last 179 nts of the her1 3'UTR drive rapid turnover of reporter mRNA. Finally, we show that mutation of Pnrc2 residues and domains that are known to facilitate interaction of human PNRC2 with decay factors DCP1A and UPF1 reduce the ability of Pnrc2 to restore normal cyclic gene expression in pnrc2 mutant embryos. Our findings suggest that Pnrc2 interacts with decay machinery components and cooperates with Pumilio (Pum) proteins and ARE-binding proteins to promote rapid turnover of cyclic gene transcripts during somitogenesis.
Collapse
Affiliation(s)
- Kiel T Tietz
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Thomas L Gallagher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Monica C Mannings
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Zachary T Morrow
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Nicolas L Derr
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA; Interdisciplinary Graduate Program in Molecular, Cellular and Developmental Biology, The Ohio State University, Columbus, OH, 43210, USA; Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
36
|
Pumilio proteins utilize distinct regulatory mechanisms to achieve complementary functions required for pluripotency and embryogenesis. Proc Natl Acad Sci U S A 2020; 117:7851-7862. [PMID: 32198202 DOI: 10.1073/pnas.1916471117] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene regulation in embryonic stem cells (ESCs) has been extensively studied at the epigenetic-transcriptional level, but not at the posttranscriptional level. Pumilio (Pum) proteins are among the few known translational regulators required for stem-cell maintenance in invertebrates and plants. Here we report the essential function of two murine Pum proteins, Pum1 and Pum2, in ESCs and early embryogenesis. Pum1/2 double-mutant ESCs display severely reduced self-renewal and differentiation, and Pum1/2 double-mutant mice are developmentally delayed at the morula stage and lethal by embryonic day 8.5. Remarkably, Pum1-deficient ESCs show increased expression of pluripotency genes but not differentiation genes, whereas Pum2-deficient ESCs show decreased pluripotency markers and accelerated differentiation. Thus, despite their high homology and overlapping target messenger RNAs (mRNAs), Pum1 promotes differentiation while Pum2 promotes self-renewal in ESCs. Pum1 and Pum2 achieve these two complementary aspects of pluripotency by forming a negative interregulatory feedback loop that directly regulates at least 1,486 mRNAs. Pum1 and Pum2 regulate target mRNAs not only by repressing translation, but also by promoting translation and enhancing or reducing mRNA stability of different target mRNAs. Together, these findings reveal distinct roles of individual mammalian Pum proteins in ESCs and their essential functions in ESC pluripotency and embryogenesis.
Collapse
|
37
|
Arvola RM, Chang CT, Buytendorp JP, Levdansky Y, Valkov E, Freddolino L, Goldstrohm AC. Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Nucleic Acids Res 2020; 48:1843-1871. [PMID: 31863588 PMCID: PMC7038932 DOI: 10.1093/nar/gkz1187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.
Collapse
Affiliation(s)
- René M Arvola
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joseph P Buytendorp
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
38
|
Shi L, Duan Y, Yao X, Song R, Ren Y. Effects of selenium on the proliferation and apoptosis of sheep spermatogonial stem cells in vitro. Anim Reprod Sci 2020; 215:106330. [PMID: 32216931 DOI: 10.1016/j.anireprosci.2020.106330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 02/08/2020] [Accepted: 02/21/2020] [Indexed: 01/06/2023]
Abstract
The objective of this study was to investigate effects of selenium (Se) on proliferation and apoptosis of sheep spermatogonial stem cells (SSC) in vitro. The SSC were assigned to five treatment groups (0, 2.0, 4.0, 8.0 and 16.0 μmol/L Se). After treatment with Se for 96 h, cell proliferation and apoptosis were evaluated. The relative abundance of P53 mRNA transcript and protein, cell cycle and apoptosis-related genes were detected using real-time PCR and Western blot quantifications, respectively. The results indicate there were the least cell proliferation rates in the Se16.0 group. Treatments with relatively greater Se concentrations (8.0 and 16.0 μmol/L) resulted in a greater percentage of apoptotic cells, which was consistent with the relative abundances of P53, P21, P27 and pro-apoptosis mRNA transcripts. There were relatively greater ROS concentrations in the control, Se8.0 and Se16.0 groups. Compared with the control group, treatment with the Se concentration of 16.0 μmol/L resulted in an increased abundance of P53, P21, P27 and BAX proteins. Treatment with Pifithrin-α suppressed the increase in abundance of P53 and P21 proteins induced by the relatively greater concentration of Se (16.0 μmol/L), however, did not result in a change in abundances of P27 and BAX proteins. These results indicate the regulatory functions of Se on proliferation and apoptosis of sheep SSC is associated with the P21-mediated P53 signalling pathway. The P27 and BAX proteins have limited functions during the apoptotic process of SSC induced by the relatively greater concentrations of Se.
Collapse
Affiliation(s)
- Lei Shi
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Yunli Duan
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Xiaolei Yao
- Jiangsu Engineering Technology Research Center of Mutton Sheep and Goat Industry, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruigao Song
- Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China
| | - Youshe Ren
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, PR China; Laboratory of Animal Reproductive Biotechnology, Shanxi Agricultural University, Taigu, 030801, PR China.
| |
Collapse
|
39
|
Wang X, Voronina E. Diverse Roles of PUF Proteins in Germline Stem and Progenitor Cell Development in C. elegans. Front Cell Dev Biol 2020; 8:29. [PMID: 32117964 PMCID: PMC7015873 DOI: 10.3389/fcell.2020.00029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell development depends on post-transcriptional regulation mediated by RNA-binding proteins (RBPs) (Zhang et al., 1997; Forbes and Lehmann, 1998; Okano et al., 2005; Ratti et al., 2006; Kwon et al., 2013). Pumilio and FBF (PUF) family RBPs are highly conserved post-transcriptional regulators that are critical for stem cell maintenance (Wickens et al., 2002; Quenault et al., 2011). The RNA-binding domains of PUF proteins recognize a family of related sequence motifs in the target mRNAs, yet individual PUF proteins have clearly distinct biological functions (Lu et al., 2009; Wang et al., 2018). The C. elegans germline is a simple and powerful model system for analyzing regulation of stem cell development. Studies in C. elegans uncovered specific physiological roles for PUFs expressed in the germline stem cells ranging from control of proliferation and differentiation to regulation of the sperm/oocyte decision. Importantly, recent studies started to illuminate the mechanisms behind PUF functional divergence. This review summarizes the many roles of PUF-8, FBF-1, and FBF-2 in germline stem and progenitor cells (SPCs) and discusses the factors accounting for their distinct biological functions. PUF proteins are conserved in evolution, and insights into PUF-mediated regulation provided by the C. elegans model system are likely relevant for other organisms.
Collapse
Affiliation(s)
- Xiaobo Wang
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Ekaterina Voronina
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| |
Collapse
|
40
|
Role of the Pumilio gene in the reproductive system of Schistosoma japonicum. Parasitol Res 2020; 119:501-511. [PMID: 31897787 DOI: 10.1007/s00436-019-06467-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022]
Abstract
The elimination of schistosomiasis, a parasitic disease caused by Schistosoma and a major source of morbidity and mortality in developing countries, faces serious challenges. Although the pumilio protein regulates the reproductive organ development in many species, its role in Schistosoma japonicum is unknown. Thus, this study investigated the function of pumilio in S. japonicum reproduction. The complete coding sequences of S. japonicum Pumilio1 (SjPum1) and SjPum2 genes were cloned and characterized. The full-length open-reading frame SjPum1 (2613 nucleotides) and SjPum2 (4479 nucleotides) genes were obtained. Bioinformatics analysis showed that those genes belonged to the PUF (pumilio and FBF) family. Quantitative polymerase chain reaction analyses revealed that SjPum1 and SjPum2 were differentially expressed throughout the S. japonicum life cycle and were highly expressed in reproductive organs. In situ hybridization results showed that mRNA expression of SjPum2 was higher than that of SjPum1 in the ovary and testis. Knocking down SjPum2 using RNA interference techniques to explore potential reproductive functions showed that compared with the control (untransfected or scrambled mRNA-transfected) worms, the morphology of both male and female reproductive organs was altered, the number of eggs produced by paired females was significantly decreased, and the transcription levels of caspase 3 and caspase 7 genes related to apoptosis were significantly increased. The transcription level of Nanos1 gene which related to reproduction was also significantly increased. Therefore, SjPum2 may play a role in the reproductive development of S. japonicum.
Collapse
|
41
|
Zhang Y, He XY, Qin S, Mo HQ, Li X, Wu F, Zhang J, Li X, Mao L, Peng YQ, Guo YN, Lin Y, Tian FJ. Upregulation of PUM1 Expression in Preeclampsia Impairs Trophoblast Invasion by Negatively Regulating the Expression of the lncRNA HOTAIR. Mol Ther 2019; 28:631-641. [PMID: 31862314 DOI: 10.1016/j.ymthe.2019.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
Pumilio (PUM) proteins are members of a highly conserved RNA-binding protein family that posttranscriptionally regulate gene expression in many organisms. However, their roles in the placenta are unclear. In the present study, we report the requirement for the PUM homolog 1 (PUM1) gene in preeclampsia (PE). Immunofluorescence and immunohistochemical data showed that PUM1 was highly expressed in human placental villi from women with PE compared to healthy controls (HCs). Further, PUM1 overexpression repressed, and knockdown enhanced, the invasion and proliferation of trophoblasts. Interestingly, PUM1 knockdown promoted trophoblast invasion in a villous explant culture model, while PUM1 overexpression repressed these effects. Furthermore, lncRNA transcriptome sequencing coupled with RNA immunoprecipitation (RIP) revealed that PUM1 inhibits trophoblast invasion in PE by downregulating the expression of lncRNA HOTAIR. Moreover, PUM1 regulates HOTAIR expression via a posttranscriptional mechanism. Using RNA-protein pull-down and mRNA stability assays, we identified PUM1 as a specific binding partner that decreased the half-life of HOTAIR and lowered the steady-state level of HOTAIR expression, suggesting a novel posttranscriptional regulatory mechanism. Collectively, these findings identified a novel RNA regulatory mechanism, revealing a new pathway governing the regulation of PUM1/HOTAIR in trophoblast invasion in the pathogenesis of PE.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ying He
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Shi Qin
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Hui-Qin Mo
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xiao Li
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Fan Wu
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jing Zhang
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Xing Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lin Mao
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ya-Qing Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu-Na Guo
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yi Lin
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Fu-Ju Tian
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| |
Collapse
|
42
|
Gao X, Chen H, Liu J, Shen S, Wang Q, Clement TM, Deskin BJ, Chen C, Zhao D, Wang L, Guo L, Ma X, Zhang B, Xu Y, Li X, Li L. The REGγ-Proteasome Regulates Spermatogenesis Partially by P53-PLZF Signaling. Stem Cell Reports 2019; 13:559-571. [PMID: 31402338 PMCID: PMC6742627 DOI: 10.1016/j.stemcr.2019.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 01/05/2023] Open
Abstract
Development of spermatogonia and spermatocytes are the critical steps of spermatogenesis, impacting on male fertility. Investigation of the related regulators benefits the understanding of male reproduction. The proteasome system has been reported to regulate spermatogenesis, but the mechanisms and key contributing factors in vivo are poorly explored. Here we found that ablation of REGγ, a proteasome activator, resulted in male subfertility. Analysis of the mouse testes after birth showed there was a decreased number of PLZF+ spermatogonia and spermatocytes. Molecular analysis found that REGγ loss significantly increased the abundance of p53 protein in the testis, and directly repressed PLZF transcription in cell lines. Of note, allelic p53 haplodeficiency partially rescued the defects in spermatogenesis observed in REGγ-deficient mice. In summary, our results identify REGγ-p53-PLZF to be a critical pathway that regulates spermatogenesis and establishes a new molecular link between the proteasome system and male reproduction. REGγ loss results in male subfertility REGγ loss results in a decrease of spermatocytes and PLZF+ spermatogonial cells p53 protein, increased in REGγ−/− mouse testes, represses PLZF expression Allelic p53 haplodeficiency partially rescues defects in REGγ−/− mouse spermatogenesis
Collapse
Affiliation(s)
- Xiao Gao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Hui Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jian Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shihui Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qingwei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Tracy M Clement
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA
| | - Brian J Deskin
- Epigenetic & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Caiyu Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Dengpan Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Lu Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Linjie Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xueqing Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bianhong Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yunfei Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiaotao Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
43
|
Jarmoskaite I, Denny SK, Vaidyanathan PP, Becker WR, Andreasson JOL, Layton CJ, Kappel K, Shivashankar V, Sreenivasan R, Das R, Greenleaf WJ, Herschlag D. A Quantitative and Predictive Model for RNA Binding by Human Pumilio Proteins. Mol Cell 2019; 74:966-981.e18. [PMID: 31078383 DOI: 10.1101/403006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/31/2019] [Accepted: 04/05/2019] [Indexed: 05/20/2023]
Abstract
High-throughput methodologies have enabled routine generation of RNA target sets and sequence motifs for RNA-binding proteins (RBPs). Nevertheless, quantitative approaches are needed to capture the landscape of RNA-RBP interactions responsible for cellular regulation. We have used the RNA-MaP platform to directly measure equilibrium binding for thousands of designed RNAs and to construct a predictive model for RNA recognition by the human Pumilio proteins PUM1 and PUM2. Despite prior findings of linear sequence motifs, our measurements revealed widespread residue flipping and instances of positional coupling. Application of our thermodynamic model to published in vivo crosslinking data reveals quantitative agreement between predicted affinities and in vivo occupancies. Our analyses suggest a thermodynamically driven, continuous Pumilio-binding landscape that is negligibly affected by RNA structure or kinetic factors, such as displacement by ribosomes. This work provides a quantitative foundation for dissecting the cellular behavior of RBPs and cellular features that impact their occupancies.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sarah K Denny
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA; Scribe Therapeutics, Berkeley, CA, 94704, USA
| | | | - Winston R Becker
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Johan O L Andreasson
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Curtis J Layton
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kalli Kappel
- Biophysics Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Raashi Sreenivasan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
44
|
The target specificity of the RNA binding protein Pumilio is determined by distinct co-factors. Biosci Rep 2019; 39:BSR20190099. [PMID: 31097674 PMCID: PMC6549094 DOI: 10.1042/bsr20190099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 12/22/2022] Open
Abstract
Puf family proteins are translational regulators essential to a wide range of biological processes, including cell fate specification, stem cell self-renewal, and neural function. Yet, despite being associated with hundreds of RNAs, the underlying mechanisms of Puf target specification remain to be fully elucidated. In Drosophila, Pumilio – a sole Puf family protein – is known to collaborate with cofactors Nanos (Nos) and Brain Tumor (Brat); however, their roles in target specification are not clearly defined. Here, we identify Bag-of-marbles (Bam) as a new Pum cofactor in repression of Mothers against dpp (mad) mRNAs, for which Nos is known to be dispensable. Notably, our data show that Nos (but not Bam) was required for Pum association with hunchback (hb) mRNAs, a well-known target of Pum and Nos. In contrast, Bam (but not Nos) was required for Pum association with mad mRNAs. These findings show for the first time that Pum target specificity is determined not independently but in collaboration with cofactors.
Collapse
|
45
|
Westphal DS, Leszinski GS, Rieger‐Fackeldey E, Graf E, Weirich G, Meitinger T, Ostermayer E, Oberhoffer R, Wagner M. Lessons from exome sequencing in prenatally diagnosed heart defects: A basis for prenatal testing. Clin Genet 2019; 95:582-589. [DOI: 10.1111/cge.13536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Dominik S. Westphal
- Institute of Human GeneticsTechnical University of Munich Munich Germany
- Institute of Human GeneticsHelmholtz Zentrum Munich Neuherberg Germany
| | | | | | - Elisabeth Graf
- Institute of Human GeneticsHelmholtz Zentrum Munich Neuherberg Germany
| | - Gregor Weirich
- Institute of PathologyTechnical University of Munich Munich Germany
| | - Thomas Meitinger
- Institute of Human GeneticsTechnical University of Munich Munich Germany
- Institute of Human GeneticsHelmholtz Zentrum Munich Neuherberg Germany
| | - Eva Ostermayer
- Department of Gynecology and ObstetricsTechnical University of Munich Munich Germany
| | - Renate Oberhoffer
- Department of Pediatric Cardiology and Congenital Heart Disease, Deutsches Herzzentrum MünchenTechnical University of Munich Munich Germany
| | - Matias Wagner
- Institute of Human GeneticsTechnical University of Munich Munich Germany
- Institute of NeurogenomicsHelmholtz Zentrum Munich Neuherberg Germany
| |
Collapse
|
46
|
Zhao Y, Zhang S. PGAM1 knockdown is associated with busulfan‑induced hypospermatogenesis and spermatogenic cell apoptosis. Mol Med Rep 2019; 19:2497-2502. [PMID: 30720109 PMCID: PMC6423611 DOI: 10.3892/mmr.2019.9930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 10/02/2018] [Indexed: 11/22/2022] Open
Abstract
Phosphoglycerate mutase 1 (PGAM1) is reported to be involved in spermatogenic dysfunction. However, the association between PGAM1 and busulfan-induced hypospermatogenesis and spermatogenic cell apoptosis remains unclear. The aim of the current study was to investigate the association between PGAM1 expression and busulfan-induced hypospermatogenesis, and the effect of PGAM1 expression on spermatogenic cell apoptosis. PGAM1 expression was detected in mouse models of busulfan-induced hypospermatogenesis by western blotting, reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. Then, spermatogenic cell apoptosis in mouse models of busulfan-induced hypospermatogenesis was assessed by TUNEL assay. The effect and potential mechanism of PGAM1 downregulation on spermatogenic cells were further investigated. The results indicated that PGAM1 expression was significantly downregulated in the mouse models of busulfan-induced hypospermatogenesis, compared with those with normal spermatogenesis (P<0.05). Furthermore, the TUNEL assay revealed that the apoptosis of spermatogenic cells was accelerated in the mouse model of busulfan-induced hypospermatogenesis. In addition, PGAM1 knockdown promoted the apoptosis of spermatogenic cells in vitro, which was associated with the P53/Caspase 3/Caspase 6/Caspase 9 signaling pathway. In conclusion, these data indicate that PGAM1 knockdown is associated with busulfan-induced hypospermatogenesis and contributes to spermatogenic cell apoptosis by regulating the P53/Caspase 3/Caspase 6/Caspase 9 signaling pathway.
Collapse
Affiliation(s)
- Yuanshu Zhao
- Functional Experiment Center, School of Basic Medical Science, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China
| | - Shoubo Zhang
- Center for Reproductive Medicine, Guangdong Armed Police Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510507, P.R. China
| |
Collapse
|
47
|
Gennarino VA, Palmer EE, McDonell LM, Wang L, Adamski CJ, Koire A, See L, Chen CA, Schaaf CP, Rosenfeld JA, Panzer JA, Moog U, Hao S, Bye A, Kirk EP, Stankiewicz P, Breman AM, McBride A, Kandula T, Dubbs HA, Macintosh R, Cardamone M, Zhu Y, Ying K, Dias KR, Cho MT, Henderson LB, Baskin B, Morris P, Tao J, Cowley MJ, Dinger ME, Roscioli T, Caluseriu O, Suchowersky O, Sachdev RK, Lichtarge O, Tang J, Boycott KM, Holder JL, Zoghbi HY. A Mild PUM1 Mutation Is Associated with Adult-Onset Ataxia, whereas Haploinsufficiency Causes Developmental Delay and Seizures. Cell 2019; 172:924-936.e11. [PMID: 29474920 DOI: 10.1016/j.cell.2018.02.006] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/23/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023]
Abstract
Certain mutations can cause proteins to accumulate in neurons, leading to neurodegeneration. We recently showed, however, that upregulation of a wild-type protein, Ataxin1, caused by haploinsufficiency of its repressor, the RNA-binding protein Pumilio1 (PUM1), also causes neurodegeneration in mice. We therefore searched for human patients with PUM1 mutations. We identified eleven individuals with either PUM1 deletions or de novo missense variants who suffer a developmental syndrome (Pumilio1-associated developmental disability, ataxia, and seizure; PADDAS). We also identified a milder missense mutation in a family with adult-onset ataxia with incomplete penetrance (Pumilio1-related cerebellar ataxia, PRCA). Studies in patient-derived cells revealed that the missense mutations reduced PUM1 protein levels by ∼25% in the adult-onset cases and by ∼50% in the infantile-onset cases; levels of known PUM1 targets increased accordingly. Changes in protein levels thus track with phenotypic severity, and identifying posttranscriptional modulators of protein expression should identify new candidate disease genes.
Collapse
Affiliation(s)
- Vincenzo A Gennarino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| | - Elizabeth E Palmer
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia; Genetics of Learning Disability Service, Waratah, NSW 2298, Australia
| | - Laura M McDonell
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Li Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Carolyn J Adamski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amanda Koire
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren See
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chun-An Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Christian P Schaaf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jessica A Panzer
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 440, 69120 Heidelberg, Germany
| | - Shuang Hao
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann Bye
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Edwin P Kirk
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia; Genetics Laboratory, NSW Health Pathology East Randwick, Sydney, NSW, Australia
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics Laboratories, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arran McBride
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Tejaswi Kandula
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Holly A Dubbs
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Michael Cardamone
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Ying Zhu
- Genetics Laboratory, NSW Health Pathology East Randwick, Sydney, NSW, Australia
| | - Kevin Ying
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Kerith-Rae Dias
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Megan T Cho
- GeneDx, 207 Perry Pkwy Gaithersburg, MD 20877, USA
| | | | | | - Paula Morris
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
| | - Jiang Tao
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Marcel E Dinger
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2010, Australia
| | - Tony Roscioli
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; Genetics Laboratory, NSW Health Pathology East Randwick, Sydney, NSW, Australia; Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Randwick, NSW 2031, Australia
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta, AB T6G 2H7, Canada
| | - Oksana Suchowersky
- Department of Medical Genetics, University of Alberta, AB T6G 2H7, Canada; Departments of Medicine (Neurology) and Pediatrics, University of Alberta, AB, Canada
| | - Rani K Sachdev
- Sydney Children's Hospital, Randwick, NSW 2031, Australia; School of Women's and Children's Health, UNSW Medicine, The University of New South Wales, NSW 2031, Australia
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianrong Tang
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - J Lloyd Holder
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Porter DF, Prasad A, Carrick BH, Kroll-Connor P, Wickens M, Kimble J. Toward Identifying Subnetworks from FBF Binding Landscapes in Caenorhabditis Spermatogenic or Oogenic Germlines. G3 (BETHESDA, MD.) 2019; 9:153-165. [PMID: 30459181 PMCID: PMC6325917 DOI: 10.1534/g3.118.200300] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022]
Abstract
Metazoan PUF (Pumilio and FBF) RNA-binding proteins regulate various biological processes, but a common theme across phylogeny is stem cell regulation. In Caenorhabditis elegans, FBF (fem-3 Binding Factor) maintains germline stem cells regardless of which gamete is made, but FBF also functions in the process of spermatogenesis. We have begun to "disentangle" these biological roles by asking which FBF targets are gamete-independent, as expected for stem cells, and which are gamete-specific. Specifically, we compared FBF iCLIP binding profiles in adults making sperm to those making oocytes. Normally, XX adults make oocytes. To generate XX adults making sperm, we used a fem-3(gf) mutant requiring growth at 25°; for comparison, wild-type oogenic hermaphrodites were also raised at 25°. Our FBF iCLIP data revealed FBF binding sites in 1522 RNAs from oogenic adults and 1704 RNAs from spermatogenic adults. More than half of these FBF targets were independent of germline gender. We next clustered RNAs by FBF-RNA complex frequencies and found four distinct blocks. Block I RNAs were enriched in spermatogenic germlines, and included validated target fog-3, while Block II and III RNAs were common to both genders, and Block IV RNAs were enriched in oogenic germlines. Block II (510 RNAs) included almost all validated FBF targets and was enriched for cell cycle regulators. Block III (21 RNAs) was enriched for RNA-binding proteins, including previously validated FBF targets gld-1 and htp-1 We suggest that Block I RNAs belong to the FBF network for spermatogenesis, and that Blocks II and III are associated with stem cell functions.
Collapse
Affiliation(s)
- Douglas F Porter
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Aman Prasad
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Brian H Carrick
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Peggy Kroll-Connor
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Wisconsin 53706
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Wisconsin 53706
| |
Collapse
|
49
|
MTSS1/Src family kinase dysregulation underlies multiple inherited ataxias. Proc Natl Acad Sci U S A 2018; 115:E12407-E12416. [PMID: 30530649 DOI: 10.1073/pnas.1816177115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genetically heterogeneous spinocerebellar ataxias (SCAs) are caused by Purkinje neuron dysfunction and degeneration, but their underlying pathological mechanisms remain elusive. The Src family of nonreceptor tyrosine kinases (SFK) are essential for nervous system homeostasis and are increasingly implicated in degenerative disease. Here we reveal that the SFK suppressor Missing-in-metastasis (MTSS1) is an ataxia locus that links multiple SCAs. MTSS1 loss results in increased SFK activity, reduced Purkinje neuron arborization, and low basal firing rates, followed by cell death. Surprisingly, mouse models for SCA1, SCA2, and SCA5 show elevated SFK activity, with SCA1 and SCA2 displaying dramatically reduced MTSS1 protein levels through reduced gene expression and protein translation, respectively. Treatment of each SCA model with a clinically approved Src inhibitor corrects Purkinje neuron basal firing and delays ataxia progression in MTSS1 mutants. Our results identify a common SCA therapeutic target and demonstrate a key role for MTSS1/SFK in Purkinje neuron survival and ataxia progression.
Collapse
|
50
|
Lloret-Llinares M, Karadoulama E, Chen Y, Wojenski LA, Villafano GJ, Bornholdt J, Andersson R, Core L, Sandelin A, Jensen TH. The RNA exosome contributes to gene expression regulation during stem cell differentiation. Nucleic Acids Res 2018; 46:11502-11513. [PMID: 30212902 PMCID: PMC6265456 DOI: 10.1093/nar/gky817] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/29/2018] [Accepted: 09/09/2018] [Indexed: 12/27/2022] Open
Abstract
Gene expression programs change during cellular transitions. It is well established that a network of transcription factors and chromatin modifiers regulate RNA levels during embryonic stem cell (ESC) differentiation, but the full impact of post-transcriptional processes remains elusive. While cytoplasmic RNA turnover mechanisms have been implicated in differentiation, the contribution of nuclear RNA decay has not been investigated. Here, we differentiate mouse ESCs, depleted for the ribonucleolytic RNA exosome, into embryoid bodies to determine to which degree RNA abundance in the two states can be attributed to changes in transcription versus RNA decay by the exosome. As a general observation, we find that exosome depletion mainly leads to the stabilization of RNAs from lowly transcribed loci, including several protein-coding genes. Depletion of the nuclear exosome cofactor RBM7 leads to similar effects. In particular, transcripts that are differentially expressed between states tend to be more exosome sensitive in the state where expression is low. We conclude that the RNA exosome contributes to down-regulation of transcripts with disparate expression, often in conjunction with transcriptional down-regulation.
Collapse
Affiliation(s)
| | - Evdoxia Karadoulama
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Yun Chen
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Luke A Wojenski
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Geno J Villafano
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Jette Bornholdt
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | - Robin Andersson
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
| | - Leighton Core
- Department of Molecular and Cell Biology, Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Albin Sandelin
- The Bioinformatics Centre, Department of Biology, University of Copenhagen, Denmark
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Denmark
| | | |
Collapse
|