1
|
Yu K, Ramkumar N, Wong KKL, Tettweiler G, Verheyen EM. The AMPK-like protein kinases Sik2 and Sik3 interact with Hipk and induce synergistic tumorigenesis in a Drosophila cancer model. Front Cell Dev Biol 2023; 11:1214539. [PMID: 37854071 PMCID: PMC10579798 DOI: 10.3389/fcell.2023.1214539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Homeodomain-interacting protein kinases (Hipks) regulate cell proliferation, apoptosis, and tissue development. Overexpression of Hipk in Drosophila causes tumorigenic phenotypes in larval imaginal discs. We find that depletion of Salt-inducible kinases Sik2 or Sik3 can suppress Hipk-induced overgrowth. Furthermore, co-expression of constitutively active forms of Sik2 or Sik3 with Hipk caused significant tissue hyperplasia and tissue distortion, indicating that both Sik2 and Sik3 can synergize with Hipk to promote tumorous phenotypes, accompanied by elevated dMyc, Armadillo/β-catenin, and the Yorkie target gene expanded. Larvae expressing these hyperplastic growths also display an extended larval phase, characteristic of other Drosophila tumour models. Examination of total protein levels from fly tissues showed that Hipk proteins were reduced when Siks were depleted through RNAi, suggesting that Siks may regulate Hipk protein stability and/or activity. Conversely, expression of constitutively active Siks with Hipk leads to increased Hipk protein levels. Furthermore, Hipk can interact with Sik2 and Sik3 by co-immunoprecipitation. Co-expression of both proteins leads to a mobility shift of Hipk protein, suggesting it is post-translationally modified. In summary, our research demonstrates a novel function of Siks in synergizing with Hipk to promote tumour growth.
Collapse
Affiliation(s)
- Kewei Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Niveditha Ramkumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Gritta Tettweiler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
2
|
Hogg EKJ, Findlay GM. Functions of SRPK, CLK and DYRK kinases in stem cells, development, and human developmental disorders. FEBS Lett 2023; 597:2375-2415. [PMID: 37607329 PMCID: PMC10952393 DOI: 10.1002/1873-3468.14723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Human developmental disorders encompass a wide range of debilitating physical conditions and intellectual disabilities. Perturbation of protein kinase signalling underlies the development of some of these disorders. For example, disrupted SRPK signalling is associated with intellectual disabilities, and the gene dosage of DYRKs can dictate the pathology of disorders including Down's syndrome. Here, we review the emerging roles of the CMGC kinase families SRPK, CLK, DYRK, and sub-family HIPK during embryonic development and in developmental disorders. In particular, SRPK, CLK, and DYRK kinase families have key roles in developmental signalling and stem cell regulation, and can co-ordinate neuronal development and function. Genetic studies in model organisms reveal critical phenotypes including embryonic lethality, sterility, musculoskeletal errors, and most notably, altered neurological behaviours arising from defects of the neuroectoderm and altered neuronal signalling. Further unpicking the mechanisms of specific kinases using human stem cell models of neuronal differentiation and function will improve our understanding of human developmental disorders and may provide avenues for therapeutic strategies.
Collapse
Affiliation(s)
- Elizabeth K. J. Hogg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| | - Greg M. Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life SciencesUniversity of DundeeUK
| |
Collapse
|
3
|
Garufi A, D'Orazi V, Pistritto G, Cirone M, D'Orazi G. The Sweet Side of HIPK2. Cancers (Basel) 2023; 15:2678. [PMID: 37345014 DOI: 10.3390/cancers15102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
HIPK2 is an evolutionary conserved protein kinase which modulates many molecular pathways involved in cellular functions such as apoptosis, DNA damage response, protein stability, and protein transcription. HIPK2 plays a key role in the cancer cell response to cytotoxic drugs as its deregulation impairs drug-induced cancer cell death. HIPK2 has also been involved in regulating fibrosis, angiogenesis, and neurological diseases. Recently, hyperglycemia was found to positively and/or negatively regulate HIPK2 activity, affecting not only cancer cell response to chemotherapy but also the progression of some diabetes complications. The present review will discuss how HIPK2 may be influenced by the high glucose (HG) metabolic condition and the consequences of such regulation in medical conditions.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Valerio D'Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gabriella D'Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University "G. D'Annunzio", 66013 Chieti, Italy
| |
Collapse
|
4
|
Jiang P, Wei K, Xu L, Chang C, Zhang R, Zhao J, Jin Y, Xu L, Shi Y, Qian Y, Sun S, Guo S, Wang R, Qin Y, He D. DNA methylation change of HIPK3 in Chinese rheumatoid arthritis and its effect on inflammation. Front Immunol 2023; 13:1087279. [PMID: 36703984 PMCID: PMC9872787 DOI: 10.3389/fimmu.2022.1087279] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction Homeodomain-interacting protein kinase 3 (HIPK3) plays an important role in cell proliferation, apoptosis, and inflammation. Over-expression of HIPK3 in immune cells in rheumatoid arthritis (RA) has been reported. In this study, we investigated blood methylation levels and clinical characteristics of RA in a Chinese population. Methods A total of 235 patients with RA, 30 with osteoarthritis (OA), and 30 matched healthy controls were recruited. The methylation status of seven CpGs in the differentially methylated region of HIPK3 (cg05501357) was measured using targeted methylation-sequencing technology. The association between methylation haplotypes and the overall methylation status of HIPK3 with clinical characteristics was assessed using generalized linear regression. Results All seven CpGs showed hypomethylation status in RA blood compared with OA and normal individuals (overall p= 1.143×10-8 and FDR= 2.799×10-7), which is consistent with the previously reported high expression of HIPK3 in RA immune cells. Among all seven CpGs, 33286785 showed the highest predictive power with an area under the curve (AUC) of 0.829; we received a higher AUC=0.864 when we combined HIPK3 with anti-citrullinated protein antibodies (ACPA -) and rheumatoid factor (RF +) in the prediction model, indicating that when a patient's ACPA is negative, HIPK3 can assist RF as a new clinical index for the diagnosis of RA. We also found that HIPK3 methylation levels were negatively correlated with C-reactive protein (CRP; r= -0.16, p= 0.01). Methylation haplotypes were analyzed, and the full methylation haplotype (FMH; r= 0.16, p= 0.01) and full non-methylation haplotype (FNH; r= 0.18, p= 0.0061) were negatively correlated with CRP. Conclusion Circulating blood methylation levels in the protein region of HIPK3 can be utilized as a supportive diagnostic biomarker and CRP level indicator for RA.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Cen Chang
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Runrun Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yehua Jin
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Linshuai Xu
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| | - Yi Qian
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Songtao Sun
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Rongsheng Wang
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Yingying Qin
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
| |
Collapse
|
5
|
Ding K, Barretto EC, Johnston M, Lee B, Gallo M, Grewal SS. Transcriptome analysis of FOXO-dependent hypoxia gene expression identifies Hipk as a regulator of low oxygen tolerance in Drosophila. G3 (BETHESDA, MD.) 2022; 12:6749561. [PMID: 36200850 PMCID: PMC9713431 DOI: 10.1093/g3journal/jkac263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/16/2022] [Indexed: 12/05/2022]
Abstract
When exposed to low oxygen or hypoxia, animals must alter their metabolism and physiology to ensure proper cell-, tissue-, and whole-body level adaptations to their hypoxic environment. These alterations often involve changes in gene expression. While extensive work has emphasized the importance of the HIF-1 alpha transcription factor on controlling hypoxia gene expression, less is known about other transcriptional mechanisms. We previously identified the transcription factor FOXO as a regulator of hypoxia tolerance in Drosophila larvae and adults. Here, we use an RNA-sequencing approach to identify FOXO-dependent changes in gene expression that are associated with these tolerance effects. We found that hypoxia altered the expression of over 2,000 genes and that ∼40% of these gene expression changes required FOXO. We discovered that hypoxia exposure led to a FOXO-dependent increase in genes involved in cell signaling, such as kinases, GTPase regulators, and regulators of the Hippo/Yorkie pathway. Among these, we identified homeodomain-interacting protein kinase as being required for hypoxia survival. We also found that hypoxia suppresses the expression of genes involved in ribosome synthesis and egg production, and we showed that hypoxia suppresses tRNA synthesis and mRNA translation and reduces female fecundity. Among the downregulated genes, we discovered that FOXO was required for the suppression of many ribosomal protein genes and genes involved in oxidative phosphorylation, pointing to a role for FOXO in limiting energetically costly processes such as protein synthesis and mitochondrial activity upon hypoxic stress. This work uncovers a widespread role for FOXO in mediating hypoxia changes in gene expression.
Collapse
Affiliation(s)
- Kate Ding
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elizabeth C Barretto
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Michael Johnston
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Byoungchun Lee
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Marco Gallo
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Savraj S Grewal
- Clark H. Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.,Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
6
|
Kinsey SD, Vinluan JP, Shipman GA, Verheyen EM. Expression of human HIPKs in Drosophila demonstrates their shared and unique functions in a developmental model. G3 GENES|GENOMES|GENETICS 2021; 11:6380948. [PMID: 34849772 PMCID: PMC8673556 DOI: 10.1093/g3journal/jkab350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 12/27/2022]
Abstract
Homeodomain-interacting protein kinases (HIPKs) are a family of four conserved proteins essential for vertebrate development, as demonstrated by defects in the eye, brain, and skeleton that culminate in embryonic lethality when multiple HIPKs are lost in mice. While HIPKs are essential for development, functional redundancy between the four vertebrate HIPK paralogues has made it difficult to compare their respective functions. Because understanding the unique and shared functions of these essential proteins could directly benefit the fields of biology and medicine, we addressed the gap in knowledge of the four vertebrate HIPK paralogues by studying them in the fruit fly Drosophila melanogaster, where reduced genetic redundancy simplifies our functional assessment. The single hipk present in the fly allowed us to perform rescue experiments with human HIPK genes that provide new insight into their individual functions not easily assessed in vertebrate models. Furthermore, the abundance of genetic tools and established methods for monitoring specific developmental pathways and gross morphological changes in the fly allowed for functional comparisons in endogenous contexts. We first performed rescue experiments to demonstrate the extent to which each of the human HIPKs can functionally replace Drosophila Hipk for survival and morphological development. We then showed the ability of each human HIPK to modulate Armadillo/β-catenin levels, JAK/STAT activity, proliferation, growth, and death, each of which have previously been described for Hipks, but never all together in comparable tissue contexts. Finally, we characterized novel developmental phenotypes induced by human HIPKs to gain insight to their unique functions. Together, these experiments provide the first direct comparison of all four vertebrate HIPKs to determine their roles in a developmental context.
Collapse
Affiliation(s)
- Stephen D Kinsey
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Justin P Vinluan
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Gerald A Shipman
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
7
|
Pojer JM, Manning SA, Kroeger B, Kondo S, Harvey KF. The Hippo pathway uses different machinery to control cell fate and organ size. iScience 2021; 24:102830. [PMID: 34355153 PMCID: PMC8322298 DOI: 10.1016/j.isci.2021.102830] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
The Hippo pathway is a conserved signaling network that regulates organ growth and cell fate. One such cell fate decision is that of R8 photoreceptor cells in the Drosophila eye, where Hippo specifies whether cells sense blue or green light. We show that only a subset of proteins that control organ growth via the Hippo pathway also regulate R8 cell fate choice, including the STRIPAK complex, Tao, Pez, and 14-3-3 proteins. Furthermore, key Hippo pathway proteins were primarily cytoplasmic in R8 cells rather than localized to specific membrane domains, as in cells of growing epithelial organs. Additionally, Warts was the only Hippo pathway protein to be differentially expressed between R8 subtypes, while central Hippo pathway proteins were expressed at dramatically lower levels in adult and pupal eyes than in growing larval eyes. Therefore, we reveal several important differences in Hippo signaling in the contexts of organ growth and cell fate.
Collapse
Affiliation(s)
- Jonathan M. Pojer
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samuel A. Manning
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Kroeger
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, Japan
| | - Kieran F. Harvey
- Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
8
|
Lam Wong KK, Verheyen EM. Metabolic reprogramming in cancer: mechanistic insights from Drosophila. Dis Model Mech 2021; 14:1-17. [PMID: 34240146 PMCID: PMC8277969 DOI: 10.1242/dmm.048934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer. Summary: Recent research in fruit flies has demonstrated that tumors rewire their metabolism by using diverse strategies that involve feedback regulation, nutrient sensing, intercellular or even inter-organ interactions, yielding new molecules as potential cancer markers or drug targets.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
9
|
Carneiro TNR, Bim LV, Buzatto VC, Galdeno V, Asprino PF, Lee EA, Galante PAF, Cerutti JM. Evidence of Cooperation between Hippo Pathway and RAS Mutation in Thyroid Carcinomas. Cancers (Basel) 2021; 13:2306. [PMID: 34065786 PMCID: PMC8151534 DOI: 10.3390/cancers13102306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 12/30/2022] Open
Abstract
Thyroid cancer incidences have been steadily increasing worldwide and are projected to become the fourth leading cancer diagnosis by 2030. Improved diagnosis and prognosis predictions for this type of cancer depend on understanding its genetic bases and disease biology. RAS mutations have been found in a wide range of thyroid tumors, from benign to aggressive thyroid carcinomas. Based on that and in vivo studies, it has been suggested that RAS cooperates with other driver mutations to induce tumorigenesis. This study aims to identify genetic alterations or pathways that cooperate with the RAS mutation in the pathogenesis of thyroid cancer. From a cohort of 120 thyroid carcinomas, 11 RAS-mutated samples were identified. The samples were subjected to RNA-Sequencing analyses. The mutation analysis in our eleven RAS-positive cases uncovered that four genes that belong to the Hippo pathway were mutated. The gene expression analysis revealed that this pathway was dysregulated in the RAS-positive samples. We additionally explored the mutational status and expression profiling of 60 RAS-positive papillary thyroid carcinomas (PTC) from The Cancer Genome Atlas (TCGA) cohort. Altogether, the mutational landscape and pathway enrichment analysis (gene set enrichment analysis (GSEA) and Kyoto Encyclopedia of Genes and Genome (KEGG)) detected the Hippo pathway as dysregulated in RAS-positive thyroid carcinomas. Finally, we suggest a crosstalk between the Hippo and other signaling pathways, such as Wnt and BMP.
Collapse
Affiliation(s)
- Thaise Nayane Ribeiro Carneiro
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| | - Larissa Valdemarin Bim
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| | - Vanessa Candiotti Buzatto
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Vanessa Galdeno
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Paula Fontes Asprino
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Eunjung Alice Lee
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, 3 Blackfan Circle, CLS (Center for Life Science) Building 15th Floor, Office 15020 | Lab 15072, Boston, MA 02115, USA;
| | - Pedro Alexandre Favoretto Galante
- Centro de Oncologia Molecular, Hospital Sírio-libanês, Rua Professor Daher Cutait 69, Bela Vista, São Paulo, SP 01308-060, Brazil; (V.C.B.); (V.G.); (P.F.A.); (P.A.F.G.)
| | - Janete Maria Cerutti
- Genetic Bases of Thyroid Tumors Laboratory, Division of Genetics, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo, Pedro de Toledo 669, 11 Andar, São Paulo, SP 04039-032, Brazil; (T.N.R.C.); (L.V.B.)
| |
Collapse
|
10
|
Liu B, Hou Q, Ma Y, Han X. HIPK3 Mediates Inflammatory Cytokines and Oxidative Stress Markers in Monocytes in a Rat Model of Sepsis Through the JNK/c-Jun Signaling Pathway. Inflammation 2021; 43:1127-1142. [PMID: 32356246 DOI: 10.1007/s10753-020-01200-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sepsis is a fetal immunological disorder and its complication worsens in the patients with hemodialysis which may increase the risk of death. In the present study, we aimed to investigate the effect of homeodomain-interacting protein kinase 3 (HIPK3) on inflammatory factors and oxidative stress markers in monocytes of rats with sepsis by regulating the c-Jun amino-terminal kinase (JNK)/c-Jun signaling pathway. A rat model of sepsis was initially established using cecal ligation and puncture (CLP) and was further identified by enlarged spleen tissues, inflammation, and oxidative stress. Monocytes were isolated from rats with CLP-induced sepsis. HIPK3 was observed to be downregulated while JUN was upregulated in monocytes from rats with CLP-induced sepsis. Furthermore, isolated monocytes were transduced with lentiviral vectors expressing HIPK3 or shRNA against HIPK3 to explore the effect of HIPK3 on viability and apoptosis of monocytes as well as inflammatory factors and oxidative stress markers. The obtained data exhibited that overexpression of HIPK3 or inhibition of the JNK signaling pathway enhanced proliferation, reduced apoptosis of monocytes, alleviated inflammation, and oxidative stress injury. Consistently, our results may provide evidence that HIPK3 could inhibit the JNK/c-Jun signaling pathway, thereby potentially retarding the progression of sepsis.
Collapse
Affiliation(s)
- Ben Liu
- Department of Clinical Laboratory, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 1 West Yellow River Road, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Qiuyue Hou
- Department of Clinical Laboratory, Huaiyin Hospital of Huai'an City, 38 Beijing West Road, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Yuhong Ma
- Department of Psychiatry, Huaian No. 3 People's Hospital, 272 Huaihai West Road, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Xuehua Han
- Department of Clinical Laboratory, Huai'an Hospital Affiliated of Xuzhou Medical University, No. 62, Huaihai South Road, Huai'an, 223002, Jiangsu Province, People's Republic of China.
| |
Collapse
|
11
|
Drosophila Homeodomain-Interacting Protein Kinase (Hipk) Phosphorylates the Hippo/Warts Signalling Effector Yorkie. Int J Mol Sci 2021; 22:ijms22041862. [PMID: 33668437 PMCID: PMC7918113 DOI: 10.3390/ijms22041862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Developmental growth and patterning are regulated by an interconnected signalling network of several pathways. In Drosophila, the Warts (Wts) kinase, a component of the Hippo signalling pathway, plays an essential role in regulating transcription and growth by phosphorylating its substrate Yorkie (Yki). The phosphorylation of Yki critically influences its localisation and activity as a transcriptional coactivator. In this study, we identified the homeodomain-interacting protein kinase (Hipk) as another kinase that phosphorylates Yki and mapped several sites of Yki phosphorylated by Hipk, using in vitro analysis: Ser168, Ser169/Ser172 and Ser255. These sites might provide auxiliary input for Yki regulation in vivo, as transgenic flies with mutations in these show prominent phenotypes; Hipk, therefore, represents an additional upstream regulator of Yki that works in concert with Wts.
Collapse
|
12
|
Dai Y, Kyoyama H, Yang YL, Wang Y, Liu S, Wang Y, Mao JH, Xu Z, Uematsu K, Jablons DM, You L. A novel isoform of Homeodomain-interacting protein kinase-2 promotes YAP/TEAD transcriptional activity in NSCLC cells. Oncotarget 2021; 12:173-184. [PMID: 33613845 PMCID: PMC7869571 DOI: 10.18632/oncotarget.27871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/03/2020] [Indexed: 11/25/2022] Open
Abstract
Homeodomain-interacting protein kinase-2 (HIPK2) can either promote or inhibit transcription depending on cellular context. In this study, we show that a new HIPK2 isoform increases TEAD reporter activity in NSCLC cells. We detected HIPK2 copy number gain in 5/6 (83.3%) NSCLC cell lines. In NSCLC patients with high HIPK2 mRNA expression in the Human Protein Atlas, the five-year survival rate is significantly lower than in patients with low expression (38% vs 47%; p = 0.047). We also found that 70/78 (89.7%) of NSCLC tissues have moderate to strong expression of the N-terminal HIPK2 protein. We detected and cloned a novel HIPK2 isoform 3 and found that its forced overexpression promotes TEAD reporter activity in NSCLC cells. Expressing HIPK2 isoform 3_K228A kinase-dead plasmid failed to increase TEAD reporter activity in NSCLC cells. Next, we showed that two siRNAs targeting HIPK2 decreased HIPK2 isoform 3 and YAP protein levels in NSCLC cells. Degradation of the YAP protein was accelerated after HIPK2 knockdown in NSCLC cells. Inhibition of HIPK2 isoform 3 decreased the mRNA expression of YAP downstream gene CTGF. The specific HIPK2 kinase inhibitor TBID decreased TEAD reporter activity, reduced cancer side populations, and inhibited tumorsphere formation of NSCLC cells. In summary, this study indicates that HIPK2 isoform 3, the main HIPK2 isoform expressed in NSCLC, promotes YAP/TEAD transcriptional activity in NSCLC cells. Our results suggest that HIPK2 isoform 3 may be a potential therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Model Animal Research Center of Nanjing University, Nanjing, Jiangsu, China.,These authors contributed equally to this work
| | - Hiroyuki Kyoyama
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan.,These authors contributed equally to this work
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA.,These authors contributed equally to this work
| | - Yucheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Shu Liu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Yinghao Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Kazutsugu Uematsu
- Department of Pulmonary Medicine, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
13
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
14
|
Wong KKL, Liao JZ, Shih CRY, Harden N, Verheyen EM. Hyperpolarized mitochondria accumulate in Drosophila Hipk-overexpressing cells to drive tumor-like growth. J Cell Sci 2020; 133:jcs250944. [PMID: 33199523 PMCID: PMC7746665 DOI: 10.1242/jcs.250944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Both functional and dysfunctional mitochondria are known to underlie tumor progression. Here, we establish use of the proto-oncogene Drosophila Homeodomain-interacting protein kinase (Hipk) as a new tool to address this paradox. We find that, in Hipk-overexpressing tumor-like cells, mitochondria accumulate and switch from fragmented to highly fused interconnected morphologies. Moreover, elevated Hipk promotes mitochondrial membrane hyperpolarization. These mitochondrial changes are at least in part driven by the upregulation of Myc. Furthermore, we show that the altered mitochondrial energetics, but not morphology, is required for Hipk-induced tumor-like growth, because knockdown of pdsw (also known as nd-pdsw; NDUFB10 in mammals; a Complex I subunit) abrogates the growth. Knockdown of ATPsynβ (a Complex V subunit), which produces higher levels of reactive oxygen species (ROS) than pdsw knockdown, instead synergizes with Hipk to potentiate JNK activation and the downstream induction of matrix metalloproteinases. Accordingly, ATPsynβ knockdown suppresses Hipk-induced tumor-like growth only when ROS scavengers are co-expressed. Together, our work presents an in vivo tumor model featuring the accumulation of hyperfused and hyperpolarized mitochondria, and reveals respiratory complex subunit-dependent opposing effects on tumorigenic outcomes.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Jenny Zhe Liao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Claire R Y Shih
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Nicholas Harden
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
15
|
Abstract
The Hippo pathway is an evolutionarily conserved regulator of organ growth and tumorigenesis. In Drosophila, oncogenic RasV12 cooperates with loss-of-cell polarity to promote Hippo pathway-dependent tumor growth. To identify additional factors that modulate this signaling, we performed a genetic screen utilizing the Drosophila Ras V12 /lgl -/- in vivo tumor model and identified Rox8, a RNA-binding protein (RBP), as a positive regulator of the Hippo pathway. We found that Rox8 overexpression suppresses whereas Rox8 depletion potentiates Hippo-dependent tissue overgrowth, accompanied by altered Yki protein level and target gene expression. Mechanistically, Rox8 directly binds to a target site located in the yki 3' UTR, recruits and stabilizes the targeting of miR-8-loaded RISC, which accelerates the decay of yki messenger RNA (mRNA). Moreover, TIAR, the human ortholog of Rox8, is able to promote the degradation of yki mRNA when introduced into Drosophila and destabilizes YAP mRNA in human cells. Thus, our study provides in vivo evidence that the Hippo pathway is posttranscriptionally regulated by the collaborative action of RBP and microRNA (miRNA), which may provide an approach for modulating Hippo pathway-mediated tumorigenesis.
Collapse
|
16
|
Wang SJH, Sinclair DAR, Kim HY, Kinsey SD, Yoo B, Shih CRY, Wong KKL, Krieger C, Harden N, Verheyen EM. Homeodomain-interacting protein kinase (Hipk) plays roles in nervous system and muscle structure and function. PLoS One 2020; 15:e0221006. [PMID: 32187190 PMCID: PMC7080231 DOI: 10.1371/journal.pone.0221006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/13/2020] [Indexed: 12/26/2022] Open
Abstract
Homeodomain-interacting protein kinases (Hipks) have been previously associated with cell proliferation and cancer, however, their effects in the nervous system are less well understood. We have used Drosophila melanogaster to evaluate the effects of altered Hipk expression on the nervous system and muscle. Using genetic manipulation of Hipk expression we demonstrate that knockdown and over-expression of Hipk produces early adult lethality, possibly due to the effects on the nervous system and muscle involvement. We find that optimal levels of Hipk are critical for the function of dopaminergic neurons and glial cells in the nervous system, as well as muscle. Furthermore, manipulation of Hipk affects the structure of the larval neuromuscular junction (NMJ) by promoting its growth. Hipk regulates the phosphorylation of the synapse-associated cytoskeletal protein Hu-li tai shao (Hts; adducin in mammals) and modulates the expression of two important protein kinases, Calcium-calmodulin protein kinase II (CaMKII) and Partitioning-defective 1 (PAR-1), all of which may alter neuromuscular structure/function and influence lethality. Hipk also modifies the levels of an important nuclear protein, TBPH, the fly orthologue of TAR DNA-binding protein 43 (TDP-43), which may have relevance for understanding motor neuron diseases.
Collapse
Affiliation(s)
- Simon J. H. Wang
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Donald A. R. Sinclair
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Hae-Yoon Kim
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Stephen D. Kinsey
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Byoungjoo Yoo
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Claire R. Y. Shih
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Kenneth K. L. Wong
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Charles Krieger
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Nicholas Harden
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Esther M. Verheyen
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
17
|
The nutrient sensor OGT regulates Hipk stability and tumorigenic-like activities in Drosophila. Proc Natl Acad Sci U S A 2020; 117:2004-2013. [PMID: 31932432 PMCID: PMC6994980 DOI: 10.1073/pnas.1912894117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Environmental cues such as nutrients alter cellular behaviors by acting on a wide array of molecular sensors inside cells. Of emerging interest is the link observed between effects of dietary sugars on cancer proliferation. Here, we identify the requirements of hexosamine biosynthetic pathway (HBP) and O-GlcNAc transferase (OGT) for Drosophila homeodomain-interacting protein kinase (Hipk)-induced growth abnormalities in response to a high sugar diet. On a normal diet, OGT is both necessary and sufficient for inducing Hipk-mediated tumor-like growth. We further show that OGT maintains Hipk protein stability by blocking its proteasomal degradation and that Hipk is O-GlcNAcylated by OGT. In mammalian cells, human HIPK2 proteins accumulate posttranscriptionally upon OGT overexpression. Mass spectrometry analyses reveal that HIPK2 is at least O-GlcNAc modified at S852, T1009, and S1147 residues. Mutations of these residues reduce HIPK2 O-GlcNAcylation and stability. Together, our data demonstrate a conserved role of OGT in positively regulating the protein stability of HIPKs (fly Hipk and human HIPK2), which likely permits the nutritional responsiveness of HIPKs.
Collapse
|
18
|
Tettweiler G, Blaquiere JA, Wray NB, Verheyen EM. Hipk is required for JAK/STAT activity during development and tumorigenesis. PLoS One 2019; 14:e0226856. [PMID: 31891940 PMCID: PMC6938406 DOI: 10.1371/journal.pone.0226856] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022] Open
Abstract
Drosophila has been instrumental as a model system in studying signal transduction and revealing molecular functions in development and human diseases. A point mutation in the Drosophila Janus kinase JAK (called hop) causes constitutive activation of the JAK/STAT pathway. We provide robust genetic evidence that the Homeodomain interacting protein kinase (Hipk) is required for endogenous JAK/STAT activity. Overexpression of Hipk can phenocopy the effects of overactive JAK/STAT mutations and lead to melanized tumors, and loss of Hipk can suppress the effects of hyperactive JAK/STAT. Further, the loss of the pathway effector Stat92E can suppress Hipk induced overgrowth. Interaction studies show that Hipk can physically interact with Stat92E and regulate Stat92E subcellular localization. Together our results show that Hipk is a novel factor required for effective JAK/STAT signaling.
Collapse
Affiliation(s)
- Gritta Tettweiler
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
| | - Jessica A. Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
| | - Nathan B. Wray
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, B.C Canada
- * E-mail:
| |
Collapse
|
19
|
Wong KKL, Liao JZ, Verheyen EM. A positive feedback loop between Myc and aerobic glycolysis sustains tumor growth in a Drosophila tumor model. eLife 2019; 8:46315. [PMID: 31259690 PMCID: PMC6636907 DOI: 10.7554/elife.46315] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer cells usually exhibit aberrant cell signaling and metabolic reprogramming. However, mechanisms of crosstalk between these processes remain elusive. Here, we show that in an in vivo tumor model expressing oncogenic Drosophila Homeodomain-interacting protein kinase (Hipk), tumor cells display elevated aerobic glycolysis. Mechanistically, elevated Hipk drives transcriptional upregulation of Drosophila Myc (dMyc; MYC in vertebrates) likely through convergence of multiple perturbed signaling cascades. dMyc induces robust expression of pfk2 (encoding 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase; PFKFB in vertebrates) among other glycolytic genes. Pfk2 catalyzes the synthesis of fructose-2,6-bisphosphate, which acts as a potent allosteric activator of Phosphofructokinase (Pfk) and thus stimulates glycolysis. Pfk2 and Pfk in turn are required to sustain dMyc protein accumulation post-transcriptionally, establishing a positive feedback loop. Disruption of the loop abrogates tumorous growth. Together, our study demonstrates a reciprocal stimulation of Myc and aerobic glycolysis and identifies the Pfk2-Pfk governed committed step of glycolysis as a metabolic vulnerability during tumorigenesis. Cancer arises when cells in the body divide and grow excessively. These cells will often also take up more glucose than normal cells and break it down into another chemical known as lactate faster. This change to the chemical reactions happening within the cell, also called a metabolic change, is required to help produce the extra DNA, proteins and fatty molecules that it needs to grow. Elevated levels of certain proteins can trigger the changes that lead to the growth of tumors. MYC (called dMyc in fruit flies) is one of these proteins. It controls cell division and increases the production of enzymes that break down glucose. Hipk is another protein that can induce tumor growth in fruit flies, but how it does so was unknown. Here, Wong et al. show that high levels of Hipk boost glucose metabolism and accumulation of dMyc protein in fruit fly cells. They also describe the link between increased glucose metabolism and uncontrolled cell division. First, fruit fly cells were fed a fluorescent molecule similar to glucose that cannot be broken down by the cells. This experiment established that glucose uptake increases in cells with too much Hipk. These cells also break down glucose faster, confirming that they have increased glucose metabolism. Cells with high levels of Hipk also activate the genes that generate the enzymes involved in glucose breakdown, and increase the activity of the gene coding for dMyc. Levels of the dMyc protein are higher in these cells, which was shown by staining the cells with fluorescent molecules that specifically bind the dMyc protein. It is this buildup of dMyc protein that activates the genes coding for the enzymes responsible for glucose breakdown. PFK2 is one of these enzymes. Finally, Wong et al. inhibited the production of the enzymes that are elevated in cells with high Hipk. Stopping the production of PFK2 prevents both tumor growth and the accumulation of dMyc protein. This shows that high levels of dMyc increase PFK2 levels, leading to further dMyc buildup, and creating a loop that links the uncontrolled cell division caused by too much dMyc and the shift to higher glucose metabolism. These results highlight new potential targets for cancer therapy, showing that targeting glucose metabolism may reduce, or even stop, tumor growth.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology Development and Disease, Simon Fraser University, Burnaby, Canada
| | - Jenny Zhe Liao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada.,Centre for Cell Biology Development and Disease, Simon Fraser University, Burnaby, Canada
| |
Collapse
|
20
|
Steinmetz EL, Dewald DN, Walldorf U. Homeodomain-interacting protein kinase phosphorylates the Drosophila Paired box protein 6 (Pax6) homologues Twin of eyeless and Eyeless. INSECT MOLECULAR BIOLOGY 2018; 27:198-211. [PMID: 29205612 DOI: 10.1111/imb.12363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Homeodomain-interacting protein kinase (Hipk), the Drosophila homologue of mammalian HIPK2, plays several important roles in regulating differentiation, proliferation, apoptosis, and stress responses and acts as a mediator for signals of diverse pathways, such as Notch or Wingless signalling. The Paired box protein 6 (Pax6) has two Drosophila homologues, Twin of eyeless (Toy) and Eyeless (Ey). Both stand atop the retinal determination gene network (RDGN), which is essential for proper eye development in Drosophila. Here, we set Hipk and the master regulators Toy and Ey in an enzyme-substrate relationship. Furthermore, we prove a physical interaction between Toy and Hipk in vivo using bimolecular fluorescence complementation. Using in vitro kinase assays with different truncated Toy constructs and mutational analyses, we mapped four Hipk phosphorylation sites of Toy, one in the paired domain (Ser121 ) and three in the C-terminal transactivation domain of Toy (Thr395 , Ser410 and Thr452 ). The interaction and phosphorylation of the master regulator Toy by Hipk may be important for precise tuning of signalling within the RDGN and therefore for Drosophila eye development.
Collapse
Affiliation(s)
- E L Steinmetz
- Developmental Biology, Saarland University, Homburg, Germany
| | - D N Dewald
- Developmental Biology, Saarland University, Homburg, Germany
| | - U Walldorf
- Developmental Biology, Saarland University, Homburg, Germany
| |
Collapse
|
21
|
Fulford A, Tapon N, Ribeiro PS. Upstairs, downstairs: spatial regulation of Hippo signalling. Curr Opin Cell Biol 2018; 51:22-32. [PMID: 29154163 DOI: 10.1016/j.ceb.2017.10.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022]
Abstract
Cellular signalling lies at the heart of every decision involved in the development and homeostasis of multicellular organisms. The Hippo pathway was discovered nearly two decades ago through seminal work in Drosophila and rapidly emerged as a crucial signalling network implicated in developmental and oncogenic growth, tissue regeneration and stem cell biology. Here, we review recent advances in the field relating to the upstream regulation of Hippo signalling and the intracellular tug-of-war that tightly controls its main target, the transcriptional co-activator Yorkie/YAP.
Collapse
Affiliation(s)
- Alexander Fulford
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Nicolas Tapon
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Paulo S Ribeiro
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
22
|
Blaquiere JA, Wong KKL, Kinsey SD, Wu J, Verheyen EM. Homeodomain-interacting protein kinase promotes tumorigenesis and metastatic cell behavior. Dis Model Mech 2018; 11:dmm.031146. [PMID: 29208636 PMCID: PMC5818076 DOI: 10.1242/dmm.031146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/08/2017] [Indexed: 12/21/2022] Open
Abstract
Aberrations in signaling pathways that regulate tissue growth often lead to tumorigenesis. Homeodomain-interacting protein kinase (Hipk) family members are reported to have distinct and contradictory effects on cell proliferation and tissue growth. From these studies, it is clear that much remains to be learned about the roles of Hipk family protein kinases in proliferation and cell behavior. Previous work has shown that Drosophila Hipk is a potent growth regulator, thus we predicted that it could have a role in tumorigenesis. In our study of Hipk-induced phenotypes, we observed the formation of tumor-like structures in multiple cell types in larvae and adults. Furthermore, elevated Hipk in epithelial cells induces cell spreading, invasion and epithelial-to-mesenchymal transition (EMT) in the imaginal disc. Further evidence comes from cell culture studies, in which we expressed Drosophila Hipk in human breast cancer cells and showed that it enhances proliferation and migration. Past studies have shown that Hipk can promote the action of conserved pathways implicated in cancer and EMT, such as Wnt/Wingless, Hippo, Notch and JNK. We show that Hipk phenotypes are not likely to arise from activation of a single target, but rather through a cumulative effect on numerous target pathways. Most Drosophila tumor models involve mutations in multiple genes, such as the well-known RasV12 model, in which EMT and invasiveness occur after the additional loss of the tumor suppressor gene scribble. Our study reveals that elevated levels of Hipk on their own can promote both hyperproliferation and invasive cell behavior, suggesting that Hipk family members could be potent oncogenes and drivers of EMT. Summary: The protein kinase Hipk can promote proliferation and invasive behaviors, and can synergize with known cancer pathways, in a new Drosophila model for tumorigenesis.
Collapse
Affiliation(s)
- Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Stephen D Kinsey
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Jin Wu
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6
| |
Collapse
|
23
|
A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues. G3-GENES GENOMES GENETICS 2017; 7:2497-2509. [PMID: 28611255 PMCID: PMC5555457 DOI: 10.1534/g3.117.043513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein networks. To gain insight into the molecular mechanisms that coordinate cell polarity with tissue growth, we screened a boutique collection of RNAi stocks targeting the kinome for their capacity to modify Drosophila “cell polarity” eye and wing phenotypes. Initially, we identified kinase or phosphatase genes whose depletion modified adult eye phenotypes associated with the manipulation of cell polarity complexes (via overexpression of Crb or aPKC). We next conducted a secondary screen to test whether these cell polarity modifiers altered tissue overgrowth associated with depletion of Lgl in the wing. These screens identified Hippo, Jun kinase (JNK), and Notch signaling pathways, previously linked to cell polarity regulation of tissue growth. Furthermore, novel pathways not previously connected to cell polarity regulation of tissue growth were identified, including Wingless (Wg/Wnt), Ras, and lipid/Phospho-inositol-3-kinase (PI3K) signaling pathways. Additionally, we demonstrated that the “nutrient sensing” kinases Salt Inducible Kinase 2 and 3 (SIK2 and 3) are potent modifiers of cell polarity phenotypes and regulators of tissue growth. Overall, our screen has revealed novel cell polarity-interacting kinases and phosphatases that affect tissue growth, providing a platform for investigating molecular mechanisms coordinating cell polarity and tissue growth during development.
Collapse
|
24
|
Kim MH, Kim J. Role of YAP/TAZ transcriptional regulators in resistance to anti-cancer therapies. Cell Mol Life Sci 2017; 74:1457-1474. [PMID: 27826640 PMCID: PMC11107740 DOI: 10.1007/s00018-016-2412-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/15/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
A diverse range of drug resistance mechanisms in cancer cells and their microenvironment significantly reduces the effectiveness of anti-cancer therapies. Growing evidence suggests that transcriptional effectors of the Hippo pathway, YAP and TAZ, promote resistance to various anti-cancer therapies, including cytotoxic chemotherapy, molecular targeted therapy, and radiation therapy. Here, we overview the role of YAP and TAZ as drug resistance mediators, and also discuss potential upstream regulators and downstream targets of YAP/TAZ in cancer. The widespread involvement of YAP and TAZ in resistance mechanisms suggests that therapeutic targeting of YAP and TAZ may expedite the development of effective anti-resistance therapies.
Collapse
Affiliation(s)
- Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, 291 Daehak-ro, Taejon, 34141, Republic of Korea.
| |
Collapse
|
25
|
Blaquiere JA, Verheyen EM. Homeodomain-Interacting Protein Kinases: Diverse and Complex Roles in Development and Disease. Curr Top Dev Biol 2016; 123:73-103. [PMID: 28236976 DOI: 10.1016/bs.ctdb.2016.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Homeodomain-interacting protein kinase (Hipk) family of proteins plays diverse, and at times conflicting, biological roles in normal development and disease. In this review we will highlight developmental and cellular roles for Hipk proteins, with an emphasis on the pleiotropic and essential physiological roles revealed through genetic studies. We discuss the myriad ways of regulating Hipk protein function, and how these may contribute to the diverse cellular roles. Furthermore we will describe the context-specific activities of Hipk family members in diseases such as cancer and fibrosis, including seemingly contradictory tumor-suppressive and oncogenic activities. Given the diverse signaling pathways regulated by Hipk proteins, it is likely that Hipks act to fine-tune signaling and may mediate cross talk in certain contexts. Such regulation is emerging as vital for development and in disease.
Collapse
Affiliation(s)
- Jessica A Blaquiere
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
26
|
Aurora A kinase activates YAP signaling in triple-negative breast cancer. Oncogene 2016; 36:1265-1275. [PMID: 27593935 DOI: 10.1038/onc.2016.292] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 02/08/2023]
Abstract
The Yes-associated protein (YAP) is an effector that transduces the output of the Hippo pathway to transcriptional modulation. Considering the role of YAP in cancers, this protein has emerged as a key node in malignancy development. In this study, we determined that Aurora A kinase acts as a positive regulator for YAP-mediated transcriptional machinery. Specifically, YAP associates with Aurora A predominantly in the nucleus. Activation of Aurora A can impinge on YAP activity through direct phosphorylation. Moreover, aberrant expression of YAP and Aurora A signaling is highly correlated with triple-negative breast cancer (TNBC). We herein provide evidence to establish the functional relevance of this newly discovered regulatory axis in TNBC.
Collapse
|
27
|
Abstract
The mammalian MST kinase family, which is related to the Hippo kinase in Drosophila melanogaster, includes five related proteins: MST1 (also called STK4), MST2 (also called STK3), MST3 (also called STK24), MST4, and YSK1 (also called STK25 or SOK1). MST kinases are emerging as key signaling molecules that influence cell proliferation, organ size, cell migration, and cell polarity. Here we review the regulation and function of these kinases in normal physiology and pathologies, including cancer, endothelial malformations, and autoimmune disease.
Collapse
Affiliation(s)
| | - Erik Sahai
- The Francis Crick Institute, London WC2A 3LY, England, UK
| |
Collapse
|
28
|
Scaling the Drosophila Wing: TOR-Dependent Target Gene Access by the Hippo Pathway Transducer Yorkie. PLoS Biol 2015; 13:e1002274. [PMID: 26474042 PMCID: PMC4608745 DOI: 10.1371/journal.pbio.1002274] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022] Open
Abstract
Organ growth is controlled by patterning signals that operate locally (e.g., Wingless/Ints [Wnts], Bone Morphogenetic Proteins [BMPs], and Hedgehogs [Hhs]) and scaled by nutrient-dependent signals that act systemically (e.g., Insulin-like peptides [ILPs] transduced by the Target of Rapamycin [TOR] pathway). How cells integrate these distinct inputs to generate organs of the appropriate size and shape is largely unknown. The transcriptional coactivator Yorkie (Yki, a YES-Associated Protein, or YAP) acts downstream of patterning morphogens and other tissue-intrinsic signals to promote organ growth. Yki activity is regulated primarily by the Warts/Hippo (Wts/Hpo) tumour suppressor pathway, which impedes nuclear access of Yki by a cytoplasmic tethering mechanism. Here, we show that the TOR pathway regulates Yki by a separate and novel mechanism in the Drosophila wing. Instead of controlling Yki nuclear access, TOR signaling governs Yki action after it reaches the nucleus by allowing it to gain access to its target genes. When TOR activity is inhibited, Yki accumulates in the nucleus but is sequestered from its normal growth-promoting target genes—a phenomenon we term “nuclear seclusion.” Hence, we posit that in addition to its well-known role in stimulating cellular metabolism in response to nutrients, TOR also promotes wing growth by liberating Yki from nuclear seclusion, a parallel pathway that we propose contributes to the scaling of wing size with nutrient availability. From dwarves to giants, scaling is a universal property of animal organs, but its mechanistic basis is poorly understood. Here, the authors identify a molecular circuit underlying scaling of the Drosophila wing. What mechanisms control the sizes of animal organs? It is known that organ growth is the product of two systems: an intrinsic system that coordinates cell proliferation with the specification of cell fate (patterning), and an extrinsic system that synchronizes growth with nutrient levels. Developing organs integrate these two inputs to ensure that properly proportioned structures develop which are of the right scale to match overall body size. However, the mechanisms used to integrate these distinct growth control systems have remained largely mysterious. In this study, we have addressed how intrinsic and extrinsic systems combine to drive growth of the Drosophila wing. Focusing on the Target of Rapamycin (TOR) pathway—a major, nutrient-dependent regulator of organ growth—and Yorkie—the transcriptional activator downstream of the Hippo pathway and a key, organ-intrinsic growth regulator—we have identified a circuit in which TOR activity limits Yorkie’s capacity to promote wing growth, in part through a novel mode of transcription factor regulation that we term “nuclear seclusion.” We find that inhibiting TOR leads to the retention of Yorkie in the nucleus but diminishes its transcriptional activity by diverting it away from target genes. We posit that subjugating Yorkie in this way contributes to how fluctuations in TOR activity scale wing size according to nutrient levels.
Collapse
|
29
|
Reuven N, Adler J, Porat Z, Polonio-Vallon T, Hofmann TG, Shaul Y. The Tyrosine Kinase c-Abl Promotes Homeodomain-interacting Protein Kinase 2 (HIPK2) Accumulation and Activation in Response to DNA Damage. J Biol Chem 2015; 290:16478-88. [PMID: 25944899 DOI: 10.1074/jbc.m114.628982] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Indexed: 12/31/2022] Open
Abstract
The non-receptor tyrosine kinase c-Abl is activated in response to DNA damage and induces p73-dependent apoptosis. Here, we investigated c-Abl regulation of the homeodomain-interacting protein kinase 2 (HIPK2), an important regulator of p53-dependent apoptosis. c-Abl phosphorylated HIPK2 at several sites, and phosphorylation by c-Abl protected HIPK2 from degradation mediated by the ubiquitin E3 ligase Siah-1. c-Abl and HIPK2 synergized in activating p53 on apoptotic promoters in a reporter assay, and c-Abl was required for endogenous HIPK2 accumulation and phosphorylation of p53 at Ser(46) in response to DNA damage by γ- and UV radiation. Accumulation of HIPK2 in nuclear speckles and association with promyelocytic leukemia protein (PML) in response to DNA damage were also dependent on c-Abl activity. At high cell density, the Hippo pathway inhibits DNA damage-induced c-Abl activation. Under this condition, DNA damage-induced HIPK2 accumulation, phosphorylation of p53 at Ser(46), and apoptosis were attenuated. These data demonstrate a new mechanism for the induction of DNA damage-induced apoptosis by c-Abl and illustrate network interactions between serine/threonine and tyrosine kinases that dictate cell fate.
Collapse
Affiliation(s)
- Nina Reuven
- From the Department of Molecular Genetics and
| | - Julia Adler
- From the Department of Molecular Genetics and
| | - Ziv Porat
- the Biological Services Unit, Weizmann Institute of Science, Rehovot 76100, Israel and
| | - Tilman Polonio-Vallon
- the Cellular Senescence Group, Cell and Tumor Biology Program, Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Thomas G Hofmann
- the Cellular Senescence Group, Cell and Tumor Biology Program, Deutsches Krebsforschungszentrum (DKFZ), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Yosef Shaul
- From the Department of Molecular Genetics and
| |
Collapse
|
30
|
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai, China 200032
| | - Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
| | - Steven W. Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
31
|
Abstract
Over the past decade, discoveries on Hippo signaling have revealed a complex signaling network integrating various signaling pathways to modulate tissue homeostasis, organ size control, tissue repair, and regeneration. Malfunction of the Hippo pathway is associated with tumor and cancer development. Moreover, Hippo signaling has been proposed to act in numerous stem cells in a variety of organisms. Recently, more attention has been paid to define the functions of the Hippo pathway in tissue-specific stem cells, which have great potential to be used in cell-based therapies. Here we provide an overview of its roles in regulating stem cells in epithelial tissues and its potential implications in related cancers.
Collapse
Affiliation(s)
- Meng-Xin Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
32
|
Del Re DP. The hippo signaling pathway: implications for heart regeneration and disease. Clin Transl Med 2014; 3:27. [PMID: 26932373 PMCID: PMC4884045 DOI: 10.1186/s40169-014-0027-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/22/2014] [Indexed: 12/12/2022] Open
Abstract
Control of cell number and organ size is critical for appropriate development and tissue homeostasis. Studies in both Drosophila and mammals have established the Hippo signaling pathway as an important modulator of organ size and tumorigenesis. Upon activation, this kinase cascade modulates gene expression through the phosphorylation and inhibition of transcription co-activators that are involved in cell proliferation, differentiation, growth and apoptosis. Hippo signaling serves to limit organ size and suppress malignancies, and has been implicated in tissue regeneration following injury. These outcomes highlight the important role that Hippo signaling plays in regulating both physiologic and pathologic processes. In this review, an overview of the signaling pathway will be discussed as well as recent work that has investigated its role in cardiac development, regeneration and disease.
Collapse
Affiliation(s)
- Dominic P Del Re
- Cardiovascular Research Institute and Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers Newark, 07103, NJ, USA.
| |
Collapse
|
33
|
Dewald DN, Steinmetz EL, Walldorf U. Homeodomain-interacting protein kinase (Hipk) phosphorylates the small SPOC family protein Spenito. INSECT MOLECULAR BIOLOGY 2014; 23:706-719. [PMID: 25040100 DOI: 10.1111/imb.12117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The Drosophila homeodomain-interacting protein kinase (Hipk) is a versatile regulator involved in a variety of pathways, such as Notch and Wingless signalling, thereby acting in processes including the promotion of eye development or control of cell numbers in the nervous system. In vertebrates, extensive studies have related its homologue HIPK2 to important roles in the control of p53-mediated apoptosis and tumour suppression. Spenito (Nito) belongs to the group of small SPOC family proteins and has a role, amongst others, as a regulator of Wingless signalling downstream of Armadillo. In the present study, we show that both proteins have an enzyme-substrate relationship, adding a new interesting component to the broad range of Hipk interactions, and we map several phosphorylation sites of Nito. Furthermore, we were able to define a preliminary consensus motif for Hipk target sites, which will simplify the identification of new substrates of this kinase.
Collapse
Affiliation(s)
- D N Dewald
- Developmental Biology, Saarland University, Homburg, Germany
| | | | | |
Collapse
|
34
|
Wook Choi D, Yong Choi C. HIPK2 modification code for cell death and survival. Mol Cell Oncol 2014; 1:e955999. [PMID: 27308327 PMCID: PMC4905192 DOI: 10.1080/23723548.2014.955999] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 11/03/2022]
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine protein kinase that participates in the regulation of diverse cellular activities as a transcriptional cofactor and signal transducer. HIPK2 senses various signaling cues that in turn phosphorylate downstream substrates to coordinate developmental processes, cell cycle regulation, cell proliferation, differentiation, and the DNA damage response. HIPK2 functions are affected by its catalytic activity, stability, and subcellular localization, which in turn are dynamically regulated by diverse post-translational modifications such as polyubiquitination, SUMOylation, phosphorylation, and acetylation. HIPK2 is not modified with small molecules and/or peptides individually or independently, but in a combinatorial manner that is referred to as the “HIPK2 modification code.” HIPK2 integrates various signaling cues and senses different doses of DNA damage and ROS stimuli, which are reflected by unique patterns of HIPK2 modification. Hence, the HIPK2 modification code differentially contributes to cellular homeostasis and determination of cell fate depending on cellular context.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Sciences; Sungkyunkwan University ; Suwon, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences; Sungkyunkwan University ; Suwon, Republic of Korea
| |
Collapse
|
35
|
The Hippo pathway controls border cell migration through distinct mechanisms in outer border cells and polar cells of the Drosophila ovary. Genetics 2014; 198:1087-99. [PMID: 25161211 DOI: 10.1534/genetics.114.167346] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Hippo pathway is a key signaling cascade in controlling organ size. The core components of this pathway are two kinases, Hippo (Hpo) and Warts (Wts), and a transcriptional coactivator, Yorkie (Yki). Yes-associated protein (YAP, a Yki homolog in mammals) promotes epithelial-mesenchymal transition and cell migration in vitro. Here, we use border cells in the Drosophila ovary as a model to study Hippo pathway functions in cell migration in vivo. During oogenesis, polar cells secrete Unpaired (Upd), which activates JAK/STAT signaling of neighboring cells and specifies them into outer border cells. The outer border cells form a cluster with polar cells and undergo migration. We find that hpo and wts are required for migration of the border cell cluster. In outer border cells, overexpression of hpo disrupts polarization of the actin cytoskeleton and attenuates migration. In polar cells, knockdown of hpo and wts or overexpression of yki impairs border cell induction and disrupts migration. These manipulations in polar cells reduce JAK/STAT activity in outer border cells. Expression of upd-lacZ is increased and decreased in yki and hpo mutant polar cells, respectively. Furthermore, forced expression of upd in polar cells rescues defects of border cell induction and migration caused by wts knockdown. These results suggest that Yki negatively regulates border cell induction by inhibiting JAK/STAT signaling. Together, our data elucidate two distinct mechanisms of the Hippo pathway in controlling border cell migration: (1) in outer border cells, it regulates polarized distribution of the actin cytoskeleton; (2) in polar cells, it regulates upd expression to control border cell induction and migration.
Collapse
|
36
|
Abstract
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
37
|
Ferguson GB, Martinez-Agosto JA. Kicking it up a Notch for the best in show: Scalloped leads Yorkie into the haematopoietic arena. Fly (Austin) 2014; 8:206-17. [PMID: 26151599 PMCID: PMC4594362 DOI: 10.1080/19336934.2015.1055427] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/15/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022] Open
Abstract
Maintenance and differentiation of progenitor cells is essential for proper organ development and adaptation to environmental stress and injury. In Drosophila melanogaster, the haematopietic system serves as an ideal model for interrogating the function of signaling pathways required for progenitor maintenance and cell fate determination. Here we focus on the role of the Hippo pathway effectors Yorkie and Scalloped in mediating and facilitating Notch signaling-mediated lineage specification in the lymph gland, the primary center for haematopoiesis within the developing larva. We discuss the regulatory mechanisms which promote Notch activity during normal haematopoiesis and its modulation during immune challenge conditions. We provide additional evidence establishing the hierarchy of signaling events during crystal cell formation, highlighting the relationship between Yorkie, Scalloped and Lozenge, while expanding on the role of Yorkie in promoting hemocyte survival and the developmental regulation of Notch and its ligand, Serrate, within the lymph gland. Finally, we propose additional areas of exploration that may provide mechanistic insight into the environmental and non-cell autonomous regulation of cell fate in the blood system.
Collapse
Affiliation(s)
- Gabriel B Ferguson
- Department of Human Genetics; David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
| | - Julian A Martinez-Agosto
- Department of Human Genetics; David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
- Molecular Biology Institute; Jonsson Comprehensive Cancer Center; UCLA Broad Stem Cell Center; Mattel Children's Hospital UCLA; David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
| |
Collapse
|
38
|
Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2013; 13:63-79. [PMID: 24336504 DOI: 10.1038/nrd4161] [Citation(s) in RCA: 704] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Hippo signalling pathway is an emerging growth control and tumour suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signalling and hyperactivation of its downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) contribute to the development of cancer, which suggests that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also have beneficial roles in stimulating tissue repair and regeneration following injury, so their activation may be therapeutically useful in these contexts. A complex network of intracellular and extracellular signalling pathways that modulate YAP and TAZ activities have recently been identified. Here, we review the regulation of the Hippo signalling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small-molecule pathway modulators.
Collapse
Affiliation(s)
- Randy Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [2] Genes and Development Program, and Cancer Biology Program, Graduate School for Biological Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [3] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Georg Halder
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven 3000, Belgium
| |
Collapse
|
39
|
Berber S, Llamosas E, Thaivalappil P, Boag PR, Crossley M, Nicholas HR. Homeodomain interacting protein kinase (HPK-1) is required in the soma for robust germline proliferation in C. elegans. Dev Dyn 2013; 242:1250-61. [PMID: 23904186 DOI: 10.1002/dvdy.24023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Tightly regulated pathways maintain the balance between proliferation and differentiation within stem cell populations. In Caenorhabditis elegans, the germline is the only tissue that is maintained by stem-like cells into adulthood. In the current study, we investigated the role played by a member of the Homeodomain interacting protein kinase (HIPK) family of serine/threonine kinases, HPK-1, in the development and maintenance of the C. elegans germline. RESULTS We report that HPK-1 is required for promotion of germline proliferation during development and into adulthood. Additionally, we show that HPK-1 is required in the soma for regulation of germline proliferation. We also show that HPK-1 is a predominantly nuclear protein expressed in several somatic tissues including germline-interacting somatic cells. CONCLUSIONS Our observations are consistent with a conserved role for HIPKs in the control of cellular proliferation and identify a new context for such control in germ cell proliferation.
Collapse
Affiliation(s)
- Slavica Berber
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
40
|
Hergovich A. Regulation and functions of mammalian LATS/NDR kinases: looking beyond canonical Hippo signalling. Cell Biosci 2013; 3:32. [PMID: 23985307 PMCID: PMC3849777 DOI: 10.1186/2045-3701-3-32] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/30/2013] [Indexed: 02/08/2023] Open
Abstract
The metazoan Hippo pathway is an essential tumour suppressor signalling cascade that ensures normal tissue growth by co-ordinating cell proliferation, cell death and cell differentiation. Over the past years, various genetic and biochemical studies in Drosophila and mammals have defined a conserved core Hippo signalling module, composed of members of the Ste20-like kinase, the MOB co-activator and the AGC kinase families. In Drosophila, stimulated Hippo kinase phosphorylates and thereby activates the Mats/Warts complex, which consequently phosphorylates and inactivates the transcriptional co-activator Yorkie. In mammals, the counterparts of the Hippo/Mats/Warts/Yorkie cascade, namely MST1/2, MOB1A/B, LATS1/2 and YAP/TAZ, function in a similar fashion. These canonical Hippo pathways are so highly conserved that human MST2, hMOB1A and LATS1 can compensate for the loss of Hippo, Mats and Warts in flies. However, recent reports have shown that Hippo signalling is more diverse and complex, in particular in mammals. In this review, we summarize our current understanding of mammalian LATS1/2 kinases together with their closest relatives, the NDR1/2 kinases. The regulation of the LATS/NDR family of kinases will be discussed, followed by a summary of all currently known LATS/NDR substrates. Last, but not least, the biological roles of LATS/NDR kinases will be reviewed with specific emphasis on recent discoveries of canonical and non-canonical LATS/NDR functions in the extended Hippo pathway.
Collapse
Affiliation(s)
- Alexander Hergovich
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
41
|
Riquiqui and minibrain are regulators of the hippo pathway downstream of Dachsous. Nat Cell Biol 2013; 15:1176-85. [PMID: 23955303 DOI: 10.1038/ncb2829] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
The atypical cadherins Fat (Ft) and Dachsous (Ds) control tissue growth through the Salvador-Warts-Hippo (SWH) pathway, and also regulate planar cell polarity and morphogenesis. Ft and Ds engage in reciprocal signalling as both proteins can serve as receptor and ligand for each other. The intracellular domains (ICDs) of Ft and Ds regulate the activity of the key SWH pathway transcriptional co-activator protein Yorkie (Yki). Signalling from the FtICD is well characterized and controls tissue growth by regulating the abundance of the Yki-repressive kinase Warts (Wts). Here we identify two regulators of the Drosophila melanogaster SWH pathway that function downstream of the DsICD: the WD40 repeat protein Riquiqui (Riq) and the DYRK-family kinase Minibrain (Mnb). Ds physically interacts with Riq, which binds to both Mnb and Wts. Riq and Mnb promote Yki-dependent tissue growth by stimulating phosphorylation-dependent inhibition of Wts. Thus, we describe a previously unknown branch of the SWH pathway that controls tissue growth downstream of Ds.
Collapse
|
42
|
Affiliation(s)
- Emad Heidary Arash
- Department of Biochemistry and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Liliana Attisano
- Department of Biochemistry and Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
43
|
Morrison JT, Bantilan NS, Wang VN, Nellett KM, Cruz YP. Expression patterns of Oct4, Cdx2, Tead4, and Yap1 proteins during blastocyst formation in embryos of the marsupial,Monodelphis domesticaWagner. Evol Dev 2013; 15:171-85. [DOI: 10.1111/ede.12031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- J. T. Morrison
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - N. S. Bantilan
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - V. N. Wang
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - K. M. Nellett
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| | - Y. P. Cruz
- Department of Biology; Oberlin College; Oberlin, OH 44074; USA
| |
Collapse
|
44
|
Huang H, Wu W, Zhang L, Liu XY. Drosophila ste-20 family protein kinase, hippo, modulates fat cell proliferation. PLoS One 2013; 8:e61740. [PMID: 23637896 PMCID: PMC3630116 DOI: 10.1371/journal.pone.0061740] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/15/2013] [Indexed: 01/10/2023] Open
Abstract
Background Evolutionarily conserved Hippo (Hpo) pathway plays a pivotal role in the control of organ size. Although the Hpo pathway regulates proliferation of a variety of epidermal cells, its function in non-ectoderm-derived cells is largely unknown. Methodology/Principal Findings Through methods including fat quantification assays, starvation assays, in vivo labeling assays, we show that overexpression of Hpo in Drosophila melanogaster fat body restricts Drosophila body growth and reduces fat storage through regulation of adipocyte proliferation rather than through influencing the size of fat cells and lipid metabolism, whereas compromising Hpo activity results in weight gain and greater fat storage. Furthermore, we provide evidence that Yorkie (Yki, a transcriptional coactivator that functions in the Hpo pathway) antagonizes Hpo to modulate fat storage in Drosophila. Conclusions/Significance Our findings specify a role of Hpo in controlling mesoderm-derived cell proliferation. The observed anti-obesity effects of Hpo may indicate great potential for its utilization in anti-obesity therapeutics.
Collapse
Affiliation(s)
- Hongling Huang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- * E-mail: (LZ); (XL)
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, P.R. China
- Xinyuan Institute of Medicine and Biotechnology, College of Biological Sciences, Zhejiang Sci-Tech University, Hangzhou, China
- * E-mail: (LZ); (XL)
| |
Collapse
|
45
|
Abstract
The Hippo pathway controls organ size in diverse species, whereas pathway deregulation can induce tumours in model organisms and occurs in a broad range of human carcinomas, including lung, colorectal, ovarian and liver cancer. Despite this, somatic or germline mutations in Hippo pathway genes are uncommon, with only the upstream pathway gene neurofibromin 2 (NF2) recognized as a bona fide tumour suppressor gene. In this Review, we appraise the evidence for the Hippo pathway as a cancer signalling network, and discuss cancer-relevant biological functions, potential mechanisms by which Hippo pathway activity is altered in cancer and emerging therapeutic strategies.
Collapse
Affiliation(s)
- Kieran F Harvey
- Peter MacCallum Cancer Centre, 7 St Andrews Place, East Melbourne, Victoria 3002, Australia.
| | | | | |
Collapse
|