1
|
Yan H, Chen J, Qing E, Li X, Wang W, Ling Z, Chen Z, Jiang S, Yan Y, Deng S, Hu J, Li L, Wang J, Hu S. Developmental variations of the reproductive organs of ganders from different goose breeds and the underlying mechanisms. Poult Sci 2024; 103:104233. [PMID: 39214052 PMCID: PMC11402047 DOI: 10.1016/j.psj.2024.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
A deep understanding of the dynamics and mechanisms of male reproductive tract development is necessary for adoption of either genetic techniques or environmental management practices for improving fertility and hatchability in poultry. However, compared with other poultry such as chickens and ducks, less is known about the age- and breed-related changes in the reproductive tract development of domestic goose ganders exhibiting relatively poor reproductive performance as well as the regulatory mechanisms. In the present study, by taking 2 Chinese domestic goose breeds (Sichuan White goose, SW and Gang goose, GE; Anser cygnoides) and one European goose breed (Landes goose, LD; Anser anser) as the experimental objects, we comprehensive analyzed the morphological, histological, and genome-wide transcriptomic variations in their testicular and external genital development during the period from hatching to sexual maturity. Results from histomorphological analysis demonstrated that the reproductive tract of all goose breeds developed in both age- and breed-dependent manners, and the left and right testis developed asymmetrically throughout posthatch development. The tenth week posthatch was a critical developmental stage for all goose ganders, because both the testicular and external genital histomorphological parameters significantly changed before and after this period. During the first 10 wk posthatch, the weight, organ index, or size of male reproductive organs developed more rapidly in SW than in LD, and so were the testicular parenchymal-to-interstitial ratio and the external genital lymphatic lumen diameter. However, the testicular seminiferous epithelium thickness, seminiferous tubule diameter, and Leydig cell number, as well as the external genital keratinized epithelium thickness were significantly higher in LD than in SW at 10 wk of age. Through comparative transcriptomics analysis and RT-qPCR validation, several pathways related to germ and somatic cell function, organ remodeling, and energy metabolism were thought to be responsible for the developmental variations in the early testicular development between Chinese and European domestic ganders, where 10 hub genes involved in the cell cycle, RNA polymerase II-dependent transcription, and mitotic cell division pathways might play essential roles. These data shed new light on the interbreed differences in the male goose reproductive tract development and the molecular mechanisms regulating male goose testicular functions and fertility.
Collapse
Affiliation(s)
- Haoyu Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiasen Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Enhua Qing
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaopeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Wanxia Wang
- Department of Animal Production, General Station of Animal Husbandry of Sichuan Province, Chengdu 610041, China
| | - Zihan Ling
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengyang Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuhan Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yue Yan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shilin Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory of Livestock and Poultry Multi-omics Ministry of Agriculture and Rural Affair, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
2
|
Hu X, Li J, Xin S, Ouyang Q, Li J, Zhu L, Hu J, He H, Liu H, Li L, Hu S, Wang J. Genome sequencing of drake semen micobiome with correlation with their compositions, sources and potential mechanisms affecting semen quality. Poult Sci 2024; 103:103533. [PMID: 38359770 PMCID: PMC10878113 DOI: 10.1016/j.psj.2024.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Artificial insemination (AI) technology has greatly promoted the development of the chicken industry. Recently, AI technology has also begun to be used in the duck industry, but there are some problems. Numerous researchers have shown that microbes colonizing in semen can degrade semen quality, and AI can increase the harmful microbial load in hen's reproductive tract. Different from the degraded external genitalia of roosters, drakes have well-developed external genitalia, which may cause drake semen to be more susceptible to microbial contamination. However, information on the compositions, sources, and effects of semen microbes on semen quality remains unknown in drakes. In the current study, high-throughput sequencing technology was used to detect microbial communities in drake semen, environmental swabs, cloacal swabs, and the spermaduct after quantifying the semen quality of drakes to investigate the effects of microbes in the environment, cloaca, and spermaduct on semen microbiota and the relationships between semen microbes and semen quality. Taxonomic analysis showed that the microbes in the semen, environment, cloaca, and spermaduct samples were all classified into 4 phyla and 25 genera. Firmicutes and Proteobacteria were the dominant phyla. Phyllobacterium only existed in the environment, while Marinococcus did not exist in the cloaca. Of the 24 genera present in semen: Brachybacterium, Brochothrix, Chryseobacterium, Kocuria, Marinococcus, Micrococcus, Rothia, Salinicoccus, and Staphylococcus originated from the environment; Achromobacter, Aerococcus, Corynebacterium, Desemzia, Enterococcus, Jeotgalicoccus, Pseudomonas, Psychrobacter, and Turicibacter originated from the cloaca; and Agrobacterium, Carnobacterium, Chelativorans, Devosia, Halomonas, and Oceanicaulis originated from the spermaduct. In addition, K-means clustering analysis showed that semen samples could be divided into 2 clusters based on microbial compositions, and compared with cluster 1, the counts of Chelativorans (P < 0.05), Devosia (P < 0.01), Halomonas (P < 0.05), and Oceanicaulis (P < 0.05) were higher in cluster 2, while the sperm viability (P < 0.05), total sperm number (P < 0.01), and semen quality factor (SQF) (P < 0.01) were lower in cluster 2. Furthermore, functional prediction analysis of microbes showed that the activities of starch and sucrose metabolism, phosphotransferase system, ABC transporters, microbial metabolism in diverse environments, and quorum sensing pathways between cluster 1 and cluster 2 were significantly different (P < 0.05). Overall, environmental/cloacal microbes resulted in semen contamination, and microbes from the Chelativorans, Devosia, Halomonas, and Oceanicaulis genera may have negative effects on semen quality in drakes by affecting the activities of starch and sucrose metabolism, phosphotransferase system, ABC transporters, and quorum sensing pathways that are associated with carbohydrate metabolism. These data will provide a basis for developing strategies to prevent microbial contamination of drake semen.
Collapse
Affiliation(s)
- Xinyue Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jie Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shuai Xin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jialu Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Lipeng Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
3
|
Haller M, Yin Y, Haller G, Li T, Li Q, Lamb LE, Ma L. Streamlined identification of clinically and functionally relevant genetic regulators of lower-tract urogenital development. Proc Natl Acad Sci U S A 2024; 121:e2309466121. [PMID: 38300866 PMCID: PMC10861909 DOI: 10.1073/pnas.2309466121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/18/2023] [Indexed: 02/03/2024] Open
Abstract
Congenital anomalies of the lower genitourinary (LGU) tract are frequently comorbid due to genetically linked developmental pathways, and are among the most common yet most socially stigmatized congenital phenotypes. Genes involved in sexual differentiation are prime candidates for developmental anomalies of multiple LGU organs, but insufficient prospective screening tools have prevented the rapid identification of causative genes. Androgen signaling is among the most influential modulators of LGU development. The present study uses SpDamID technology in vivo to generate a comprehensive map of the pathways actively regulated by the androgen receptor (AR) in the genitalia in the presence of the p300 coactivator, identifying wingless/integrated (WNT) signaling as a highly enriched AR-regulated pathway in the genitalia. Transcription factor (TF) hits were then assayed for sexually dimorphic expression at two critical time points and also cross-referenced to a database of clinically relevant copy number variations to identify 252 TFs exhibiting copy variation in patients with LGU phenotypes. A subset of 54 TFs was identified for which LGU phenotypes are statistically overrepresented as a proportion of total observed phenotypes. The 252 TF hitlist was then subjected to a functional screen to identify hits whose silencing affects genital mesenchymal growth rates. Overlap of these datasets results in a refined list of 133 TFs of both functional and clinical relevance to LGU development, 31 of which are top priority candidates, including the well-documented renal progenitor regulator, Sall1. Loss of Sall1 was examined in vivo and confirmed to be a powerful regulator of LGU development.
Collapse
Affiliation(s)
- Meade Haller
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Yan Yin
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Gabe Haller
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO63110
| | - Tian Li
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Qiufang Li
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| | - Laura E. Lamb
- Department of Urology, William Beaumont School of Medicine, Oakland University, Rochester, MI48309
| | - Liang Ma
- Division of Dermatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
4
|
Folwell MJ, Sanders KL, Brennan PLR, Crowe-Riddell JM. First evidence of hemiclitores in snakes. Proc Biol Sci 2022; 289:20221702. [PMID: 36515117 PMCID: PMC9748774 DOI: 10.1098/rspb.2022.1702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Female genitalia are conspicuously overlooked in comparison to their male counterparts, limiting our understanding of sexual reproduction across vertebrate lineages. This study is the first complete description of the clitoris (hemiclitores) in female snakes. We describe morphological variation in size and shape (n = 9 species, 4 families) that is potentially comparable to the male intromittent organs in squamate reptiles (hemipenes). Dissection, diffusible iodine contrast-enhanced micro-CT and histology revealed that, unlike lizard hemiclitores, the snake hemiclitores are non-eversible structures. The two individual hemiclitores are separated medially by connective tissue, forming a triangular structure that extends posteriorly. Histology of the hemiclitores in Australian death adders (Acanthophis antarcticus) showed erectile tissue and strands/bundles of nerves, but no spines (as is found in male hemipenes). These histological features suggest the snake hemiclitores have functional significance in mating and definitively show that the hemiclitores are not underdeveloped hemipenes or scent glands, which have been erroneously indicated in other studies. Our discovery supports that hemiclitores have been retained across squamates and provides preliminary evidence of differences in this structure among snake species, which can be used to further understand systematics, reproductive evolution and ecology across squamate reptiles.
Collapse
Affiliation(s)
- Megan J. Folwell
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Kate L. Sanders
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | | | - Jenna M. Crowe-Riddell
- School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia,School of Agriculture, Biomedicine and Environment, La Trobe University, VIC 3086, Australia,Museum of Zoology, University of Michigan, Ann Arbor, MI 48108, USA,Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Brennan PL. Bird genitalia. Curr Biol 2022; 32:R1061-R1062. [DOI: 10.1016/j.cub.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Abstract
Despite their evolutionary and biomedical importance, studies of the morphology and function of female genitalia have continued to lag behind those of male genitalia. While studying female genitalia can be difficult because of their soft, deformable and internal nature, recent advances in imaging, geometric analyses of shape and mechanical testing have been made, allowing for a much greater understanding of the incredible diversity of form and function of female genitalia. Here we summarize some of these methods, as well as discuss some big questions in the field that are beginning to be examined now, and will continue to benefit from further work, especially a comparative approach. Topics of further research include examination of the morphology of female genitalia in situ, in-depth anatomical work in many more species, studies of the interplay between natural and sexual selection in influencing features of vaginal morphology, how these diverse functions influence the mechanical properties of tissues, and studies of clitoris morphology and function across amniotes. Many other research topics related to female genitalia remain largely unexplored, and we hope that the papers in this issue will continue to inspire further research on female genitalia.
Collapse
Affiliation(s)
- Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA
| |
Collapse
|
7
|
Folwell M, Sanders K, Crowe-Riddell J. The Squamate Clitoris: A Review and Directions for Future Research. Integr Comp Biol 2022; 62:icac056. [PMID: 35662336 DOI: 10.1093/icb/icac056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The clitoris is a part of the genitalia of female amniotes that typically functions to stimulate sensory arousal. It usually consists of a small organ that is dimorphic and homologous to the penis. The developing amniote embryo forms a genital tubule, then sex hormones initiate a developmental cascade to form either a penis or clitoris. In squamates (lizards and snakes) the genital tubule develops into a paired hemiphallus structure called the "hemiclitores" in the female and the "hemipenes" in the male. The complex evolution of squamate hemipenes has been extensively researched since early discoveries in the 1800's, and this has uncovered huge diversity in hemipenis size, shape, and ornamentation (e.g., protrusions of spines, hooks, chalices, cups). In contrast, the squamate hemiclitoris has been conspicuously under investigated, and the studies that describe this anatomy are fraught with inconsistences. This paper aims to clarify the current state of knowledge of the squamate hemiclitoris, providing a foundation for further research on its morphology and functional role. We show that while several studies have described the gross anatomy of hemiclitores in lizards, comparative information is entirely lacking for snakes. Several papers cite earlier authors as having reported discoveries of the snake hemiclitores in vipers and colubrid snakes. However, our examination of this reveals only erroneous reports of hemiclitores in snakes and shows that these stem from misinterpretations of the true anatomy or species involved. An especially problematic source of confusion is the presence of intersex individuals in some snake populations; these form reproductively functional ovaries and a single hemipenis, with the latter sometimes mistaken for a hemiclitoris (the intersex hemipenis is usually smaller and less spinous than the male hemipenis). Further research is recommended to identify the defining anatomical features of the squamate hemiclitores. Such studies will form a vital basis of future comparative analyses of variation in female genitalia in squamates and other amniotes.
Collapse
Affiliation(s)
- Megan Folwell
- The University of Adelaide, Faculty of Biological Science
| | - Kate Sanders
- University of Adelaide, Faculty of Biological Science
| | | |
Collapse
|
8
|
Tang B, Hu S, Ouyang Q, Wu T, Lu Y, Hu J, Hu B, Li L, Wang J. Comparative transcriptome analysis identifies crucial candidate genes and pathways in the hypothalamic-pituitary-gonadal axis during external genitalia development of male geese. BMC Genomics 2022; 23:136. [PMID: 35168567 PMCID: PMC8848681 DOI: 10.1186/s12864-022-08374-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/08/2022] [Indexed: 01/25/2023] Open
Abstract
Background All birds reproduce via internal fertilization, but only ~3% of male birds possess the external genitalia that allows for intromission. Waterfowl (e.g., duck and goose) are representatives of them, and the external genitalia development of male geese is directly related to mating ability. Notably, some male geese show abnormal external genitalia development during ontogenesis. However, until now little is known about the molecular mechanisms of the external genitalia development in goose. In the present study, comparative transcriptomic analyses were performed on the hypothalamus, pituitary gland, testis, and external genitalia isolated from the 245-day-old male Tianfu meat geese showing normal (NEGG, n = 3) and abnormal (AEGG, n = 3) external genitals in order to provide a better understanding of the mechanisms controlling the development of the external genitalia in aquatic bird species. Results There were 107, 284, 2192, and 1005 differentially expressed genes (DEGs) identified in the hypothalamus, pituitary gland, testis and external genitalia between NEGG and AEGG. Functional enrichment analysis indicated that the DEGs identified in the hypothalamus were mainly enriched in the ECM-receptor interaction pathway. The ECM-receptor interaction, focal adhesion, and neuroactive ligand-receptor interaction pathways were significantly enriched by the DEGs in the pituitary gland. In the testis, the DEGs were enriched in the neuroactive ligand-receptor interaction, cell cycle, oocyte meiosis, and purine metabolism. In the external genitalia, the DEGs were enriched in the metabolic, neuroactive ligand-receptor interaction, and WNT signaling pathways. Furthermore, through integrated analysis of protein-protein interaction (PPI) network and co-expression network, fifteen genes involved in the neuroactive ligand-receptor interaction and WNT signaling pathways were identified, including KNG1, LPAR2, LPAR3, NPY, PLCB1, AVPR1B, GHSR, GRM3, HTR5A, FSHB, FSHR, WNT11, WNT5A, WIF1, and WNT7B, which could play crucial roles in the development of goose external genitalia. Conclusions This study is the first systematically comparing the hypothalamus, pituitary gland, testis, and external genitalia transcriptomes of male geese exhibiting normal and abnormal external genitals. Both bioinformatic analysis and validation experiments indicated that the neuroactive ligand-receptor interaction pathway could regulate the WNT signaling pathway through PLCB1 to control male goose external genitalia development. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08374-2.
Collapse
Affiliation(s)
- Bincheng Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Tianhao Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Yao Lu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu Campus, Sichuan Agricultural University, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
9
|
Divya D, Bhattacharya TK. Bone morphogenetic proteins (BMPs) and their role in poultry. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1959274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- D. Divya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| | - T. K. Bhattacharya
- Molecular Genetics and Breeding Division, ICAR-Directorate of Poultry Research, Hyderabad, India
| |
Collapse
|
10
|
Amato CM, Yao HHC. Developmental and sexual dimorphic atlas of the prenatal mouse external genitalia at the single-cell level. Proc Natl Acad Sci U S A 2021; 118:e2103856118. [PMID: 34155146 PMCID: PMC8237666 DOI: 10.1073/pnas.2103856118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Birth defects of the external genitalia are among the most common in the world. Proper formation of the external genitalia requires a highly orchestrated process that involves special cell populations and sexually dimorphic hormone signaling. It is clear what the end result of the sexually dimorphic development is (a penis in the male versus clitoris in the female); however, the cell populations involved in the process remain poorly defined. Here, we used single-cell messenger RNA sequencing in mouse embryos to uncover the dynamic changes in cell populations in the external genitalia during the critical morphogenetic window. We found that overall, male and female external genitalia are largely composed of the same core cellular components. At the bipotential stage of development (embryonic day or E14.5), few differences in cell populational composition exist between male and female. Although similar in cell population composition, genetic differences in key sexual differentiation developmental pathways arise between males and females by the early (E16.5) and late (E18.5) differentiation stages. These differences include discrete cell populations with distinct responsiveness to androgen and estrogen. By late sexual differentiation (E18.5), unique cell populations in both male and female genitalia become apparent and are enriched with androgen- and estrogen-responsive genes, respectively. These data provide insights into the morphogenesis of the external genitalia that could be used to understand diseases associated with defects in the external genitalia.
Collapse
Affiliation(s)
- Ciro Maurizio Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| |
Collapse
|
11
|
Effect of the Age and Body Weight of the Broiler Breeders Male on the Presentation of Oxidative Stress and Its Correlation with the Quality of Testicular Parenchyma and Physiological Antioxidant Levels. Vet Sci 2020; 7:vetsci7020069. [PMID: 32466565 PMCID: PMC7356014 DOI: 10.3390/vetsci7020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/19/2022] Open
Abstract
Chicken meat is a food of high nutritional quality; its production requires birds called broilers breeders and looking after all aspects that influence their reproductive capacity. An ongoing controversy exists among researchers related to the weight of the rooster and its fertilization capacity. By histological and biochemical tests, the association between weight and age with oxidant damage, testicular parenchyma and antioxidant capacity was evaluated in Ross 308 roosters. Testicular integrity was assessed by histological analysis, oxidative stress was determined by malondialdehyde content, non-enzymatic antioxidant capacity was determined by oxygen radical absorbance capacity assay and enzymatic antioxidant capacity through glutathione peroxidase, glutathione reductase and glutathione-S-transferase activities. Histological analysis showed vacuolization of the epithelium from the seminiferous tubules. A significant negative association was observed between malondialdehyde and the deterioration of the integrity of the seminiferous epithelium, as well as between age and integrity of the seminiferous epithelium. It became evident that oxidative damage directly affects the quality of testicular parenchyma. Weight and age were not associated with the antioxidant enzymes activities, but with non-enzymatic capacity. The data obtained suggest that weight is not the most important factor that influences the fertility of the rooster.
Collapse
|
12
|
Brennan PL, Orbach DN. Copulatory behavior and its relationship to genital morphology. ADVANCES IN THE STUDY OF BEHAVIOR 2020. [DOI: 10.1016/bs.asb.2020.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Wang S, Zheng Z. Differential cell proliferation and cell death during the urethral groove formation in guinea pig model. Pediatr Res 2019; 86:452-459. [PMID: 30467344 DOI: 10.1038/s41390-018-0236-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/28/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND Urethral groove (UG) formation is an important step in penile formation. Because commonly used animal models do not have UG, the mechanisms of UG formation have never been discovered. We aim to discover the cellular mechanism of the UG formation using guinea pig model. METHODS Histology was used to study the ontogeny of UG. BrdU immunofluorescence was used to label proliferating cells, cell death was determined using LysoTracker Red and TUNEL staining, and stereology was used for quantification. To reveal Shh mRNA expression patterns, in situ hybridization was performed in guinea pig genital tubercles (GTs) and ShhGFPcre-LacZ-reporter mice were used for comparison. RESULTS Cell proliferation in the outer layers and programmed cell death in the inner layers of urethral epithelium played key roles during urethral canal movement from dorsal to ventral aspect and final opening to form UG. Shh mRNA expression domain shifted out to the ventral surface of GT from proximal throughout to distal in guinea pigs, but was excluded from the ventral surface epithelium in midshaft and distal of mouse GT. CONCLUSION Differential cell proliferation and cell death in developing urethral epithelium lead to UG formation and Shh expression in ventral surface epithelium of GT may play an important role.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA
| | - Zhengui Zheng
- Department of Physiology, School of Medicine, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
| |
Collapse
|
14
|
Palaniappan TK, Slekiene L, Gunhaga L, Patthey C. Extensive apoptosis during the formation of the terminal nerve ganglion by olfactory placode-derived cells with distinct molecular markers. Differentiation 2019; 110:8-16. [PMID: 31539705 DOI: 10.1016/j.diff.2019.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022]
Abstract
The terminal nerve ganglion (TNG) is a well-known structure of the peripheral nervous system in cartilaginous and teleost fishes. It derives from the olfactory placode during embryonic development. While the differentiation and migration of gonadotropin releasing hormone (GnRH)-expressing neurons from the olfactory placode has been well documented, the TNG has been neglected in birds and mammals, and its development is less well described. Here we describe the formation of a ganglion-like structure from migratory olfactory placodal cells in chicken. The TNG is surrounded by neural crest cells, but in contrast to other cranial sensory ganglia, we observed no neural crest corridor, and olfactory unsheathing cells appear only after the onset of neuronal migration. We identified Isl1 and Lhx2 as two transcription factors that label neuronal subpopulations in the forming TNG, distinct from GnRH1+ cells, thereby revealing a diversity of cell types during the formation of the TNG. We also provide evidence for extensive apoptosis in the terminal nerve ganglion shortly after its formation, but not in other cranial sensory ganglia. Moreover, at later stages placode-derived neurons expressing GnRH1, Isl1 and/or Lhx2 become incorporated in the telencephalon. The integration of TNG neurons into the telencephalon together with the earlier widespread apoptosis in the TNG might be an explanation why the TNG in mammals and birds is much smaller compared to other vertebrates.
Collapse
Affiliation(s)
| | - Lina Slekiene
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Lena Gunhaga
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
| | - Cedric Patthey
- Umeå Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden.
| |
Collapse
|
15
|
Ching ST, Infante CR, Du W, Sharir A, Park S, Menke DB, Klein OD. Isl1 mediates mesenchymal expansion in the developing external genitalia via regulation of Bmp4, Fgf10 and Wnt5a. Hum Mol Genet 2019; 27:107-119. [PMID: 29126155 DOI: 10.1093/hmg/ddx388] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/25/2017] [Indexed: 12/20/2022] Open
Abstract
Genital malformations are among the most common human birth defects, and both genetic and environmental factors can contribute to these malformations. Development of the external genitalia in mammals relies on complex signaling networks, and disruption of these signaling pathways can lead to genital defects. Islet-1 (ISL1), a member of the LIM/Homeobox family of transcription factors, has been identified as a major susceptibility gene for classic bladder exstrophy in humans, a common form of the bladder exstrophy-epispadias complex (BEEC), and is implicated in a role in urinary tract development. We report that deletion of Isl1 from the genital mesenchyme in mice led to hypoplasia of the genital tubercle and prepuce, with an ectopic urethral opening and epispadias-like phenotype. These mice also developed hydroureter and hydronephrosis. Identification of ISL1 transcriptional targets via ChIP-Seq and expression analyses revealed that Isl1 regulates several important signaling pathways during embryonic genital development, including the BMP, WNT, and FGF cascades. An essential function of Isl1 during development of the external genitalia is to induce Bmp4-mediated apoptosis in the genital mesenchyme. Together, these studies demonstrate that Isl1 plays a critical role during development of the external genitalia and forms the basis for a greater understanding of the molecular mechanisms underlying the pathogenesis of BEEC and urinary tract defects in humans.
Collapse
Affiliation(s)
- Saunders T Ching
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Carlos R Infante
- Department of Genetics, University of Georgia, GA 30602, USA.,Department of Molecular and Cellular Biology, University of Arizona, AZ 85721, USA
| | - Wen Du
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA.,State Key Laboratory of Oral Diseases, Department of Prosthetics, West China College of Stomatology, Sichuan University, Sichuan Sheng 610041, China
| | - Amnon Sharir
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA
| | - Sungdae Park
- Department of Genetics, University of Georgia, GA 30602, USA
| | - Douglas B Menke
- Department of Genetics, University of Georgia, GA 30602, USA
| | - Ophir D Klein
- Department of Orofacial Sciences, University of California, San Francisco, CA 94143, USA.,Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
16
|
Sun W, Gan X, Hu J, Li L, Wang J. CYP17 gene plays a key role in goose genital growth by influencing the testosterone level at puberty. Poult Sci 2018; 97:1748-1756. [PMID: 29462369 DOI: 10.3382/ps/pey009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 01/20/2018] [Indexed: 11/20/2022] Open
Abstract
All birds reproduce by internal fertilization, but only 3% of birds have external genitalia. Hormone secretions and body size influence genital growth, but the actual regulatory mechanism is rarely reported. Thus, using 35 geese as experimental material, the regulatory mechanism of goose external genitalia growth was explored by measuring body size parameters, serum hormone concentrations, and related gene expression. In this study, genital growth was different among tested geese, but histological and morphological results showed that all geese external genitalia contained complete tissues. Measurements of hormone levels showed that at puberty, as the genital length increased, irregular decreases were observed in the levels of follicle-stimulating hormone (FSH) and luteinizing hormone (LH), whereas an irregular increase was observed in the levels of testosterone (T); furthermore, the levels of testosterone (T) gradually increased to a peak at 34 weeks. Based on RT-PCR results, as the genital length increased, only the expression of 17α-hydroxylase/17, 20-lyase (CYP17) mRNA slightly decreased at first, and then significantly increased to a peak, whereas the expression patterns of other genes were irregular. Furthermore, the CYP17 immunohistochemistry results also showed a pattern that was highly consistent with the patterns of mRNA expression and T secretion. In addition, based on body measurements, as body weight increased, the genital length increased. Thus, these results suggested that the CYP17 gene plays a key role in goose genital growth.
Collapse
Affiliation(s)
- W Sun
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - X Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - J Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - L Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| | - J Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Ya'an, Sichuan 625014, PR China
| |
Collapse
|
17
|
Infante CR, Rasys AM, Menke DB. Appendages and gene regulatory networks: Lessons from the limbless. Genesis 2017; 56. [PMID: 29076617 DOI: 10.1002/dvg.23078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 01/19/2023]
Abstract
Among squamate reptiles, dozens of lineages have independently evolved complete or partial limb reduction. This remarkable convergence of limbless and limb-reduced phenotypes provides multiple natural replicates of different ages to explore the evolution and development of the vertebrate limb and the gene regulatory network that controls its formation. The most successful and best known of the limb-reduced squamates are snakes, which evolved a limb-reduced body form more than 100 million years ago. Recent studies have revealed the unexpected finding that many ancient limb enhancers are conserved in the genomes of snakes. Analyses in limbed animals show that many of these limb enhancers are also active during development of the phallus, suggesting that these enhancers may have been retained in snakes due their importance in regulating transcription in the external genitalia. This hypothesis is substantiated by functional tests of snake enhancers, which demonstrate that snake enhancer elements have lost limb function while retaining genital enhancer function. The large degree of overlap in the gene regulatory networks deployed during limb and phallus development may act to constrain the divergence of shared gene network components and the evolution of appendage morphology. Future studies will reveal whether limb regulatory elements have undergone similar functional changes in other lineages of limb-reduced squamates.
Collapse
Affiliation(s)
- Carlos R Infante
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, 85721
| | - Ashley M Rasys
- Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602.,Department of Genetics, University of Georgia, Athens, Georgia, 30602
| | - Douglas B Menke
- Department of Genetics, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
18
|
Reorganization of mammalian body wall patterning with cloacal septation. Sci Rep 2017; 7:9182. [PMID: 28835612 PMCID: PMC5569103 DOI: 10.1038/s41598-017-09359-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022] Open
Abstract
Septation of the cloaca is a unique mammalian adaptation that required a novel reorganization of the perineum–the caudal portion of the trunk body wall not associated with the hindlimb. Fish, the basal vertebrates, separate ventrolateral body wall musculature of the trunk into two discrete layers, while most tetrapods expand this pattern in the thorax and abdomen into four. Mammals, the only vertebrate group to divide the cloaca into urogenital and anorectal portions, exhibit complex muscle morphology in the perineum. Here we describe how perineal morphology in a broad sample of mammals fits into patterning of trunk musculature as an extension of the four-layer ventrolateral muscular patterning of the thorax and abdomen. We show that each perineal muscle layer has a specific function related to structures formed by cloacal septation. From superficial to deep, there is the subcutaneous layer, which regulates orifice closure, the external layer, which supplements both erectile and micturition function, the internal layer, which provides primary micturition and defecation regulation, and the transversus layer, which provides structural support for pelvic organs. We elucidate how the four-layer body wall pattern, restricted to the non-mammal tetrapod thorax and abdomen, is observed in the mammalian perineum to regulate function of unique perineal structures derived from cloacal septation.
Collapse
|
19
|
Sanger TJ, Kircher BK. Model Clades Versus Model Species: Anolis Lizards as an Integrative Model of Anatomical Evolution. Methods Mol Biol 2017; 1650:285-297. [PMID: 28809029 DOI: 10.1007/978-1-4939-7216-6_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Anolis lizards , known for their replicated patterns of morphological diversification, are widely studied in the fields of evolution and ecology. As a textbook example of adaptive radiation, this genus has supported decades of intense study in natural history, behavior, morphological evolution, and systematics. Following the publication of the A. carolinensis genome, research on Anolis lizards has expanded into new areas, toward obtaining an understanding the developmental and genetic bases of anole diversity. Here, we discuss recent progress in these areas and the burgeoning methodological toolkit that has been used to elucidate the genetic mechanisms underlying anatomical variation in this group. We also highlight the growing number of studies that have used A. carolinensis as the representative squamate in large-scale comparison of amniote evolution and development . Finally, we address one of the largest technical challenges biologists are facing in making Anolis a model for integrative studies of ecology, evolution, development , and genetics, the development of ex-ovo culturing techniques that have broad utility. Ultimately, with the power to ask questions across all biological scales in this diverse genus full, anoles are rapidly becoming a uniquely integrative and powerful biological system.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, Chicago, IL, 60660, USA.
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, FL, 32601, USA
| |
Collapse
|
20
|
Schultz NG, Lough-Stevens M, Abreu E, Orr T, Dean MD. The Baculum was Gained and Lost Multiple Times during Mammalian Evolution. Integr Comp Biol 2016; 56:644-56. [PMID: 27252214 PMCID: PMC6080509 DOI: 10.1093/icb/icw034] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rapid evolution of male genitalia is a nearly ubiquitous pattern across sexually reproducing organisms, likely driven by the evolutionary pressures of male-male competition, male-female interactions, and perhaps pleiotropic effects of selection. The penis of many mammalian species contains a baculum, a bone that displays astonishing morphological diversity. The evolution of baculum size and shape does not consistently correlate with any aspects of mating system, hindering our understanding of the evolutionary processes affecting it. One potential explanation for the lack of consistent comparative results is that the baculum is not actually a homologous structure. If the baculum of different groups evolved independently, then the assumption of homology inherent in comparative studies is violated. Here, we specifically test this hypothesis by modeling the presence/absence of bacula of 954 mammalian species across a well-established phylogeny and show that the baculum evolved a minimum of nine times, and was lost a minimum of ten times. Three different forms of bootstrapping show our results are robust to species sampling. Furthermore, groups with a baculum show evidence of higher rates of diversification. Our study offers an explanation for the inconsistent results in the literature, and provides insight into the evolution of this remarkable structure.
Collapse
Affiliation(s)
- Nicholas G Schultz
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Michael Lough-Stevens
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| | - Eric Abreu
- West Adams Preparatory High School, 1500 W Washington Blvd, Los Angeles, CA 90007, USA
| | - Teri Orr
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840, USA
| | - Matthew D Dean
- *Molecular and Computational Biology, University of Southern California, 1050 Childs Way, Los Angeles, CA 90089, USA
| |
Collapse
|
21
|
Gredler ML. Developmental and Evolutionary Origins of the Amniote Phallus. Integr Comp Biol 2016; 56:694-704. [DOI: 10.1093/icb/icw102] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
22
|
Kelly DA, Moore BC. The Morphological Diversity of Intromittent Organs: An Introduction to the Symposium. Integr Comp Biol 2016; 56:630-4. [DOI: 10.1093/icb/icw103] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Rehorek SJ, Smith TD, Beeching SC. Early development and differentiation of the Laysan albatross (Phoebastria immutabilis(Rothschild, 1893): Procellariiformes). J Morphol 2016; 277:1231-49. [DOI: 10.1002/jmor.20572] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/18/2016] [Accepted: 06/07/2016] [Indexed: 12/26/2022]
Affiliation(s)
- Susan J. Rehorek
- Department of Biology; Slippery Rock University; Slippery Rock Pennsylvania 16507
| | - Timothy D. Smith
- School of Physical Therapy; Slippery Rock University; Slippery Rock Pennsylvania 16507
| | - Simon C. Beeching
- Department of Biology; Slippery Rock University; Slippery Rock Pennsylvania 16507
| |
Collapse
|
24
|
|
25
|
Sanger TJ, Gredler ML, Cohn MJ. Resurrecting embryos of the tuatara, Sphenodon punctatus, to resolve vertebrate phallus evolution. Biol Lett 2015; 11:20150694. [PMID: 26510679 PMCID: PMC4650183 DOI: 10.1098/rsbl.2015.0694] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/30/2015] [Indexed: 11/12/2022] Open
Abstract
The breadth of anatomical and functional diversity among amniote external genitalia has led to uncertainty about the evolutionary origins of the phallus. In several lineages, including the tuatara, Sphenodon punctatus, adults lack an intromittent phallus, raising the possibility that the amniote ancestor lacked external genitalia and reproduced using cloacal apposition. Accordingly, a phallus may have evolved multiple times in amniotes. However, similarities in development across amniote external genitalia suggest that the phallus may have a single evolutionary origin. To resolve the evolutionary history of amniote genitalia, we performed three-dimensional reconstruction of Victorian era tuatara embryos to look for embryological evidence of external genital initiation. Despite the absence of an intromittent phallus in adult tuataras, our observations show that tuatara embryos develop genital anlagen. This illustrates that there is a conserved developmental stage of external genital development among all amniotes and suggests a single evolutionary origin of amniote external genitalia.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Molecular Genetics and Microbiology, University of Florida, PO Box 103610, Gainesville, FL 32610, USA
| | - Marissa L Gredler
- Department of Biology, University of Florida, PO Box 103610, Gainesville, FL 32610, USA
| | - Martin J Cohn
- Department of Molecular Genetics and Microbiology, University of Florida, PO Box 103610, Gainesville, FL 32610, USA Department of Biology, University of Florida, PO Box 103610, Gainesville, FL 32610, USA Howard Hughes Medical Institute, University of Florida, PO Box 103610, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
Moore BC, Kelly DA. Histological Investigation of the Adult Alligator Phallic Sulcus. SOUTH AMERICAN JOURNAL OF HERPETOLOGY 2015. [DOI: 10.2994/sajh-d-14-00037.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Brandon C. Moore
- Biology Department, Sewanee: The University of the South, Sewanee, Tennessee 37375 USA
| | - Diane A. Kelly
- Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003-9297 USA
| |
Collapse
|
27
|
Herrera AM, Cohn MJ. Embryonic origin and compartmental organization of the external genitalia. Sci Rep 2014; 4:6896. [PMID: 25372631 PMCID: PMC4894444 DOI: 10.1038/srep06896] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/15/2014] [Indexed: 11/09/2022] Open
Abstract
Genital malformations occur at a high frequency in humans, affecting ~1:250 live births. The molecular mechanisms of external genital development are beginning to be identified; however, the origin of cells that give rise to external genitalia is unknown. Here we use cell lineage analysis to show that the genital tubercle, the precursor of the penis and clitoris, arises from two populations of progenitor cells that originate at the lateral edges of the embryo, at the level of the posterior hindlimb buds and anterior tail. During body wall closure, the left and right external genital progenitor pools are brought together at the ventral midline, where they form the paired genital swellings that give rise to the genital tubercle. Unexpectedly, the left and right external genital progenitor pools form two lineage-restricted compartments in the phallus. Together with previous lineage studies of limb buds, our results indicate that, at the pelvic level, the early lateral mesoderm is regionalized from medial to lateral into dorsal limb, ventral limb, and external genital progenitor fields. These findings have implications for the evolutionary diversification of external genitalia and for the association between external genital defects and disruption of body wall closure, as seen in the epispadias-extrophy complex.
Collapse
Affiliation(s)
- Ana M Herrera
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, UF Genetics Institute, University of Florida, P.O. Box 103610, Gainesville, FL 32610, USA
| | - Martin J Cohn
- 1] Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, UF Genetics Institute, University of Florida, P.O. Box 103610, Gainesville, FL 32610, USA [2] Department of Biology, Howard Hughes Medical Institute, UF Genetics Institute, University of Florida, P.O. Box 103610, Gainesville, FL 32610, USA
| |
Collapse
|
28
|
Necsulea A, Kaessmann H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat Rev Genet 2014; 15:734-48. [PMID: 25297727 DOI: 10.1038/nrg3802] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene expression changes may underlie much of phenotypic evolution. The development of high-throughput RNA sequencing protocols has opened the door to unprecedented large-scale and cross-species transcriptome comparisons by allowing accurate and sensitive assessments of transcript sequences and expression levels. Here, we review the initial wave of the new generation of comparative transcriptomic studies in mammals and vertebrate outgroup species in the context of earlier work. Together with various large-scale genomic and epigenomic data, these studies have unveiled commonalities and differences in the dynamics of gene expression evolution for various types of coding and non-coding genes across mammalian lineages, organs, developmental stages, chromosomes and sexes. They have also provided intriguing new clues to the regulatory basis and phenotypic implications of evolutionary gene expression changes.
Collapse
Affiliation(s)
- Anamaria Necsulea
- Laboratory of Developmental Genomics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Henrik Kaessmann
- 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland. [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
29
|
Brennan PLR, Adkins-Regan E. Endocrine regulation and sexual differentiation of avian copulatory sexually selected characters. Neurosci Biobehav Rev 2014; 46 Pt 4:557-66. [PMID: 25179524 DOI: 10.1016/j.neubiorev.2014.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 07/18/2014] [Accepted: 08/21/2014] [Indexed: 01/12/2023]
Abstract
Reproductive specializations in birds have provided intriguing model systems to better understand the role of endocrine mechanisms that regulate phenotype expression and the action of sexual selection. A comparative approach can elucidate how endocrine systems associated with control of sexual differentiation, sexual maturation, and reproductive physiology and behavior have diversified. Here we compare the copulatory sexually selected traits of two members of the galloanseriform superfamily: quail and ducks. Japanese quail have a non-intromittent penis, and they have evolved a unique foam gland that is known to be involved in post-copulatory sexual selection. In contrast, ducks have maintained a large intromittent penis that has evolved via copulatory male-male competition and has been elaborated in a sexually antagonistic race due to sexual conflict with females over mating. These adaptations function in concert with sex-specific and, in part, species-specific behaviors. Although the approaches to study these traits have been different, exploring the differences in neuroendocrine regulation of sexual behavior, development and seasonality of the foam gland and the penis side by side, allow us to suggest some areas where future research would be productive to better understand the evolution of novelty in sexually selected traits.
Collapse
Affiliation(s)
- Patricia L R Brennan
- Organismic and Evolutionary Biology Graduate Program and Departments of Psychology and of Biology, University of Massachusetts, Amherst, Amherst, MA 01003, USA.
| | - Elizabeth Adkins-Regan
- Departments of Psychology and of Neurobiology and Behavior, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
30
|
Herrera AM, Brennan PL, Cohn MJ. Development of Avian External Genitalia: Interspecific Differences and Sexual Differentiation of the Male and Female Phallus. Sex Dev 2014; 9:43-52. [DOI: 10.1159/000364927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
31
|
Gredler ML, Seifert AW, Cohn MJ. Morphogenesis and Patterning of the Phallus and Cloaca in the American Alligator, Alligator mississippiensis. Sex Dev 2014; 9:53-67. [DOI: 10.1159/000364817] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Leal F, Cohn MJ. Development of Hemipenes in the Ball Python Snake Python regius. Sex Dev 2014; 9:6-20. [DOI: 10.1159/000363758] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
33
|
|
34
|
Gredler ML, Sanger TJ, Cohn MJ. Development of the Cloaca, Hemipenes, and Hemiclitores in the Green Anole, Anolis carolinensis. Sex Dev 2014; 9:21-33. [DOI: 10.1159/000363757] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
35
|
Abstract
Losing the penis in species with internal fertilization may seem paradoxical, but birds have managed to do it multiple times. A new study addresses one developmental mechanism responsible for penis reduction in birds, and opens the door to further examination of this little understood evolutionary phenomenon.
Collapse
Affiliation(s)
- Patricia L R Brennan
- Division of Organismal and Evolutionary Biology and Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
36
|
Chew KY, Pask AJ, Hickford D, Shaw G, Renfree MB. A dual role for SHH during phallus development in a marsupial. Sex Dev 2014; 8:166-77. [PMID: 24480851 DOI: 10.1159/000357927] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2013] [Indexed: 11/19/2022] Open
Abstract
The mammalian phallus arises from identical primordia in both sexes and is patterned in part by the key morphogen Sonic hedgehog (SHH). We have investigated SHH and other morphogens during phallus development in the tammar wallaby. In this marsupial, testis differentiation and androgen production occurs just after birth, but it takes a further 50-60 days before the phallus becomes sexually dimorphic. One day before birth, SHH was expressed in both sexes in the urethral epithelium. In males, there was a marked upregulation of SHH, GLI2, and AR at day 50 postpartum, a time when testicular androgen production falls. SHH, GLI2, and AR were downregulated in female pouch young treated with androstanediol from days 24-50, but not when treatments were begun at day 29, suggesting an early window of androgen sensitivity. SHH, GLI2, and AR expression in the phallus of males castrated at day 23 did not differ from controls, but there was an increase in SHH and GLI2 and a decrease in FGF8 and BMP4 expression when the animals were castrated at day 29. These results suggest that the early patterning by SHH is androgen-independent followed by an androgen-dependent window of sensitivity and a sharp rise in SHH expression after androgen withdrawal at day 50.
Collapse
Affiliation(s)
- K Y Chew
- ARC Centre of Excellence in Kangaroo Genomics, The University of Melbourne, Melbourne, Vic., Australia
| | | | | | | | | |
Collapse
|
37
|
Gredler ML, Larkins CE, Leal F, Lewis AK, Herrera AM, Perriton CL, Sanger TJ, Cohn MJ. Evolution of External Genitalia: Insights from Reptilian Development. Sex Dev 2014; 8:311-26. [DOI: 10.1159/000365771] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
38
|
Shen H. How the chicken lost its penis. Nature 2013. [DOI: 10.1038/nature.2013.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|