1
|
Franco R, Serrano-Marín J, Navarro G, Rivas-Santisteban R. The NADPH Link between the Renin Angiotensin System and the Antioxidant Mechanisms in Dopaminergic Neurons. Antioxidants (Basel) 2023; 12:1869. [PMID: 37891948 PMCID: PMC10604245 DOI: 10.3390/antiox12101869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
The renin angiotensin system (RAS) has several components including signaling peptides, enzymes, and membrane receptors. The effort in characterizing this system in the periphery has led to the approval of a class of antihypertensives. Much less is known about RAS in the central nervous system. The production of RAS peptides and the expression of several RAS enzymes and receptors in dopaminergic neurons of the substantia nigra has raised expectations in the therapy of Parkinson's disease, a neurodegenerative condition characterized by lack of dopamine in the striatum, the motor control region of the mammalian brain. On the one hand, dopamine production requires reducing power. On the other hand, reducing power is required by mechanisms involved in REDOX homeostasis. This review focuses on the potential role of RAS in the regulation of neuronal/glial expression of glucose-6-phosphate dehydrogenase, which produces the NADPH required for dopamine synthesis and for reactive oxygen species (ROS) detoxification. It is known that transgenic expression of the gene coding for glucose-6-phosphate dehydrogenase prevents the death of dopaminergic nigral neurons. Signaling via angiotensin II G protein-coupled receptors, AT1 or AT2, leads to the activation of protein kinase A and/or protein kinase C that in turn can regulate glucose-6- phosphate dehydrogenase activity, by Ser/Thr phosphorylation/dephosphorylation events. Long-term effects of AT1 or AT2 receptor activation may also impact on the concentration of the enzyme via activation of transcription factors that participate in the regulation of gene expression in neurons (or glia). Future research is needed to determine how the system can be pharmacologically manipulated to increase the availability of NADPH to neurons degenerating in Parkinson's disease and to neuroprotective glia.
Collapse
Affiliation(s)
- Rafael Franco
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
- CiberNed, Network Center for Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28029 Madrid, Spain;
- School of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Joan Serrano-Marín
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Navarro
- CiberNed, Network Center for Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28029 Madrid, Spain;
- Department of Biochemistry and Physiology, School of Pharmacy and Food Science, Universitat de Barcelona, 08028 Barcelona, Spain
- Institute of Neurosciences, Universitat de Barcelona, 08007 Barcelona, Spain
| | - Rafael Rivas-Santisteban
- CiberNed, Network Center for Neurodegenerative Diseases, Spanish National Health Institute Carlos III, 28029 Madrid, Spain;
- Campus Bellaterra, Autonomous University of Barcelona, Cerdanyola del Vallés, 08193 Barcelona, Spain
| |
Collapse
|
2
|
Dopaminergic Axons: Key Recitalists in Parkinson's Disease. Neurochem Res 2021; 47:234-248. [PMID: 34637100 DOI: 10.1007/s11064-021-03464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.
Collapse
|
3
|
Tanguay W, Ducrot C, Giguère N, Bourque MJ, Trudeau LE. Neonatal 6-OHDA lesion of the SNc induces striatal compensatory sprouting from surviving SNc dopaminergic neurons without VTA contribution. Eur J Neurosci 2021; 54:6618-6632. [PMID: 34470083 DOI: 10.1111/ejn.15437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
Dopamine (DA) neurons of the substantia nigra pars compacta (SNc) are uniquely vulnerable to neurodegeneration in Parkinson's disease (PD). We hypothesize that their large axonal arbor is a key factor underlying their vulnerability, due to increased bioenergetic, proteostatic and oxidative stress. In keeping with this model, other DAergic populations with smaller axonal arbors are mostly spared during the course of PD and are more resistant to experimental lesions in animal models. Aiming to improve mouse PD models, we examined if neonatal partial SNc lesions could lead to adult mice with fewer SNc DA neurons that are endowed with larger axonal arbors because of compensatory mechanisms. We injected 6-hydroxydopamine (6-OHDA) unilaterally in the SNc at an early postnatal stage at a dose selected to induce loss of approximately 50% of SNc DA neurons. We find that at 10 and 90 days after the lesion, the axons of SNc DA neurons show massive compensatory sprouting, as revealed by the proportionally smaller decrease in tyrosine hydroxylase (TH) in the striatum compared with the loss of SNc DA neuron cell bodies. The extent and origin of this axonal sprouting was further investigated by AAV-mediated expression of eYFP in SNc or ventral tegmental area (VTA) DA neurons of adult mice. Our results reveal that SNc DA neurons have the capacity to substantially increase their axonal arbor size and suggest that mice designed to have reduced numbers of SNc DA neurons could potentially be used to develop better mouse models of PD, with elevated neuronal vulnerability.
Collapse
Affiliation(s)
- William Tanguay
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Charles Ducrot
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Giguère
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Josée Bourque
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| | - Louis-Eric Trudeau
- Department of Pharmacology and Physiology and Department of Neurosciences, Faculty of Medicine, Central Nervous System Research Group (GRSNC), Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Hernandez-Baltazar D, Nadella R, Mireya Zavala-Flores L, Rosas-Jarquin CDJ, Rovirosa-Hernandez MDJ, Villanueva-Olivo A. Four main therapeutic keys for Parkinson's disease: A mini review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:716-721. [PMID: 32373291 PMCID: PMC7196346 DOI: 10.22038/ijbms.2019.33659.8025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Parkinson's disease (PD) is characterized by motor and cognitive dysfunctions. The progressive degeneration of dopamine-producing neurons that are present in the substantia nigra pars compacta (SNpc) has been the main focus of study and PD therapies since ages. MATERIALS AND METHODS In this manuscript, a systematic revision of experimental and clinical evidence of PD-associated cell process was conducted. RESULTS Classically, the damage in the dopaminergic neuronal circuits of SNpc is favored by reactive oxidative/nitrosative stress, leading to cell death. Interestingly, the therapy for PD has only focused on avoiding the symptom progression but not in finding a complete reversion of the disease. Recent evidence suggests that the renin-angiotensin system imbalance and neuroinflammation are the main keys in the progression of experimental PD. CONCLUSION The progression of neurodegeneration in SNpc is due to the complex interaction of multiple processes. In this review, we analyzed the main contribution of four cellular processes and discussed in the perspective of novel experimental approaches.
Collapse
Affiliation(s)
| | - Rasajna Nadella
- IIIT Srikakulam, Rajiv Gandhi University of Knowledge Technologies (RGUKT); International collaboration ID:1840; India
| | | | | | | | | |
Collapse
|
5
|
Giguère N, Pacelli C, Saumure C, Bourque MJ, Matheoud D, Levesque D, Slack RS, Park DS, Trudeau LÉ. Comparative analysis of Parkinson's disease-associated genes in mice reveals altered survival and bioenergetics of Parkin-deficient dopamine neurons. J Biol Chem 2018; 293:9580-9593. [PMID: 29700116 DOI: 10.1074/jbc.ra117.000499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 04/23/2018] [Indexed: 11/06/2022] Open
Abstract
Many mutations in genes encoding proteins such as Parkin, PTEN-induced putative kinase 1 (PINK1), protein deglycase DJ-1 (DJ-1 or PARK7), leucine-rich repeat kinase 2 (LRRK2), and α-synuclein have been linked to familial forms of Parkinson's disease (PD). The consequences of these mutations, such as altered mitochondrial function and pathological protein aggregation, are starting to be better understood. However, little is known about the mechanisms explaining why alterations in such diverse cellular processes lead to the selective loss of dopamine (DA) neurons in the substantia nigra (SNc) in the brain of individuals with PD. Recent work has shown that one of the reasons for the high vulnerability of SNc DA neurons is their high basal rate of mitochondrial oxidative phosphorylation (OXPHOS), resulting from their highly complex axonal arborization. Here, we examined whether axonal growth and basal mitochondrial function are altered in SNc DA neurons from Parkin-, Pink1-, or DJ-1-KO mice. We provide evidence for increased basal OXPHOS in Parkin-KO DA neurons and for reduced survival of DA neurons that have a complex axonal arbor. The surviving smaller neurons exhibited reduced vulnerability to the DA neurotoxin and mitochondrial complex I inhibitor MPP+, and this reduction was associated with reduced expression of the DA transporter. Finally, we found that glial cells play a role in the reduced resilience of DA neurons in these mice and that WT Parkin overexpression rescues this phenotype. Our results provide critical insights into the complex relationship between mitochondrial function, axonal growth, and genetic risk factors for PD.
Collapse
Affiliation(s)
- Nicolas Giguère
- From the Departments of Pharmacology and Physiology and.,Neurosciences
| | - Consiglia Pacelli
- the Department of Clinical and Experimental Medicine, University of Foggia, Foggia 71122, Italy
| | - Caroline Saumure
- From the Departments of Pharmacology and Physiology and.,Neurosciences
| | | | - Diana Matheoud
- Neurosciences.,the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Québec, Montreal H2X 0A9, Canada
| | - Daniel Levesque
- the Faculty of Pharmacy, Université de Montréal, Québec, Montreal H4T 1J4, Canada.,the Faculty of Pharmacy, Université de Montréal, Québec, Montreal H4T 1J4, Canada
| | - Ruth S Slack
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1M 8M5, Canada
| | - David S Park
- the Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1M 8M5, Canada
| | - Louis-Éric Trudeau
- From the Departments of Pharmacology and Physiology and .,Neurosciences.,the Faculty of Pharmacy, Université de Montréal, Québec, Montreal H4T 1J4, Canada.,Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec, Montreal H4T 1J4, Canada
| |
Collapse
|
6
|
Giguère N, Trudeau LÉ. [Axon arborization size is a key factor influencing cellular bioenergetics and vulnerability of dopamine neurons in Parkinson's disease]. Med Sci (Paris) 2016; 32:342-4. [PMID: 27137690 DOI: 10.1051/medsci/20163204010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nicolas Giguère
- Départements de Pharmacologie et de Neurosciences, groupe de recherche sur le système nerveux central (GRSNC), faculté de médicine, université de Montréal, CP 6128, succursale centre-ville, Montréal QC, H3C 3J7 Québec, Canada
| | - Louis-Éric Trudeau
- Départements de Pharmacologie et de Neurosciences, groupe de recherche sur le système nerveux central (GRSNC), faculté de médicine, université de Montréal, CP 6128, succursale centre-ville, Montréal QC, H3C 3J7 Québec, Canada
| |
Collapse
|