1
|
Wang D, Vannier J, Martín-Durán JM, Herranz M, Yu C. Preservation and early evolution of scalidophoran ventral nerve cord. SCIENCE ADVANCES 2025; 11:eadr0896. [PMID: 39792685 PMCID: PMC11721716 DOI: 10.1126/sciadv.adr0896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
Ecdysozoan worms (Nematoida + Scalidophora) are typified by disparate grades of neural organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct the early character evolution of the nervous system via the exceptional preservation of extinct representatives. We focus on their nervous system as it appears in early and mid-Cambrian fossils. We show that some of the oldest known representatives of the group either preserved in carbonaceous compression (early and mid-Cambrian Burgess-type preservation) or secondarily phosphatized in three dimensions (e.g., basal Cambrian Kuanchuanpu Formation, ca. 535 million years) had an unpaired ventral nerve cord (VNC) that ran along the trunk in an eccentric position as in modern priapulids and nematodes. A phylogenetic analysis integrating these fossil data suggests that ancestral scalidophorans had an unpaired VNC and that paired nervous systems probably evolved independently in Kinorhyncha and Loricifera, and, more importantly, in panarthropods in possible relation with the rise of paired appendages and bilaterally coordinated motricity.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi’an, China
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, China
| | - Jean Vannier
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622 Villeurbanne, France
| | - José M. Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - María Herranz
- Area of Biodiversity and Conservation, Superior School of Experimental Science and Technology (ESCET), Rey Juan Carlos University, Madrid, Spain
| | - Chiyang Yu
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi’an, China
| |
Collapse
|
2
|
Smith MR, Long EJ, Dhungana A, Dobson KJ, Yang J, Zhang X. Organ systems of a Cambrian euarthropod larva. Nature 2024; 633:120-126. [PMID: 39085610 PMCID: PMC11374701 DOI: 10.1038/s41586-024-07756-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
The Cambrian radiation of euarthropods can be attributed to an adaptable body plan. Sophisticated brains and specialized feeding appendages, which are elaborations of serially repeated organ systems and jointed appendages, underpin the dominance of Euarthropoda in a broad suite of ecological settings. The origin of the euarthropod body plan from a grade of vermiform taxa with hydrostatic lobopodous appendages ('lobopodian worms')1,2 is founded on data from Burgess Shale-type fossils. However, the compaction associated with such preservation obscures internal anatomy3-6. Phosphatized microfossils provide a complementary three-dimensional perspective on early crown group euarthropods7, but few lobopodians8,9. Here we describe the internal and external anatomy of a three-dimensionally preserved euarthropod larva with lobopods, midgut glands and a sophisticated head. The architecture of the nervous system informs the early configuration of the euarthropod brain and its associated appendages and sensory organs, clarifying homologies across Panarthropoda. The deep evolutionary position of Youti yuanshi gen. et sp. nov. informs the sequence of character acquisition during arthropod evolution, demonstrating a deep origin of sophisticated haemolymph circulatory systems, and illuminating the internal anatomical changes that propelled the rise and diversification of this enduringly successful group.
Collapse
Affiliation(s)
- Martin R Smith
- Department of Earth Sciences, Durham University, Durham, UK.
| | - Emma J Long
- Department of Earth Sciences, Durham University, Durham, UK
- Science Group, Natural History Museum, London, UK
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | | | - Katherine J Dobson
- Department of Earth Sciences, Durham University, Durham, UK
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, UK
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, UK
| | - Jie Yang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| | - Xiguang Zhang
- Institute of Palaeontology, Yunnan University, Chenggong, Kunming, China
| |
Collapse
|
3
|
Zhang H, Xiao S, Eriksson ME, Duan B, Maas A. Musculature of an Early Cambrian cycloneuralian animal. Proc Biol Sci 2023; 290:20231803. [PMID: 37817588 PMCID: PMC10565385 DOI: 10.1098/rspb.2023.1803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023] Open
Abstract
Cycloneuralians are ecdysozoans with a fossil record extending to the Early Cambrian Fortunian Age and represented mostly by cuticular integuments. However, internal anatomies of Fortunian cycloneuralians are virtually unknown, hampering our understanding of their functional morphology and phylogenetic relationships. Here we report the exceptional preservation of cycloneuralian introvert musculature in Fortunian rocks of South China. The musculature consists of an introvert body-wall muscular grid of four circular and 36 radially arranged longitudinal muscle bundles, as well as an introvert circular muscle associated with 19 roughly radially arranged, short retractors. Collectively, these features support at least a scalidophoran affinity, and the absence of muscles associated with a mouth cone and scalids further indicates a priapulan affinity. As in modern scalidophorans, the fossil musculature, and particularly the introvert circular muscle retractors, may have controlled introvert inversion and facilitated locomotion and feeding. This work supports the evolution of scalidophoran-like or priapulan-like introvert musculature in cycloneuralians at the beginning of the Cambrian Period.
Collapse
Affiliation(s)
- Huaqiao Zhang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Baichuan Duan
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, People's Republic of China
| | | |
Collapse
|
4
|
Aria C, Vannier J, Park TYS, Gaines RR. Interpreting fossilized nervous tissues. Bioessays 2023; 45:e2200167. [PMID: 36693795 DOI: 10.1002/bies.202200167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/26/2023]
Abstract
Paleoneuranatomy is an emerging subfield of paleontological research with great potential for the study of evolution. However, the interpretation of fossilized nervous tissues is a difficult task and presently lacks a rigorous methodology. We critically review here cases of neural tissue preservation reported in Cambrian arthropods, following a set of fundamental paleontological criteria for their recognition. These criteria are based on a variety of taphonomic parameters and account for morphoanatomical complexity. Application of these criteria shows that firm evidence for fossilized nervous tissues is less abundant and detailed than previously reported, and we synthesize here evidence that has stronger support. We argue that the vascular system, and in particular its lacunae, may be central to the understanding of many of the fossilized peri-intestinal features known across Cambrian arthropods. In conclusion, our results suggest the need for caution in the interpretation of evidence for fossilized neural tissue, which will increase the accuracy of evolutionary scenarios. Also see the video abstract here: https://youtu.be/2_JlQepRTb0.
Collapse
Affiliation(s)
- Cédric Aria
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada.,Shaanxi Key Laboratory of Early Life and Environments, State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an, P. R. China
| | - Jean Vannier
- Université de Lyon, Université Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE, Bâtiment Géode, Villeurbanne, France
| | - Tae-Yoon S Park
- Division of Earth Sciences, Korea Polar Research Institute, Incheon, Republic of Korea
| | - Robert R Gaines
- Geology Department, Pomona College, Claremont, California, USA
| |
Collapse
|
5
|
Galili DS, Jefferis GS, Costa M. Connectomics and the neural basis of behaviour. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100968. [PMID: 36113710 PMCID: PMC7614087 DOI: 10.1016/j.cois.2022.100968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Methods to acquire and process synaptic-resolution electron-microscopy datasets have progressed very rapidly, allowing production and annotation of larger, more complete connectomes. More accurate neuronal matching techniques are enriching cell type data with gene expression, neuron activity, behaviour and developmental information, providing ways to test hypotheses of circuit function. In a variety of behaviours such as learned and innate olfaction, navigation and sexual behaviour, connectomics has already revealed interconnected modules with a hierarchical structure, recurrence and integration of sensory streams. Comparing individual connectomes to determine which circuit features are robust and which are variable is one key research area; new work in comparative connectomics across development, experience, sex and species will establish strong links between neuronal connectivity and brain function.
Collapse
Affiliation(s)
- Dana S Galili
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Gregory Sxe Jefferis
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK; Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Marta Costa
- Drosophila Connectomics Group, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
6
|
Strausfeld NJ, Hou X, Sayre ME, Hirth F. The lower Cambrian lobopodian Cardiodictyon resolves the origin of euarthropod brains. Science 2022; 378:905-909. [PMID: 36423269 DOI: 10.1126/science.abn6264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For more than a century, the origin and evolution of the arthropod head and brain have eluded a unifying rationale reconciling divergent morphologies and phylogenetic relationships. Here, clarification is provided by the fossilized nervous system of the lower Cambrian lobopodian Cardiodictyon catenulum, which reveals an unsegmented head and brain comprising three cephalic domains, distinct from the metameric ventral nervous system serving its appendicular trunk. Each domain aligns with one of three components of the foregut and with a pair of head appendages. Morphological correspondences with stem group arthropods and alignments of homologous gene expression patterns with those of extant panarthropods demonstrate that cephalic domains of C. catenulum predate the evolution of the euarthropod head yet correspond to neuromeres defining brains of living chelicerates and mandibulates.
Collapse
Affiliation(s)
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China
| | - Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Frank Hirth
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
7
|
Dong XP, Duan B, Liu J, Donoghue PCJ. Internal anatomy of a fossilized embryonic stage of the Cambrian-Ordovician scalidophoran Markuelia. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220115. [PMID: 36249341 PMCID: PMC9532980 DOI: 10.1098/rsos.220115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The Wangcun fossil Lagerstätte in Hunan, South China, has yielded hundreds of fossilized embryos of Markuelia hunanensis representing different developmental stages. Internal tissues have only rarely been observed, impeding further understanding of the soft tissue anatomy, phylogenetic affinity and evolutionary significance of Markuelia. In this study, we used synchrotron radiation X-ray tomographic microscopy (SRXTM) to study a new collection of fossil embryos from the Wangcun fossil Lagerstätte. We describe specimens exhibiting a spectrum of preservation states, the best of which preserves palisade structures underneath the cuticle of the head and tail, distinct from patterns of centripetal mineralization of the cuticle and centrifugal mineralization of hypha-like structures, seen elsewhere in this specimen and other fossils within the same assemblage. Our computed tomographic reconstruction of these mineralization phases preserves the gross morphology of (i) longitudinal structures associated with the tail spines, which we interpret as the proximal ends of longitudinal muscles, and (ii) a ring-shaped structure internal to the introvert, which we interpret as a ring-shaped brain, as anticipated of the cycloneuralian affinity of Markuelia. This is the first record of a fossilized nervous system in a scalidophoran, and the first instance in Orsten-style preservation, opening the potential for further such records within this widespread mode of high-fidelity three-dimensional preservation.
Collapse
Affiliation(s)
- Xi-ping Dong
- School of Earth and Space Science, Peking University, Beijing 100871, People's Republic of China
| | - Baichuan Duan
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, People's Republic of China
| | - Jianbo Liu
- School of Earth and Space Science, Peking University, Beijing 100871, People's Republic of China
| | - Philip C. J. Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
8
|
Saleh F, Ma X, Guenser P, Mángano MG, Buatois LA, Antcliffe JB. Probability-based preservational variations within the early Cambrian Chengjiang biota (China). PeerJ 2022; 10:e13869. [PMID: 36032952 PMCID: PMC9415357 DOI: 10.7717/peerj.13869] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
The Chengjiang biota (Yunnan Province, China) is a treasure trove of soft-bodied animal fossils from the earliest stages of the Cambrian explosion. The mechanisms contributing to its unique preservation, known as the Burgess Shale-type preservation, are well understood. However, little is known about the preservation differences between various animal groups within this biota. This study compares tissue-occurrence data of 11 major animal groups in the Chengjiang biota using a probabilistic methodology. The fossil-based data from this study is compared to previous decay experiments. This shows that all groups are not equally preserved with some higher taxa more likely to preserve soft tissues than others. These differences in fossil preservation between taxa can be explained by the interaction of biological and environmental characteristics. A bias also results from differential taxonomic recognition, as some taxa are easily recognized from even poorly preserved fragments while other specimens are difficult to assign to higher taxa even with exquisite preservation.
Collapse
Affiliation(s)
- Farid Saleh
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China,Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, China
| | - Xiaoya Ma
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, China,Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, China,Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Pauline Guenser
- University Bordeaux, CNRS, Bordeaux INP, EPOC, UMR5805, Pessac, France
| | - M. Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Luis A. Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
9
|
Mähler B, Janssen K, Tahoun M, Tomaschek F, Schellhorn R, Müller CE, Bierbaum G, Rust J. Adipocere formation in biofilms as a first step in soft tissue preservation. Sci Rep 2022; 12:10122. [PMID: 35710834 PMCID: PMC9203803 DOI: 10.1038/s41598-022-14119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/01/2022] [Indexed: 12/03/2022] Open
Abstract
The preservation of soft tissue in the fossil record is mostly due to the replacement of organic structures by minerals (e.g. calcite, aragonite or apatite) called pseudomorphs. In rare cases soft tissues were preserved by pyrite. We assume that adipocere, as the shaping component, might be a preliminary stage in the pyritisation of soft tissues under anaerobic conditions. Using high-performance liquid chromatography coupled to ultraviolet and mass spectrometric detection (HPLC–UV/MS) and confocal Raman spectroscopy (CRS) we were able to demonstrate the transformation of the hepatopancreas (digestive gland) of the crayfish Cambarellus diminutus [Hobbs 1945] into adipocere within only 9 days, just inside a biofilm. Microorganisms (bacteria and fungi) which were responsible for the biofilm (Sphaerotilus [Kutzig 1833] and Pluteus [Fries 1857]) and maybe the adipocere formation (Clostridium [Prazmowski 1880]) were detected by 16S rRNA gene amplicon sequencing. Furthermore, micro-computed tomography (µ-CT) analyses revealed a precipitation of calcite and further showed that in animals with biofilm formation calcite precipitates in finer grained crystals than in individuals without biofilm formation, and that the precipitates were denser and replicated the structures of the cuticles better than the coarse precipitates.
Collapse
Affiliation(s)
- Bastian Mähler
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany.
| | - Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Mariam Tahoun
- Pharmazeutisches Institut, Pharmazeutische und Medizinische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53121, Bonn, Germany
| | - Frank Tomaschek
- Section Geochemistry/Petrology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Rico Schellhorn
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Christa E Müller
- Pharmazeutisches Institut, Pharmazeutische und Medizinische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53121, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Jes Rust
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| |
Collapse
|
10
|
Saleh F, Qi C, Buatois LA, Mángano MG, Paz M, Vaucher R, Zheng Q, Hou XG, Gabbott SE, Ma X. The Chengjiang Biota inhabited a deltaic environment. Nat Commun 2022; 13:1569. [PMID: 35322027 PMCID: PMC8943010 DOI: 10.1038/s41467-022-29246-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 02/28/2022] [Indexed: 11/16/2022] Open
Abstract
The Chengjiang Biota is the earliest Phanerozoic soft-bodied fossil assemblage offering the most complete snapshot of Earth’s initial diversification, the Cambrian Explosion. Although palaeobiologic aspects of this biota are well understood, the precise sedimentary environment inhabited by this biota remains debated. Herein, we examine a non-weathered core from the Yu’anshan Formation including the interval preserving the Chengjiang Biota. Our data indicate that the succession was deposited as part of a delta influenced by storm floods (i.e., produced by upstream river floods resulting from ocean storms). Most Chengjiang animals lived in an oxygen and nutrient-rich delta front environment in which unstable salinity and high sedimentation rates were the main stressors. This unexpected finding allows for sophisticated ecological comparisons with other Burgess Shale-type deposits and emphasizes that the long-held view of Burgess Shale-type faunas as snapshots of stable distal shelf and slope communities needs to be revised based on recent sedimentologic advances. The Chengjiang Biota is the earliest most diverse animal community from the Cambrian Explosion (~518 million years ago). This biota is shown to have colonized a delta, highlighting the importance of this shallow environment in recording early snapshots of life on Earth.
Collapse
Affiliation(s)
- Farid Saleh
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China. .,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming, China.
| | - Changshi Qi
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming, China.,State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Luis A Buatois
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - M Gabriela Mángano
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Maximiliano Paz
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Romain Vaucher
- Applied Research in Ichnology and Sedimentology (ARISE) Group, Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada.,Institute of Earth Sciences (ISTE), University of Lausanne, Geopolis, Lausanne, Switzerland
| | - Quanfeng Zheng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Xian-Guang Hou
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China.,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming, China
| | - Sarah E Gabbott
- School of Geography, Geology and Environment, University of Leicester, Leicester, LE, UK
| | - Xiaoya Ma
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Kunming, China. .,MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Institute of Palaeontology, Yunnan University, Kunming, China. .,Centre for Ecology and Conservation, University of Exeter, Penryn, UK.
| |
Collapse
|
11
|
Ortega-Hernández J, Lerosey-Aubril R, Losso SR, Weaver JC. Neuroanatomy in a middle Cambrian mollisoniid and the ancestral nervous system organization of chelicerates. Nat Commun 2022; 13:410. [PMID: 35058474 PMCID: PMC8776822 DOI: 10.1038/s41467-022-28054-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 12/17/2021] [Indexed: 11/09/2022] Open
Abstract
Recent years have witnessed a steady increase in reports of fossilized nervous tissues among Cambrian total-group euarthropods, which allow reconstructing the early evolutionary history of these animals. Here, we describe the central nervous system of the stem-group chelicerate Mollisonia symmetrica from the mid-Cambrian Burgess Shale. The fossilized neurological anatomy of M. symmetrica includes optic nerves connected to a pair of lateral eyes, a putative condensed cephalic synganglion, and a metameric ventral nerve cord. Each trunk tergite is associated with a condensed ganglion bearing lateral segmental nerves, and linked by longitudinal connectives. The nervous system is preserved as reflective carbonaceous films underneath the phosphatized digestive tract. Our results suggest that M. symmetrica illustrates the ancestral organization of stem-group Chelicerata before the evolution of the derived neuroanatomical characters observed in Cambrian megacheirans and extant representatives. Our findings reveal a conflict between the phylogenetic signals provided by neuroanatomical and appendicular data, which we interpret as evidence of mosaic evolution in the chelicerate stem-lineage.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Sarah R Losso
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
12
|
Janssen K, Mähler B, Rust J, Bierbaum G, McCoy VE. The complex role of microbial metabolic activity in fossilization. Biol Rev Camb Philos Soc 2021; 97:449-465. [PMID: 34649299 DOI: 10.1111/brv.12806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 12/22/2022]
Abstract
Bacteria play an important role in the fossilization of soft tissues; their metabolic activities drive the destruction of the tissues and also strongly influence mineralization. Some environmental conditions, such as anoxia, cold temperatures, and high salinity, are considered widely to promote fossilization by modulating bacterial activity. However, bacteria are extremely diverse, and have developed metabolic adaptations to a wide range of stressful conditions. Therefore, the influence of the environment on bacterial activity, and of their metabolic activity on fossilization, is complex. A number of examples illustrate that simple, general assumptions about the role of bacteria in soft tissue fossilization cannot explain all preservational pathways: (i) experimental results show that soft tissues of cnidaria decay less in oxic than anoxic conditions, and in the fossil record are found more commonly in fossil sites deposited under oxic conditions rather than anoxic environments; (ii) siderite concretions, which often entomb soft tissue fossils, precipitate due to a complex mixture of sulfate- and iron reduction by some bacterial species, running counter to original theories that iron reduction is the primary driver of siderite concretion growth; (iii) arthropod brains, now widely accepted to be preserved in many Cambrian fossil sites, are one of the first structures to decay in taphonomic experiments, indicating that their fossilization processes are complex and influenced by bacterial activity. In order to expand our understanding of the complex process of bacterially driven soft tissue fossilization, more research needs to be done, on fossils themselves and in taphonomic experiments, to determine how the complex variation in microbial metabolic activity influences decay and mineralization.
Collapse
Affiliation(s)
- Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Bastian Mähler
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Jes Rust
- Paleontology Section, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität, 53127, Bonn, Germany
| | - Victoria E McCoy
- Department of Geosciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, 53211, U.S.A
| |
Collapse
|
13
|
Lan T, Zhao Y, Zhao F, He Y, Martinez P, Strausfeld NJ. Leanchoiliidae reveals the ancestral organization of the stem euarthropod brain. Curr Biol 2021; 31:4397-4404.e2. [PMID: 34416180 DOI: 10.1016/j.cub.2021.07.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/03/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022]
Abstract
Fossils provide insights into how organs may have diversified over geological time.1 However, diversification already accomplished early in evolution can obscure ancestral events leading to it. For example, already by the mid-Cambrian period, euarthropods had condensed brains typifying modern mandibulate lineages.2 However, the demonstration that extant euarthropods and chordates share orthologous developmental control genes defining the segmental fore-, mid-, and hindbrain suggests that those character states were present even before the onset of the Cambrian.3 Fossilized nervous systems of stem Euarthropoda might, therefore, be expected to reveal ancestral segmental organization, from which divergent arrangements emerged. Here, we demonstrate unsurpassed preservation of cerebral tissue in Kaili leanchoiliids revealing near-identical arrangements of bilaterally symmetric ganglia identified as the proto-, deuto-, and tritocerebra disposed behind an asegmental frontal domain, the prosocerebrum, from which paired nerves extend to labral ganglia flanking the stomodeum. This organization corresponds to labral connections hallmarking extant euarthropod clades4 and to predicted transformations of presegmental ganglia serving raptorial preocular appendages of Radiodonta.5 Trace nervous system in the gilled lobopodian Kerygmachela kierkegaardi6 suggests an even deeper prosocerebral ancestry. An asegmental prosocerebrum resolves its location relative to the midline asegmental sclerite of the radiodontan head, which persists in stem Euarthropoda.7 Here, data from two Kaili Leanchoilia, with additional reference to Alalcomenaeus,8,9 demonstrate that Cambrian stem Euarthropoda confirm genomic and developmental studies10-15 claiming that the most frontal domain of the euarthropod brain is a unique evolutionary module distinct from, and ancestral to, the fore-, mid-, and hindbrain.
Collapse
Affiliation(s)
- Tian Lan
- Guizhou Research Center for Palaeobiology, Guizhou University, Guiyang, Guizhou, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, The College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, Guizhou, China.
| | - Yuanlong Zhao
- Guizhou Research Center for Palaeobiology, Guizhou University, Guiyang, Guizhou, China
| | - Fangchen Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Centre for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - You He
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Pedro Martinez
- Departament de Genetica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain; Institut Català de Recerca i Estudis Avancats (ICREA), Passeig de Lluís Companys, Barcelona 08010, Spain
| | | |
Collapse
|
14
|
Abstract
Developmental gene expression suggests a cryptic subdivision of the anterior brain in euarthropods. A new study illustrates delicate details of the nervous system from exceptionally preserved 500-million-year-old Chinese fossils, supporting the bipartite origin of the anterior brain among Cambrian representatives.
Collapse
Affiliation(s)
- Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
15
|
Parry LA, Lerosey-Aubril R, Weaver JC, Ortega-Hernández J. Cambrian comb jellies from Utah illuminate the early evolution of nervous and sensory systems in ctenophores. iScience 2021; 24:102943. [PMID: 34522849 PMCID: PMC8426560 DOI: 10.1016/j.isci.2021.102943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/01/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Ctenophores are a group of predatory macroinvertebrates whose controversial phylogenetic position has prompted several competing hypotheses regarding the evolution of animal organ systems. Although ctenophores date back at least to the Cambrian, they have a poor fossil record due to their gelatinous bodies. Here, we describe two ctenophore species from the Cambrian of Utah, which illuminate the early evolution of nervous and sensory features in the phylum. Thalassostaphylos elegans has 16 comb rows, an oral skirt, and an apical organ with polar fields. Ctenorhabdotus campanelliformis has 24 comb rows, an oral skirt, an apical organ enclosed by a capsule and neurological tissues preserved as carbonaceous films. These are concentrated around the apical organ and ciliated furrows, which connect to a circumoral nerve ring via longitudinal axons. C. campanelliformis deviates from the neuroanatomy of living ctenophores and demonstrates a substantial complexity in the nervous system of Cambrian ctenophores. Two species of rare fossil ctenophores are described from the Cambrian of Utah Fossil ctenophores preserve remains of nervous tissue and sensory structures Neurological structures include an oral nerve ring and giant longitudinal axons Cambrian ctenophores had a more complex neuroanatomy than living species
Collapse
Affiliation(s)
- Luke A Parry
- Department of Earth Sciences, University of Oxford, 3 South Parks Road, Oxford, OX1 3AN, UK.,Department of Geology and Geophysics, Yale University, 210 Whitney Avenue, New Haven, CT 06511, USA
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, 60 Oxford Street, Cambridge, MA 02138, USA
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
16
|
Budd GE. The origin and evolution of the euarthropod labrum. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 62:101048. [PMID: 33862532 DOI: 10.1016/j.asd.2021.101048] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 05/16/2023]
Abstract
A widely (although not universally) accepted model of arthropod head evolution postulates that the labrum, a structure seen in almost all living euarthropods, evolved from an anterior pair of appendages homologous to the frontal appendages of onychophorans. However, the implications of this model for the interpretation of fossil arthropods have not been fully integrated into reconstructions of the euarthropod stem group, which remains in a state of some disorder. Here I review the evidence for the nature and evolution of the labrum from living taxa, and reconsider how fossils should be interpreted in the light of this. Identification of the segmental identity of head appendage in fossil arthropods remains problematic, and often rests ultimately on unproven assertions. New evidence from the Cambrian stem-group euarthropod Parapeytoia is presented to suggest that an originally protocerebral appendage persisted well up into the upper stem-group of the euarthropods, which prompts a re-evaluation of widely-accepted segmental homologies and the interpretation of fossil central nervous systems. Only a protocerebral brain was implicitly present in a large part of the euarthropod stem group, and the deutocerebrum must have been a relatively late addition.
Collapse
Affiliation(s)
- Graham E Budd
- Department of Earth Sciences, Palaeobiology Programme, Uppsala University, Villavägen 16, Uppsala, SE 752 36, Sweden.
| |
Collapse
|
17
|
Strausfeld NJ, Olea-Rowe B. Convergent evolution of optic lobe neuropil in Pancrustacea. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101040. [PMID: 33706077 DOI: 10.1016/j.asd.2021.101040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
A prevailing opinion since 1926 has been that optic lobe organization in malacostracan crustaceans and insects reflects a corresponding organization in their common ancestor. Support for this refers to malacostracans and insects both possessing three, in some instances four, nested retinotopic neuropils beneath their compound eyes. Historically, the rationale for claiming homology of malacostracan and insect optic lobes referred to those commonalities, and to comparable arrangements of neurons. However, recent molecular phylogenetics has firmly established that Malacostraca belong to Multicrustacea, whereas Hexapoda and its related taxa Cephalocarida, Branchiopoda, and Remipedia belong to the phyletically distinct clade Allotriocarida. Insects are more closely related to remipedes than are either to malacostracans. Reconciling neuroanatomy with molecular phylogenies has been complicated by studies showing that the midbrains of remipedes share many attributes with the midbrains of malacostracans. Here we review the organization of the optic lobes in Malacostraca and Insecta to inquire which of their characters correspond genealogically across Pancrustacea and which characters do not. We demonstrate that neuroanatomical characters pertaining to the third optic lobe neuropil, called the lobula complex, may indicate convergent evolution. Distinctions of the malacostracan and insect lobula complexes are sufficient to align neuroanatomical descriptions of the pancrustacean optic lobes within the constraints of molecular-based phylogenies.
Collapse
|
18
|
Howard RJ, Edgecombe GD, Shi X, Hou X, Ma X. Ancestral morphology of Ecdysozoa constrained by an early Cambrian stem group ecdysozoan. BMC Evol Biol 2020; 20:156. [PMID: 33228518 PMCID: PMC7684930 DOI: 10.1186/s12862-020-01720-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ecdysozoa are the moulting protostomes, including arthropods, tardigrades, and nematodes. Both the molecular and fossil records indicate that Ecdysozoa is an ancient group originating in the terminal Proterozoic, and exceptional fossil biotas show their dominance and diversity at the beginning of the Phanerozoic. However, the nature of the ecdysozoan common ancestor has been difficult to ascertain due to the extreme morphological diversity of extant Ecdysozoa, and the lack of early diverging taxa in ancient fossil biotas. RESULTS Here we re-describe Acosmia maotiania from the early Cambrian Chengjiang Biota of Yunnan Province, China and assign it to stem group Ecdysozoa. Acosmia features a two-part body, with an anterior proboscis bearing a terminal mouth and muscular pharynx, and a posterior annulated trunk with a through gut. Morphological phylogenetic analyses of the protostomes using parsimony, maximum likelihood and Bayesian inference, with coding informed by published experimental decay studies, each placed Acosmia as sister taxon to Cycloneuralia + Panarthropoda-i.e. stem group Ecdysozoa. Ancestral state probabilities were calculated for key ecdysozoan nodes, in order to test characters inferred from fossils to be ancestral for Ecdysozoa. Results support an ancestor of crown group ecdysozoans sharing an annulated vermiform body with a terminal mouth like Acosmia, but also possessing the pharyngeal armature and circumoral structures characteristic of Cambrian cycloneuralians and lobopodians. CONCLUSIONS Acosmia is the first taxon placed in the ecdysozoan stem group and provides a constraint to test hypotheses on the early evolution of Ecdysozoa. Our study suggests acquisition of pharyngeal armature, and therefore a change in feeding strategy (e.g. predation), may have characterised the origin and radiation of crown group ecdysozoans from Acosmia-like ancestors.
Collapse
Affiliation(s)
- Richard J Howard
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, TR10 9TA, UK
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Gregory D Edgecombe
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Xiaomei Shi
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China
| | - Xianguang Hou
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China.
| | - Xiaoya Ma
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, TR10 9TA, UK.
| |
Collapse
|
19
|
Abstract
In all arthropods the plesiomorphic (ancestral character state) kind of visual system commonly is considered to be the compound eye. Here we are able to show the excellently preserved internal structures of the compound eye of a 429 Mya old Silurian trilobite, Aulacopleura koninckii (Barrande, 1846). It shows the characteristic elements of a modern apposition eye, consisting of 8 (visible) receptor cells, a rhabdom, a thick lens, screening pigment (cells), and in contrast to a modern type, putatively just a very thin crystalline cone. Functionally the latter underlines the idea of a primarily calcitic character of the lens because of its high refractive properties. Perhaps the trilobite was translucent. We show that this Palaeozoic trilobite in principle was equipped with a fully modern type of visual system, a compound eye comparable to that of living bees, dragonflies and many diurnal crustaceans. It is an example of excellent preservation, and we hope that this manuscript will be a starting point for more research work on fossil evidence, and to develop a deeper understanding of the evolution of vision.
Collapse
|
20
|
Anderson RP. Intrinsic Iron May Have Promoted Ancient Nervous Tissue Fossilization. Bioessays 2020; 42:e2000070. [PMID: 32363611 DOI: 10.1002/bies.202000070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ross P Anderson
- All Souls College, University of Oxford, Oxford, OX1 4AL, UK.,Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, UK
| |
Collapse
|
21
|
Saleh F, Daley AC, Lefebvre B, Pittet B, Perrillat JP. Biogenic Iron Preserves Structures during Fossilization: A Hypothesis: Iron from Decaying Tissues May Stabilize Their Morphology in the Fossil Record. Bioessays 2020; 42:e1900243. [PMID: 32338399 DOI: 10.1002/bies.201900243] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/27/2020] [Indexed: 11/12/2022]
Abstract
It is hypothesized that iron from biological tissues, liberated during decay, may have played a role in inhibiting loss of anatomical information during fossilization of extinct organisms. Most tissues in the animal kingdom contain iron in different forms. A widely distributed iron-bearing molecule is ferritin, a globular protein that contains iron crystallites in the form of ferrihydrite minerals. Iron concentrations in ferritin are high and ferrihydrites are extremely reactive. When ancient animals are decaying on the sea floor under anoxic environmental conditions, ferrihydrites may initialize the selective replication of some tissues in pyrite FeS2 . This model explains why some labile tissues are preserved, while other more resistant structures decay and are absent in many fossils. A major implication of this hypothesis is that structures described as brains in Cambrian arthropods are not fossilization artifacts, but are instead a source of information on anatomical evolution at the dawn of complex animal life.
Collapse
Affiliation(s)
- Farid Saleh
- Université de Lyon, Université Claude Bernard Lyon1, École Normale Supérieure de Lyon, CNRS, UMR5276, LGL-TPE, Villeurbanne, 69622, France
| | - Allison C Daley
- Institute of Earth Sciences, University of Lausanne, Géopolis, Lausanne, CH-1015, Switzerland
| | - Bertrand Lefebvre
- Université de Lyon, Université Claude Bernard Lyon1, École Normale Supérieure de Lyon, CNRS, UMR5276, LGL-TPE, Villeurbanne, 69622, France
| | - Bernard Pittet
- Université de Lyon, Université Claude Bernard Lyon1, École Normale Supérieure de Lyon, CNRS, UMR5276, LGL-TPE, Villeurbanne, 69622, France
| | - Jean Philippe Perrillat
- Université de Lyon, Université Claude Bernard Lyon1, École Normale Supérieure de Lyon, CNRS, UMR5276, LGL-TPE, Villeurbanne, 69622, France
| |
Collapse
|
22
|
Ortega-Hernández J, Lerosey-Aubril R, Pates S. Proclivity of nervous system preservation in Cambrian Burgess Shale-type deposits. Proc Biol Sci 2019; 286:20192370. [PMID: 31822253 PMCID: PMC6939931 DOI: 10.1098/rspb.2019.2370] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Recent investigations on neurological tissues preserved in Cambrian fossils have clarified the phylogenetic affinities and head segmentation in pivotal members of stem-group Euarthropoda. However, palaeoneuroanatomical features are often incomplete or described from single exceptional specimens, raising concerns about the morphological interpretation of fossilized neurological structures and their significance for early euarthropod evolution. Here, we describe the central nervous system (CNS) of the short great-appendage euarthropod Alalcomenaeus based on material from two Cambrian Burgess Shale-type deposits of the American Great Basin, the Pioche Formation (Stage 4) and the Marjum Formation (Drumian). The specimens reveal complementary ventral and lateral views of the CNS, preserved as a dark carbonaceous compression throughout the body. The head features a dorsal brain connected to four stalked ventral eyes, and four pairs of segmental nerves. The first to seventh trunk tergites overlie a ventral nerve cord with seven ganglia, each associated with paired sets of segmental nerve bundles. Posteriorly, the nerve cord features elongate thread-like connectives. The Great Basin fossils strengthen the original description—and broader evolutionary implications—of the CNS in Alalcomenaeus from the early Cambrian (Stage 3) Chengjiang deposit of South China. The spatio-temporal recurrence of fossilized neural tissues in Cambrian Konservat-Lagerstätten across North America (Pioche, Burgess Shale, Marjum) and South China (Chengjiang, Xiaoshiba) indicates that their preservation is consistent with the mechanism of Burgess Shale-type fossilization, without the need to invoke alternative taphonomic pathways or the presence of microbial biofilms.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
23
|
Abstract
Ortega-Hernández et al. introduce fuxianhuiids, Cambrian arthropods that are important for our understaindg how the largest animal phylum evolved.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China.
| |
Collapse
|
24
|
Parry L, Caron JB. Canadia spinosa and the early evolution of the annelid nervous system. SCIENCE ADVANCES 2019; 5:eaax5858. [PMID: 31535028 PMCID: PMC6739095 DOI: 10.1126/sciadv.aax5858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/09/2019] [Indexed: 05/19/2023]
Abstract
Annelid worms are a disparate, primitively segmented clade of bilaterians that first appear during the early Cambrian Period. Reconstructing their early evolution is complicated by the extreme morphological diversity in early diverging lineages, rapid diversification, and sparse fossil record. Canadia spinosa, a Burgess Shale fossil polychaete, is redescribed as having palps with feeding grooves, a dorsal median antenna and biramous parapodia associated with the head and flanking a ventral mouth. Carbonaceously preserved features are identified as a terminal brain, circumoral connectives, a midventral ganglionated nerve cord and prominent parapodial nerves. Phylogenetic analysis recovers neuroanatomically simple extant taxa as the sister group of other annelids, but the phylogenetic position of Canadia suggests that the annelid ancestor was reasonably complex neuroanatomically and that reduction of the nervous system occurred several times independently in the subsequent 500 million years of annelid evolution.
Collapse
Affiliation(s)
- Luke Parry
- Department of Natural History, Palaeobiology, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
- Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA
- Corresponding author.
| | - Jean-Bernard Caron
- Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks Street, Toronto, Ontario M5S 3B2, Canada
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| |
Collapse
|
25
|
Ortega-Hernández J, Fu D, Zhang X, Shu D. Gut glands illuminate trunk segmentation in Cambrian fuxianhuiids. Curr Biol 2019; 28:R146-R147. [PMID: 29462577 DOI: 10.1016/j.cub.2018.01.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The euarthropod body consists of serially repeated segments with various degrees of functional specialization and regionalization [1]. Some representatives exhibit deviant metameric patterns expressed as an indirect correspondence between components of the exoskeleton, usually the number or position of dorsoventral sclerotized plates and walking legs (Supplemental Information) [1-3]. Segmental mismatch in the form of supernumerary walking legs per tergite (i.e. dorsal exoskeletal plate) is characteristic of fuxianhuiids, Cambrian euarthropods widely regarded as critical for understanding the origin of this phylum [4,5]. The broader significance of this organization remains obscure, however, due to the difficulty of distinguishing which components of the fuxianhuiid trunk reflect ancestral or derived traits. Here, we describe for the first time the presence of metameric midgut diverticulae in Fuxianhuia protensa from the Chengjiang Konservat-Lagerstätte and demonstrate that these digestive structures follow the segmentation pattern of the dorsal exoskeleton. Midgut diverticulae signal a predatory or scavenging ecology [6,7], falsifying the view of fuxianhuiids as simple mud-feeders [4]. Comparison with other euarthropods [1-3,5] indicates that fuxianhuiids possessed a unique mode of exoskeletal and visceral segmental mismatch, in which the tergites and midgut were segmentally patterned independently from the walking legs and ventral nerve cord. Our findings provide direct evidence of substantial developmental flexibility among stem-group euarthropods during the Cambrian.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- State Key Laboratory of Continental Dynamics, Early Life Institute and Department of Geology, Northwest University, Xian 710069, P.R. China; Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK; Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Dongjing Fu
- State Key Laboratory of Continental Dynamics, Early Life Institute and Department of Geology, Northwest University, Xian 710069, P.R. China.
| | - Xingliang Zhang
- State Key Laboratory of Continental Dynamics, Early Life Institute and Department of Geology, Northwest University, Xian 710069, P.R. China
| | - Degan Shu
- State Key Laboratory of Continental Dynamics, Early Life Institute and Department of Geology, Northwest University, Xian 710069, P.R. China
| |
Collapse
|
26
|
Liu J, Steiner M, Dunlop JA, Shu D. Microbial decay analysis challenges interpretation of putative organ systems in Cambrian fuxianhuiids. Proc Biol Sci 2019; 285:rspb.2018.0051. [PMID: 29643211 DOI: 10.1098/rspb.2018.0051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/15/2018] [Indexed: 11/12/2022] Open
Abstract
The Chengjiang fossil Lagerstätte (Cambrian Stage 3) from Yunnan, southern China is renowned for its soft-tissue preservation. Accordingly structures in fuxianhuiids, radiodontans and great appendage arthropods have been interpreted as the nervous and cardiovascular systems, including brains, hearts and blood vessels. That such delicate organ systems survive the fossilization process seems remarkable; given that this mode of preservation involves major taphonomic changes, such as flattening, microbial degradation, chemical alteration and replacement. Here, we document a range of taphonomic preservation states in numerous articulated individuals of Fuxianhuia protensa We suggest that organic (partly iron mineral-replaced) bulbous structures in the head region, previously interpreted as brain tissue, along with sagittally located organic strands interpreted as part of the cardiovascular system or as nerve cords, may be better explained as microbial biofilms that developed following decomposition of the intestine, muscle and other connective tissues, forming halos surrounding the original organic remains.
Collapse
Affiliation(s)
- Jianni Liu
- Early Life Institute, Shaanxi Key Laboratory of Early Life and Environments, The Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, People's Republic of China
| | - Michael Steiner
- Department of Earth Science, Freie Universität Berlin, 12249, Berlin, Germany
| | - Jason A Dunlop
- Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, 10115 Berlin, Germany
| | - Degan Shu
- Early Life Institute, Shaanxi Key Laboratory of Early Life and Environments, The Key Laboratory of Continental Dynamics, Northwest University, Xi'an 710069, People's Republic of China.,School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, People's Republic of China
| |
Collapse
|
27
|
Zhao Y, Vinther J, Parry LA, Wei F, Green E, Pisani D, Hou X, Edgecombe GD, Cong P. Cambrian Sessile, Suspension Feeding Stem-Group Ctenophores and Evolution of the Comb Jelly Body Plan. Curr Biol 2019; 29:1112-1125.e2. [PMID: 30905603 DOI: 10.1016/j.cub.2019.02.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/10/2018] [Accepted: 02/14/2019] [Indexed: 12/22/2022]
Abstract
The origin of ctenophores (comb jellies) is obscured by their controversial phylogenetic position, with recent phylogenomic analyses resolving either sponges or ctenophores as the sister group of all other animals. Fossil taxa can provide morphological evidence that may elucidate the origins of derived characters and shared ancestries among divergent taxa, providing a means to "break" long branches in phylogenetic trees. Here we describe new fossil material from the early Cambrian Chengjiang Biota, Yunnan Province, China, including the putative cnidarian Xianguangia, the new taxon Daihua sanqiong gen et sp. nov., and Dinomischus venustus, informally referred to as "dinomischids" here. "Dinomischids" possess a basal calyx encircled by 18 tentacles that surround the mouth. The tentacles carry pinnules, each with a row of stiff filamentous structures interpreted as very large compound cilia of a size otherwise only known in ctenophores. Together with the Cambrian tulip animal Siphusauctum and the armored Cambrian scleroctenophores, they exhibit anatomies that trace ctenophores to a sessile, polypoid stem lineage. This body plan resembles the polypoid, tentaculate morphology of cnidarians, including a blind gastric cavity partitioned by mesenteries. We propose that comb rows are derived from tentacles with paired sets of pinnules that each bear a row of compound cilia. The scleroctenophores exhibit paired comb rows, also observed in Siphusauctum, in addition to an organic skeleton, shared as well by Dinomischus, Daihua, and Xianguangia. We formulate a hypothesis in which ctenophores evolved from sessile, polypoid suspension feeders, sharing similarities with cnidarians that suggest either a close relationship between these two phyla, a striking pattern of early convergent evolution, or an ancestral condition for either metazoans or eumetazoans.
Collapse
Affiliation(s)
- Yang Zhao
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China
| | - Jakob Vinther
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; School of Biological Sciences, University of Bristol, Life Sciences, Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK.
| | - Luke A Parry
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Palaeobiology Section, Department of Natural History, Royal Ontario Museum, Toronto, ON M5S 2C6, Canada; Yale Institute for Biosphere Studies, Yale University, New Haven, CT, USA
| | - Fan Wei
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China
| | - Emily Green
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK; School of Biological Sciences, University of Bristol, Life Sciences, Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Xianguang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China
| | - Gregory D Edgecombe
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Peiyun Cong
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, China; MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming 650091, China; Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
28
|
Anamorphic development and extended parental care in a 520 million-year-old stem-group euarthropod from China. BMC Evol Biol 2018; 18:147. [PMID: 30268090 PMCID: PMC6162911 DOI: 10.1186/s12862-018-1262-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 09/20/2018] [Indexed: 11/28/2022] Open
Abstract
Background Extended parental care is a complex reproductive strategy in which progenitors actively look after their offspring up to – or beyond – the first juvenile stage in order to maximize their fitness. Although the euarthropod fossil record has produced several examples of brood-care, the appearance of extended parental care within this phylum remains poorly constrained given the scarcity of developmental data for Palaeozoic stem-group representatives that would link juvenile and adult forms in an ontogenetic sequence. Results Here, we describe the post-embryonic growth of Fuxianhuia protensa from the early Cambrian Chengjiang Lagerstätte in South China. Our data demonstrate anamorphic post-embryonic development for F. protensa, in which new tergites were sequentially added from a posterior growth zone, the number of tergites varies from eight to 30. The growth of F. protensa is typified by the alternation between segment addition, followed by the depletion of the anteriormost abdominal segment into the thoracic region. The transformation of abdominal into thoracic tergite is demarcated by the development of laterally tergopleurae, and biramous walking legs. The new ontogeny data leads to the recognition of the rare Chengjiang euarthropod Pisinnocaris subconigera as a junior synonym of Fuxianhuia. Comparisons between different species of Fuxianhuia and with other genera within Fuxianhuiida suggest that heterochrony played a prominent role in the morphological diversification of fuxianhuiids. Functional analogy with the flexible trunk ontogeny of Cambrian and Silurian olenimorphic trilobites suggests an adaptation to sporadic low oxygen conditions in Chengjiang deposits for F. protensa. Finally, understanding the growth of F. protensa allows for the interpretation of an exceptional life assemblage consisting of a sexually mature adult alongside four ontogenetically coeval juveniles, which constitutes the oldest occurrence of extended parental care by prolonged cohabitation in the panarthropod fossil record. Conclusions Our findings constitute the most detailed characterization of the post-embryonic development in a soft-bodied upper stem-group euarthropod available to date. The new ontogeny data illuminates the systematics, trunk segmentation and palaeoecology of F. protensa, offers insights on the macroevolutionary processes involved in the diversification of this clade, and contributes towards an improved understanding of complex post-embryonic reproductive ecology in Cambrian euarthropods. Electronic supplementary material The online version of this article (10.1186/s12862-018-1262-6) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Chen A, Chen H, Legg DA, Liu Y, Hou XG. A redescription of Liangwangshania biloba Chen, 2005, from the Chengjiang biota (Cambrian, China), with a discussion of possible sexual dimorphism in fuxianhuiid arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:552-561. [PMID: 30125735 DOI: 10.1016/j.asd.2018.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/13/2018] [Accepted: 08/11/2018] [Indexed: 06/08/2023]
Abstract
Material attributed to Liangwangshania biloba, a fuxianhuiid arthropod from the lower Cambrian (Series 2, Stage 3) of southwest China, is redescribed, with many specimens illustrated for the first time. Newly recognized features include, potential optical neuropils, a stout posterolateral carapace spine, serrated tergal pleurae, two rows of mediolateral carinae, an abdomen composed of seven segments, the last possessing a tripartite lateral flap, and a triangular telson. The presence of tergal carinae, a prothorax composed of six segments, and a trunk composed of 43 segments tipped with a flap-like terminal segment, increase similarities with the previously described Shankouia zhenghei, thus prompting a reevaluation of the potential synonymy of these taxa. These previously recognized species also show considerable overlap in body size, and the ratios of selected body features, such as the carapace. This, combined with their co-occurrence over a temporally and geographically limited range, further support their synonymy. L. biloba is considered the senior synonym in accordance with ICZN rulings, with morphological differences, specifically the presence of posterolateral spines on the carapace, serrated tergopleurae, and spines on the terminal abdominal segment, attributed to sexual variation. An evaluation of potential sexual dimorphism in other fuxianhuiids, and a reassessment of terminology applied to this group is also provided.
Collapse
Affiliation(s)
- Ailin Chen
- Research Center of Paleobiology, Yuxi Normal University, Yuxi, Yunnan 653100, China.
| | - Hong Chen
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, Yunnan 650091, China; MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, Yunnan 650091, China; School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, Guizhou 553004, China
| | - David A Legg
- Department of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Yu Liu
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, Yunnan 650091, China; MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, Yunnan 650091, China
| | - Xian-Guang Hou
- Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming, Yunnan 650091, China; MEC International Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
30
|
Vannier J, Aria C, Taylor RS, Caron JB. Waptia fieldensis Walcott, a mandibulate arthropod from the middle Cambrian Burgess Shale. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172206. [PMID: 30110460 PMCID: PMC6030330 DOI: 10.1098/rsos.172206] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 05/04/2018] [Indexed: 05/12/2023]
Abstract
Waptia fieldensis Walcott, 1912 is one of the iconic animals from the middle Cambrian Burgess Shale biota that had lacked a formal description since its discovery at the beginning of the twentieth century. This study, based on over 1800 specimens, finds that W. fieldensis shares general characteristics with pancrustaceans, as previous authors had suggested based mostly on its overall aspect. The cephalothorax is covered by a flexible, bivalved carapace and houses a pair of long multisegmented antennules, palp-bearing mandibles, maxillules, and four pairs of appendages with five-segmented endopods-the anterior three pairs with long and robust enditic basipods, the fourth pair with proximal annulations and lamellae. The post-cephalothorax has six pairs of lamellate and fully annulated appendages which appear to be extensively modified basipods rather than exopods. The front part of the body bears a pair of stalked eyes with the first ommatidia preserved in a Burgess Shale arthropod, and a median 'labral' complex flanked by lobate projections with possible affinities to hemi-ellipsoid bodies. Waptia confirms the mandibulate affinity of hymenocarines, retrieved here as part of an expanded Pancrustacea, thereby providing a novel perspective on the evolutionary history of this hyperdiverse group. We construe that Waptia was an active swimming predator of soft prey items, using its anterior appendages for food capture and manipulation, and also potentially for clinging to epibenthic substrates.
Collapse
Affiliation(s)
- Jean Vannier
- Université de Lyon, Université Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE, Bâtiment Géode, 2, rue Raphaël Dubois, Villeurbanne 69622, France
| | - Cédric Aria
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39, East Beijing Road, Nanjing 210008, People's Republic of China
- Department of Natural History (Palaeobiology Section), Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, CanadaM5S 2C6
| | - Rod S. Taylor
- Manuels River Hibernia Interpretation Centre, 7 Conception Bay South Highway, CBS, Newfoundland, CanadaA1W 3A2
- Department of Earth Sciences, Memorial University of Newfoundland, St John's, Newfoundland, CanadaA1B 3X5
| | - Jean-Bernard Caron
- Department of Natural History (Palaeobiology Section), Royal Ontario Museum, 100 Queen's Park, Toronto, Ontario, CanadaM5S 2C6
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, CanadaM5S 3B2, Toronto, Ontario, CanadaM5S 3B2
- Department of Earth Sciences, University of Toronto, Toronto, Ontario, CanadaM5S 3B1
| |
Collapse
|
31
|
Yang J, Ortega-Hernández J, Legg DA, Lan T, Hou JB, Zhang XG. Early Cambrian fuxianhuiids from China reveal origin of the gnathobasic protopodite in euarthropods. Nat Commun 2018; 9:470. [PMID: 29391458 PMCID: PMC5794847 DOI: 10.1038/s41467-017-02754-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/26/2017] [Indexed: 11/13/2022] Open
Abstract
Euarthropods owe their evolutionary and ecological success to the morphological plasticity of their appendages. Although this variability is partly expressed in the specialization of the protopodite for a feeding function in the post-deutocerebral limbs, the origin of the former structure among Cambrian representatives remains uncertain. Here, we describe Alacaris mirabilis gen. et sp. nov. from the early Cambrian Xiaoshiba Lagerstätte in China, which reveals the proximal organization of fuxianhuiid appendages in exceptional detail. Proximally, the post-deutocerebral limbs possess an antero-posteriorly compressed protopodite with robust spines. The protopodite is attached to an endopod with more than a dozen podomeres, and an oval flap-shaped exopod. The gnathal edges of the protopodites form an axial food groove along the ventral side of the body, indicating a predatory/scavenging autecology. A cladistic analysis indicates that the fuxianhuiid protopodite represents the phylogenetically earliest occurrence of substantial proximal differentiation within stem-group Euarthropoda illuminating the origin of gnathobasic feeding.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Javier Ortega-Hernández
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - David A Legg
- Department of Earth, Atmospheric, and Environmental Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, China
| | - Jin-Bo Hou
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China
| | - Xi-Guang Zhang
- Key Laboratory for Palaeobiology, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
32
|
Abstract
The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | - Xiaoya Ma
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
33
|
Wolff GH, Thoen HH, Marshall J, Sayre ME, Strausfeld NJ. An insect-like mushroom body in a crustacean brain. eLife 2017; 6:29889. [PMID: 28949916 PMCID: PMC5614564 DOI: 10.7554/elife.29889] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Mushroom bodies are the iconic learning and memory centers of insects. No previously described crustacean possesses a mushroom body as defined by strict morphological criteria although crustacean centers called hemiellipsoid bodies, which serve functions in sensory integration, have been viewed as evolutionarily convergent with mushroom bodies. Here, using key identifiers to characterize neural arrangements, we demonstrate insect-like mushroom bodies in stomatopod crustaceans (mantis shrimps). More than any other crustacean taxon, mantis shrimps display sophisticated behaviors relating to predation, spatial memory, and visual recognition comparable to those of insects. However, neuroanatomy-based cladistics suggesting close phylogenetic proximity of insects and stomatopod crustaceans conflicts with genomic evidence showing hexapods closely related to simple crustaceans called remipedes. We discuss whether corresponding anatomical phenotypes described here reflect the cerebral morphology of a common ancestor of Pancrustacea or an extraordinary example of convergent evolution. With more than four million species, arthropods are the largest and most diverse group of animals on the planet and include, for example, crustaceans, insects and spiders. They are defined by their segmented bodies, hard outer skeletons and jointed limbs. All arthropods share a common ancestor that lived more than 550 million years ago. Exactly how this ancestral arthropod gave rise to the myriad species that exist today is unclear but we know that at some point the arthropod family tree split into branches, one of which went on to become the crustaceans. The crustacean branch then split again, giving rise to a line of descendants that would become the insects. But although insects evolved from crustaceans, the brains of insects possess structures that those of crustaceans do not. Known as mushroom bodies, these structures help to form and store memories. Their absence in crustaceans has therefore been an enduring mystery. Wolff et al. now add a piece to the puzzle by showing that one group of modern-day crustaceans, the mantis shrimps, does in fact possess mushroom bodies. By visualizing cells and pathways within the brains of mantis shrimps, and also a number of closely related species, Wolff et al. show that only these shrimps possess true mushroom bodies. However, some of the mantis shrimp’s close relatives possess a few attributes of these structures. This suggests that mushroom bodies are evolutionarily ancient structures that arose in a common ancestor of insects and crustaceans, before being lost or radically modified in most of the crustaceans. So why did this happen? Mantis shrimps are top predators with excellent vision that hunt over considerable distances, requiring them to evaluate and memorize complex features of their environment. These cognitive demands, which might not be shared by other crustaceans, may have led to the mantis shrimps retaining their mushroom bodies. Further research into the brains and behavior of the mantis shrimp may provide insights into how mushroom bodies construct memories of a complex sensory world.
Collapse
Affiliation(s)
| | | | - Justin Marshall
- Sensory Neurobiology Group, University of Queensland, Brisbane, Australia
| | - Marcel E Sayre
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, United States
| | - Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, United States
| |
Collapse
|
34
|
Ortega-Hernández J, Janssen R, Budd GE. Origin and evolution of the panarthropod head - A palaeobiological and developmental perspective. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:354-379. [PMID: 27989966 DOI: 10.1016/j.asd.2016.10.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/15/2016] [Accepted: 10/25/2016] [Indexed: 05/14/2023]
Abstract
The panarthropod head represents a complex body region that has evolved through the integration and functional specialization of the anterior appendage-bearing segments. Advances in the developmental biology of diverse extant organisms have led to a substantial clarity regarding the relationships of segmental homology between Onychophora (velvet worms), Tardigrada (water bears), and Euarthropoda (e.g. arachnids, myriapods, crustaceans, hexapods). The improved understanding of the segmental organization in panarthropods offers a novel perspective for interpreting the ubiquitous Cambrian fossil record of these successful animals. A combined palaeobiological and developmental approach to the study of the panarthropod head through deep time leads us to propose a consensus hypothesis for the intricate evolutionary history of this important tagma. The contribution of exceptionally preserved brains in Cambrian fossils - together with the recognition of segmentally informative morphological characters - illuminate the polarity for major anatomical features. The euarthropod stem-lineage provides a detailed view of the step-wise acquisition of critical characters, including the origin of a multiappendicular head formed by the fusion of several segments, and the transformation of the ancestral protocerebral limb pair into the labrum, following the postero-ventral migration of the mouth opening. Stem-group onychophorans demonstrate an independent ventral migration of the mouth and development of a multisegmented head, as well as the differentiation of the deutocerebral limbs as expressed in extant representatives. The anterior organization of crown-group Tardigrada retains several ancestral features, such as an anterior-facing mouth and one-segmented head. The proposed model aims to clarify contentious issues on the evolution of the panarthropod head, and lays the foundation from which to further address this complex subject in the future.
Collapse
Affiliation(s)
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala SE-752 36, Sweden
| |
Collapse
|
35
|
Montagna M, Haug JT, Strada L, Haug C, Felber M, Tintori A. Central nervous system and muscular bundles preserved in a 240 million year old giant bristletail (Archaeognatha: Machilidae). Sci Rep 2017; 7:46016. [PMID: 28387236 PMCID: PMC5384076 DOI: 10.1038/srep46016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/28/2017] [Indexed: 11/09/2022] Open
Abstract
Among the incomparably diverse group of insects no cases of central nervous system (CNS) preservation have been so far described in compression fossils. A third of the fossil insects collected from a 240–239 million year old (Ma) level at Monte San Giorgio UNESCO World Heritage (Switzerland-Italy) underwent phosphatization, resulting in the extraordinary preservation of soft tissues. Here we describe Gigamachilis triassicus gen. et sp. nov. (Archaeognatha: Machiloidea: Machilidae) that, with an estimated total length of ~80 millimeters, represents the largest apterygote insect ever recorded. The holotype preserves: (i) components of the CNS represented by four abdominal ganglia, optic lobes with neuropils and compound retina; (ii) muscular bundles. Moreover, G. triassicus, possessing morphological features that prompt its assignment to the extant archaeognathan ingroup Machilidae, places the origin of modern lineages to Middle Triassic. Interestingly, at Monte San Giorgio, in the same stratigraphic unit the modern morphology of G. triassicus co-occurs with the ancient one represented by Dasyleptus triassicus (Archaeognatha: †Monura). Comparing these two types of body organization we provide a new reconstruction of the possible character evolution leading towards modern archaeognathan forms, suggesting the acquisition of novel features in a lineage of apterygote insects during the Permian or the Lower Triassic.
Collapse
Affiliation(s)
- Matteo Montagna
- Dipartimento di Scienze Agrarie e Ambientali - Università degli Studi di Milano, Via Celoria 2, I-20133 Milano, Italy
| | - Joachim T Haug
- Functional Morphology, Department of Biology II and GeoBio-Center, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Laura Strada
- Dipartimento di Scienze della Terra "Ardito Desio" - Università degli Studi di Milano, Via Mangiagalli 34, I-20133 Milano, Italy
| | - Carolin Haug
- Functional Morphology, Department of Biology II and GeoBio-Center, LMU Munich, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany
| | - Markus Felber
- Consulenze Geologiche e Ambientali SA, Via Comacini 31, CH-6834 Morbio Inferiore, Switzerland
| | - Andrea Tintori
- Dipartimento di Scienze della Terra "Ardito Desio" - Università degli Studi di Milano, Via Mangiagalli 34, I-20133 Milano, Italy
| |
Collapse
|
36
|
Brasier MD, Norman DB, Liu AG, Cotton LJ, Hiscocks JEH, Garwood RJ, Antcliffe JB, Wacey D. Remarkable preservation of brain tissues in an Early Cretaceous iguanodontian dinosaur. ACTA ACUST UNITED AC 2016. [DOI: 10.1144/sp448.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractIt has become accepted in recent years that the fossil record can preserve labile tissues. We report here the highly detailed mineralization of soft tissues associated with a naturally occurring brain endocast of an iguanodontian dinosaur found in c. 133 Ma fluvial sediments of the Wealden at Bexhill, Sussex, UK. Moulding of the braincase wall and the mineral replacement of the adjacent brain tissues by phosphates and carbonates allowed the direct examination of petrified brain tissues. Scanning electron microscopy (SEM) imaging and computed tomography (CT) scanning revealed preservation of the tough membranes (meninges) that enveloped and supported the brain proper. Collagen strands of the meningeal layers were preserved in collophane. The blood vessels, also preserved in collophane, were either lined by, or infilled with, microcrystalline siderite. The meninges were preserved in the hindbrain region and exhibit structural similarities with those of living archosaurs. Greater definition of the forebrain (cerebrum) than the hindbrain (cerebellar and medullary regions) is consistent with the anatomical and implied behavioural complexity previously described in iguanodontian-grade ornithopods. However, we caution that the observed proximity of probable cortical layers to the braincase walls probably resulted from the settling of brain tissues against the roof of the braincase after inversion of the skull during decay and burial.Supplementary material: Information regarding associated fossil material, and additional images, can be found at https://doi.org/10.6084/m9.figshare.c.3519984
Collapse
Affiliation(s)
- Martin D. Brasier
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - David B. Norman
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
| | - Alexander G. Liu
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Laura J. Cotton
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, China
| | | | - Russell J. Garwood
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, UK
- Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jonathan B. Antcliffe
- Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
- Department of Zoology, University of Oxford, The Tinbergen Building, South Parks Road, Oxford OX1 3PS, UK
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UK
| | - David Wacey
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
- Centre for Microscopy Characterisation and Analysis, and Australian Research Council Centre of Excellence for Core to Crust Fluid Systems, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
37
|
Preservation and phylogeny of Cambrian ecdysozoans tested by experimental decay of Priapulus. Sci Rep 2016; 6:32817. [PMID: 27595908 PMCID: PMC5011709 DOI: 10.1038/srep32817] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/10/2016] [Indexed: 11/22/2022] Open
Abstract
The exceptionally preserved Cambrian fossil record provides unique insight into the early evolutionary history of animals. Understanding of the mechanisms of exceptional soft tissue preservation frames all interpretations of the fauna and its evolutionary significance. This is especially true for recent interpretations of preserved nervous tissues in fossil ecdysozoans. However, models of soft tissue preservation lack empirical support from actualistic studies. Here experimental decay of the priapulid Priapulus reveal consistent bias towards rapid loss of internal non-cuticular anatomy compared with recalcitrant cuticular anatomy. This is consistent with models of Burgess Shale-type preservation and indicates that internal tissues are unlikely to be preserved with fidelity if organically preserved. This pattern, along with extreme body margin distortion, is consistent with onychophoran decay, and is therefore resolved as general for early ecdysozoans. Application of these patterns to phylogenetic data finds scalidophoran taxa to be very sensitive to taphonomically informed character coding, but not panarthropodan taxa. Priapulid decay also have unexpected relevance for interpretation of myomeres in fossil chordates. The decay data presented serve not only as a test of models of preservation but also a framework with which to interpret ecdysozoan fossil anatomies, and the subsequent evolutionary inferences drawn from them.
Collapse
|
38
|
Yang J, Ortega-Hernández J, Butterfield NJ, Liu Y, Boyan GS, Hou JB, Lan T, Zhang XG. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. Proc Natl Acad Sci U S A 2016; 113:2988-93. [PMID: 26933218 PMCID: PMC4801254 DOI: 10.1073/pnas.1522434113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Panarthropods are typified by disparate grades of neurological organization reflecting a complex evolutionary history. The fossil record offers a unique opportunity to reconstruct early character evolution of the nervous system via exceptional preservation in extinct representatives. Here we describe the neurological architecture of the ventral nerve cord (VNC) in the upper-stem group euarthropod Chengjiangocaris kunmingensis from the early Cambrian Xiaoshiba Lagerstätte (South China). The VNC of C. kunmingensis comprises a homonymous series of condensed ganglia that extend throughout the body, each associated with a pair of biramous limbs. Submillimetric preservation reveals numerous segmental and intersegmental nerve roots emerging from both sides of the VNC, which correspond topologically to the peripheral nerves of extant Priapulida and Onychophora. The fuxianhuiid VNC indicates that ancestral neurological features of Ecdysozoa persisted into derived members of stem-group Euarthropoda but were later lost in crown-group representatives. These findings illuminate the VNC ground pattern in Panarthropoda and suggest the independent secondary loss of cycloneuralian-like neurological characters in Tardigrada and Euarthropoda.
Collapse
Affiliation(s)
- Jie Yang
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
| | | | - Nicholas J Butterfield
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Yu Liu
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China; Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany; GeoBio-Center Ludwig-Maximilians-Universität, Munich 80333, Germany
| | - George S Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, 82152 Martinsried, Germany
| | - Jin-Bo Hou
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China
| | - Tian Lan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 550003, China
| | - Xi-Guang Zhang
- Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China;
| |
Collapse
|
39
|
Ortega-Hernández J, Budd GE. The nature of non-appendicular anterior paired projections in Palaeozoic total-group Euarthropoda. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:185-199. [PMID: 26802876 DOI: 10.1016/j.asd.2016.01.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 05/14/2023]
Abstract
Recent studies have clarified the segmental organization of appendicular and exoskeletal structures in the anterior region of Cambrian stem-group Euarthropoda, and thus led to better understanding of the deep evolutionary origins of the head region in this successful animal group. However, there are aspects of the anterior organization of Palaeozoic euarthropods that remain problematic, such as the morphological identity and significance of minute limb-like projections on the anterior region in stem and crown-group representatives. Here, we draw attention to topological and morphological similarities between the frontal filaments of extant Crustacea and the embryonic frontal processes of Onychophora, and distinctive anterior paired projections observed in several extinct total-group Euarthropoda. Anterior paired projections are redescribed in temporally and phylogenetically distant fossil taxa, including the gilled lobopodians Kerygmachela kierkegaardi and Pambdelurion whittingtoni, the bivalved stem-euarthropod Canadaspis perfecta, the larval pycnogonid Cambropycnogon klausmuelleri, and the mandibulate Tanazios dokeron. Developmental data supporting the homology of the 'primary antennae' of Onychophora, the 'frontal appendages' of lower-stem Euarthropoda, and the hypostome/labrum complex of Deuteropoda, argue against the morphological identity of the anterior paired projections of extant and extinct panarthropods as a pair of pre-ocular appendages. Instead, we regard the paired projections of fossil total-group euarthropods as non-appendicular evaginations with a likely protocerebral segmental association, and a possible sensorial function. The widespread occurrence of pre-ocular paired projections among extant and extinct taxa suggests their potential homology as fundamentally ancestral features of the anterior body organization in Panarthropoda. Non-appendicular paired projections with a sensorial function may reflect a critical--yet previously overlooked--component of the panarthropod ground pattern.
Collapse
Affiliation(s)
- Javier Ortega-Hernández
- Department of Earth Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EQ, UK.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Norbyvägen 22, Uppsala SE 752 36, Sweden
| |
Collapse
|
40
|
Strausfeld NJ. Waptia revisited: Intimations of behaviors. ARTHROPOD STRUCTURE & DEVELOPMENT 2016; 45:173-184. [PMID: 26365952 DOI: 10.1016/j.asd.2015.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/15/2015] [Accepted: 09/01/2015] [Indexed: 05/14/2023]
Abstract
The middle Cambrian taxon Waptia fieldensis offers insights into early evolution of sensory arrangements that may have supported a range of actions such as exploratory behavior, burrowing, scavenging, swimming, and escape, amongst others. Less elaborate than many modern pancrustaceans, specific features of Waptia that suggest a possible association with the pancrustacean evolutionary trajectory, include mandibulate mouthparts, a single pair of antennae, reflective triplets on the head comparable to ocelli, and traces of brain and optic lobes that conform to the pancrustacean ground pattern. This account revisits an earlier description of Waptia to further interpret the distribution of its overall morphology and receptor arrangements in the context of plausible behavioral repertoires.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience, Center for Insect Science, University of Arizona, Tucson, USA.
| |
Collapse
|