1
|
Kanata E, Duffié R, Schulz EG. Establishment and maintenance of random monoallelic expression. Development 2024; 151:dev201741. [PMID: 38813842 PMCID: PMC11166465 DOI: 10.1242/dev.201741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This Review elucidates the regulatory principles of random monoallelic expression by focusing on two well-studied examples: the X-chromosome inactivation regulator Xist and the olfactory receptor gene family. Although the choice of a single X chromosome or olfactory receptor occurs in different developmental contexts, common gene regulatory principles guide monoallelic expression in both systems. In both cases, an event breaks the symmetry between genetically and epigenetically identical copies of the gene, leading to the expression of one single random allele, stabilized through negative feedback control. Although many regulatory steps that govern the establishment and maintenance of monoallelic expression have been identified, key pieces of the puzzle are still missing. We provide an overview of the current knowledge and models for the monoallelic expression of Xist and olfactory receptors. We discuss their similarities and differences, and highlight open questions and approaches that could guide the study of other monoallelically expressed genes.
Collapse
Affiliation(s)
- Eleni Kanata
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Edda G. Schulz
- Systems Epigenetics, Otto Warburg Laboratories, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| |
Collapse
|
2
|
Yusuf N, Monahan K. Epigenetic programming of stochastic olfactory receptor choice. Genesis 2024; 62:e23593. [PMID: 38562011 PMCID: PMC11003729 DOI: 10.1002/dvg.23593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The mammalian sense of smell relies upon a vast array of receptor proteins to detect odorant compounds present in the environment. The proper deployment of these receptor proteins in olfactory sensory neurons is orchestrated by a suite of epigenetic processes that remodel the olfactory genes in differentiating neuronal progenitors. The goal of this review is to elucidate the central role of gene regulatory processes acting in neuronal progenitors of olfactory sensory neurons that lead to a singular expression of an odorant receptor in mature olfactory sensory neurons. We begin by describing the principal features of odorant receptor gene expression in mature olfactory sensory neurons. Next, we delineate our current understanding of how these features emerge from multiple gene regulatory mechanisms acting in neuronal progenitors. Finally, we close by discussing the key gaps in our understanding of how these regulatory mechanisms work and how they interact with each other over the course of differentiation.
Collapse
Affiliation(s)
- Nusrath Yusuf
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| | - Kevin Monahan
- Division of Life Sciences-Molecular Biology and Biochemistry Department, Rutgers University-New Brunswick, New Brunswick, New Jersey, USA
| |
Collapse
|
3
|
Pourmorady AD, Bashkirova EV, Chiariello AM, Belagzhal H, Kodra A, Duffié R, Kahiapo J, Monahan K, Pulupa J, Schieren I, Osterhoudt A, Dekker J, Nicodemi M, Lomvardas S. RNA-mediated symmetry breaking enables singular olfactory receptor choice. Nature 2024; 625:181-188. [PMID: 38123679 PMCID: PMC10765522 DOI: 10.1038/s41586-023-06845-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/07/2023] [Indexed: 12/23/2023]
Abstract
Olfactory receptor (OR) choice provides an extreme example of allelic competition for transcriptional dominance, where every olfactory neuron stably transcribes one of approximately 2,000 or more OR alleles1,2. OR gene choice is mediated by a multichromosomal enhancer hub that activates transcription at a single OR3,4, followed by OR-translation-dependent feedback that stabilizes this choice5,6. Here, using single-cell genomics, we show formation of many competing hubs with variable enhancer composition, only one of which retains euchromatic features and transcriptional competence. Furthermore, we provide evidence that OR transcription recruits enhancers and reinforces enhancer hub activity locally, whereas OR RNA inhibits transcription of competing ORs over distance, promoting transition to transcriptional singularity. Whereas OR transcription is sufficient to break the symmetry between equipotent enhancer hubs, OR translation stabilizes transcription at the prevailing hub, indicating that there may be sequential non-coding and coding mechanisms that are implemented by OR alleles for transcriptional prevalence. We propose that coding OR mRNAs possess non-coding functions that influence nuclear architecture, enhance their own transcription and inhibit transcription from their competitors, with generalizable implications for probabilistic cell fate decisions.
Collapse
Affiliation(s)
- Ariel D Pourmorady
- Vagelos College of Physicians and Surgeons, Columbia University New York, New York, NY, USA
- Department of Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
| | - Elizaveta V Bashkirova
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Andrea M Chiariello
- Department of Physics 'Ettore Pancini', University of Naples, and INFN, Napoli, Italy
| | - Houda Belagzhal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Albana Kodra
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, New York, NY, USA
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Rachel Duffié
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
| | - Jerome Kahiapo
- Department of Molecular Biology & Biochemistry, Rutgers School of Arts and Sciences, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Kevin Monahan
- Department of Molecular Biology & Biochemistry, Rutgers School of Arts and Sciences, Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Joan Pulupa
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
| | - Ira Schieren
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
| | - Alexa Osterhoudt
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Job Dekker
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Mario Nicodemi
- Department of Physics 'Ettore Pancini', University of Naples, and INFN, Napoli, Italy
| | - Stavros Lomvardas
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University New York, New York, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
4
|
Mohanty SK, Maryam S, Gautam V, Mittal A, Gupta K, Arora R, Bhadra W, Mishra T, Sengupta D, Ahuja G. Transcriptional advantage influence odorant receptor gene choice. Brief Funct Genomics 2022; 22:281-290. [DOI: 10.1093/bfgp/elac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Abstract
Odorant receptors (ORs) obey mutual exclusivity and monoallelic mode of expression. Efforts are ongoing to decipher the molecular mechanism that drives the ‘one-neuron-one-receptor’ rule of olfaction. Recently, single-cell profiling of olfactory sensory neurons (OSNs) revealed the expression of multiple ORs in the immature neurons, suggesting that the OR gene choice mechanism is much more complex than previously described by the silence-all-and-activate-one model. These results also led to the genesis of two possible mechanistic models i.e. winner-takes-all and stochastic selection. We developed Reverse Cell Tracking (RCT), a novel computational framework that facilitates OR-guided cellular backtracking by leveraging Uniform Manifold Approximation and Projection embeddings from RNA Velocity Workflow. RCT-based trajectory backtracking, coupled with statistical analysis, revealed the OR gene choice bias for the transcriptionally advanced (highest expressed) OR during neuronal differentiation. Interestingly, the observed selection bias was uniform for all ORs across different spatial zones or their relative expression within the olfactory organ. We validated these findings on independent datasets and further confirmed that the OR gene selection may be regulated by Upf3b. Lastly, our RNA dynamics-based tracking of the differentiation cascade revealed a transition cell state that harbors mixed molecular identities of immature and mature OSNs, and their relative abundance is regulated by Upf3b.
Collapse
Affiliation(s)
- Sanjay Kumar Mohanty
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computational Biology, , Okhla, Phase III, New Delhi 110020, India
| | - Sidrah Maryam
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computational Biology, , Okhla, Phase III, New Delhi 110020, India
| | - Vishakha Gautam
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computational Biology, , Okhla, Phase III, New Delhi 110020, India
| | - Aayushi Mittal
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computational Biology, , Okhla, Phase III, New Delhi 110020, India
| | - Krishan Gupta
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computer Science and Engineering, , Okhla, Phase III, New Delhi 110020, India
| | - Radhika Arora
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computational Biology, , Okhla, Phase III, New Delhi 110020, India
| | - Wrik Bhadra
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computational Biology, , Okhla, Phase III, New Delhi 110020, India
| | - Tripti Mishra
- Pathfinder Research and Training Foundation , Uttar Pradesh 201308, India
| | - Debarka Sengupta
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computational Biology, , Okhla, Phase III, New Delhi 110020, India
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computer Science and Engineering, , Okhla, Phase III, New Delhi 110020, India
| | - Gaurav Ahuja
- Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi) Department of Computational Biology, , Okhla, Phase III, New Delhi 110020, India
| |
Collapse
|
5
|
Yohe LR, Fabbri M, Lee D, Davies KTJ, Yohe TP, Sánchez MKR, Rengifo EM, Hall RP, Mutumi G, Hedrick BP, Sadier A, Simmons NB, Sears KE, Dumont E, Rossiter SJ, Bhullar BAS, Dávalos LM. Ecological constraints on highly evolvable olfactory receptor genes and morphology in neotropical bats. Evolution 2022; 76:2347-2360. [PMID: 35904467 DOI: 10.1111/evo.14591] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 01/22/2023]
Abstract
Although evolvability of genes and traits may promote specialization during species diversification, how ecology subsequently restricts such variation remains unclear. Chemosensation requires animals to decipher a complex chemical background to locate fitness-related resources, and thus the underlying genomic architecture and morphology must cope with constant exposure to a changing odorant landscape; detecting adaptation amidst extensive chemosensory diversity is an open challenge. In phyllostomid bats, an ecologically diverse clade that evolved plant visiting from a presumed insectivorous ancestor, the evolution of novel food detection mechanisms is suggested to be a key innovation, as plant-visiting species rely strongly on olfaction, supplementarily using echolocation. If this is true, exceptional variation in underlying olfactory genes and phenotypes may have preceded dietary diversification. We compared olfactory receptor (OR) genes sequenced from olfactory epithelium transcriptomes and olfactory epithelium surface area of bats with differing diets. Surprisingly, although OR evolution rates were quite variable and generally high, they are largely independent of diet. Olfactory epithelial surface area, however, is relatively larger in plant-visiting bats and there is an inverse relationship between OR evolution rates and surface area. Relatively larger surface areas suggest greater reliance on olfactory detection and stronger constraint on maintaining an already diverse OR repertoire. Instead of the typical case in which specialization and elaboration are coupled with rapid diversification of associated genes, here the relevant genes are already evolving so quickly that increased reliance on smell has led to stabilizing selection, presumably to maintain the ability to consistently discriminate among specific odorants-a potential ecological constraint on sensory evolution.
Collapse
Affiliation(s)
- Laurel R Yohe
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511, USA.,Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794, USA.,Deaprtment of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, North Carolina, 28223, USA.,North Carolina Research Campus, Kannapolis, North Carolina, 28081, USA
| | - Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511, USA.,Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, Illinois, 60605, USA
| | - Daniela Lee
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511, USA.,Harvard School of Medicine, Cambridge, Massachusetts, 02115, USA
| | - Kalina T J Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | | | - Miluska K R Sánchez
- Escuela Profesional de Ciencias Biológicas, Universidad Nacional de Piura, Piura, 20004, Peru
| | - Edgardo M Rengifo
- Programa de Pós-Graduação Interunidades em Ecologia Aplicada, Escola Superior de Agricultura 'Luiz de Queiroz', Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, 13416-970, Brazil.,Centro de Investigación Biodiversidad Sostenible (BioS), Lima, 15073, Peru
| | - Ronald P Hall
- School of Natural Sciences, University of California, Merced, Merced, California, 95344, USA
| | - Gregory Mutumi
- School of Natural Sciences, University of California, Merced, Merced, California, 95344, USA
| | - Brandon P Hedrick
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Alexa Sadier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Nancy B Simmons
- Department of Mammalogy, American Museum of Natural History, New York, New York, 10024, USA
| | - Karen E Sears
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, 90095, USA
| | - Elizabeth Dumont
- School of Natural Sciences, University of California, Merced, Merced, California, 95344, USA
| | - Stephen J Rossiter
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Bhart-Anjan S Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511, USA.,Yale Peabody Museum of Natural History, Yale University, New Haven, Connecticut, 06511, USA
| | - Liliana M Dávalos
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, 11794, USA.,Center for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, New York, 11794, USA
| |
Collapse
|
6
|
Leme Silva AG, Nagai MH, Nakahara TS, Malnic B. Genetic Background Effects on the Expression of an Odorant Receptor Gene. Front Cell Neurosci 2021; 15:646413. [PMID: 33716678 PMCID: PMC7947310 DOI: 10.3389/fncel.2021.646413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/08/2021] [Indexed: 11/19/2022] Open
Abstract
There are more than 1000 odorant receptor (OR) genes in the mouse genome. Each olfactory sensory neuron expresses only one of these genes, in a monoallelic fashion. The transcript abundance of homologous OR genes vary between distinct mouse strains. Here we analyzed the expression of the OR gene Olfr17 (also named P2) in different genomic contexts. Olfr17 is expressed at higher levels in the olfactory epithelium from 129 mice than from C57BL/6 (B6) mice. However, we found that in P2-IRES-tauGFP knock-in mice, the transcript levels of the 129 Olfr17 allele are highly reduced when compared to the B6 Olfr17 allele. To address the mechanisms involved in this variation we compared the 5′ region sequence and DNA methylation patterns of the B6 and 129 Olfr17 alleles. Our results show that genetic variations in cis regulatory regions can lead to differential DNA methylation frequencies in these OR gene alleles. They also show that expression of the Olfr17 alleles is largely affected by the genetic background, and suggest that in knock-in mice, expression can be affected by epigenetic modifications in the region of the targeted locus.
Collapse
Affiliation(s)
| | | | | | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Jafari S, Alenius M. Odor response adaptation in Drosophila-a continuous individualization process. Cell Tissue Res 2021; 383:143-148. [PMID: 33492517 PMCID: PMC7873105 DOI: 10.1007/s00441-020-03384-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/06/2020] [Indexed: 01/26/2023]
Abstract
Olfactory perception is very individualized in humans and also in Drosophila. The process that individualize olfaction is adaptation that across multiple time scales and mechanisms shape perception and olfactory-guided behaviors. Olfactory adaptation occurs both in the central nervous system and in the periphery. Central adaptation occurs at the level of the circuits that process olfactory inputs from the periphery where it can integrate inputs from other senses, metabolic states, and stress. We will here focus on the periphery and how the fast, slow, and persistent (lifelong) adaptation mechanisms in the olfactory sensory neurons individualize the Drosophila olfactory system.
Collapse
Affiliation(s)
- Shadi Jafari
- Department of Biology, New York University, New York, NY, USA
| | - Mattias Alenius
- Department of Molecular Biology, Umeå University, 901 87, Umeå, SE, Sweden.
| |
Collapse
|
8
|
Mohrhardt J, Nagel M, Fleck D, Ben-Shaul Y, Spehr M. Signal Detection and Coding in the Accessory Olfactory System. Chem Senses 2019; 43:667-695. [PMID: 30256909 PMCID: PMC6211456 DOI: 10.1093/chemse/bjy061] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In many mammalian species, the accessory olfactory system plays a central role in guiding behavioral and physiological responses to social and reproductive interactions. Because of its relatively compact structure and its direct access to amygdalar and hypothalamic nuclei, the accessory olfactory pathway provides an ideal system to study sensory control of complex mammalian behavior. During the last several years, many studies employing molecular, behavioral, and physiological approaches have significantly expanded and enhanced our understanding of this system. The purpose of the current review is to integrate older and newer studies to present an updated and comprehensive picture of vomeronasal signaling and coding with an emphasis on early accessory olfactory system processing stages. These include vomeronasal sensory neurons in the vomeronasal organ, and the circuitry of the accessory olfactory bulb. Because the overwhelming majority of studies on accessory olfactory system function employ rodents, this review is largely focused on this phylogenetic order, and on mice in particular. Taken together, the emerging view from both older literature and more recent studies is that the molecular, cellular, and circuit properties of chemosensory signaling along the accessory olfactory pathway are in many ways unique. Yet, it has also become evident that, like the main olfactory system, the accessory olfactory system also has the capacity for adaptive learning, experience, and state-dependent plasticity. In addition to describing what is currently known about accessory olfactory system function and physiology, we highlight what we believe are important gaps in our knowledge, which thus define exciting directions for future investigation.
Collapse
Affiliation(s)
- Julia Mohrhardt
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Maximilian Nagel
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, School of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
9
|
Noble JC, Meredith D, Lane RP. Frequent and biased odorant receptor (OR) re-selection in an olfactory placode-derived cell line. PLoS One 2018; 13:e0204604. [PMID: 30256852 PMCID: PMC6157871 DOI: 10.1371/journal.pone.0204604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022] Open
Abstract
We previously characterized a clonal olfactory placode-derived cell line (OP6) as a model system for studying odorant receptor (OR) choice, where individual OP6 cells, similar to olfactory sensory neurons in vivo, transcribe one allele ("monoallelic") of one OR gene ("monogenic"). The OP6 cell line provides a unique opportunity to investigate intrinsic properties of OR regulation that cannot easily be investigated in vivo. First, whereas OR-expressing cells in vivo are post-mitotic, OP6 cells are immortalized, raising interesting questions about the stability of epigenetic states associated with OR selection/silencing as OP6 cells progress through the cell cycle. Second, OP6 cells have been isolated away from extrinsic developmental cues, and therefore, any long-term OR selection biases are likely to arise from intrinsic epigenetic states that persist in the absence of developmental context. In this study, we investigated OR re-selection frequency and selection biases within clonal OP6 cell populations. We found no evidence of OR stability through the cell cycle: our results were most consistent with OR re-selection events transpiring at least once per cell division, suggesting that chromatin states associated with OR selection in this system might not be maintained in the subsequent generation. In contrast, we found strong evidence for OR selection biases maintained over prolonged culturing across a diverse set of OP6 cell lineages, suggesting the persistence of intrinsic epigenetic states that advantage some OR loci over others. Together, our data suggest that in the absence of instructive cues, intrinsic epigenetic states influencing OR eligibility, but not those determining OR choice, might persist through the cell cycle.
Collapse
Affiliation(s)
- J. C. Noble
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Diane Meredith
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| | - Robert P. Lane
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States of America
| |
Collapse
|
10
|
Monahan K, Schieren I, Cheung J, Mumbey-Wafula A, Monuki ES, Lomvardas S. Cooperative interactions enable singular olfactory receptor expression in mouse olfactory neurons. eLife 2017; 6. [PMID: 28933695 PMCID: PMC5608512 DOI: 10.7554/elife.28620] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 08/28/2017] [Indexed: 12/16/2022] Open
Abstract
The monogenic and monoallelic expression of only one out of >1000 mouse olfactory receptor (ORs) genes requires the formation of large heterochromatic chromatin domains that sequester the OR gene clusters. Within these domains, intergenic transcriptional enhancers evade heterochromatic silencing and converge into interchromosomal hubs that assemble over the transcriptionally active OR. The significance of this nuclear organization in OR choice remains elusive. Here, we show that transcription factors Lhx2 and Ebf specify OR enhancers by binding in a functionally cooperative fashion to stereotypically spaced motifs that defy heterochromatin. Specific displacement of Lhx2 and Ebf from OR enhancers resulted in pervasive, long-range, and trans downregulation of OR transcription, whereas pre-assembly of a multi-enhancer hub increased the frequency of OR choice in cis. Our data provide genetic support for the requirement and sufficiency of interchromosomal interactions in singular OR choice and generate general regulatory principles for stochastic, mutually exclusive gene expression programs.
Collapse
Affiliation(s)
- Kevin Monahan
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Ira Schieren
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Jonah Cheung
- New York Structural Biology Center, New York, United States
| | - Alice Mumbey-Wafula
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States
| | - Edwin S Monuki
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, United States
| | - Stavros Lomvardas
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States.,Department of Neuroscience, Columbia University, New York, United States.,Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
11
|
Ibarra-Soria X, Nakahara TS, Lilue J, Jiang Y, Trimmer C, Souza MA, Netto PH, Ikegami K, Murphy NR, Kusma M, Kirton A, Saraiva LR, Keane TM, Matsunami H, Mainland J, Papes F, Logan DW. Variation in olfactory neuron repertoires is genetically controlled and environmentally modulated. eLife 2017; 6. [PMID: 28438259 PMCID: PMC5404925 DOI: 10.7554/elife.21476] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/21/2017] [Indexed: 12/28/2022] Open
Abstract
The mouse olfactory sensory neuron (OSN) repertoire is composed of 10 million cells and each expresses one olfactory receptor (OR) gene from a pool of over 1000. Thus, the nose is sub-stratified into more than a thousand OSN subtypes. Here, we employ and validate an RNA-sequencing-based method to quantify the abundance of all OSN subtypes in parallel, and investigate the genetic and environmental factors that contribute to neuronal diversity. We find that the OSN subtype distribution is stereotyped in genetically identical mice, but varies extensively between different strains. Further, we identify cis-acting genetic variation as the greatest component influencing OSN composition and demonstrate independence from OR function. However, we show that olfactory stimulation with particular odorants results in modulation of dozens of OSN subtypes in a subtle but reproducible, specific and time-dependent manner. Together, these mechanisms generate a highly individualized olfactory sensory system by promoting neuronal diversity. DOI:http://dx.doi.org/10.7554/eLife.21476.001 Smells are simply chemicals in the air that are recognized by nerves in our nose. Each nerve has a receptor that can identify a limited number of chemicals, and the nerve then relays this information to the brain. Animals have hundreds to thousands of different types of these nerves meaning that they can detect a wide array of smells. Smell receptors are proteins, and the genes that encode these proteins can be very different in two unrelated people. This could partly explain, for example, why some people find certain odors intense and unpleasant while others do not. However, having different genes for smell receptors does not by itself completely explain why some people are more sensitive than others to particular smells. The amounts of each nerve type in the nose might also differ between people and have an effect, but to date it has not been possible to accurately count them all. Ibarra-Soria et al. have now devised a new method to essentially count the number of each nerve type in the noses of mice from different breeds. The method makes use of a technique called RNA-sequencing, which can reveal which genes are active at any one time, and thus show how many nerves are producing each type of smell receptor. Ibarra-Soria et al. learned that different breeds of mice had remarkably different compositions of nerves in their noses. Further analysis revealed that this was due to changes to the DNA code near to the genes that encode the smell receptor. Next, Ibarra-Soria et al. sought to find out how the amount of each nerve type is controlled by giving mice water with different smells for weeks and looking how this affected their noses. These experiments revealed that a small number of the nerve types became more or less common after exposure to a smell. The altered nerves were directly involved in recognizing the smells, proving that the very act of smelling can change the make-up of nerves in a mouse’s nose. These results confirm that the diversity in the nose of each individual is not only dictated by the types of receptors found in there, but also by the number of each nerve type. The next challenge is to understand better how these differences change the way people perceive smells. DOI:http://dx.doi.org/10.7554/eLife.21476.002
Collapse
Affiliation(s)
| | - Thiago S Nakahara
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Jingtao Lilue
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Yue Jiang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Casey Trimmer
- Monell Chemical Senses Center, Philadelphia, United States
| | - Mateus Aa Souza
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Paulo Hm Netto
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Kentaro Ikegami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | | | - Mairi Kusma
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Andrea Kirton
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Luis R Saraiva
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Thomas M Keane
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, United States
| | - Joel Mainland
- Monell Chemical Senses Center, Philadelphia, United States.,Department of Neuroscience, University of Pennsylvania, Philadelphia, United States
| | - Fabio Papes
- Department of Genetics and Evolution, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Darren W Logan
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom.,Monell Chemical Senses Center, Philadelphia, United States
| |
Collapse
|
12
|
Lysine-specific demethylase-1 (LSD1) depletion disrupts monogenic and monoallelic odorant receptor (OR) expression in an olfactory neuronal cell line. Mol Cell Neurosci 2017; 82:1-11. [PMID: 28414096 DOI: 10.1016/j.mcn.2017.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 04/05/2017] [Accepted: 04/13/2017] [Indexed: 11/22/2022] Open
Abstract
Function of the mammalian olfactory system depends on specialized olfactory sensory neurons (OSNs) that each express only one allele ("monoallelic") of one odorant receptor (OR) gene ("monogenic"). The lysine-specific demethylase-1 (LSD1) protein removes activating H3K4 or silencing H3K9 methylation marks in a variety of developmental contexts, and is thought to be important for proper OR regulation. Most of the focus in the field has been on a potential "activating" function for LSD1; e.g., in the demethylation of H3K9 associated with the expressed OR allele. Here we show that depletion of LSD1 in an immortalized olfactory-placode-derived cell line (OP6) results in multigenic and multiallelic OR transcription per cell, while not seemingly disrupting the ability of these cells to activate new OR genes during clonal expansion. These results are consistent with LSD1 having a role in silencing additional OR alleles, as opposed to being required for the activation of OR alleles, within the OP6 cellular context.
Collapse
|
13
|
Sharma R, Ishimaru Y, Davison I, Ikegami K, Chien MS, You H, Chi Q, Kubota M, Yohda M, Ehlers M, Matsunami H. Olfactory receptor accessory proteins play crucial roles in receptor function and gene choice. eLife 2017; 6. [PMID: 28262096 PMCID: PMC5362263 DOI: 10.7554/elife.21895] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
Each of the olfactory sensory neurons (OSNs) chooses to express a single G protein-coupled olfactory receptor (OR) from a pool of hundreds. Here, we show the receptor transporting protein (RTP) family members play a dual role in both normal OR trafficking and determining OR gene choice probabilities. Rtp1 and Rtp2 double knockout mice (RTP1,2DKO) show OR trafficking defects and decreased OSN activation. Surprisingly, we discovered a small subset of the ORs are expressed in larger numbers of OSNs despite the presence of fewer total OSNs in RTP1,2DKO. Unlike typical ORs, some overrepresented ORs show robust cell surface expression in heterologous cells without the co-expression of RTPs. We present a model in which developing OSNs exhibit unstable OR expression until they choose to express an OR that exits the ER or undergo cell death. Our study sheds light on the new link between OR protein trafficking and OR transcriptional regulation.
Collapse
Affiliation(s)
- Ruchira Sharma
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Yoshiro Ishimaru
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ian Davison
- Department of Biology, Boston University, Boston, United States
| | - Kentaro Ikegami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ming-Shan Chien
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Helena You
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Quiyi Chi
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Momoka Kubota
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States
| | - Masafumi Yohda
- Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Michael Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, United States.,Biogen Inc, Cambridge, United States
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, United States.,Department of Neurobiology, Duke University Medical Center, Durham, United States.,Duke Institute for Brain Sciences, Durham, United States
| |
Collapse
|
14
|
Springer MS, Gatesy J. Inactivation of the olfactory marker protein (OMP) gene in river dolphins and other odontocete cetaceans. Mol Phylogenet Evol 2017; 109:375-387. [PMID: 28193458 DOI: 10.1016/j.ympev.2017.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/25/2017] [Accepted: 01/29/2017] [Indexed: 11/18/2022]
Abstract
Various toothed whales (Odontoceti) are unique among mammals in lacking olfactory bulbs as adults and are thought to be anosmic (lacking the olfactory sense). At the molecular level, toothed whales have high percentages of pseudogenic olfactory receptor genes, but species that have been investigated to date retain an intact copy of the olfactory marker protein gene (OMP), which is highly expressed in olfactory receptor neurons and may regulate the temporal resolution of olfactory responses. One hypothesis for the retention of intact OMP in diverse odontocete lineages is that this gene is pleiotropic with additional functions that are unrelated to olfaction. Recent expression studies provide some support for this hypothesis. Here, we report OMP sequences for representatives of all extant cetacean families and provide the first molecular evidence for inactivation of this gene in vertebrates. Specifically, OMP exhibits independent inactivating mutations in six different odontocete lineages: four river dolphin genera (Platanista, Lipotes, Pontoporia, Inia), sperm whale (Physeter), and harbor porpoise (Phocoena). These results suggest that the only essential role of OMP that is maintained by natural selection is in olfaction, although a non-olfactory role for OMP cannot be ruled out for lineages that retain an intact copy of this gene. Available genome sequences from cetaceans and close outgroups provide evidence of inactivating mutations in two additional genes (CNGA2, CNGA4), which imply further pseudogenization events in the olfactory cascade of odontocetes. Selection analyses demonstrate that evolutionary constraints on all three genes (OMP, CNGA2, CNGA4) have been greatly reduced in Odontoceti, but retain a signature of purifying selection on the stem Cetacea branch and in Mysticeti (baleen whales). This pattern is compatible with the 'echolocation-priority' hypothesis for the evolution of OMP, which posits that negative selection was maintained in the common ancestor of Cetacea and was not relaxed significantly until the evolution of echolocation in Odontoceti.
Collapse
Affiliation(s)
- Mark S Springer
- Department of Biology, University of California, Riverside, CA 92521, USA.
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA.
| |
Collapse
|
15
|
Zhang Z, Yang D, Zhang M, Zhu N, Zhou Y, Storm DR, Wang Z. Deletion of Type 3 Adenylyl Cyclase Perturbs the Postnatal Maturation of Olfactory Sensory Neurons and Olfactory Cilium Ultrastructure in Mice. Front Cell Neurosci 2017; 11:1. [PMID: 28154525 PMCID: PMC5243839 DOI: 10.3389/fncel.2017.00001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023] Open
Abstract
Type 3 adenylyl cyclase (Adcy3) is localized to the cilia of olfactory sensory neurons (OSNs) and is an essential component of the olfactory cyclic adenosine monophosphate (cAMP) signaling pathway. Although the role of this enzyme in odor detection and axonal projection in OSNs was previously characterized, researchers will still have to determine its function in the maturation of postnatal OSNs and olfactory cilium ultrastructure. Previous studies on newborns showed that the anatomic structure of the main olfactory epithelium (MOE) of Adcy3 knockout mice (Adcy3-/-) is indistinguishable from that of their wild-type littermates (Adcy3+/+), whereas the architecture and associated composition of MOE are relatively underdeveloped at this early age. The full effects of sensory deprivation on OSNs may not also be exhibited in such age. In the present study, following a comparison of postnatal OSNs in seven-, 30-, and 90-day-old Adcy3-/- mice and wild-type controls (Adcy3+/+), we observed that the absence of Adcy3 leads to cumulative defects in the maturation of OSNs. Upon aging, Adcy3-/- OSNs exhibited increase in immature cells and reduction in mature cells along with elevated apoptosis levels. The density and ultrastructure of Adcy3-/- cilia were also disrupted in mice upon aging. Collectively, our results reveal an indispensable role of Adcy3 in postnatal maturation of OSNs and maintenance of olfactory cilium ultrastructure in mice through adulthood.
Collapse
Affiliation(s)
- Zhe Zhang
- College of Life Science, Hebei UniversityBaoding, China; Medical College, Hebei UniversityBaoding, China
| | - Dong Yang
- College of Life Science, Hebei University Baoding, China
| | - Mengdi Zhang
- College of Life Science, Hebei University Baoding, China
| | - Ning Zhu
- Department of Cardiology, Baoding First Center Hospital Baoding, China
| | - Yanfen Zhou
- College of Life Science, Hebei University Baoding, China
| | - Daniel R Storm
- Department of Pharmacology, University of Washington, Seattle WA, USA
| | - Zhenshan Wang
- College of Life Science, Hebei University Baoding, China
| |
Collapse
|
16
|
Nagai MH, Armelin-Correa LM, Malnic B. Monogenic and Monoallelic Expression of Odorant Receptors. Mol Pharmacol 2016; 90:633-639. [PMID: 27587538 DOI: 10.1124/mol.116.104745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/31/2016] [Indexed: 02/06/2023] Open
Abstract
Odorant receptors (ORs) belong to a large gene family of rhodopsin-like G protein-coupled receptors (GPCRs). The mouse OR gene family is composed of ∼1000 OR genes, and the human OR gene family is composed of ∼400 OR genes. The OR genes are spread throughout the genome, and can be found in clusters or as solitary genes in almost all chromosomes. These chemosensory GPCRs are expressed in highly specialized cells, the olfactory sensory neurons of the nose. Each one of these neurons expresses a single OR gene out of the complete repertoire of genes. In addition, only one of the two homologous alleles of the chosen OR gene, the maternal or the paternal, is expressed per neuron. Here we review recent findings that help to elucidate the mechanisms underlying monogenic and monoallelic expression of OR genes.
Collapse
Affiliation(s)
- Maíra H Nagai
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| | | | - Bettina Malnic
- Department of Biochemistry, University of São Paulo, São Paulo, Brazil
| |
Collapse
|