1
|
Wass S, Greenwood E, Esposito G, Smith C, Necef I, Phillips E. Annual Research Review: 'There, the dance is - at the still point of the turning world' - dynamic systems perspectives on coregulation and dysregulation during early development. J Child Psychol Psychiatry 2024; 65:481-507. [PMID: 38390803 DOI: 10.1111/jcpp.13960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
During development we transition from coregulation (where regulatory processes are shared between child and caregiver) to self-regulation. Most early coregulatory interactions aim to manage fluctuations in the infant's arousal and alertness; but over time, coregulatory processes become progressively elaborated to encompass other functions such as sociocommunicative development, attention and executive control. The fundamental aim of coregulation is to help maintain an optimal 'critical state' between hypo- and hyperactivity. Here, we present a dynamic framework for understanding child-caregiver coregulatory interactions in the context of psychopathology. Early coregulatory processes involve both passive entrainment, through which a child's state entrains to the caregiver's, and active contingent responsiveness, through which the caregiver changes their behaviour in response to behaviours from the child. Similar principles, of interactive but asymmetric contingency, drive joint attention and the maintenance of epistemic states as well as arousal/alertness, emotion regulation and sociocommunicative development. We describe three ways in which active child-caregiver regulation can develop atypically, in conditions such as Autism, ADHD, anxiety and depression. The most well-known of these is insufficient contingent responsiveness, leading to reduced synchrony, which has been shown across a range of modalities in different disorders, and which is the target of most current interventions. We also present evidence that excessive contingent responsiveness and excessive synchrony can develop in some circumstances. And we show that positive feedback interactions can develop, which are contingent but mutually amplificatory child-caregiver interactions that drive the child further from their critical state. We discuss implications of these findings for future intervention research, and directions for future work.
Collapse
Affiliation(s)
- Sam Wass
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Emily Greenwood
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Giovanni Esposito
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Celia Smith
- Institute of Psychology Psychiatry and Neuroscience, King's College, London, UK
| | - Isil Necef
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| | - Emily Phillips
- UEL BabyDevLab, Department of Psychology, University of East London, London, UK
| |
Collapse
|
2
|
Kelley DB. Convergent and divergent neural circuit architectures that support acoustic communication. Front Neural Circuits 2022; 16:976789. [PMID: 36466364 PMCID: PMC9712726 DOI: 10.3389/fncir.2022.976789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Vocal communication is used across extant vertebrates, is evolutionarily ancient, and been maintained, in many lineages. Here I review the neural circuit architectures that support intraspecific acoustic signaling in representative anuran, mammalian and avian species as well as two invertebrates, fruit flies and Hawaiian crickets. I focus on hindbrain motor control motifs and their ties to respiratory circuits, expression of receptors for gonadal steroids in motor, sensory, and limbic neurons as well as divergent modalities that evoke vocal responses. Hindbrain and limbic participants in acoustic communication are highly conserved, while forebrain participants have diverged between anurans and mammals, as well as songbirds and rodents. I discuss the roles of natural and sexual selection in driving speciation, as well as exaptation of circuit elements with ancestral roles in respiration, for producing sounds and driving rhythmic vocal features. Recent technical advances in whole brain fMRI across species will enable real time imaging of acoustic signaling partners, tying auditory perception to vocal production.
Collapse
|
3
|
Zhang YS, Takahashi DY, El Hady A, Liao DA, Ghazanfar AA. Active neural coordination of motor behaviors with internal states. Proc Natl Acad Sci U S A 2022; 119:e2201194119. [PMID: 36122243 PMCID: PMC9522379 DOI: 10.1073/pnas.2201194119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022] Open
Abstract
The brain continuously coordinates skeletomuscular movements with internal physiological states like arousal, but how is this coordination achieved? One possibility is that the brain simply reacts to changes in external and/or internal signals. Another possibility is that it is actively coordinating both external and internal activities. We used functional ultrasound imaging to capture a large medial section of the brain, including multiple cortical and subcortical areas, in marmoset monkeys while monitoring their spontaneous movements and cardiac activity. By analyzing the causal ordering of these different time series, we found that information flowing from the brain to movements and heart-rate fluctuations were significantly greater than in the opposite direction. The brain areas involved in this external versus internal coordination were spatially distinct, but also extensively interconnected. Temporally, the brain alternated between network states for this regulation. These findings suggest that the brain's dynamics actively and efficiently coordinate motor behavior with internal physiology.
Collapse
Affiliation(s)
- Yisi S. Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Daniel Y. Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Brain Institute, Federal University of Rio Grande do Norte, Natal 59076-550, Brazil
| | - Ahmed El Hady
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Center for Advanced Study of Collective Behavior, University of Konstanz, Konstanz 78464, Germany
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz 78464, Germany
| | - Diana A. Liao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | - Asif A. Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Psychology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
4
|
Pouw W, Fuchs S. Origins Of Vocal-Entangled Gesture. Neurosci Biobehav Rev 2022; 141:104836. [PMID: 36031008 DOI: 10.1016/j.neubiorev.2022.104836] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 01/13/2023]
Abstract
Gestures during speaking are typically understood in a representational framework: they represent absent or distal states of affairs by means of pointing, resemblance, or symbolic replacement. However, humans also gesture along with the rhythm of speaking, which is amenable to a non-representational perspective. Such a perspective centers on the phenomenon of vocal-entangled gestures and builds on evidence showing that when an upper limb with a certain mass decelerates/accelerates sufficiently, it yields impulses on the body that cascade in various ways into the respiratory-vocal system. It entails a physical entanglement between body motions, respiration, and vocal activities. It is shown that vocal-entangled gestures are realized in infant vocal-motor babbling before any representational use of gesture develops. Similarly, an overview is given of vocal-entangled processes in non-human animals. They can frequently be found in rats, bats, birds, and a range of other species that developed even earlier in the phylogenetic tree. Thus, the origins of human gesture lie in biomechanics, emerging early in ontogeny and running deep in phylogeny.
Collapse
Affiliation(s)
- Wim Pouw
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands.
| | - Susanne Fuchs
- Leibniz Center General Linguistics, Berlin, Germany.
| |
Collapse
|
5
|
Narayanan DZ, Takahashi DY, Kelly LM, Hlavaty SI, Huang J, Ghazanfar AA. Prenatal development of neonatal vocalizations. eLife 2022; 11:78485. [PMID: 35880740 PMCID: PMC9391037 DOI: 10.7554/elife.78485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Human and non-human primates produce rhythmical sounds as soon as they are born. These early vocalizations are important for soliciting the attention of caregivers. How they develop, remains a mystery. The orofacial movements necessary for producing these vocalizations have distinct spatiotemporal signatures. Therefore, their development could potentially be tracked over the course of prenatal life. We densely and longitudinally sampled fetal head and orofacial movements in marmoset monkeys using ultrasound imaging. We show that orofacial movements necessary for producing rhythmical vocalizations differentiate from a larger movement pattern that includes the entire head. We also show that signature features of marmoset infant contact calls emerge prenatally as a distinct pattern of orofacial movements. Our results establish that aspects of the sensorimotor development necessary for vocalizing occur prenatally, even before the production of sound.
Collapse
Affiliation(s)
- Darshana Z Narayanan
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Lauren M Kelly
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Sabina I Hlavaty
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| | - Junzhou Huang
- Department of Computer Science and Engineering, The University of Texas at Arlington, Arlington, United States
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| |
Collapse
|
6
|
A mechanism for punctuating equilibria during mammalian vocal development. PLoS Comput Biol 2022; 18:e1010173. [PMID: 35696441 PMCID: PMC9232141 DOI: 10.1371/journal.pcbi.1010173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 06/24/2022] [Accepted: 05/05/2022] [Indexed: 12/02/2022] Open
Abstract
Evolution and development are typically characterized as the outcomes of gradual changes, but sometimes (states of equilibrium can be punctuated by sudden change. Here, we studied the early vocal development of three different mammals: common marmoset monkeys, Egyptian fruit bats, and humans. Consistent with the notion of punctuated equilibria, we found that all three species undergo at least one sudden transition in the acoustics of their developing vocalizations. To understand the mechanism, we modeled different developmental landscapes. We found that the transition was best described as a shift in the balance of two vocalization landscapes. We show that the natural dynamics of these two landscapes are consistent with the dynamics of energy expenditure and information transmission. By using them as constraints for each species, we predicted the differences in transition timing from immature to mature vocalizations. Using marmoset monkeys, we were able to manipulate both infant energy expenditure (vocalizing in an environment with lighter air) and information transmission (closed-loop contingent parental vocal playback). These experiments support the importance of energy and information in leading to punctuated equilibrium states of vocal development. Species can sometimes evolve suddenly; their appearance is preceded and followed by long periods of stability. This process is known as “punctuated equilibrium”. Our data show that for three mammalian species—marmoset monkeys, fruit bats, and humans—early vocal development trajectories can also be characterized as different equilibrium states punctuated by sharp transitions; transitions indicate the advent of a new vocal behavior. To better understand the putative mechanism behind such transitions, we show that a balance model, in which variables trade-off in their importance over time, captured this change by accurately simulating the shape of the developmental trajectory and predicting the timing of the transition between immature and mature vocal states for all three species. Two variables—energy and information—were hypothesized to trade-off during development. We tested and found support for this hypothesis in analyses of two marmoset monkey experiments, one which manipulated energy metabolic costs and another which manipulated information transmission.
Collapse
|
7
|
Zhang YS, Alvarez JL, Ghazanfar AA. Arousal elevation drives the development of oscillatory vocal output. J Neurophysiol 2022; 127:1519-1531. [PMID: 35475704 PMCID: PMC9169828 DOI: 10.1152/jn.00007.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Adult behaviors, such as vocal production, often exhibit temporal regularity. In contrast, their immature forms are more irregular. We ask whether the coupling of motor behaviors with arousal changes gives rise to temporal regularity: Do they drive the transition from variable to regular motor output over the course of development? We used marmoset monkey vocal production to explore this putative influence of arousal on the nonlinear changes in their developing vocal output patterns. Based on a detailed analysis of vocal and arousal dynamics in marmosets, we put forth a general model incorporating arousal and auditory feedback loops for spontaneous vocal production. Using this model, we show that a stable oscillation can emerge as the baseline arousal increases, predicting the transition from stochastic to periodic oscillations observed during marmoset vocal development. We further provide a solution for how this model can explain vocal development as the joint consequence of energetic growth and social feedback. Together, we put forth a plausible mechanism for the development of arousal-mediated adaptive behavior.NEW & NOTEWORTHY The development of motor behaviors, and the influence of energetic and social factors on it, has long been of interest, yet we lack an integrated picture of how these different systems may interact. Through the lens of vocal development in infant marmosets, this study offers a solution for social behavior development by linking motor production with arousal states. Increases in arousal can drive the system out of stochastic states toward oscillatory dynamics ready for communication.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - John L Alvarez
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey
- Department of Psychology, Princeton University, Princeton, New Jersey
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
8
|
Wass SV, Perapoch Amadó M, Ives J. Oscillatory entrainment to our early social or physical environment and the emergence of volitional control. Dev Cogn Neurosci 2022; 54:101102. [PMID: 35398645 PMCID: PMC9010552 DOI: 10.1016/j.dcn.2022.101102] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/18/2022] [Accepted: 03/23/2022] [Indexed: 01/08/2023] Open
Abstract
An individual's early interactions with their environment are thought to be largely passive; through the early years, the capacity for volitional control develops. Here, we consider: how is the emergence of volitional control characterised by changes in the entrainment observed between internal activity (behaviour, physiology and brain activity) and the sights and sounds in our everyday environment (physical and social)? We differentiate between contingent responsiveness (entrainment driven by evoked responses to external events) and oscillatory entrainment (driven by internal oscillators becoming temporally aligned with external oscillators). We conclude that ample evidence suggests that children show behavioural, physiological and neural entrainment to their physical and social environment, irrespective of volitional attention control; however, evidence for oscillatory entrainment beyond contingent responsiveness is currently lacking. Evidence for how oscillatory entrainment changes over developmental time is also lacking. Finally, we suggest a mechanism through which periodic environmental rhythms might facilitate both sensory processing and the development of volitional control even in the absence of oscillatory entrainment.
Collapse
Affiliation(s)
- S V Wass
- Department of Psychology, University of East London, UK.
| | | | - J Ives
- Department of Psychology, University of East London, UK
| |
Collapse
|
9
|
Vocalization and physiological hyperarousal in infant-caregiver dyads where the caregiver has elevated anxiety. Dev Psychopathol 2022; 35:459-470. [PMID: 35105411 DOI: 10.1017/s095457942100153x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Co-regulation of physiological arousal within the caregiver-child dyad precedes later self-regulation within the individual. Despite the importance of unimpaired self-regulatory development for later adjustment outcomes, little is understood about how early co-regulatory processes can become dysregulated during early life. Aspects of caregiver behavior, such as patterns of anxious speech, may be one factor influencing infant arousal dysregulation. To address this, we made day-long, naturalistic biobehavioral recordings in home settings in caregiver-infant dyads using wearable autonomic devices and miniature microphones. We examined the association between arousal, vocalization intensity, and caregiver anxiety. We found that moments of high physiological arousal in infants were more likely to be accompanied by high caregiver arousal when caregivers had high self-reported trait anxiety. Anxious caregivers were also more likely to vocalize intensely at states of high arousal and produce intense vocalizations that occurred in clusters. High-intensity vocalizations were associated with more sustained increases in autonomic arousal for both anxious caregivers and their infants. Findings indicate that caregiver vocal behavior differs in anxious parents, cooccurs with dyadic arousal dysregulation, and could contribute to physiological arousal transmission. Implications for caregiver vocalization as an intervention target are discussed.
Collapse
|
10
|
Wass S, Phillips E, Smith C, Fatimehin EOOB, Goupil L. Vocal communication is tied to interpersonal arousal coupling in caregiver-infant dyads. eLife 2022; 11:77399. [PMID: 36537657 PMCID: PMC9833822 DOI: 10.7554/elife.77399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
It has been argued that a necessary condition for the emergence of speech in humans is the ability to vocalise irrespective of underlying affective states, but when and how this happens during development remains unclear. To examine this, we used wearable microphones and autonomic sensors to collect multimodal naturalistic datasets from 12-month-olds and their caregivers. We observed that, across the day, clusters of vocalisations occur during elevated infant and caregiver arousal. This relationship is stronger in infants than caregivers: caregivers vocalisations show greater decoupling with their own states of arousal, and their vocal production is more influenced by the infant's arousal than their own. Different types of vocalisation elicit different patterns of change across the dyad. Cries occur following reduced infant arousal stability and lead to increased child-caregiver arousal coupling, and decreased infant arousal. Speech-like vocalisations also occur at elevated arousal, but lead to longer-lasting increases in arousal, and elicit more parental verbal responses. Our results suggest that: 12-month-old infants' vocalisations are strongly contingent on their arousal state (for both cries and speech-like vocalisations), whereas adults' vocalisations are more flexibly tied to their own arousal; that cries and speech-like vocalisations alter the intra-dyadic dynamics of arousal in different ways, which may be an important factor driving speech development; and that this selection mechanism which drives vocal development is anchored in our stress physiology.
Collapse
Affiliation(s)
- Sam Wass
- Department of Psychology, University of East LondonLondonUnited Kingdom
| | - Emily Phillips
- Department of Psychology, University of East LondonLondonUnited Kingdom
| | - Celia Smith
- Institute of Psychiatry, Psychology & Neuroscience, King's College LondonLondonUnited Kingdom
| | | | | |
Collapse
|
11
|
Varella TT, Ghazanfar AA. Cooperative care and the evolution of the prelinguistic vocal learning. Dev Psychobiol 2021; 63:1583-1588. [PMID: 33826142 PMCID: PMC8355020 DOI: 10.1002/dev.22108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 11/06/2022]
Abstract
The development of the earliest vocalizations of human infants is influenced by social feedback from caregivers. As these vocalizations change, they increasingly elicit such feedback. This pattern of development is in stark contrast to that of our close phylogenetic relatives, Old World monkeys and apes, who produce mature-sounding vocalizations at birth. We put forth a scenario to account for this difference: Humans have a cooperative breeding strategy, which pressures infants to compete for the attention from caregivers. Humans use this strategy because large brained human infants are energetically costly and born altricial. An altricial brain accommodates vocal learning. To test this hypothetical scenario, we present findings from New World marmoset monkeys indicating that, through convergent evolution, this species adopted a largely identical developmental system-one that includes vocal learning and cooperative breeding.
Collapse
Affiliation(s)
- Thiago T. Varella
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
| | - Asif A. Ghazanfar
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
12
|
Gultekin YB, Hildebrand DGC, Hammerschmidt K, Hage SR. High plasticity in marmoset monkey vocal development from infancy to adulthood. SCIENCE ADVANCES 2021; 7:7/27/eabf2938. [PMID: 34193413 PMCID: PMC8245035 DOI: 10.1126/sciadv.abf2938] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/17/2021] [Indexed: 05/21/2023]
Abstract
The vocal behavior of human infants undergoes marked changes across their first year while becoming increasingly speech-like. Conversely, vocal development in nonhuman primates has been assumed to be largely predetermined and completed within the first postnatal months. Contradicting this assumption, we found a dichotomy between the development of call features and vocal sequences in marmoset monkeys, suggestive of a role for experience. While changes in call features were related to physical maturation, sequences of and transitions between calls remained flexible until adulthood. As in humans, marmoset vocal behavior developed in stages correlated with motor and social development stages. These findings are evidence for a prolonged phase of plasticity during marmoset vocal development, a crucial primate evolutionary preadaptation for the emergence of vocal learning and speech.
Collapse
Affiliation(s)
- Yasemin B Gultekin
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Medical Center, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - David G C Hildebrand
- Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, 37077 Göttingen, Germany
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Medical Center, University of Tübingen, 72076 Tübingen, Germany.
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Abstract
Infant behavior, like all behavior, is the aggregate product of many nested processes operating and interacting over multiple time scales; the result of a tangle of inter-related causes and effects. Efforts in identifying the mechanisms supporting infant behavior require the development and advancement of new technologies that can accurately and densely capture behavior’s multiple branches. The present study describes an open-source, wireless autonomic vest specifically designed for use in infants 8–24 months of age in order to measure cardiac activity, respiration, and movement. The schematics of the vest, instructions for its construction, and a suite of software designed for its use are made freely available. While the use of such autonomic measures has many applications across the field of developmental psychology, the present article will present evidence for the validity of the vest in three ways: (1) by demonstrating known clinical landmarks of a heartbeat, (2) by demonstrating an infant in a period of sustained attention, a well-documented behavior in the developmental psychology literature, and (3) relating changes in accelerometer output to infant behavior.
Collapse
|
14
|
Filippi P. Emotional Voice Intonation: A Communication Code at the Origins of Speech Processing and Word-Meaning Associations? JOURNAL OF NONVERBAL BEHAVIOR 2020. [DOI: 10.1007/s10919-020-00337-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
The aim of the present work is to investigate the facilitating effect of vocal emotional intonation on the evolution of the following processes involved in language: (a) identifying and producing phonemes, (b) processing compositional rules underlying vocal utterances, and (c) associating vocal utterances with meanings. To this end, firstly, I examine research on the presence of these abilities in animals, and the biologically ancient nature of emotional vocalizations. Secondly, I review research attesting to the facilitating effect of emotional voice intonation on these abilities in humans. Thirdly, building on these studies in animals and humans, and through taking an evolutionary perspective, I provide insights for future empirical work on the facilitating effect of emotional intonation on these three processes in animals and preverbal humans. In this work, I highlight the importance of a comparative approach to investigate language evolution empirically. This review supports Darwin’s hypothesis, according to which the ability to express emotions through voice modulation was a key step in the evolution of spoken language.
Collapse
|
15
|
Desmedt L, George I, Mohamed Benkada A, Hervé M, Aubin T, Derégnaucourt S, Lumineau S. Maternal presence influences vocal development in the Japanese quail (
Coturnix c. japonica
). Ethology 2020. [DOI: 10.1111/eth.13007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lucie Desmedt
- Univ Rennes CNRS Normandie Univ EthoS (Éthologie animale et humaine) ‐ UMR 6552 Rennes France
| | - Isabelle George
- Univ Rennes CNRS Normandie Univ EthoS (Éthologie animale et humaine) ‐ UMR 6552 Rennes France
| | - Aïcha Mohamed Benkada
- Univ Rennes CNRS Normandie Univ EthoS (Éthologie animale et humaine) ‐ UMR 6552 Rennes France
| | - Maxime Hervé
- Univ Rennes, INRA Institut de Génétique, Environnement et Protection des Plantes (IGEPP) Rennes France
| | - Thierry Aubin
- Univ Paris Sud Institut des Neurosciences Paris-Saclay (NeuroPSI) Orsay France
| | - Sébastien Derégnaucourt
- Univ Paris Lumière, Univ Paris NanterreLaboratoire Ethologie Cognition Developpement (LECD) Nanterre France
- Institut Universitaire de France Paris France
| | - Sophie Lumineau
- Univ Rennes CNRS Normandie Univ EthoS (Éthologie animale et humaine) ‐ UMR 6552 Rennes France
| |
Collapse
|
16
|
Zhang YS, Ghazanfar AA. A Hierarchy of Autonomous Systems for Vocal Production. Trends Neurosci 2020; 43:115-126. [PMID: 31955902 PMCID: PMC7213988 DOI: 10.1016/j.tins.2019.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Vocal production is hierarchical in the time domain. These hierarchies build upon biomechanical and neural dynamics across various timescales. We review studies in marmoset monkeys, songbirds, and other vertebrates. To organize these data in an accessible and across-species framework, we interpret the different timescales of vocal production as belonging to different levels of an autonomous systems hierarchy. The first level accounts for vocal acoustics produced on short timescales; subsequent levels account for longer timescales of vocal output. The hierarchy of autonomous systems that we put forth accounts for vocal patterning, sequence generation, dyadic interactions, and context dependence by sequentially incorporating central pattern generators, intrinsic drives, and sensory signals from the environment. We then show the framework's utility by providing an integrative explanation of infant vocal production learning in which social feedback modulates infant vocal acoustics through the tuning of a drive signal.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA; Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
17
|
Zhang YS, Takahashi DY, Liao DA, Ghazanfar AA, Elemans CPH. Vocal state change through laryngeal development. Nat Commun 2019; 10:4592. [PMID: 31597928 PMCID: PMC6785551 DOI: 10.1038/s41467-019-12588-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/13/2019] [Indexed: 01/26/2023] Open
Abstract
Across vertebrates, progressive changes in vocal behavior during postnatal development are typically attributed solely to developing neural circuits. How the changing body influences vocal development remains unknown. Here we show that state changes in the contact vocalizations of infant marmoset monkeys, which transition from noisy, low frequency cries to tonal, higher pitched vocalizations in adults, are caused partially by laryngeal development. Combining analyses of natural vocalizations, motorized excised larynx experiments, tensile material tests and high-speed imaging, we show that vocal state transition occurs via a sound source switch from vocal folds to apical vocal membranes, producing louder vocalizations with higher efficiency. We show with an empirically based model of descending motor control how neural circuits could interact with changing laryngeal dynamics, leading to adaptive vocal development. Our results emphasize the importance of embodied approaches to vocal development, where exploiting biomechanical consequences of changing material properties can simplify motor control, reducing the computational load on the developing brain.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Diana A Liao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
- Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
18
|
Gustison ML, Borjon JI, Takahashi DY, Ghazanfar AA. Vocal and locomotor coordination develops in association with the autonomic nervous system. eLife 2019; 8:e41853. [PMID: 31310236 PMCID: PMC6684270 DOI: 10.7554/elife.41853] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 07/06/2019] [Indexed: 11/13/2022] Open
Abstract
In adult animals, movement and vocalizations are coordinated, sometimes facilitating, and at other times inhibiting, each other. What is missing is how these different domains of motor control become coordinated over the course of development. We investigated how postural-locomotor behaviors may influence vocal development, and the role played by physiological arousal during their interactions. Using infant marmoset monkeys, we densely sampled vocal, postural and locomotor behaviors and estimated arousal fluctuations from electrocardiographic measures of heart rate. We found that vocalizations matured sooner than postural and locomotor skills, and that vocal-locomotor coordination improved with age and during elevated arousal levels. These results suggest that postural-locomotor maturity is not required for vocal development to occur, and that infants gradually improve coordination between vocalizations and body movement through a process that may be facilitated by arousal level changes.
Collapse
Affiliation(s)
- Morgan L Gustison
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Jeremy I Borjon
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of PsychologyPrinceton UniversityPrincetonUnited States
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonUnited States
| |
Collapse
|
19
|
|
20
|
Marmoset Monkey Vocal Communication: Common Developmental Trajectories With Humans and Possible Mechanisms. MINNESOTA SYMPOSIA ON CHILD PSYCHOLOGY 2018. [DOI: 10.1002/9781119461746.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Hage SR. Dual neural network model of speech and language evolution: new insights on flexibility of vocal production systems and involvement of frontal cortex. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Gultekin YB, Hage SR. Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys. SCIENCE ADVANCES 2018; 4:eaar4012. [PMID: 29651461 PMCID: PMC5895450 DOI: 10.1126/sciadv.aar4012] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 05/30/2023]
Abstract
Human vocal development is dependent on learning by imitation through social feedback between infants and caregivers. Recent studies have revealed that vocal development is also influenced by parental feedback in marmoset monkeys, suggesting vocal learning mechanisms in nonhuman primates. Marmoset infants that experience more contingent vocal feedback than their littermates develop vocalizations more rapidly, and infant marmosets with limited parental interaction exhibit immature vocal behavior beyond infancy. However, it is yet unclear whether direct parental interaction is an obligate requirement for proper vocal development because all monkeys in the aforementioned studies were able to produce the adult call repertoire after infancy. Using quantitative measures to compare distinct call parameters and vocal sequence structure, we show that social interaction has a direct impact not only on the maturation of the vocal behavior but also on acoustic call structures during vocal development. Monkeys with limited parental interaction during development show systematic differences in call entropy, a measure for maturity, compared with their normally raised siblings. In addition, different call types were occasionally uttered in motif-like sequences similar to those exhibited by vocal learners, such as birds and humans, in early vocal development. These results indicate that a lack of parental interaction leads to long-term disturbances in the acoustic structure of marmoset vocalizations, suggesting an imperative role for social interaction in proper primate vocal development.
Collapse
|
23
|
Internal states and extrinsic factors both determine monkey vocal production. Proc Natl Acad Sci U S A 2018; 115:3978-3983. [PMID: 29581269 DOI: 10.1073/pnas.1722426115] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key question for understanding speech evolution is whether or not the vocalizations of our closest living relatives-nonhuman primates-represent the precursors to speech. Some believe that primate vocalizations are not volitional but are instead inextricably linked to internal states like arousal and thus bear little resemblance to human speech. Others disagree and believe that since many primates can use their vocalizations strategically, this demonstrates a degree of voluntary vocal control. In the current study, we present a behavioral paradigm that reliably elicits different types of affiliative vocalizations from marmoset monkeys while measuring their heart rate fluctuations using noninvasive electromyography. By modulating both the physical distance between marmosets and the sensory information available to them, we find that arousal levels are linked, but not inextricably, to vocal production. Different arousal levels are, generally, associated with changes in vocal acoustics and the drive to produce different call types. However, in contexts where marmosets are interacting, the production of these different call types is also affected by extrinsic factors such as the timing of a conspecific's vocalization. These findings suggest that variability in vocal output as a function of context might reflect trade-offs between the drive to perpetuate vocal contact and conserving energy.
Collapse
|
24
|
Zhang YS, Ghazanfar AA. Vocal development through morphological computation. PLoS Biol 2018; 16:e2003933. [PMID: 29462148 PMCID: PMC5834215 DOI: 10.1371/journal.pbio.2003933] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/02/2018] [Accepted: 02/01/2018] [Indexed: 11/18/2022] Open
Abstract
The vocal behavior of infants changes dramatically during early life. Whether or not such a change results from the growth of the body during development-as opposed to solely neural changes-has rarely been investigated. In this study of vocal development in marmoset monkeys, we tested the putative causal relationship between bodily growth and vocal development. During the first two months of life, the spontaneous vocalizations of marmosets undergo (1) a gradual disappearance of context-inappropriate call types and (2) an elongation in the duration of context-appropriate contact calls. We hypothesized that both changes are the natural consequences of lung growth and do not require any changes at the neural level. To test this idea, we first present a central pattern generator model of marmoset vocal production to demonstrate that lung growth can affect the temporal and oscillatory dynamics of neural circuits via sensory feedback from the lungs. Lung growth qualitatively shifted vocal behavior in the direction observed in real marmoset monkey vocal development. We then empirically tested this hypothesis by placing the marmoset infants in a helium-oxygen (heliox) environment in which air is much lighter. This simulated a reversal in development by decreasing the effort required to respire, thus increasing the respiration rate (as though the lungs were smaller). The heliox manipulation increased the proportions of inappropriate call types and decreased the duration of contact calls, consistent with a brief reversal of vocal development. These results suggest that bodily growth alone can play a major role in shaping the development of vocal behavior.
Collapse
Affiliation(s)
- Yisi S. Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
| | - Asif A. Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, United States of America
- Department of Psychology, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
25
|
Ghazanfar AA, Liao DA. Constraints and flexibility during vocal development: Insights from marmoset monkeys. Curr Opin Behav Sci 2017; 21:27-32. [PMID: 29868626 DOI: 10.1016/j.cobeha.2017.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human vocal development is typically conceived as a sequence of two processes-an early maturation phase where vocal sounds change as a function of body growth ("constraints") followed by a period during which social experience can influence vocal sound production ("flexibility"). However, studies of other behaviors (e.g., locomotion) reveal that growth and experience are interactive throughout development. As it turns out, vocal development is not exceptional; it is also the on-going result of the interplay between an infant's growing biological system of production (the body and the nervous system) and experience with caregivers. Here, we review work on developing marmoset monkeys - a species that exhibits strikingly similar vocal developmental processes to those of prelinguistic human infants - that demonstrates how constraints and flexibility are parallel and interactive processes.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA, Ph. 609 258 9314.,Department of Psychology, Princeton University, Princeton NJ 08544, USA, Ph. 609 258 9314.,Department of Ecology & Evolutionary Biology, Princeton University, Princeton NJ 08544, USA, Ph. 609 258 9314
| | - Diana A Liao
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA, Ph. 609 258 9314
| |
Collapse
|
26
|
Filippi P, Gogoleva SS, Volodina EV, Volodin IA, de Boer B. Humans identify negative (but not positive) arousal in silver fox vocalizations: implications for the adaptive value of interspecific eavesdropping. Curr Zool 2017; 63:445-456. [PMID: 29492004 PMCID: PMC5804197 DOI: 10.1093/cz/zox035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/12/2017] [Indexed: 11/14/2022] Open
Abstract
The ability to identify emotional arousal in heterospecific vocalizations may facilitate behaviors that increase survival opportunities. Crucially, this ability may orient inter-species interactions, particularly between humans and other species. Research shows that humans identify emotional arousal in vocalizations across multiple species, such as cats, dogs, and piglets. However, no previous study has addressed humans’ ability to identify emotional arousal in silver foxes. Here, we adopted low- and high-arousal calls emitted by three strains of silver fox—Tame, Aggressive, and Unselected—in response to human approach. Tame and Aggressive foxes are genetically selected for friendly and attacking behaviors toward humans, respectively. Unselected foxes show aggressive and fearful behaviors toward humans. These three strains show similar levels of emotional arousal, but different levels of emotional valence in relation to humans. This emotional information is reflected in the acoustic features of the calls. Our data suggest that humans can identify high-arousal calls of Aggressive and Unselected foxes, but not of Tame foxes. Further analyses revealed that, although within each strain different acoustic parameters affect human accuracy in identifying high-arousal calls, spectral center of gravity, harmonic-to-noise ratio, and F0 best predict humans’ ability to discriminate high-arousal calls across all strains. Furthermore, we identified in spectral center of gravity and F0 the best predictors for humans’ absolute ratings of arousal in each call. Implications for research on the adaptive value of inter-specific eavesdropping are discussed.
Collapse
Affiliation(s)
- Piera Filippi
- Artificial Intelligence Laboratory, Department of Computer Science, Faculty of Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.,Brain and Language Research Institute, Aix-Marseille University, Avenue Pasteur 5, 13604 Aix-en-Provence, France.,Max Planck Institute for Psycholinguistics, Department of Language and Cognition, Wundtlaan 1, 6525 XD, Nijmegen, The Netherlands
| | - Svetlana S Gogoleva
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory 1/12, 119991 Moscow, Russia
| | - Elena V Volodina
- Scientific Research Department, Moscow Zoo, B. Gruzinskaya 1, 123242 Moscow, Russia
| | - Ilya A Volodin
- Department of Vertebrate Zoology, Faculty of Biology, Lomonosov Moscow State University, Vorobievy Gory 1/12, 119991 Moscow, Russia.,Scientific Research Department, Moscow Zoo, B. Gruzinskaya 1, 123242 Moscow, Russia
| | - Bart de Boer
- Artificial Intelligence Laboratory, Department of Computer Science, Faculty of Science, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
27
|
Vocal Learning via Social Reinforcement by Infant Marmoset Monkeys. Curr Biol 2017; 27:1844-1852.e6. [DOI: 10.1016/j.cub.2017.05.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/03/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
|
28
|
Teramoto Y, Takahashi DY, Holmes P, Ghazanfar AA. Vocal development in a Waddington landscape. eLife 2017; 6. [PMID: 28092262 PMCID: PMC5310845 DOI: 10.7554/elife.20782] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/15/2017] [Indexed: 01/28/2023] Open
Abstract
Vocal development is the adaptive coordination of the vocal apparatus, muscles, the nervous system, and social interaction. Here, we use a quantitative framework based on optimal control theory and Waddington’s landscape metaphor to provide an integrated view of this process. With a biomechanical model of the marmoset monkey vocal apparatus and behavioral developmental data, we show that only the combination of the developing vocal tract, vocal apparatus muscles and nervous system can fully account for the patterns of vocal development. Together, these elements influence the shape of the monkeys’ vocal developmental landscape, tilting, rotating or shifting it in different ways. We can thus use this framework to make quantitative predictions regarding how interfering factors or experimental perturbations can change the landscape within a species, or to explain comparative differences in vocal development across species DOI:http://dx.doi.org/10.7554/eLife.20782.001 As infants develop they learn new behaviors and refine existing ones. For example, human infants progress from crying to babbling to producing speech-like sounds. A complex sequence of changes in muscles, the nervous system and in patterns of interactions with other individuals all contribute to these emerging behaviors. Despite this complexity, most studies of vocal development have only considered single factors in isolation. A study of speech development, for example, might examine how changes in the brain enable infants to imitate sounds. However, that same study will probably ignore how changes in the structure of the vocal cords, or in the behavior of the parents, also promote imitation. Young marmoset monkeys, like human infants, gradually develop from producing immature cries to adult-like calls. Teramoto, Takahashi et al. built a computational model of this process and compared the model to data from real animals. The first version of the model focused solely on how the marmosets’ vocal cords grow, and did not fully reproduce how adult-like calls emerge in real marmosets. Teramoto, Takahashi et al. therefore added factors to the model that simulate improvements in muscle control, learning in the nervous system and in the behavior of other animals. These findings show that, to reflect how adult-like calls emerge in real marmosets, the model needs to include all of these factors. The model developed by Teramoto, Takahashi et al. may also provide insights into why vocal learning and some other behaviors emerge in some species and not others. It may also be used to predict the consequences of disrupting individual processes in young animals at particular points in time and how such disruptions shape the way an animal develops on its way to adulthood. DOI:http://dx.doi.org/10.7554/eLife.20782.002
Collapse
Affiliation(s)
- Yayoi Teramoto
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Psychology, Princeton University, Princeton, United States
| | - Philip Holmes
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Mechanical and Aerospace Engineering and Program in Applied and Computational Mathematics, Princeton University, Princeton, United States
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Psychology, Princeton University, Princeton, United States.,Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
| |
Collapse
|
29
|
Limiting parental feedback disrupts vocal development in marmoset monkeys. Nat Commun 2017; 8:14046. [PMID: 28090084 PMCID: PMC5241798 DOI: 10.1038/ncomms14046] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/23/2016] [Indexed: 11/09/2022] Open
Abstract
Vocalizations of human infants undergo dramatic changes across the first year by becoming increasingly mature and speech-like. Human vocal development is partially dependent on learning by imitation through social feedback between infants and caregivers. Recent studies revealed similar developmental processes being influenced by parental feedback in marmoset monkeys for apparently innate vocalizations. Marmosets produce infant-specific vocalizations that disappear after the first postnatal months. However, it is yet unclear whether parental feedback is an obligate requirement for proper vocal development. Using quantitative measures to compare call parameters and vocal sequence structure we show that, in contrast to normally raised marmosets, marmosets that were separated from parents after the third postnatal month still produced infant-specific vocal behaviour at subadult stages. These findings suggest a significant role of social feedback on primate vocal development until the subadult stages and further show that marmoset monkeys are a compelling model system for early human vocal development.
Collapse
|
30
|
Eliades SJ, Miller CT. Marmoset vocal communication: Behavior and neurobiology. Dev Neurobiol 2016; 77:286-299. [DOI: 10.1002/dneu.22464] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/27/2016] [Accepted: 10/08/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Steven J. Eliades
- Department of Otorhinolaryngology- Head and Neck Surgery; University of Pennsylvania Perelman School of Medicine; Philadelphia Pennsylvania
| | - Cory T. Miller
- Cortical Systems and Behavior Laboratory; University of California San Diego; San Diego California
| |
Collapse
|
31
|
Ghazanfar AA, Zhang YS. The autonomic nervous system is the engine for vocal development through social feedback. Curr Opin Neurobiol 2016; 40:155-160. [PMID: 27525350 DOI: 10.1016/j.conb.2016.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/30/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022]
Abstract
At least one non-human primate species-the marmoset monkey-exhibits developmental processes similar to human vocal development. These processes include babbling-like early vocal output and a role for social feedback in changing this output into mature-sounding vocalizations. Such parallel behaviors provide a window through which we can begin to understand the physiological mechanisms for how early vocalizations are produced and shaped by social feedback. The latest work shows that the acoustic structure of babbling in infant monkeys is driven by oscillations of the autonomic nervous system. It is hypothesized that this autonomic nervous system rhythm is perturbed through vocal interactions between infants and parents. These interactions gradually accelerate the transformation of immature vocalizations into mature forms.
Collapse
Affiliation(s)
- Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| | - Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Borjon JI, Takahashi DY, Cervantes DC, Ghazanfar AA. Arousal dynamics drive vocal production in marmoset monkeys. J Neurophysiol 2016; 116:753-64. [PMID: 27250909 PMCID: PMC6208312 DOI: 10.1152/jn.00136.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
Vocal production is the result of interacting cognitive and autonomic processes. Despite claims that changes in one interoceptive state (arousal) govern primate vocalizations, we know very little about how it influences their likelihood and timing. In this study we investigated the role of arousal during naturally occurring vocal production in marmoset monkeys. Throughout each session, naturally occurring contact calls are produced more quickly, and with greater probability, during higher levels of arousal, as measured by heart rate. On average, we observed a steady increase in heart rate 23 s before the production of a call. Following call production, there is a sharp and steep cardiac deceleration lasting ∼8 s. The dynamics of cardiac fluctuations around a vocalization cannot be completely predicted by the animal's respiration or movement. Moreover, the timing of vocal production was tightly correlated to the phase of a 0.1-Hz autonomic nervous system rhythm known as the Mayer wave. Finally, a compilation of the state space of arousal dynamics during vocalization illustrated that perturbations to the resting state space increase the likelihood of a call occurring. Together, these data suggest that arousal dynamics are critical for spontaneous primate vocal production, not only as a robust predictor of the likelihood of vocal onset but also as scaffolding on which behavior can unfold.
Collapse
Affiliation(s)
- Jeremy I Borjon
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton New Jersey
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton New Jersey
| | - Diego C Cervantes
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton New Jersey
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton New Jersey
| |
Collapse
|
33
|
Tchernichovski O, Oller DK. Vocal Development: How Marmoset Infants Express Their Feelings. Curr Biol 2016; 26:R422-4. [PMID: 27218851 DOI: 10.1016/j.cub.2016.03.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A new study shows that vocal sequences produced by newborn marmoset monkeys are driven by slow fluctuations in physiological state; the results shed light on the evolution of vocal communication between newborns and parents.
Collapse
Affiliation(s)
- Ofer Tchernichovski
- Dept. of Psychology, Hunter College, The City University of New York, 695 Park Ave, New York, NY 10065, USA.
| | - D Kimbrough Oller
- School of Communication Sciences and Disorders and the Institute for Intelligent Systems, The University of Memphis, 3720 Alumni Avenue, Memphis, TN 38152, USA.
| |
Collapse
|