1
|
Chu SY, Lai YW, Hsu TC, Lu TM, Yu HH. Isoforms of terminal selector Mamo control axon guidance during adult Drosophila memory center construction via Semaphorin-1a. Dev Biol 2024; 515:1-6. [PMID: 38906235 DOI: 10.1016/j.ydbio.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
In animals undergoing metamorphosis, the appearance of the nervous system is coincidently transformed by the morphogenesis of neurons. Such morphogenic alterations are exemplified in three types of intrinsic neurons in the Drosophila memory center. In contrast to the well-characterized remodeling of γ neurons, the morphogenesis of α/β and α'/β' neurons has not been adequately explored. Here, we show that mamo, a BTB-zinc finger transcription factor that acts as a terminal selector for α'/β' neurons, controls the formation of the correct axonal pattern of α'/β' neurons. Intriguingly, specific Mamo isoforms are preferentially expressed in α'/β' neurons to regulate the expression of axon guidance molecule Semaphorin-1a. This action directs proper axon guidance in α'/β' neurons, which is also crucial for wiring of α'/β' neurons with downstream neurons. Taken together, our results provide molecular insights into how neurons establish correct axonal patterns in circuitry assembly during adult memory center construction.
Collapse
Affiliation(s)
- Sao-Yu Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yen-Wei Lai
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Chi Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hung-Hsiang Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
McLamb F, Feng Z, Vu JP, Griffin L, Vasquez MF, Bozinovic G. Lagging Brain Gene Expression Patterns of Drosophila melanogaster Young Adult Males Confound Comparisons Between Sexes. Mol Neurobiol 2024:10.1007/s12035-024-04427-7. [PMID: 39196495 DOI: 10.1007/s12035-024-04427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Many species, including fruit flies (Drosophila melanogaster), are sexually dimorphic. Phenotypic variation in morphology, physiology, and behavior can affect development, reproduction, health, and aging. Therefore, designating sex as a variable and sex-blocking should be considered when designing experiments. The brain regulates phenotypes throughout the lifespan by balancing survival and reproduction, and sex-specific development at each life stage is likely. Changes in morphology and physiology are governed by differential gene expression, a quantifiable molecular marker for age- and sex-specific variations. We assessed the fruit fly brain transcriptome at three adult ages for gene expression signatures of sex, age, and sex-by-age: 6698 genes were differentially expressed between sexes, with the most divergence at 3 days. Between ages, 31.1% of 6084 differentially expressed genes (1890 genes) share similar expression patterns from 3 to 7 days in females, and from 7 to 14 days in males. Most of these genes (90.5%, 1712) were upregulated and enriched for chemical stimulus detection and/or cilium regulation. Our data highlight an important delay in male brain gene regulation compared to females. Because significant delays in expression could confound comparisons between sexes, studies of sexual dimorphism at phenotypically comparable life stages rather than chronological age should be more biologically relevant.
Collapse
Affiliation(s)
- Flannery McLamb
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Zuying Feng
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
| | - Jeanne P Vu
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA
| | - Lindsey Griffin
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- Division of Extended Studies, University of California San Diego, La Jolla, CA, USA
| | - Miguel F Vasquez
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Goran Bozinovic
- Boz Life Science Research and Teaching Institute, La Jolla, CA, USA.
- Graduate School of Public Health, San Diego State University, San Diego, CA, USA.
- Center for Life in Extreme Environments, Portland State University, Portland, OR, USA.
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Roggenbuck EC, Hall EA, Hanson IB, Roby AA, Zhang KK, Alkatib KA, Carter JA, Clewner JE, Gelfius AL, Gong S, Gordon FR, Iseler JN, Kotapati S, Li M, Maysun A, McCormick EO, Rastogi G, Sengupta S, Uzoma CU, Wolkov MA, Clowney EJ. Let's talk about sex: Mechanisms of neural sexual differentiation in Bilateria. WIREs Mech Dis 2024; 16:e1636. [PMID: 38185860 DOI: 10.1002/wsbm.1636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Emma C Roggenbuck
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elijah A Hall
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Isabel B Hanson
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Alyssa A Roby
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine K Zhang
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Kyle A Alkatib
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Joseph A Carter
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jarred E Clewner
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Anna L Gelfius
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Shiyuan Gong
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Finley R Gordon
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jolene N Iseler
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Samhita Kotapati
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilyn Li
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Areeba Maysun
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Elise O McCormick
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Geetanjali Rastogi
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Srijani Sengupta
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Chantal U Uzoma
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - Madison A Wolkov
- MCDB 464 - Cellular Diversity: Sex Differentiation of the Brain, University of Michigan, Ann Arbor, Michigan, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Michigan Neuroscience Institute Affiliate, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Kimura KI, Kumano R, Yamamoto D. Activin is a neural inducer of a male-specific muscle in Drosophila. Sci Rep 2024; 14:3740. [PMID: 38355873 PMCID: PMC10866940 DOI: 10.1038/s41598-024-54295-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
Drosophila melanogaster has a pair of male-specific muscles called the muscle of Lawrence (MOL) in abdominal segment 5 (A5) of adult flies. The MOL is produced only when its innervating motoneuron expresses FruitlessM (FruM) neural masculinizing proteins. We show that MOL induction is hampered by: (1) silencing electrical activities in the motoneuron, (2) blocking vesicular release from the motoneuron, and (3) knocking down Activin ß (Actß) in the motoneuron or knocking down Actß signaling pathway components in the myoblasts. Our timelapse live imaging of the developing neuromuscular system reveals that, upon contact with the presumptive MOL, the motoneuronal axon retracts concomitant with the progression of MOL degeneration resulting from neural silencing. We conclude that MOL formation depends on the bidirectional trophic interactions between pre- and postsynaptic cells, with motoneuron-derived Actß playing an inducing role in MOL formation.
Collapse
Affiliation(s)
- Ken-Ichi Kimura
- Laboratory of Biology, Sapporo Campus, Hokkaido University of Education, Sapporo, 002-8502, Japan.
| | - Rimi Kumano
- Laboratory of Biology, Sapporo Campus, Hokkaido University of Education, Sapporo, 002-8502, Japan
| | - Daisuke Yamamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, 651-2492, Japan
| |
Collapse
|
5
|
Sato K, Yamamoto D. Molecular and cellular origins of behavioral sex differences: a tiny little fly tells a lot. Front Mol Neurosci 2023; 16:1284367. [PMID: 37928065 PMCID: PMC10622783 DOI: 10.3389/fnmol.2023.1284367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
Behavioral sex differences primarily derive from the sexually dimorphic organization of neural circuits that direct the behavior. In Drosophila melanogaster, the sex-determination genes fruitless (fru) and doublesex (dsx) play pivotal roles in producing the sexual dimorphism of neural circuits for behavior. Here we examine three neural groups expressing fru and/or dsx, i.e., the P1 cluster, aSP-f and aSP-g cluster pairs and aDN cluster, in which causal relationships between the dimorphic behavior and dimorphic neural characteristics are best illustrated. aSP-f, aSP-g and aDN clusters represent examples where fru or dsx switches cell-autonomously their neurite structures between the female-type and male-type. Processed sensory inputs impinging on these neurons may result in outputs that encode different valences, which culminate in the execution of distinct behavior according to the sex. In contrast, the P1 cluster is male-specific as its female counterpart undergoes dsx-driven cell death, which lowers the threshold for the induction of male-specific behaviors. We propose that the products of fru and dsx genes, as terminal selectors in sexually dimorphic neuronal wiring, induce and maintain the sex-typical chromatin state at postembryonic stages, orchestrating the transcription of effector genes that shape single neuron structures and govern cell survival and death.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Daisuke Yamamoto
- Neuro-ICT Laboratory, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
6
|
Coleman RT, Morantte I, Koreman GT, Cheng ML, Ding Y, Ruta V. A modular circuit architecture coordinates the diversification of courtship strategies in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.16.558080. [PMID: 37745588 PMCID: PMC10516016 DOI: 10.1101/2023.09.16.558080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Identifying a mate is a central imperative for males of most species but poses the challenge of distinguishing a suitable partner from an array of potential male competitors or females of related species. Mate recognition systems are thus subject to strong selective pressures, driving the rapid coevolution of female sensory cues and male sensory preferences. Here we leverage the rapid evolution of female pheromones across the Drosophila genus to gain insight into how males coordinately adapt their detection and interpretation of these chemical cues to hone their mating strategies. While in some Drosophila species females produce unique pheromones that act to attract and arouse their conspecific males, the pheromones of most species are sexually monomorphic such that females possess no distinguishing chemosensory signatures that males can use for mate recognition. By comparing several close and distantly-related Drosophila species, we reveal that D. yakuba males have evolved the distinct ability to use a sexually-monomorphic pheromone, 7-tricosene (7-T), as an excitatory cue to promote courtship, a sensory innovation that enables D. yakuba males to court in the dark thereby expanding their reproductive opportunities. To gain insight into the neural adaptations that enable 7-T to act as an excitatory cue, we compared the functional properties of two key nodes within the pheromone circuits of D. yakuba and a subset of its closest relatives. We show that the instructive role of 7-T in D. yakuba arises from concurrent peripheral and central circuit changes: a distinct subpopulation of sensory neurons has acquired sensitivity to 7-T which in turn selectively signals to a distinct subset of P1 neurons in the central brain that trigger courtship behaviors. Such a modular circuit organization, in which different sensory inputs can independently couple to multiple parallel courtship control nodes, may facilitate the evolution of mate recognition systems by allowing males to take advantage of novel sensory modalities to become aroused. Together, our findings suggest how peripheral and central circuit adaptations can be flexibly linked to underlie the rapid evolution of mate recognition and courtship strategies across species.
Collapse
Affiliation(s)
- Rory T. Coleman
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Ianessa Morantte
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Gabriel T. Koreman
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Megan L. Cheng
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| | - Yun Ding
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Vanessa Ruta
- Laboatory of Neurophysiology and Behavior and Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
7
|
Bonheur M, Swartz KJ, Metcalf MG, Wen X, Zhukovskaya A, Mehta A, Connors KE, Barasch JG, Jamieson AR, Martin KC, Axel R, Hattori D. A rapid and bidirectional reporter of neural activity reveals neural correlates of social behaviors in Drosophila. Nat Neurosci 2023; 26:1295-1307. [PMID: 37308660 PMCID: PMC10866131 DOI: 10.1038/s41593-023-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2023] [Indexed: 06/14/2023]
Abstract
Neural activity is modulated over different timescales encompassing subseconds to hours, reflecting changes in external environment, internal state and behavior. Using Drosophila as a model, we developed a rapid and bidirectional reporter that provides a cellular readout of recent neural activity. This reporter uses nuclear versus cytoplasmic distribution of CREB-regulated transcriptional co-activator (CRTC). Subcellular distribution of GFP-tagged CRTC (CRTC::GFP) bidirectionally changes on the order of minutes and reflects both increases and decreases in neural activity. We established an automated machine-learning-based routine for efficient quantification of reporter signal. Using this reporter, we demonstrate mating-evoked activation and inactivation of modulatory neurons. We further investigated the functional role of the master courtship regulator gene fruitless (fru) and show that fru is necessary to ensure activation of male arousal neurons by female cues. Together, our results establish CRTC::GFP as a bidirectional reporter of recent neural activity suitable for examining neural correlates in behavioral contexts.
Collapse
Affiliation(s)
- Moise Bonheur
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kurtis J Swartz
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Melissa G Metcalf
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Xinke Wen
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anna Zhukovskaya
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Avirut Mehta
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kristin E Connors
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Julia G Barasch
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Andrew R Jamieson
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kelsey C Martin
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
- Simons Foundation, New York, NY, USA
| | - Richard Axel
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Daisuke Hattori
- Department of Physiology, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, USA.
- Peter O'Donnell Jr. Brain Institute, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
8
|
Vaikakkara Chithran A, Allan DW, O'Connor TP. Adult expression of Semaphorins and Plexins is essential for motor neuron survival. Sci Rep 2023; 13:5894. [PMID: 37041188 PMCID: PMC10090137 DOI: 10.1038/s41598-023-32943-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Axon guidance cues direct the growth and steering of neuronal growth cones, thus guiding the axons to their targets during development. Nonetheless, after axons have reached their targets and established functional circuits, many mature neurons continue to express these developmental cues. The role of axon guidance cues in the adult nervous system has not been fully elucidated. Using the expression pattern data available on FlyBase, we found that more than 96% of the guidance genes that are expressed in the Drosophila melanogaster embryo continue to be expressed in adults. We utilized the GeneSwitch and TARGET systems to spatiotemporally knockdown the expression of these guidance genes selectively in the adult neurons, once the development was completed. We performed an RNA interference (RNAi) screen against 44 guidance genes in the adult Drosophila nervous system and identified 14 genes that are required for adult survival and normal motility. Additionally, we show that adult expression of Semaphorins and Plexins in motor neurons is necessary for neuronal survival, indicating that guidance genes have critical functions in the mature nervous system.
Collapse
Affiliation(s)
- Aarya Vaikakkara Chithran
- Graduate Program in Neuroscience, University of British Columbia, 3402-2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Timothy P O'Connor
- Department of Cellular and Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
9
|
Nanni AV, Martinez N, Graze R, Morse A, Newman JRB, Jain V, Vlaho S, Signor S, Nuzhdin SV, Renne R, McIntyre LM. Sex-biased expression is associated with chromatin state in D. melanogaster and D. simulans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523946. [PMID: 36711631 PMCID: PMC9882225 DOI: 10.1101/2023.01.13.523946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We propose a new model for the association of chromatin state and sex-bias in expression. We hypothesize enrichment of open chromatin in the sex where we see expression bias (OS) and closed chromatin in the opposite sex (CO). In this study of D. melanogaster and D. simulans head tissue, sex-bias in expression is associated with H3K4me3 (open mark) in males for male-biased genes and in females for female-biased genes in both species. Sex-bias in expression is also largely conserved in direction and magnitude between the two species on the X and autosomes. In male-biased orthologs, the sex-bias ratio is more divergent between species if both species have H3K27me2me3 marks in females compared to when either or neither species has H3K27me2me3 in females. H3K27me2me3 marks in females are associated with male-bias in expression on the autosomes in both species, but on the X only in D. melanogaster . In female-biased orthologs the relationship between the species for the sex-bias ratio is similar regardless of the H3K27me2me3 marks in males. Female-biased orthologs are more similar in the ratio of sex-bias than male-biased orthologs and there is an excess of male-bias in expression in orthologs that gain/lose sex-bias. There is an excess of male-bias in sex-limited expression in both species suggesting excess male-bias is due to rapid evolution between the species. The X chromosome has an enrichment in male-limited H3K4me3 in both species and an enrichment of sex-bias in expression compared to the autosomes.
Collapse
Affiliation(s)
- Adalena V Nanni
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Natalie Martinez
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Rita Graze
- Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | - Alison Morse
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremy R B Newman
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
| | - Srna Vlaho
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sarah Signor
- Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
| | - Sergey V Nuzhdin
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Lauren M McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Calderon D, Blecher-Gonen R, Huang X, Secchia S, Kentro J, Daza RM, Martin B, Dulja A, Schaub C, Trapnell C, Larschan E, O’Connor-Giles KM, Furlong EEM, Shendure J. The continuum of Drosophila embryonic development at single-cell resolution. Science 2022; 377:eabn5800. [PMID: 35926038 PMCID: PMC9371440 DOI: 10.1126/science.abn5800] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Drosophila melanogaster is a powerful, long-standing model for metazoan development and gene regulation. We profiled chromatin accessibility in almost 1 million and gene expression in half a million nuclei from overlapping windows spanning the entirety of embryogenesis. Leveraging developmental asynchronicity within embryo collections, we applied deep neural networks to infer the age of each nucleus, resulting in continuous, multimodal views of molecular and cellular transitions in absolute time. We identify cell lineages; infer their developmental relationships; and link dynamic changes in enhancer usage, transcription factor (TF) expression, and the accessibility of TFs' cognate motifs. With these data, the dynamics of enhancer usage and gene expression can be explored within and across lineages at the scale of minutes, including for precise transitions like zygotic genome activation.
Collapse
Affiliation(s)
- Diego Calderon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ronnie Blecher-Gonen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- The Crown Genomics Institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Stefano Secchia
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - James Kentro
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA
| | - Riza M. Daza
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Alessandro Dulja
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
| | - Erica Larschan
- Molecular Biology, Cell Biology, and Biochemistry Graduate Program, Brown University, Providence, RI 02912, USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience and Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Eileen E. M. Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Heidelberg, Germany
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
11
|
Sato K, Yamamoto D. Mutually exclusive expression of sex-specific and non-sex-specific fruitless gene products in the Drosophila central nervous system. Gene Expr Patterns 2022; 43:119232. [DOI: 10.1016/j.gep.2022.119232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 11/04/2022]
|
12
|
Lin D, Guo Y, Chen X, Yang H, Li Q, Liu Q, Luo F, Meng K, Yang S, Cheng X, Ma W, Chen X, Wang M, Zhao Y. Identification and expression pattern of the sex determination gene fruitless-like in Cherax quadricarinatus. Comp Biochem Physiol B Biochem Mol Biol 2021; 259:110704. [PMID: 34920111 DOI: 10.1016/j.cbpb.2021.110704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/24/2021] [Accepted: 12/09/2021] [Indexed: 11/30/2022]
Abstract
The fruitless (fru) gene has an important function in the courtship behavior and sex determination pathway of Drosophila melanogaster; however, the fru gene has never been reported in shrimps. In this study, the fruitless-like gene was identified in Cherax quadricarinatus (Cqfru) and is reported here for the first time. A sequence analysis revealed a conserved BTB domain in Cqfru which is the same as fru in D. melanogaster. An analysis of the expression level of Cqfru showed that it was highly expressed in the gastrula stage during embryonic development. Furthermore, in situ hybridization and expression distribution in tissues showed that its sexually dimorphic expression may be focused on the hepatopancreas, brains, and gonads. The gonads, brains, and hepatopancreas of males had a higher expression level of Cqfru than those of females; however, the expression level of the abdominal ganglion was found to be higher in females than in males in this study. The results of an RNA interference treatment showed that a knockdown of Cqfru reduced the expression of the insulin-like androgenic gland hormone (IAG) and tumor necrosis factor (TNF). The characteristic fru gene in shrimps is reported here for the first time, with the results providing basic information for research into the sex-determination mechanism in C. quadricarinatus.
Collapse
Affiliation(s)
- Dawei Lin
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Yongjun Guo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiuli Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Huizan Yang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Qiangyong Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Qingyun Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Fuli Luo
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Kui Meng
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Songting Yang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Xinquan Cheng
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China
| | - Wenming Ma
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, People's Republic of China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Moran Wang
- Tianjin Key Lab of Aqua-Ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, Tianjin 300384, China.
| | - Yongzhen Zhao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China.
| |
Collapse
|
13
|
Peng Q, Chen J, Pan Y. From fruitless to sex: On the generation and diversification of an innate behavior. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12772. [PMID: 34672079 DOI: 10.1111/gbb.12772] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/28/2022]
Abstract
Male sexual behavior in Drosophila melanogaster, largely controlled by the fruitless (fru) gene encoding the male specific FruM protein, is among the best studied animal behaviors. Although substantial studies suggest that FruM specifies a neuronal circuitry governing all aspects of male sexual behaviors, recent findings show that FruM is not absolutely necessary for such behaviors. We propose that another regulatory gene doublesex encoding the male-specific DsxM protein builds a core neuronal circuitry that possesses the potential for courtship, which could be either induced through adult social experience or innately manifested during development by FruM expression in a broader neuronal circuitry. FruM expression levels and patterns determine the modes of courtship behavior from innate heterosexual, homosexual, bisexual, to learned courtship. We discuss how FruM expression is regulated by hormones and social experiences and tunes functional flexibility of the sex circuitry. We propose that regulatory genes hierarchically build the potential for innate and learned aspects of courtship behaviors, and expression changes of these regulatory genes among different individuals and species with different social experiences ultimately lead to behavioral diversification.
Collapse
Affiliation(s)
- Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jie Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
14
|
Goodwin SF, Hobert O. Molecular Mechanisms of Sexually Dimorphic Nervous System Patterning in Flies and Worms. Annu Rev Cell Dev Biol 2021; 37:519-547. [PMID: 34613817 DOI: 10.1146/annurev-cellbio-120319-115237] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Male and female brains display anatomical and functional differences. Such differences are observed in species across the animal kingdom, including humans, but have been particularly well-studied in two classic animal model systems, the fruit fly Drosophila melanogaster and the nematode Caenorhabditis elegans. Here we summarize recent advances in understanding how the worm and fly brain acquire sexually dimorphic features during development. We highlight the advantages of each system, illustrating how the precise anatomical delineation of sexual dimorphisms in worms has enabled recent analysis into how these dimorphisms become specified during development, and how focusing on sexually dimorphic neurons in the fly has enabled an increasingly detailed understanding of sex-specific behaviors.
Collapse
Affiliation(s)
- Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3SR, United Kingdom;
| | - Oliver Hobert
- Department of Biological Sciences and Howard Hughes Medical Institute, Columbia University, New York, NY 10027, USA;
| |
Collapse
|
15
|
Evolution of a neuromuscular sexual dimorphism in the Drosophila montium species group. Sci Rep 2021; 11:15272. [PMID: 34315982 PMCID: PMC8316392 DOI: 10.1038/s41598-021-94722-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/24/2021] [Indexed: 12/04/2022] Open
Abstract
While epigamic traits likely evolve via sexual selection, the mechanism whereby internal sexual dimorphism arises remains less well understood. Seeking clues as to how the internal sexual dimorphism evolved, we compared the abdominal musculature of 41 Drosophila montium group species, to determine whether any of these species carry a male-specific muscle of Lawrence (MOL). Our quantitative analysis revealed that the size of a sexually dimorphic MOL analog found in 19 montium group species varied widely from species to species, suggesting the gradual evolution of this sexually dimorphic neuromuscular trait. We attempted the ancestral state reconstitution for the presence or absence of the neuromuscular sexual dimorphism in the A5 segment; the neuromuscular sexual dimorphism existed in an old ancestor of the montium group, which was lost in some of the most recent common ancestors of derived lineages, and subsequently some species regained it. This loss-and-gain history was not shared by evolutionary changes in the courtship song pattern, even though both traits were commonly regulated by the master regulator male-determinant protein FruM. It is envisaged that different sets of FruM target genes may serve for shaping the song and MOL characteristics, respectively, and, as a consequence, each phenotypic trait underwent a distinct evolutionary path.
Collapse
|
16
|
Zhou H, Whitworth C, Pozmanter C, Neville MC, Van Doren M. Doublesex regulates fruitless expression to promote sexual dimorphism of the gonad stem cell niche. PLoS Genet 2021; 17:e1009468. [PMID: 33788836 PMCID: PMC8041189 DOI: 10.1371/journal.pgen.1009468] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 04/12/2021] [Accepted: 03/04/2021] [Indexed: 11/25/2022] Open
Abstract
Doublesex (Dsx) and Fruitless (Fru) are the two downstream transcription factors that actuate Drosophila sex determination. While Dsx assists Fru to regulate sex-specific behavior, whether Fru collaborates with Dsx in regulating other aspects of sexual dimorphism remains unknown. One important aspect of sexual dimorphism is found in the gonad stem cell (GSC) niches, where male and female GSCs are regulated to create large numbers of sperm and eggs. Here we report that Fru is expressed male-specifically in the GSC niche and plays important roles in the development and maintenance of these cells. Unlike previously-studied aspects of sex-specific Fru expression, which are regulated by Transformer (Tra)-mediated alternative splicing, we show that male-specific expression of fru in the gonad is regulated downstream of dsx, and is independent of tra. fru genetically interacts with dsx to support maintenance of the niche throughout development. Ectopic expression of fru inhibited female niche formation and partially masculinized the ovary. fru is also required autonomously for cyst stem cell maintenance and cyst cell survival. Finally, we identified a conserved Dsx binding site upstream of fru promoter P4 that regulates fru expression in the niche, indicating that fru is likely a direct target for transcriptional regulation by Dsx. These findings demonstrate that fru acts outside the nervous system to influence sexual dimorphism and reveal a new mechanism for regulating sex-specific expression of fru that is regulated at the transcriptional level by Dsx, rather than by alternative splicing by Tra.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, United States of America
| | - Cale Whitworth
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, United States of America
| | - Caitlin Pozmanter
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, United States of America
| | - Megan C. Neville
- Centre for Neural Circuits and Behaviour, University of Oxford, Tinsley Building, Mansfield Road, Oxford, United Kingdom
| | - Mark Van Doren
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, United States of America
| |
Collapse
|
17
|
Brovero SG, Fortier JC, Hu H, Lovejoy PC, Newell NR, Palmateer CM, Tzeng RY, Lee PT, Zinn K, Arbeitman MN. Investigation of Drosophila fruitless neurons that express Dpr/DIP cell adhesion molecules. eLife 2021; 10:e63101. [PMID: 33616528 PMCID: PMC7972454 DOI: 10.7554/elife.63101] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Drosophila reproductive behaviors are directed by fruitless neurons. A reanalysis of genomic studies shows that genes encoding dpr and DIP immunoglobulin superfamily (IgSF) members are expressed in fru P1 neurons. We find that each fru P1 and dpr/DIP (fru P1 ∩ dpr/DIP) overlapping expression pattern is similar in both sexes, but there are dimorphisms in neuronal morphology and cell number. Behavioral studies of fru P1 ∩ dpr/DIP perturbation genotypes indicate that the mushroom body functions together with the lateral protocerebral complex to direct courtship behavior. A single-cell RNA-seq analysis of fru P1 neurons shows that many DIPs have high expression in a small set of neurons, whereas the dprs are often expressed in a larger set of neurons at intermediate levels, with a myriad of dpr/DIP expression combinations. Functionally, we find that perturbations of sex hierarchy genes and of DIP-ε change the sex-specific morphologies of fru P1 ∩ DIP-α neurons.
Collapse
Affiliation(s)
- Savannah G Brovero
- Department of Biomedical Sciences and Program of Neuroscience, Florida State University, College of MedicineTallahasseeUnited States
| | - Julia C Fortier
- Department of Biomedical Sciences and Program of Neuroscience, Florida State University, College of MedicineTallahasseeUnited States
| | - Hongru Hu
- Department of Biomedical Sciences and Program of Neuroscience, Florida State University, College of MedicineTallahasseeUnited States
| | - Pamela C Lovejoy
- Department of Biomedical Sciences and Program of Neuroscience, Florida State University, College of MedicineTallahasseeUnited States
| | - Nicole R Newell
- Department of Biomedical Sciences and Program of Neuroscience, Florida State University, College of MedicineTallahasseeUnited States
| | - Colleen M Palmateer
- Department of Biomedical Sciences and Program of Neuroscience, Florida State University, College of MedicineTallahasseeUnited States
| | - Ruei-Ying Tzeng
- Department of Biomedical Sciences and Program of Neuroscience, Florida State University, College of MedicineTallahasseeUnited States
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of MedicineHoustonUnited States
| | - Kai Zinn
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Michelle N Arbeitman
- Department of Biomedical Sciences and Program of Neuroscience, Florida State University, College of MedicineTallahasseeUnited States
| |
Collapse
|
18
|
Brovkina MV, Duffié R, Burtis AEC, Clowney EJ. Fruitless decommissions regulatory elements to implement cell-type-specific neuronal masculinization. PLoS Genet 2021; 17:e1009338. [PMID: 33600447 PMCID: PMC7924761 DOI: 10.1371/journal.pgen.1009338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/02/2021] [Accepted: 01/04/2021] [Indexed: 01/12/2023] Open
Abstract
In the fruit fly Drosophila melanogaster, male-specific splicing and translation of the Fruitless transcription factor (FruM) alters the presence, anatomy, and/or connectivity of >60 types of central brain neurons that interconnect to generate male-typical behaviors. While the indispensable function of FruM in sex-specific behavior has been understood for decades, the molecular mechanisms underlying its activity remain unknown. Here, we take a genome-wide, brain-wide approach to identifying regulatory elements whose activity depends on the presence of FruM. We identify 436 high-confidence genomic regions differentially accessible in male fruitless neurons, validate candidate regions as bona fide, differentially regulated enhancers, and describe the particular cell types in which these enhancers are active. We find that individual enhancers are not activated universally but are dedicated to specific fru+ cell types. Aside from fru itself, genes are not dedicated to or common across the fru circuit; rather, FruM appears to masculinize each cell type differently, by tweaking expression of the same effector genes used in other circuits. Finally, we find FruM motifs enriched among regulatory elements that are open in the female but closed in the male. Together, these results suggest that FruM acts cell-type-specifically to decommission regulatory elements in male fruitless neurons. Courtship behavior in male Drosophila melanogaster is controlled by a well-defined neural circuit that is labeled by the male-specific transcription factor Fruitless (FruM). While FruM is known to change the number, anatomy and connectivity of neurons which comprise the circuit and has been suggested to repress the expression of a few gene targets, the mechanism of how FruM regulates genes across many different kinds of neurons is unknown. Using an approach to identify gene regulatory elements based on their chromatin accessibility states (ATAC-seq), we identified a large set of chromatin accessibility changes downstream of Fruitless. By examining the activity of these regulatory elements in vivo, we found that their activity was 1) sexually dimorphic and 2) specific to a single class of FruM neurons, suggesting that FruM acts on different chromatin targets in different neuron classes comprising the courtship circuit. Further, we found a known FruM-regulated enhancer of the FruM-repressed gene Lgr3 to have closed chromatin specifically in FruM neurons. Combined with an enrichment of FruM motifs in regions which are closed in FruM neurons, we present a mechanism where FruM directs the decommissioning of sex-shared regulatory elements to masculinize neurons in a cell-type specific manner.
Collapse
Affiliation(s)
- Margarita V. Brovkina
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Rachel Duffié
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- Mortimer B. Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, New York, United States of America
| | - Abbigayl E. C. Burtis
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - E. Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, The University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
19
|
Nakata M, Kikuchi Y, Iwami M, Takayanagi-Kiya S, Kiya T. Identification and characterization of sexually dimorphic neurons that express the sex-determining gene doublesex in the brain of silkmoth Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103518. [PMID: 33421546 DOI: 10.1016/j.ibmb.2021.103518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Sexual differences in behavior are generated by sexually dimorphic neural circuits in animals. In insects, a highly conserved sex-determining gene doublesex (dsx) plays essential roles in the development of sexual dimorphisms. In the present study, to elucidate the neural basis of sexual differences in behaviors of silkmoth Bombyx mori, we investigated Bombyx mori dsx (Bmdsx) expression in the brains through development. In the brain, Bmdsx was differentially expressed in sex- and developmental stage-dependent manners. BmDSX protein-expressing cells were located in the dorsomedial region of the pupal and adult brains, and constituted two and one neural clusters in males and females, respectively. The number of BmDSX-positive cells was developmentally regulated and peaked at the early to middle pupal stages, suggesting that the sexually dimorphic neural circuits are established during this period. The detection of a neural activity marker protein BmHR38 suggested that the BmDSX-positive cells are not active during sexual behavior in both male and female moths, even though the cells in the vicinity of the BmDSX-positive cell clusters are active. These results imply that Bmdsx plays roles in the development of sexually dimorphic neural circuits, but the neural circuits are not related to sexual behavior in silkmoths.
Collapse
Affiliation(s)
- Masami Nakata
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Yusuke Kikuchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Masafumi Iwami
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Seika Takayanagi-Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan
| | - Taketoshi Kiya
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Japan.
| |
Collapse
|
20
|
Meeh KL, Rickel CT, Sansano AJ, Shirangi TR. The development of sex differences in the nervous system and behavior of flies, worms, and rodents. Dev Biol 2021; 472:75-84. [PMID: 33484707 DOI: 10.1016/j.ydbio.2021.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 01/14/2023]
Abstract
Understanding how sex differences in innate animal behaviors arise has long fascinated biologists. As a general rule, the potential for sex differences in behavior is built by the developmental actions of sex-specific hormones or regulatory proteins that direct the sexual differentiation of the nervous system. In the last decade, studies in several animal systems have uncovered neural circuit mechanisms underlying discrete sexually dimorphic behaviors. Moreover, how certain hormones and regulatory proteins implement the sexual differentiation of these neural circuits has been illuminated in tremendous detail. Here, we discuss some of these mechanisms with three case-studies-mate recognition in flies, maturation of mating behavior in worms, and play-fighting behavior in young rodents. These studies illustrate general and unique developmental mechanisms to establish sex differences in neuroanatomy and behavior and highlight future challenges for the field.
Collapse
Affiliation(s)
- Kristen L Meeh
- Villanova University, Department of Biology, 800 Lancaster Ave, Villanova, PA, 19085, USA
| | - Clare T Rickel
- Villanova University, Department of Biology, 800 Lancaster Ave, Villanova, PA, 19085, USA
| | - Alexander J Sansano
- Villanova University, Department of Biology, 800 Lancaster Ave, Villanova, PA, 19085, USA
| | - Troy R Shirangi
- Villanova University, Department of Biology, 800 Lancaster Ave, Villanova, PA, 19085, USA.
| |
Collapse
|
21
|
Chen J, Jin S, Chen D, Cao J, Ji X, Peng Q, Pan Y. fruitless tunes functional flexibility of courtship circuitry during development. eLife 2021; 10:59224. [PMID: 33463521 PMCID: PMC7861613 DOI: 10.7554/elife.59224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 01/18/2021] [Indexed: 11/13/2022] Open
Abstract
Drosophila male courtship is controlled by the male-specific products of the fruitless (fruM) gene and its expressing neuronal circuitry. fruM is considered a master gene that controls all aspects of male courtship. By temporally and spatially manipulating fruM expression, we found that fruM is required during a critical developmental period for innate courtship toward females, while its function during adulthood is involved in inhibiting male–male courtship. By altering or eliminating fruM expression, we generated males that are innately heterosexual, homosexual, bisexual, or without innate courtship but could acquire such behavior in an experience-dependent manner. These findings show that fruM is not absolutely necessary for courtship but is critical during development to build a sex circuitry with reduced flexibility and enhanced efficiency, and provide a new view about how fruM tunes functional flexibility of a sex circuitry instead of switching on its function as conventionally viewed. Innate behaviors are behaviors that do not need to be learned. They include activities such as nest building in birds and web spinning in spiders. Another behavior that has been extensively studied, and which is generally considered to be innate, is courtship in fruit flies. Male fruit flies serenade potential mates by vibrating their wings to create a complex melody. This behavior is under the control of a gene called ‘fruitless’, which gives rise to several distinct proteins, including one that is unique to males. For many years, this protein – called FruM – was thought to be the master switch that activates courtship behavior. But recent findings have challenged this idea. They show that although male flies that lack FruM fail to show courtship behaviors if raised in isolation, they can still learn them if raised in groups. This suggests that the role of FruM is more complex than previously thought. To determine how FruM controls courtship behavior, Chen et al. have used genetic tools to manipulate FruM activity in male flies at different stages of the life cycle and distinct cells of the nervous system. The results revealed that FruM must be present during a critical period of development – but not adulthood – for male flies to court females. However, FruM strongly influences the type of courtship behavior the male flies display. The amount and location of FruM determines whether males show heterosexual, homosexual or bisexual courtship behaviors. Adult flies with lower levels of FruM show an increase in homosexual courtship and a decrease in heterosexual courtship. These findings provide a fresh view on how a master gene can generate complex and flexible behaviors. They show that fruitless, and the FruM protein it encodes, work distinctly at different life cycles to modify the type of courtship behavior shown by male flies, rather than simply switching courtship behavior on and off. Exactly how FruM acts within the fruit fly brain to achieve these complex effects requires further investigation.
Collapse
Affiliation(s)
- Jie Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Sihui Jin
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Dandan Chen
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jie Cao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiaoxiao Ji
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qionglin Peng
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yufeng Pan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
22
|
Zhang Y, Ng R, Neville MC, Goodwin SF, Su CY. Distinct Roles and Synergistic Function of Fru M Isoforms in Drosophila Olfactory Receptor Neurons. Cell Rep 2020; 33:108516. [PMID: 33326795 PMCID: PMC7845487 DOI: 10.1016/j.celrep.2020.108516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Sexual dimorphism in Drosophila courtship circuits requires the male-specific transcription factor fruM, which is alternatively spliced to encode the FruMA, FruMB, and FruMC isoforms. Most fruM-positive neurons express multiple variants; however, the functional significance of their co-expression remains undetermined. Do co-expressed isoforms each play unique roles to jointly regulate dimorphism? By focusing on fruM-positive olfactory receptor neurons (ORNs), here, we show that FruMB and FruMC are both required for males' age-dependent sensitization to aphrodisiac olfactory cues in a cell-autonomous manner. Interestingly, FruMB expression is upregulated with age in Or47b and Ir84a ORNs, and its overexpression mimics the effect of age in elevating olfactory responses. Mechanistically, FruMB and FruMC synergistically mediate response sensitization through cooperation of their respective downstream effectors, namely, PPK25 and PPK23, which are both required for forming a functional amplification channel in ORNs. Together, these results provide critical mechanistic insight into how co-expressed FruM isoforms jointly coordinate dimorphic neurophysiology.
Collapse
Affiliation(s)
- Ye Zhang
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Renny Ng
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Megan C Neville
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Stephen F Goodwin
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford OX1 3TA, UK
| | - Chih-Ying Su
- Neurobiology Section, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
23
|
Basrur NS, De Obaldia ME, Morita T, Herre M, von Heynitz RK, Tsitohay YN, Vosshall LB. Fruitless mutant male mosquitoes gain attraction to human odor. eLife 2020; 9:e63982. [PMID: 33284111 PMCID: PMC7806257 DOI: 10.7554/elife.63982] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/28/2020] [Indexed: 12/27/2022] Open
Abstract
The Aedesaegypti mosquito shows extreme sexual dimorphism in feeding. Only females are attracted to and obtain a blood-meal from humans, which they use to stimulate egg production. The fruitless gene is sex-specifically spliced and encodes a BTB zinc-finger transcription factor proposed to be a master regulator of male courtship and mating behavior across insects. We generated fruitless mutant mosquitoes and showed that males failed to mate, confirming the ancestral function of this gene in male sexual behavior. Remarkably, fruitless males also gain strong attraction to a live human host, a behavior that wild-type males never display, suggesting that male mosquitoes possess the central or peripheral neural circuits required to host-seek and that removing fruitless reveals this latent behavior in males. Our results highlight an unexpected repurposing of a master regulator of male-specific sexual behavior to control one module of female-specific blood-feeding behavior in a deadly vector of infectious diseases.
Collapse
Affiliation(s)
- Nipun S Basrur
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Maria Elena De Obaldia
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Takeshi Morita
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Margaret Herre
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
| | - Ricarda K von Heynitz
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Yael N Tsitohay
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
| | - Leslie B Vosshall
- Laboratory of Neurogenetics and Behavior, The Rockefeller UniversityNew YorkUnited States
- Kavli Neural Systems InstituteNew YorkUnited States
- Howard Hughes Medical InstituteNew YorkUnited States
| |
Collapse
|
24
|
Sato K, Ito H, Yamamoto D. teiresias, a Fruitless target gene encoding an immunoglobulin-superfamily transmembrane protein, is required for neuronal feminization in Drosophila. Commun Biol 2020; 3:598. [PMID: 33087851 PMCID: PMC7578032 DOI: 10.1038/s42003-020-01327-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 09/25/2020] [Indexed: 01/02/2023] Open
Abstract
This study aims at identifying transcriptional targets of FruitlessBM (FruBM), which represents the major isoform of male-specific FruM transcription factors that induce neural sexual dimorphisms. A promoter of the axon-guidance factor gene robo1 carries the 16-bp palindrome motif Pal1, to which FruM binds. Our genome-wide search for Pal1-homologous sequences yielded ~200 candidate genes. Among these, CG17716 potentially encodes a transmembrane protein with extracellular immunoglobulin (Ig)-like domains similar to Robo1. Indeed, FruBM overexpression reduced CG17716 mRNA and protein expression. In the fru-expressing mAL neuron cluster exhibiting sexual dimorphism, we found that CG17716 knockdown in female neurons completely transformed all neurites to the male-type. Conversely, CG17716 overexpression suppressed male-specific midline crossing of fru-expressing sensory axons. We renamed CG17716 teiresias (tei) based on this feminizing function. We hypothesize that Tei interacts with other Ig superfamily transmembrane proteins, including Robo1, to feminize the neurite patterns in females, whereas FruBM represses tei transcription in males. Sato, Ito, and Yamamoto report the identification of a Fruitless target gene, teiresias (tei), required for neuronal feminization in Drosophila. They find that tei is responsible for specifying the sex-specific structure of neurites and propose that the Tei protein forms a complex with robo1, conferring the ligand specificity on the heteromeric receptor complex.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Hiroki Ito
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan.
| |
Collapse
|
25
|
Scott MJ, Benoit JB, Davis RJ, Bailey ST, Varga V, Martinson EO, Hickner PV, Syed Z, Cardoso GA, Torres TT, Weirauch MT, Scholl EH, Phillippy AM, Sagel A, Vasquez M, Quintero G, Skoda SR. Genomic analyses of a livestock pest, the New World screwworm, find potential targets for genetic control programs. Commun Biol 2020; 3:424. [PMID: 32753684 PMCID: PMC7403345 DOI: 10.1038/s42003-020-01152-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 07/14/2020] [Indexed: 12/13/2022] Open
Abstract
The New World Screwworm fly, Cochliomyia hominivorax, is a major pest of livestock in South America and Caribbean. However, few genomic resources have been available for this species. A genome of 534 Mb was assembled from long read PacBio DNA sequencing of DNA from a highly inbred strain. Analysis of molecular evolution identified 40 genes that are likely under positive selection. Developmental RNA-seq analysis identified specific genes associated with each stage. We identify and analyze the expression of genes that are likely important for host-seeking behavior (chemosensory), development of larvae in open wounds in warm-blooded animals (heat shock protein, immune response) and for building transgenic strains for genetic control programs including gene drive (sex determination, germline). This study will underpin future experiments aimed at understanding the parasitic lifestyle of the screwworm fly and greatly facilitate future development of strains for efficient systems for genetic control of screwworm.
Collapse
Affiliation(s)
- Maxwell J Scott
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA.
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, McMicken School of Arts and Sciences, Cincinnati, OH, 45221, USA
| | - Rebecca J Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC, 27695-7613, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, McMicken School of Arts and Sciences, Cincinnati, OH, 45221, USA
| | - Virag Varga
- Department of Biological Sciences, University of Cincinnati, McMicken School of Arts and Sciences, Cincinnati, OH, 45221, USA
| | - Ellen O Martinson
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Paul V Hickner
- Department of Entomology, University of Kentucky, Lexington, KY, 40546, USA
| | | | - Gisele A Cardoso
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Tatiana T Torres
- Department of Genetics and Evolutionary Biology, University of São Paulo, São Paulo, Brazil
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Elizabeth H Scholl
- Bioinformatics Research Center, North Carolina State University, Campus Box 7566, Raleigh, NC, 27695-7566, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, 20892, USA
| | | | | | | | - Steven R Skoda
- USDA-ARS, Tick and Biting Fly Research Unit, Knipling-Bushland Livestock Insects Research Laboratory, 2700 Fredericksburg Rd., Kerrville, TX, 78028, USA
| |
Collapse
|
26
|
Wohl M, Ishii K, Asahina K. Layered roles of fruitless isoforms in specification and function of male aggression-promoting neurons in Drosophila. eLife 2020; 9:e52702. [PMID: 32314957 PMCID: PMC7173971 DOI: 10.7554/elife.52702] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Inter-male aggressive behavior is a prominent sexually dimorphic behavior. Neural circuits that underlie aggressive behavior are therefore likely under the control of sex-determining genes. However, the neurogenetic mechanism that generates sex-specific aggressive behavior remains largely unknown. Here, we found that a neuronal class specified by one of the Drosophila sex determining genes, fruitless (fru), belongs to the neural circuit that generates male-type aggressive behavior. This neuronal class can promote aggressive behavior independent of another sex determining gene, doublesex (dsx), although dsx is involved in ensuring that aggressive behavior is performed only toward males. We also found that three fru isoforms with different DNA binding domains show a division of labor on male aggressive behaviors. A dominant role of fru in specifying sex-specific aggressive behavior may underscore a genetic mechanism that allows male-type aggressive behavior to evolve at least partially independently from courtship behavior, which is under different selective pressures.
Collapse
Affiliation(s)
- Margot Wohl
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of CaliforniaSan DiegoUnited States
| | - Kenichi Ishii
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of CaliforniaSan DiegoUnited States
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, The Salk Institute for Biological StudiesLa JollaUnited States
| |
Collapse
|
27
|
Ishii K, Wohl M, DeSouza A, Asahina K. Sex-determining genes distinctly regulate courtship capability and target preference via sexually dimorphic neurons. eLife 2020; 9:e52701. [PMID: 32314964 PMCID: PMC7173972 DOI: 10.7554/elife.52701] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/03/2020] [Indexed: 11/17/2022] Open
Abstract
For successful mating, a male animal must execute effective courtship behaviors toward a receptive target sex, which is female. Whether the courtship execution capability and upregulation of courtship toward females are specified through separable sex-determining genetic pathways remains uncharacterized. Here, we found that one of the two Drosophila sex-determining genes, doublesex (dsx), specifies a male-specific neuronal component that serves as an execution mechanism for courtship behavior, whereas fruitless (fru) is required for enhancement of courtship behavior toward females. The dsx-dependent courtship execution mechanism includes a specific subclass within a neuronal cluster that co-express dsx and fru. This cluster contains at least another subclass that is specified cooperatively by both dsx and fru. Although these neuronal populations can also promote aggressive behavior toward male flies, this capacity requires fru-dependent mechanisms. Our results uncover how sex-determining genes specify execution capability and female-specific enhancement of courtship behavior through separable yet cooperative neurogenetic mechanisms.
Collapse
Affiliation(s)
- Kenichi Ishii
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
| | - Margot Wohl
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoSan DiegoUnited States
| | - Andre DeSouza
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoSan DiegoUnited States
| | - Kenta Asahina
- Molecular Neurobiology Laboratory, Salk Institute for Biological StudiesLa JollaUnited States
- Neuroscience Graduate Program, University of California, San DiegoSan DiegoUnited States
| |
Collapse
|
28
|
FUNATO H. Forward genetic approach for behavioral neuroscience using animal models. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2020; 96:10-31. [PMID: 31932526 PMCID: PMC6974404 DOI: 10.2183/pjab.96.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Forward genetics is a powerful approach to understand the molecular basis of animal behaviors. Fruit flies were the first animal to which this genetic approach was applied systematically and have provided major discoveries on behaviors including sexual, learning, circadian, and sleep-like behaviors. The development of different classes of model organism such as nematodes, zebrafish, and mice has enabled genetic research to be conducted using more-suitable organisms. The unprecedented success of forward genetic approaches was the identification of the transcription-translation negative feedback loop composed of clock genes as a fundamental and conserved mechanism of circadian rhythm. This approach has now expanded to sleep/wakefulness in mice. A conventional strategy such as dominant and recessive screenings can be modified with advances in DNA sequencing and genome editing technologies.
Collapse
Affiliation(s)
- Hiromasa FUNATO
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
29
|
McKelvey EG, Fabre CC. Recent neurogenetic findings in insect courtship behaviour. CURRENT OPINION IN INSECT SCIENCE 2019; 36:103-110. [PMID: 31546094 DOI: 10.1016/j.cois.2019.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
Insect courtship parades consist of series of innate and stereotyped behaviours that become hardwired-in during the development of the nervous system. As such, insect courtship behaviour provides an excellent model for probing the principles of neuronal assembly, which underlie patterns of behaviour. Here, we present the main advances of recent studies - in species all the way from flies to planthoppers - and we envisage how these could lead to further propitious findings.
Collapse
Affiliation(s)
- Eleanor Gz McKelvey
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Caroline Cg Fabre
- University of Cambridge, Department of Zoology, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|
30
|
Sato K, Goto J, Yamamoto D. Sex Mysteries of the Fly Courtship Master Regulator Fruitless. Front Behav Neurosci 2019; 13:245. [PMID: 31680899 PMCID: PMC6813181 DOI: 10.3389/fnbeh.2019.00245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/07/2019] [Indexed: 01/21/2023] Open
Abstract
The fruitless (fru) gene of Drosophila melanogaster generates two groups of protein products, the male-specific FruM proteins and non-sex-specific FruCOM proteins. The FruM proteins have a 101 amino acids (a.a.)-long extension at the N-terminus which is absent from FruCOM. We suggest that this N-terminal extension might confer male-specific roles on FruM interaction partner proteins such as Lola, which otherwise operates as a transcription factor common to both sexes. FruM-expressing neurons are known to connect with other neurons to form a sexually dimorphic circuit for male mating behavior. We propose that FruM proteins expressed in two synaptic partners specify, at the transcriptional level, signaling pathways through which select pre- and post-synaptic partners communicate, and thereby pleiotropic ligand-receptor pairs for cell-cell interactions acquire the high specificity for mutual connections between two FruM-positive cells. We further discuss the possibility that synaptic connections made by FruM-positive neurons are regulated by neural activities, which in turn upregulate Fru expression in active cells, resulting in feedforward enhancement of courtship activities of the male fly.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Junpei Goto
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
31
|
Sato K, Yamamoto D. The mode of action of Fruitless: Is it an easy matter to switch the sex? GENES BRAIN AND BEHAVIOR 2019; 19:e12606. [PMID: 31420927 PMCID: PMC7027472 DOI: 10.1111/gbb.12606] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 11/28/2022]
Abstract
The fruitless (fru) locus was originally defined by a male sterile mutation that promotes male-to-male courtship while suppressing male-to-female courtship in Drosophila melanogaster. The fru promoter-1 pre-RNA generates a set of BTB-zinc finger family FruM proteins expressed exclusively in the male neurons, leading to the formation of sexual dimorphisms in neurons via male-specific neuroblast proliferation, male-specific neural survival, male-specific neuritegenesis or male-specific arbor patterning. Such a wide spectrum of phenotypic effects seems to result from chromatin modifications, in which FruBM recruits Bonus, Histone deacetylase 1 (HDAC1) and/or Heterochromatin protein 1a (HP1a) to ~130 target sites. One established FruBM transcriptional target is the axon guidance protein gene robo1. Multiple transcriptional regulator-binding sites are nested around the FruBM-binding site, and mediate sophisticated modulation of the repressor activity of FruBM. FruBM also binds to the Lola-Q transcriptional repressor to protect it from proteasome-dependent degradation in male but not female neurons as FruBM exists only in male neurons, leading to the formation of sexually dimorphic neural structures. These findings shed light on the multilayered network of transcription regulation orchestrated by the master regulator FruBM.
Collapse
Affiliation(s)
- Kosei Sato
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| | - Daisuke Yamamoto
- Neuro-Network Evolution Project, Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Japan
| |
Collapse
|
32
|
Tanimoto H, Wu CF. Comparative behavioral genetics: the Yamamoto approach. J Neurogenet 2019; 33:41-43. [PMID: 31142179 DOI: 10.1080/01677063.2019.1616720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hiromu Tanimoto
- a Graduate School of Life Sciences , Tohoku University , Sendai , Japan
| | - Chun-Fang Wu
- b Department of Biology , University of Iowa , Iowa City , IA , USA
| |
Collapse
|
33
|
Aggression and courtship differences found in Drosophila melanogaster from two different microclimates at Evolution Canyon, Israel. Sci Rep 2019; 9:4084. [PMID: 30858499 PMCID: PMC6411990 DOI: 10.1038/s41598-019-40701-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/23/2019] [Indexed: 11/08/2022] Open
Abstract
Aggression and courtship behavior were examined of wild Drosophila melanogaster flies isolated from two contrasting microclimates found at Evolution Canyon in Mt. Carmel, Israel: an African-like dry tropical Slope (AS) and a European-like humid temperate Slope (ES), separated by 250 meters. Studies were carried out to ask whether behavioral differences existed between the two populations obtained from opposite slopes with divergent microclimates in Israel. First, we measured and compared intraslope aggression between same sex fly pairings collected from the same slope. Both male and female flies displayed similar fighting abilities from both slopes. ES males, however, from the humid biome, showed a tendency to lunge more per aggressive encounter, compared with AS males from the dry biome. Next, we tested interslope aggression by pairing flies from opposite slopes. ES males displayed higher numbers of lunges, and won more fights against their AS opponents. We also observed enhanced courtship performances in ES compared to AS males. The fighting and courtship superiority seen in ES males could reinforce fitness and pre-mating reproductive isolation mechanisms that underlie incipient sympatric speciation. This may support an evolutionary advantage of adaptively divergent fruit fly aggression phenotypes from different environments.
Collapse
|
34
|
Partial proteasomal degradation of Lola triggers the male-to-female switch of a dimorphic courtship circuit. Nat Commun 2019; 10:166. [PMID: 30635583 PMCID: PMC6329818 DOI: 10.1038/s41467-018-08146-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In Drosophila, some neurons develop sex-specific neurites that contribute to dimorphic circuits for sex-specific behavior. As opposed to the idea that the sexual dichotomy in transcriptional profiles produced by a sex-specific factor underlies such sex differences, we discovered that the sex-specific cleavage confers the activity as a sexual-fate inducer on the pleiotropic transcription factor Longitudinals lacking (Lola). Surprisingly, Fruitless, another transcription factor with a master regulator role for courtship circuitry formation, directly binds to Lola to protect its cleavage in males. We also show that Lola cleavage involves E3 ubiquitin ligase Cullin1 and 26S proteasome. Our work adds a new dimension to the study of sex-specific behavior and its circuit basis by unveiling a mechanistic link between proteolysis and the sexually dimorphic patterning of circuits. Our findings may also provide new insights into potential causes of the sex-biased incidence of some neuropsychiatric diseases and inspire novel therapeutic approaches to such disorders. It is unclear how some Drosophila neurons develop sex-specific neurites that contribute to dimorphic circuitries required for gendered behavior. The authors show that sex-specific cleavage by the E3 ubiquitin ligase Cullin1 and 26S proteasome of the pleiotropic BTB-ZF transcription factor Lola confers its sexual fate-inducing ability in these neurons.
Collapse
|
35
|
Millington JW, Rideout EJ. Sex differences in Drosophila development and physiology. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Knoedler JR, Shah NM. Molecular mechanisms underlying sexual differentiation of the nervous system. Curr Opin Neurobiol 2018; 53:192-197. [PMID: 30316066 DOI: 10.1016/j.conb.2018.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
A long-standing goal in developmental neuroscience is to understand the mechanisms by which steroid sex hormones pattern the mammalian central nervous system along male or female pathways to enable subsequent displays of sexually dimorphic behaviors. In this article, we review recent advances in understanding the epigenetic and transcriptional mechanisms mediating sexual differentiation of the brain in mammals, flies, and worms. These studies suggest a model of sexual differentiation wherein master regulators of sex determination initiate a cascade of sexually dimorphic gene expression that controls development of neural pathways and behavioral displays in a strikingly modular manner. With these advances in molecular genetics, it is now feasible to disassemble different components of sexually dimorphic social behaviors without disrupting other behavioral interactions. Such experimental tractability promises rapid advances in this exciting field.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States
| | - Nirao M Shah
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, United States; Department of Neurobiology, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
37
|
Wu B, Ma L, Zhang E, Du J, Liu S, Price J, Li S, Zhao Z. Sexual dimorphism of sleep regulated by juvenile hormone signaling in Drosophila. PLoS Genet 2018; 14:e1007318. [PMID: 29617359 PMCID: PMC5909909 DOI: 10.1371/journal.pgen.1007318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 04/20/2018] [Accepted: 03/19/2018] [Indexed: 11/30/2022] Open
Abstract
Sexually dimorphic phenotypes are a universal phenomenon in animals. In the model animal fruit fly Drosophila, males and females exhibit long- and short-sleep phenotypes, respectively. However, the mechanism is still a mystery. In this study, we showed that juvenile hormone (JH) is involved in regulation of sexually dimorphic sleep in Drosophila, in which gain of JH function enlarges differences of the dimorphic sleep phenotype with higher sleep in males and lower sleep in females, while loss of JH function blurs these differences and results in feminization of male sleep and masculinization of female sleep. Further studies indicate that germ cell-expressed (GCE), one of the JH receptors, mediates the response in the JH pathway because the sexually dimorphic sleep phenotypes cannot be rescued by JH hormone in a gce deletion mutant. The JH-GCE regulated sleep dimorphism is generated through the sex differentiation-related genes -fruitless (fru) and doublesex (dsx) in males and sex-lethal (sxl), transformer (tra) and doublesex (dsx) in females. These are the “switch” genes that separately control the sleep pattern in males and females. Moreover, analysis of sleep deprivation and circadian behaviors showed that the sexually dimorphic sleep induced by JH signals is a change of sleep drive and independent of the circadian clock. Furthermore, we found that JH seems to also play an unanticipated role in antagonism of an aging-induced sleep decrease in male flies. Taken together, these results indicate that the JH signal pathway is critical for maintenance of sexually dimorphic sleep by regulating sex-relevant genes. Sleep is a very important biological behavior in all animals and takes up around one third of the lifespan in many animals. In both insects and mammals (including humans), sleep differences between male and female (sexually dimorphic sleep) have been described over the past decades. However, its internal regulation mechanism is still unclear. The fruit fly Drosophila melanogaster, sharing most sleep characteristics with humans, has been used for sleep studies as a powerful model for genetic analysis. In this study, we reported that Juvenile hormone (JH) induces completely different sleep effects between males and females with higher sleep in males and lower sleep in females, while loss of JH function blurs these differences and results in feminization of male sleep and masculinization of female sleep. Further studies indicate that the sexual dimorphism of sleep is generated through the sex differentiation-related genes regulated by JH and its receptor GCE (germ cell-expressed) signaling. Furthermore, we found that JH seems to also play an unanticipated role in aging-induced sleep changes.
Collapse
Affiliation(s)
- Binbin Wu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Lingling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Enyan Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Suning Liu
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jeffrey Price
- Department of Neurology and Cognitive Neuroscience, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Sheng Li
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
- * E-mail: (SL); (ZZ)
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- * E-mail: (SL); (ZZ)
| |
Collapse
|
38
|
Zhang B, Sato K, Yamamoto D. Ecdysone signaling regulates specification of neurons with a male-specific neurite in Drosophila. Biol Open 2018; 7:7/2/bio029744. [PMID: 29463514 PMCID: PMC5861360 DOI: 10.1242/bio.029744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Some mAL neurons in the male brain form the ipsilateral neurite (ILN[+]) in a manner dependent on FruBM, a male-specific transcription factor. FruBM represses robo1 transcription, allowing the ILN to form. We found that the proportion of ILN[+]-mALs in all observed single cell clones dropped from ∼90% to ∼30% by changing the heat-shock timing for clone induction from 4-5 days after egg laying (AEL) to 6-7 days AEL, suggesting that the ILN[+]-mALs are produced predominantly by young neuroblasts. Upon EcR-A knockdown, ILN[+]-mALs were produced at a high rate (∼60%), even when heat shocked at 6-7 days AEL, yet EcR-B1 knockdown reduced the proportion of ILN[+]-mALs to ∼30%. Immunoprecipitation assays in S2 cells demonstrated that EcR-A and EcR-B1 form a complex with FruBM. robo1 reporter transcription was repressed by FruBM and ecdysone counteracted FruBM. We suggest that ecdysone signaling modulates the FruBM action to produce an appropriate number of male-type neurons. Summary: The insect molting hormone ecdysone determines whether a single neuron develops a sex-specific structure, through crosstalk with signaling elements in a pathway dedicated to the sex-fate determination.
Collapse
Affiliation(s)
- Binglong Zhang
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Kosei Sato
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| | - Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University Graduate School of Life Sciences, Sendai, 980-8577, Japan
| |
Collapse
|
39
|
Garner SRC, Castellanos MC, Baillie KE, Lian T, Allan DW. Drosophila female-specific Ilp7 motoneurons are generated by Fruitless-dependent cell death in males and by a double-assurance survival role for Transformer in females. Development 2018; 145:dev.150821. [PMID: 29229771 DOI: 10.1242/dev.150821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023]
Abstract
Female-specific Ilp7 neuropeptide-expressing motoneurons (FS-Ilp7 motoneurons) are required in Drosophila for oviduct function in egg laying. Here, we uncover cellular and genetic mechanisms underlying their female-specific generation. We demonstrate that programmed cell death (PCD) eliminates FS-Ilp7 motoneurons in males, and that this requires male-specific splicing of the sex-determination gene fruitless (fru) into the FruMC isoform. However, in females, fru alleles that only generate FruM isoforms failed to kill FS-Ilp7 motoneurons. This blockade of FruM-dependent PCD was not attributable to doublesex gene function but to a non-canonical role for transformer (tra), a gene encoding the RNA splicing activator that regulates female-specific splicing of fru and dsx transcripts. In both sexes, we show that Tra prevents PCD even when the FruM isoform is expressed. In addition, we found that FruMC eliminated FS-Ilp7 motoneurons in both sexes, but only when Tra was absent. Thus, FruMC-dependent PCD eliminates female-specific neurons in males, and Tra plays a double-assurance function in females to establish and reinforce the decision to generate female-specific neurons.
Collapse
Affiliation(s)
- Sarah Rose C Garner
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Monica C Castellanos
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Katherine E Baillie
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Tianshun Lian
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Douglas W Allan
- Department of Cellular and Physiological Sciences, University of British Columbia, 2420 Life Sciences Institute, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
40
|
Ellendersen BE, von Philipsborn AC. Neuronal modulation of D. melanogaster sexual behaviour. CURRENT OPINION IN INSECT SCIENCE 2017; 24:21-28. [PMID: 29208219 DOI: 10.1016/j.cois.2017.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/20/2017] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Drosophila melanogaster sexual behaviour relies on well-studied genetically determined neuronal circuits. At the same time, it can be flexible and is modulated by multiple external and internal factors. This review focuses on how physiological state, behavioural context and social experience impact sexual circuits in the two sexes. We discuss how females tune receptivity and other behaviours depending on mating status and how males adjust courtship intensity based on sexual satiety, age and the conflicting drive for aggression. Neuronal mechanisms for behavioural modulation include changes in sensory and central processing. Activity of modulatory neurons can enhance, suppress or reverse the behavioural response to sensory cues. In summary, fly sexual behaviour is an excellent model to study mechanisms of neuromodulation of complex innate behaviour on the circuit level.
Collapse
Affiliation(s)
- Bárður Eyjólfsson Ellendersen
- Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Ole Worms Alle 3, Building 1170, DK-8000 Aarhus C, Denmark
| | - Anne C von Philipsborn
- Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus University, Ole Worms Alle 3, Building 1170, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
41
|
Tanaka R, Higuchi T, Kohatsu S, Sato K, Yamamoto D. Optogenetic Activation of the fruitless-Labeled Circuitry in Drosophila subobscura Males Induces Mating Motor Acts. J Neurosci 2017; 37:11662-11674. [PMID: 29109241 PMCID: PMC6705751 DOI: 10.1523/jneurosci.1943-17.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 10/16/2017] [Indexed: 12/17/2022] Open
Abstract
It remains an enigma how the nervous system of different animal species produces different behaviors. We studied the neural circuitry for mating behavior in Drosophila subobscura, a species that displays unique courtship actions not shared by other members of the genera including the genetic model D. melanogaster, in which the core courtship circuitry has been identified. We disrupted the D. subobscura fruitless (fru) gene, a master regulator for the courtship circuitry formation in D. melanogaster, resulting in complete loss of mating behavior. We also generated frusoChrimV , which expresses the optogenetic activator Chrimson fused with a fluorescent marker under the native fru promoter. The fru-labeled circuitry in D. subobscura visualized by frusoChrimV revealed differences between females and males, optogenetic activation of which in males induced mating behavior including attempted copulation. These findings provide a substrate for neurogenetic dissection and manipulation of behavior in non-model animals, and will help to elucidate the neural basis for behavioral diversification.SIGNIFICANCE STATEMENT How did behavioral specificity arise during evolution? Here we attempted to address this question by comparing the parallel genetically definable neural circuits controlling the courtship behavior of Drosophila melanogaster, a genetic model, and its relative, D. subobscura, which exhibits a courtship behavioral pattern unique to it, including nuptial gift transfer. We found that the subobscura fruitless circuit, which is required for male courtship behavior, was slightly but clearly different from its melanogaster counterpart, and that optogenetic activation of this circuit induced subobscura-specific behavior, i.e., regurgitating crop contents, a key element of transfer of nuptial gift. Our study will pave the way for determining how and which distinctive cellular elements within the fruitless circuit determine the species-specific differences in courtship behavior.
Collapse
Affiliation(s)
- Ryoya Tanaka
- Division of Neurogenetics, Tohoku University, Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Tomohiro Higuchi
- Division of Neurogenetics, Tohoku University, Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Soh Kohatsu
- Division of Neurogenetics, Tohoku University, Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Kosei Sato
- Division of Neurogenetics, Tohoku University, Graduate School of Life Sciences, Sendai 980-8577, Japan
| | - Daisuke Yamamoto
- Division of Neurogenetics, Tohoku University, Graduate School of Life Sciences, Sendai 980-8577, Japan
| |
Collapse
|
42
|
Chowdhury ZS, Sato K, Yamamoto D. The core-promoter factor TRF2 mediates a Fruitless action to masculinize neurobehavioral traits in Drosophila. Nat Commun 2017; 8:1480. [PMID: 29133872 PMCID: PMC5684138 DOI: 10.1038/s41467-017-01623-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 10/02/2017] [Indexed: 11/29/2022] Open
Abstract
In fruit flies, the male-specific fruitless (fru) gene product FruBM plays a central role in establishing the neural circuitry for male courtship behavior by orchestrating the transcription of genes required for the male-type specification of individual neurons. We herein identify the core promoter recognition factor gene Trf2 as a dominant modifier of fru actions. Trf2 knockdown in the sexually dimorphic mAL neurons leads to the loss of a male-specific neurite and a reduction in male courtship vigor. TRF2 forms a repressor complex with FruBM, strongly enhancing the repressor activity of FruBM at the promoter region of the robo1 gene, whose function is required for inhibiting the male-specific neurite formation. In females that lack FruBM, TRF2 stimulates robo1 transcription. Our results suggest that TRF2 switches its own role from an activator to a repressor of transcription upon binding to FruBM, thereby enabling the ipsilateral neurite formation only in males.
Collapse
Affiliation(s)
| | - Kosei Sato
- Tohoku University Graduate School of Life Sciences, Sendai, 9808577, Japan
| | - Daisuke Yamamoto
- Tohoku University Graduate School of Life Sciences, Sendai, 9808577, Japan.
| |
Collapse
|
43
|
Caenorhabditis elegans Male Copulation Circuitry Incorporates Sex-Shared Defecation Components To Promote Intromission and Sperm Transfer. G3-GENES GENOMES GENETICS 2017; 7:647-662. [PMID: 28031243 PMCID: PMC5295609 DOI: 10.1534/g3.116.036756] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sexual dimorphism can be achieved using a variety of mechanisms, including sex-specific circuits and sex-specific function of shared circuits, though how these work together to produce sexually dimorphic behaviors requires further investigation. Here, we explore how components of the sex-shared defecation circuitry are incorporated into the sex-specific male mating circuitry in Caenorhabditis elegans to produce successful copulation. Using behavioral studies, calcium imaging, and genetic manipulation, we show that aspects of the defecation system are coopted by the male copulatory circuitry to facilitate intromission and ejaculation. Similar to hermaphrodites, male defecation is initiated by an intestinal calcium wave, but circuit activity is coordinated differently during mating. In hermaphrodites, the tail neuron DVB promotes expulsion of gut contents through the release of the neurotransmitter GABA onto the anal depressor muscle. However, in the male, both neuron and muscle take on modified functions to promote successful copulation. Males require calcium-dependent activator protein for secretion (CAPS)/unc-31, a dense core vesicle exocytosis activator protein, in the DVB to regulate copulatory spicule insertion, while the anal depressor is remodeled to promote release of sperm into the hermaphrodite. This work shows how sex-shared circuitry is modified in multiple ways to contribute to sex-specific mating.
Collapse
|
44
|
Yamamoto D, Kohatsu S. What does the fruitless gene tell us about nature vs. nurture in the sex life of Drosophila? Fly (Austin) 2016; 11:139-147. [PMID: 27880074 DOI: 10.1080/19336934.2016.1263778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The fruitless (fru) gene in Drosophila has been proposed to play a master regulator role in the formation of neural circuitries for male courtship behavior, which is typically considered to be an innate behavior composed of a fixed action pattern as generated by the central pattern generator. However, recent studies have shed light on experience-dependent changes and sensory-input-guided plasticity in courtship behavior. For example, enhanced male-male courtship, a fru mutant "hallmark," disappears when fru-mutant males are raised in isolation. The fact that neural fru expression is induced by neural activities in the adult invites the supposition that Fru as a chromatin regulator mediates experience-dependent epigenetic modification, which underlies the neural and behavioral plasticity.
Collapse
Affiliation(s)
- Daisuke Yamamoto
- a Division of Neurogenetics , Tohoku University Graduate School of Life Sciences , Seidai , Japan
| | - Soh Kohatsu
- a Division of Neurogenetics , Tohoku University Graduate School of Life Sciences , Seidai , Japan
| |
Collapse
|