1
|
Kim S, Lau TT, Liao MK, Ma HT, Poon RY. Coregulation of NDC80 Complex Subunits Determines the Fidelity of the Spindle-Assembly Checkpoint and Mitosis. Mol Cancer Res 2024; 22:423-439. [PMID: 38324016 PMCID: PMC11063766 DOI: 10.1158/1541-7786.mcr-23-0828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
NDC80 complex (NDC80C) is composed of four subunits (SPC24, SPC25, NDC80, and NUF2) and is vital for kinetochore-microtubule (KT-MT) attachment during mitosis. Paradoxically, NDC80C also functions in the activation of the spindle-assembly checkpoint (SAC). This raises an interesting question regarding how mitosis is regulated when NDC80C levels are compromised. Using a degron-mediated depletion system, we found that acute silencing of SPC24 triggered a transient mitotic arrest followed by mitotic slippage. SPC24-deficient cells were unable to sustain SAC activation despite the loss of KT-MT interaction. Intriguingly, our results revealed that other subunits of the NDC80C were co-downregulated with SPC24 at a posttranslational level. Silencing any individual subunit of NDC80C likewise reduced the expression of the entire complex. We found that the SPC24-SPC25 and NDC80-NUF2 subcomplexes could be individually stabilized using ectopically expressed subunits. The synergism of SPC24 downregulation with drugs that promote either mitotic arrest or mitotic slippage further underscored the dual roles of NDC80C in KT-MT interaction and SAC maintenance. The tight coordinated regulation of NDC80C subunits suggests that targeting individual subunits could disrupt mitotic progression and provide new avenues for therapeutic intervention. IMPLICATIONS These results highlight the tight coordinated regulation of NDC80C subunits and their potential as targets for antimitotic therapies.
Collapse
Affiliation(s)
- Sehong Kim
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Thomas T.Y. Lau
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Man Kit Liao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Hoi Tang Ma
- Department of Pathology, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Randy Y.C. Poon
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| |
Collapse
|
2
|
Jian Y, Jiang Y, Nie L, Dou Z, Liu X, Fu C. Phosphorylation of Bub1 by Mph1 promotes Bub1 signaling at the kinetochore to ensure accurate chromosome segregation. J Biol Chem 2024; 300:105559. [PMID: 38097187 PMCID: PMC10805674 DOI: 10.1016/j.jbc.2023.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 01/02/2024] Open
Abstract
Bub1 is a conserved mitotic kinase involved in signaling of the spindle assembly checkpoint. Multiple phosphorylation sites on Bub1 have been characterized, yet it is challenging to understand the interplay between the multiple phosphorylation sites due to the limited availability of phosphospecific antibodies. In addition, phosphoregulation of Bub1 in Schizosaccharomyces pombe is poorly understood. Here we report the identification of a new Mph1/Mps1-mediated phosphorylation site, i.e., Ser532, of Bub1 in Schizosaccharomyces pombe. A phosphospecific antibody against phosphorylated Bub1-Ser532 was developed. Using the phosphospecific antibody, we demonstrated that phosphorylation of Bub1-Ser352 was mediated specifically by Mph1/Mps1 and took place during early mitosis. Moreover, live-cell microscopy showed that inhibition of the phosphorylation of Bub1 at Ser532 impaired the localization of Bub1, Mad1, and Mad2 to the kinetochore. In addition, inhibition of the phosphorylation of Bub1 at Ser532 caused anaphase B lagging chromosomes. Hence, our study constitutes a model in which Mph1/Mps1-mediated phosphorylation of fission yeast Bub1 promotes proper kinetochore localization of Bub1 and faithful chromosome segregation.
Collapse
Affiliation(s)
- Yanze Jian
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yueyue Jiang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Lingyun Nie
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhen Dou
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
3
|
Microtubules as a potential platform for energy transfer in biological systems: a target for implementing individualized, dynamic variability patterns to improve organ function. Mol Cell Biochem 2023; 478:375-392. [PMID: 35829870 DOI: 10.1007/s11010-022-04513-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023]
Abstract
Variability characterizes the complexity of biological systems and is essential for their function. Microtubules (MTs) play a role in structural integrity, cell motility, material transport, and force generation during mitosis, and dynamic instability exemplifies the variability in the proper function of MTs. MTs are a platform for energy transfer in cells. The dynamic instability of MTs manifests itself by the coexistence of growth and shortening, or polymerization and depolymerization. It results from a balance between attractive and repulsive forces between tubulin dimers. The paper reviews the current data on MTs and their potential roles as energy-transfer cellular structures and presents how variability can improve the function of biological systems in an individualized manner. The paper presents the option for targeting MTs to trigger dynamic improvement in cell plasticity, regulate energy transfer, and possibly control quantum effects in biological systems. The described system quantifies MT-dependent variability patterns combined with additional personalized signatures to improve organ function in a subject-tailored manner. The platform can regulate the use of MT-targeting drugs to improve the response to chronic therapies. Ongoing trials test the effects of this platform on various disorders.
Collapse
|
4
|
MacKenzie A, Vicory V, Lacefield S. Meiotic Cells Escape Prolonged Spindle Checkpoint Activity Through Premature Silencing and Slippage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.02.522494. [PMID: 36711621 PMCID: PMC9881877 DOI: 10.1101/2023.01.02.522494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
To prevent chromosome mis-segregation, a surveillance mechanism known as the spindle checkpoint delays the cell cycle if kinetochores are not attached to spindle microtubules, allowing the cell additional time to correct improper attachments. During spindle checkpoint activation, checkpoint proteins bind the unattached kinetochore and send a diffusible signal to inhibit the anaphase promoting complex/cyclosome (APC/C). Previous work has shown that mitotic cells with depolymerized microtubules can escape prolonged spindle checkpoint activation in a process called mitotic slippage. During slippage, spindle checkpoint proteins bind unattached kinetochores, but the cells cannot maintain the checkpoint arrest. We asked if meiotic cells had as robust of a spindle checkpoint response as mitotic cells and whether they also undergo slippage after prolonged spindle checkpoint activity. We performed a direct comparison between mitotic and meiotic budding yeast cells that signal the spindle checkpoint due to a lack of either kinetochore-microtubule attachments or due to a loss of tension-bearing attachments. We find that the spindle checkpoint is not as robust in meiosis I or meiosis II compared to mitosis, overcoming a checkpoint arrest approximately 150 minutes earlier in meiosis. In addition, cells in meiosis I escape spindle checkpoint signaling using two mechanisms, silencing the checkpoint at the kinetochore and through slippage. We propose that meiotic cells undertake developmentally-regulated mechanisms to prevent persistent spindle checkpoint activity to ensure the production of gametes. AUTHOR SUMMARY Mitosis and meiosis are the two major types of cell divisions. Mitosis gives rise to genetically identical daughter cells, while meiosis is a reductional division that gives rise to gametes. Cell cycle checkpoints are highly regulated surveillance mechanisms that prevent cell cycle progression when circumstances are unfavorable. The spindle checkpoint promotes faithful chromosome segregation to safeguard against aneuploidy, in which cells have too many or too few chromosomes. The spindle checkpoint is activated at the kinetochore and then diffuses to inhibit cell cycle progression. Although the checkpoint is active in both mitosis and meiosis, most studies involving checkpoint regulation have been performed in mitosis. By activating the spindle checkpoint in both mitosis and meiosis in budding yeast, we show that cells in meiosis elicit a less persistent checkpoint signal compared to cells in mitosis. Further, we show that cells use distinct mechanisms to escape the checkpoint in mitosis and meiosis I. While cells in mitosis and meiosis II undergo anaphase onset while retaining checkpoint proteins at the kinetochore, cells in meiosis I prematurely lose checkpoint protein localization at the kinetochore. If the mechanism to remove the checkpoint components from the kinetochore is disrupted, meiosis I cells can still escape checkpoint activity. Together, these results highlight that cell cycle checkpoints are differentially regulated during meiosis to avoid long delays and to allow gametogenesis.
Collapse
Affiliation(s)
- Anne MacKenzie
- Department of Biology, Indiana University, Bloomington, IN USA
| | - Victoria Vicory
- Department of Biology, Indiana University, Bloomington, IN USA
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN USA,Department of Biochemistry and Cell Biology, the Geisel School of Medicine at Dartmouth, Hanover, NH USA,To whom correspondence should be addressed to Soni Lacefield:
| |
Collapse
|
5
|
Zhang Y, Song C, Wang L, Jiang H, Zhai Y, Wang Y, Fang J, Zhang G. Zombies Never Die: The Double Life Bub1 Lives in Mitosis. Front Cell Dev Biol 2022; 10:870745. [PMID: 35646932 PMCID: PMC9136299 DOI: 10.3389/fcell.2022.870745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
When eukaryotic cells enter mitosis, dispersed chromosomes move to the cell center along microtubules to form a metaphase plate which facilitates the accurate chromosome segregation. Meanwhile, kinetochores not stably attached by microtubules activate the spindle assembly checkpoint and generate a wait signal to delay the initiation of anaphase. These events are highly coordinated. Disruption of the coordination will cause severe problems like chromosome gain or loss. Bub1, a conserved serine/threonine kinase, plays important roles in mitosis. After extensive studies in the last three decades, the role of Bub1 on checkpoint has achieved a comprehensive understanding; its role on chromosome alignment also starts to emerge. In this review, we summarize the latest development of Bub1 on supporting the two mitotic events. The essentiality of Bub1 in higher eukaryotic cells is also discussed. At the end, some undissolved questions are raised for future study.
Collapse
Affiliation(s)
- Yuqing Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chunlin Song
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lei Wang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongfei Jiang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yujing Zhai
- School of Public Health, Qingdao University, Qingdao, China
| | - Ying Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Fang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| | - Gang Zhang
- The Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Jing Fang, ; Gang Zhang,
| |
Collapse
|
6
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
7
|
Wang Y, Yu T, Han Y, He Y, Song Y, Guo L, An L, Yang C, Wang F. Phosphorylation of MAD2 at Ser195 Promotes Spindle Checkpoint Defects and Sensitizes Cancer Cells to Radiotherapy in ATM Deficient Cells. Front Cell Dev Biol 2022; 10:817831. [PMID: 35309941 PMCID: PMC8924061 DOI: 10.3389/fcell.2022.817831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a critical monitoring device in mitosis for the maintenance of genomic stability. Specifically, the SAC complex comprises several factors, including Mad1, Mad2, and Bub1. Ataxia-telangiectasia mutated (ATM) kinase, the crucial regulator in DNA damage response (DDR), also plays a critical role in mitosis by regulating Mad1 dimerization and SAC. Here, we further demonstrated that ATM negatively regulates the phosphorylation of Mad2, another critical component of the SAC, which is also involved in DDR. Mechanistically, we found that phosphorylation of Mad2 is aberrantly increased in ATM-deficient cells. Point-mutation analysis further revealed that Serine 195 mainly mediated Mad2 phosphorylation upon ATM ablation. Functionally, the phosphorylation of Mad2 causes decreased DNA damage repair capacity and is related to the resistance to cancer cell radiotherapy. Altogether, this study unveils the key regulatory role of Mad2 phosphorylation in checkpoint defects and DNA damage repair in ATM-deficient cells.
Collapse
Affiliation(s)
- Yang Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyu Yu
- Department of General Surgery, Pudong New Area Gongli Hospital Affiliated to Naval Military Medical University, Naval Military Medical University, Shanghai, China
| | - Yi Han
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yazhi He
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yiran Song
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Leiming Guo
- Department of R&D, Shanghai Creative Immune Therapeutics Co., Ltd, Shanghai, China
| | - Liwei An
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chunying Yang
- Central Laboratory, Shanghai Putuo District People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Wang
- Department of Gastroenterology, Shanghai 10th People's Hospital, Tongji University School of Medicine, Shanghai, China.,Central Laboratory, Shanghai Putuo District People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Elowe S, Bolanos-Garcia VM. The spindle checkpoint proteins BUB1 and BUBR1: (SLiM)ming down to the basics. Trends Biochem Sci 2022; 47:352-366. [DOI: 10.1016/j.tibs.2022.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/16/2022]
|
9
|
Roy B, Han SJY, Fontan AN, Jema S, Joglekar AP. Aurora B phosphorylates Bub1 to promote spindle assembly checkpoint signaling. Curr Biol 2022; 32:237-247.e6. [PMID: 34861183 PMCID: PMC8752509 DOI: 10.1016/j.cub.2021.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
Accurate chromosome segregation during cell division requires amphitelic chromosome attachment to the spindle apparatus. It is ensured by the combined activity of the spindle assembly checkpoint (SAC),1 a signaling mechanism that delays anaphase onset in response to unattached chromosomes, and an error correction mechanism that eliminates syntelic attachments.2 The SAC becomes active when Mps1 kinase sequentially phosphorylates the kinetochore protein Spc105/KNL1 and the signaling proteins that Spc105/KNL1 recruits to facilitate the production of the mitotic checkpoint complex (MCC).3-8 The error correction mechanism is regulated by the Aurora B kinase, but Aurora B also promotes SAC signaling via indirect mechanisms.9-12 Here we present evidence that Aurora B kinase activity directly promotes MCC production by working downstream of Mps1 in budding yeast and human cells. Using the ectopic SAC activation (eSAC) system, we find that the conditional dimerization of Aurora B in budding yeast and an Aurora B recruitment domain in HeLa cells with either Bub1 or Mad1, but not the phosphodomain of Spc105/KNL1, leads to ectopic MCC production and mitotic arrest.13-16 Importantly, Bub1 must recruit both Mad1 and Cdc20 for this ectopic signaling activity. These and other data show that Aurora B cooperates with Bub1 to promote MCC production, but only after Mps1 licenses Bub1 recruitment to the kinetochore. This direct involvement of Aurora B in SAC signaling may maintain SAC signaling even after Mps1 activity in the kinetochore is lowered.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA
| | - Simon J. Y. Han
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA,present address: Medical Scientist Training Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Adrienne N. Fontan
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA,present address: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA 02142
| | - Soubhagyalaxmi Jema
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA
| | - Ajit P. Joglekar
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA,corresponding author, lead contact: , Twitter handle: @AjitJoglekar1
| |
Collapse
|
10
|
Chen L, Tu L, Yang G, Banfield DK. Remodeling-defective GPI-anchored proteins on the plasma membrane activate the spindle assembly checkpoint. Cell Rep 2021; 37:110120. [PMID: 34965437 DOI: 10.1016/j.celrep.2021.110120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 01/15/2023] Open
Abstract
Newly synthesized glycosylphosphatidylinositol-anchored proteins (GPI-APs) undergo extensive remodeling prior to transport to the plasma membrane. GPI-AP remodeling events serve as quality assurance signatures, and complete remodeling of the anchor functions as a transport warrant. Using a genetic approach in yeast cells, we establish that one remodeling event, the removal of ethanolamine-phosphate from mannose 2 via Ted1p (yPGAP5), is essential for cell viability in the absence of the Golgi-localized putative phosphodiesterase Dcr2p. While GPI-APs in which mannose 2 has not been remodeled in dcr2 ted1-deficient cells can still be delivered to the plasma membrane, their presence elicits a unique stress response. Stress is sensed by Mid2p, a constituent of the cell wall integrity pathway, whereupon signal promulgation culminates in activation of the spindle assembly checkpoint. Our results are consistent with a model in which cellular stress response and chromosome segregation checkpoint pathways are functionally interconnected.
Collapse
Affiliation(s)
- Li Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Linna Tu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - Gege Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China
| | - David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China.
| |
Collapse
|
11
|
Chen Q, Zhang M, Pan X, Yuan X, Zhou L, Yan L, Zeng LH, Xu J, Yang B, Zhang L, Huang J, Lu W, Fukagawa T, Wang F, Yan H. Bub1 and CENP-U redundantly recruit Plk1 to stabilize kinetochore-microtubule attachments and ensure accurate chromosome segregation. Cell Rep 2021; 36:109740. [PMID: 34551298 DOI: 10.1016/j.celrep.2021.109740] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/03/2021] [Accepted: 08/30/2021] [Indexed: 11/23/2022] Open
Abstract
Bub1 is required for the kinetochore/centromere localization of two essential mitotic kinases Plk1 and Aurora B. Surprisingly, stable depletion of Bub1 by ∼95% in human cells marginally affects whole chromosome segregation fidelity. We show that CENP-U, which is recruited to kinetochores by the CENP-P and CENP-Q subunits of the CENP-O complex, is required to prevent chromosome mis-segregation in Bub1-depleted cells. Mechanistically, Bub1 and CENP-U redundantly recruit Plk1 to kinetochores to stabilize kinetochore-microtubule attachments, thereby ensuring accurate chromosome segregation. Furthermore, unlike its budding yeast homolog, the CENP-O complex does not regulate centromeric localization of Aurora B. Consistently, depletion of Bub1 or CENP-U sensitizes cells to the inhibition of Plk1 but not Aurora B kinase activity. Taken together, our findings provide mechanistic insight into the regulation of kinetochore function, which may have implications for targeted treatment of cancer cells with mutations perturbing kinetochore recruitment of Plk1 by Bub1 or the CENP-O complex.
Collapse
Affiliation(s)
- Qinfu Chen
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China; The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Miao Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xuan Pan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xueying Yuan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Linli Zhou
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Lu Yan
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China
| | - Junfen Xu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Bing Yang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Long Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Weiguo Lu
- Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Fangwei Wang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, The Key Laboratory of Cancer Molecular Cell Biology of Zhejiang Province, Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Gynecological Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| | - Haiyan Yan
- Department of Pharmacology, Zhejiang University City College, Hangzhou 310015, China.
| |
Collapse
|
12
|
Garcia YA, Velasquez EF, Gao LW, Gholkar AA, Clutario KM, Cheung K, Williams-Hamilton T, Whitelegge JP, Torres JZ. Mapping Proximity Associations of Core Spindle Assembly Checkpoint Proteins. J Proteome Res 2021; 20:3414-3427. [PMID: 34087075 PMCID: PMC8256817 DOI: 10.1021/acs.jproteome.0c00941] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/25/2022]
Abstract
The spindle assembly checkpoint (SAC) is critical for sensing defective microtubule-kinetochore attachments and tension across the kinetochore and functions to arrest cells in prometaphase to allow time to repair any errors before proceeding into anaphase. Dysregulation of the SAC leads to chromosome segregation errors that have been linked to human diseases like cancer. Although much has been learned about the composition of the SAC and the factors that regulate its activity, the proximity associations of core SAC components have not been explored in a systematic manner. Here, we have taken a BioID2-proximity-labeling proteomic approach to define the proximity protein environment for each of the five core SAC proteins BUB1, BUB3, BUBR1, MAD1L1, and MAD2L1 in mitotic-enriched populations of cells where the SAC is active. These five protein association maps were integrated to generate a SAC proximity protein network that contains multiple layers of information related to core SAC protein complexes, protein-protein interactions, and proximity associations. Our analysis validated many known SAC complexes and protein-protein interactions. Additionally, it uncovered new protein associations, including the ELYS-MAD1L1 interaction that we have validated, which lend insight into the functioning of core SAC proteins and highlight future areas of investigation to better understand the SAC.
Collapse
Affiliation(s)
- Yenni A. Garcia
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Erick F. Velasquez
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Lucy W. Gao
- Pasarow Mass Spectrometry Laboratory, The Jane and
Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of
Medicine, University of California, Los Angeles, California
90095, United States
| | - Ankur A. Gholkar
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Kevin M. Clutario
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Keith Cheung
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Taylor Williams-Hamilton
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
| | - Julian P. Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and
Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of
Medicine, University of California, Los Angeles, California
90095, United States
- Molecular Biology Institute, University of
California, Los Angeles, California 90095, United
States
- Jonsson Comprehensive Cancer Center,
University of California, Los Angeles, California 90095,
United States
| | - Jorge Z. Torres
- Department of Chemistry and Biochemistry,
University of California, Los Angeles, California 90095,
United States
- Molecular Biology Institute, University of
California, Los Angeles, California 90095, United
States
- Jonsson Comprehensive Cancer Center,
University of California, Los Angeles, California 90095,
United States
| |
Collapse
|
13
|
Bokros M, Sherwin D, Kabbaj MH, Wang Y. Yeast Fin1-PP1 dephosphorylates an Ipl1 substrate, Ndc80, to remove Bub1-Bub3 checkpoint proteins from the kinetochore during anaphase. PLoS Genet 2021; 17:e1009592. [PMID: 34033659 PMCID: PMC8184001 DOI: 10.1371/journal.pgen.1009592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/07/2021] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
The spindle assembly checkpoint (SAC) prevents anaphase onset in response to chromosome attachment defects, and SAC silencing is essential for anaphase onset. Following anaphase onset, activated Cdc14 phosphatase dephosphorylates the substrates of cyclin-dependent kinase to facilitate anaphase progression and mitotic exit. In budding yeast, Cdc14 dephosphorylates Fin1, a regulatory subunit of protein phosphatase 1 (PP1), to enable kinetochore localization of Fin1-PP1. We previously showed that kinetochore-localized Fin1-PP1 promotes the removal of the SAC protein Bub1 from the kinetochore during anaphase. We report here that Fin1-PP1 also promotes kinetochore removal of Bub3, the Bub1 partner, but has no effect on another SAC protein Mad1. Moreover, the kinetochore localization of Bub1-Bub3 during anaphase requires Aurora B/Ipl1 kinase activity. We further showed that Fin1-PP1 facilitates the dephosphorylation of kinetochore protein Ndc80, a known Ipl1 substrate. This dephosphorylation reduces kinetochore association of Bub1-Bub3 during anaphase. In addition, we found that untimely Ndc80 dephosphorylation causes viability loss in response to tensionless chromosome attachments. These results suggest that timely localization of Fin1-PP1 to the kinetochore controls the functional window of SAC and is therefore critical for faithful chromosome segregation.
Collapse
Affiliation(s)
- Michael Bokros
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, United States of America
| | - Delaney Sherwin
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Marie-Helene Kabbaj
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Yanchang Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
14
|
Cunha-Silva S, Osswald M, Goemann J, Barbosa J, Santos LM, Resende P, Bange T, Ferrás C, Sunkel CE, Conde C. Mps1-mediated release of Mad1 from nuclear pores ensures the fidelity of chromosome segregation. J Cell Biol 2020; 219:133569. [PMID: 31913420 PMCID: PMC7054998 DOI: 10.1083/jcb.201906039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/20/2019] [Accepted: 11/28/2019] [Indexed: 12/26/2022] Open
Abstract
The spindle assembly checkpoint (SAC) relies on the recruitment of Mad1-C-Mad2 to unattached kinetochores but also on its binding to Megator/Tpr at nuclear pore complexes (NPCs) during interphase. However, the molecular underpinnings controlling the spatiotemporal redistribution of Mad1-C-Mad2 as cells progress into mitosis remain elusive. Here, we show that activation of Mps1 during prophase triggers Mad1 release from NPCs and that this is required for kinetochore localization of Mad1-C-Mad2 and robust SAC signaling. We find that Mps1 phosphorylates Megator/Tpr to reduce its interaction with Mad1 in vitro and in Drosophila cells. Importantly, preventing Mad1 from binding to Megator/Tpr restores Mad1 accumulation at kinetochores, the fidelity of chromosome segregation, and genome stability in larval neuroblasts of mps1-null mutants. Our findings demonstrate that the subcellular localization of Mad1 is tightly coordinated with cell cycle progression by kinetochore-extrinsic activity of Mps1. This ensures that both NPCs in interphase and kinetochores in mitosis can generate anaphase inhibitors to efficiently preserve genomic stability.
Collapse
Affiliation(s)
- Sofia Cunha-Silva
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Mariana Osswald
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Jana Goemann
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Luis M Santos
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pedro Resende
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Tanja Bange
- Max-Planck-Institut für Molekulare Physiologie, Dortmund, Germany
| | - Cristina Ferrás
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Biologia Molecular, Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Cunha-Silva S, Conde C. From the Nuclear Pore to the Fibrous Corona: A MAD Journey to Preserve Genome Stability. Bioessays 2020; 42:e2000132. [PMID: 32885448 DOI: 10.1002/bies.202000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/22/2020] [Indexed: 11/09/2022]
Abstract
The relationship between kinetochores and nuclear pore complexes (NPCs) is intimate but poorly understood. Several NPC components and associated proteins are relocated to mitotic kinetochores to assist in different activities that ensure faithful chromosome segregation. Such is the case of the Mad1-c-Mad2 complex, the catalytic core of the spindle assembly checkpoint (SAC), a surveillance pathway that delays anaphase until all kinetochores are attached to spindle microtubules. Mad1-c-Mad2 is recruited to discrete domains of unattached kinetochores from where it promotes the rate-limiting step in the assembly of anaphase-inhibitory complexes. SAC proficiency further requires Mad1-c-Mad2 to be anchored at NPCs during interphase. However, the mechanistic relevance of this arrangement for SAC function remains ill-defined. Recent studies uncover the molecular underpinnings that coordinate the release of Mad1-c-Mad2 from NPCs with its prompt recruitment to kinetochores. Here, current knowledge on Mad1-c-Mad2 function and spatiotemporal regulation is reviewed and the critical questions that remain unanswered are highlighted.
Collapse
Affiliation(s)
- Sofia Cunha-Silva
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal.,Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, 4050-313, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, 4200-135, Portugal.,IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, 4200-135, Portugal
| |
Collapse
|
16
|
Forkosh E, Kenig A, Ilan Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol Res Perspect 2020; 8:e00616. [PMID: 32608157 PMCID: PMC7327382 DOI: 10.1002/prp2.616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Microtubules (MTs) are highly dynamic polymers that constitute the cellular cytoskeleton and play a role in multiple cellular functions. Variability characterizes biological systems and is considered a part of the normal function of cells and organs. Variability contributes to cell plasticity and is a mechanism for overcoming errors in cellular level assembly and function, and potentially the whole organ level. Dynamic instability is a feature of biological variability that characterizes the function of MTs. The dynamic behavior of MTs constitutes the basis for multiple biological processes that contribute to cellular plasticity and the timing of cell signaling. Colchicine is a MT-modifying drug that exerts anti-inflammatory and anti-cancer effects. This review discusses some of the functions of colchicine and presents a platform for introducing variability while targeting MTs in intestinal cells, the microbiome, the gut, and the systemic immune system. This platform can be used for implementing novel therapies, improving response to chronic MT-based therapies, overcoming drug resistance, exerting gut-based systemic immune responses, and generating patient-tailored dynamic therapeutic regimens.
Collapse
Affiliation(s)
- Esther Forkosh
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Ariel Kenig
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| | - Yaron Ilan
- Department of MedicineHebrew University‐Hadassah Medical CentreJerusalemIsrael
| |
Collapse
|
17
|
Benzi G, Piatti S. Killing two birds with one stone: how budding yeast Mps1 controls chromosome segregation and spindle assembly checkpoint through phosphorylation of a single kinetochore protein. Curr Genet 2020; 66:1037-1044. [PMID: 32632756 DOI: 10.1007/s00294-020-01091-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
During mitosis, the identical sister chromatids of each chromosome must attach through their kinetochores to microtubules emanating from opposite spindle poles. This process, referred to as chromosome biorientation, is essential for equal partitioning of the genetic information to the two daughter cells. Defects in chromosome biorientation can give rise to aneuploidy, a hallmark of cancer and genetic diseases. A conserved surveillance mechanism called spindle assembly checkpoint (SAC) prevents the onset of anaphase until biorientation is attained. Key to chromosome biorientation is an error correction mechanism that allows kinetochores to establish proper bipolar attachments by disengaging faulty kinetochore-microtubule connections. Error correction relies on the Aurora B and Mps1 kinases that also promote SAC signaling, raising the possibility that they are part of a single sensory device responding to improper attachments and concomitantly controlling both their disengagement and a temporary mitotic arrest. In budding yeast, Aurora B and Mps1 promote error correction independently from one another, but while the substrates of Aurora B in this process are at least partially known, the mechanism underlying the involvement of Mps1 in the error correction pathway is unknown. Through the characterization of a novel mps1 mutant and an unbiased genetic screen for extragenic suppressors, we recently gained evidence that a common mechanism based on Mps1-dependent phosphorylation of the Knl1/Spc105 kinetochore scaffold and subsequent recruitment of the Bub1 kinase is critical for the function of Mps1 in chromosome biorientation as well as for SAC activation (Benzi et al. EMBO Rep, 2020).
Collapse
Affiliation(s)
- Giorgia Benzi
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier, France
| | - Simonetta Piatti
- CRBM, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
18
|
Allan LA, Camacho Reis M, Ciossani G, Huis in ‘t Veld PJ, Wohlgemuth S, Kops GJPL, Musacchio A, Saurin AT. Cyclin B1 scaffolds MAD1 at the kinetochore corona to activate the mitotic checkpoint. EMBO J 2020; 39:e103180. [PMID: 32202322 PMCID: PMC7298293 DOI: 10.15252/embj.2019103180] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022] Open
Abstract
Cyclin B:CDK1 is the master kinase regulator of mitosis. We show here that, in addition to its kinase functions, mammalian Cyclin B also scaffolds a localised signalling pathway to help preserve genome stability. Cyclin B1 localises to an expanded region of the outer kinetochore, known as the corona, where it scaffolds the spindle assembly checkpoint (SAC) machinery by binding directly to MAD1. In vitro reconstitutions map the key binding interface to a few acidic residues in the N-terminal region of MAD1, and point mutations in this sequence abolish MAD1 corona localisation and weaken the SAC. Therefore, Cyclin B1 is the long-sought-after scaffold that links MAD1 to the corona, and this specific pool of MAD1 is needed to generate a robust SAC response. Robustness arises because Cyclin B1:MAD1 localisation loses dependence on MPS1 kinase after the corona has been established, ensuring that corona-localised MAD1 can still be phosphorylated when MPS1 activity is low. Therefore, this study explains how corona-MAD1 generates a robust SAC signal, and it reveals a scaffolding role for the key mitotic kinase, Cyclin B1:CDK1, which ultimately helps to inhibit its own degradation.
Collapse
Affiliation(s)
- Lindsey A Allan
- Division of Cellular MedicineSchool of MedicineUniversity of DundeeDundeeUK
| | - Magda Camacho Reis
- Division of Cellular MedicineSchool of MedicineUniversity of DundeeDundeeUK
| | - Giuseppe Ciossani
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Pim J Huis in ‘t Veld
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Sabine Wohlgemuth
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Geert JPL Kops
- Oncode InstituteHubrecht Institute—KNAW and University Medical Centre UtrechtUtrechtThe Netherlands
| | - Andrea Musacchio
- Department of Mechanistic Cell BiologyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Adrian T Saurin
- Division of Cellular MedicineSchool of MedicineUniversity of DundeeDundeeUK
| |
Collapse
|
19
|
Benzi G, Camasses A, Atsunori Y, Katou Y, Shirahige K, Piatti S. A common molecular mechanism underlies the role of Mps1 in chromosome biorientation and the spindle assembly checkpoint. EMBO Rep 2020; 21:e50257. [PMID: 32307893 DOI: 10.15252/embr.202050257] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 01/27/2023] Open
Abstract
The Mps1 kinase corrects improper kinetochore-microtubule attachments, thereby ensuring chromosome biorientation. Yet, its critical phosphorylation targets in this process remain largely elusive. Mps1 also controls the spindle assembly checkpoint (SAC), which halts chromosome segregation until biorientation is attained. Its role in SAC activation is antagonised by the PP1 phosphatase and involves phosphorylation of the kinetochore scaffold Knl1/Spc105, which in turn recruits the Bub1 kinase to promote assembly of SAC effector complexes. A crucial question is whether error correction and SAC activation are part of a single or separable pathways. Here, we isolate and characterise a new yeast mutant, mps1-3, that is severely defective in chromosome biorientation and SAC signalling. Through an unbiased screen for extragenic suppressors, we found that mutations lowering PP1 levels at Spc105 or forced association of Bub1 with Spc105 reinstate both chromosome biorientation and SAC signalling in mps1-3 cells. Our data argue that a common mechanism based on Knl1/Spc105 phosphorylation is critical for Mps1 function in error correction and SAC signalling, thus supporting the idea that a single sensory apparatus simultaneously elicits both pathways.
Collapse
Affiliation(s)
- Giorgia Benzi
- CRBM, University of Montpellier, CNRS, Montpellier, France
| | - Alain Camasses
- IGMM, University of Montpellier, CNRS, Montpellier, France
| | - Yoshimura Atsunori
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yuki Katou
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Shirahige
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
20
|
Yuan F, Jin X, Li D, Song Y, Zhang N, Yang X, Wang L, Zhu WG, Tian C, Zhao Y. ULK1 phosphorylates Mad1 to regulate spindle assembly checkpoint. Nucleic Acids Res 2019; 47:8096-8110. [PMID: 31291454 PMCID: PMC6736072 DOI: 10.1093/nar/gkz602] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures the fidelity of chromosome segregation during mitosis. Here, we show that ULK1, a serine/threonine kinase that plays a key role in initiation of autophagy, also has an important function in the activation of SAC. ULK1 phosphorylates the SAC protein Mad1 at Ser546 to recruit Mad1 to kinetochores. Furthermore, Rod/ZW10/Zwilch (RZZ) complex may serve as a receptor for phos-Ser546-Mad1 at kinetochore, since phosphorylation of Mad1 by ULK1 strengthens the interaction between Mad1 and RZZ complex. In addition, deletion of ULK1 increases chromosome instability and cytotoxicity of paclitaxel, resulting in significant impairment of cancer cell growth. These findings highlight the role of ULK1 as a protein kinase controlling the fidelity of chromosome segregation and cell-cycle progression.
Collapse
Affiliation(s)
- Fengjie Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Ximin Jin
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Dan Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuanshuai Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Nan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xin Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lina Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Chan Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China.,National Clinical Research Center for Obstetrics and Gynecology, Beijing 100191, China.,Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China.,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ying Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
21
|
Leontiou I, London N, May KM, Ma Y, Grzesiak L, Medina-Pritchard B, Amin P, Jeyaprakash AA, Biggins S, Hardwick KG. The Bub1-TPR Domain Interacts Directly with Mad3 to Generate Robust Spindle Checkpoint Arrest. Curr Biol 2019; 29:2407-2414.e7. [PMID: 31257143 PMCID: PMC6657678 DOI: 10.1016/j.cub.2019.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/30/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022]
Abstract
The spindle checkpoint monitors kinetochore-microtubule interactions and generates a “wait anaphase” delay when any defects are apparent [1, 2, 3]. This provides time for cells to correct chromosome attachment errors and ensure high-fidelity chromosome segregation. Checkpoint signals are generated at unattached chromosomes during mitosis. To activate the checkpoint, Mps1Mph1 kinase phosphorylates the kinetochore component KNL1Spc105/Spc7 on conserved MELT motifs to recruit Bub3-Bub1 complexes [4, 5, 6] via a direct Bub3 interaction with phospho-MELT motifs [7, 8]. Mps1Mph1 then phosphorylates Bub1, which strengthens its interaction with Mad1-Mad2 complexes to produce a signaling platform [9, 10]. The Bub1-Mad1 platform is thought to recruit Mad3, Cdc20, and Mad2 to produce the mitotic checkpoint complex (MCC), which is the diffusible wait anaphase signal [9, 11, 12]. The MCC binds and inhibits the mitotic E3 ubiquitin ligase, known as Cdc20-anaphase promoting complex/cyclosome (APC/C), and stabilizes securin and cyclin to delay anaphase onset [13, 14, 15, 16, 17]. Here we demonstrate, in both budding and fission yeast, that kinetochores and KNL1Spc105/Spc7 can be bypassed; simply inducing heterodimers of Mps1Mph1 kinase and Bub1 is sufficient to trigger metaphase arrest that is dependent on Mad1, Mad2, and Mad3. We use this to dissect the domains of Bub1 necessary for arrest, highlighting the need for Bub1-CD1, which binds Mad1 [9], and Bub1’s highly conserved N-terminal tetratricopeptide repeat (TPR) domain [18, 19]. We demonstrate that the Bub1 TPR domain is both necessary and sufficient to bind and recruit Mad3. We propose that this brings Mad3 into close proximity to Mad1-Mad2 and Mps1Mph1 kinase, enabling efficient generation of MCC complexes. Heterodimers of Mps1 and Bub1 generate robust spindle checkpoint arrest in yeasts This arrest is independent of kinetochores but requires Bub1-CD1 and the Bub1-TPR The Bub1-TPR is both necessary and sufficient for Mad3 interaction and recruitment Recombinant fission yeast Bub1-TPR and Mad3 form a stable complex
Collapse
Affiliation(s)
- Ioanna Leontiou
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Nitobe London
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Karen M May
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Yingrui Ma
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Lucile Grzesiak
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Bethan Medina-Pritchard
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Priya Amin
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - A Arockia Jeyaprakash
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kevin G Hardwick
- Institute of Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK.
| |
Collapse
|
22
|
Recent Progress on the Localization of the Spindle Assembly Checkpoint Machinery to Kinetochores. Cells 2019; 8:cells8030278. [PMID: 30909555 PMCID: PMC6468716 DOI: 10.3390/cells8030278] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/13/2019] [Accepted: 03/16/2019] [Indexed: 12/14/2022] Open
Abstract
Faithful chromosome segregation during mitosis is crucial for maintaining genome stability. The spindle assembly checkpoint (SAC) is a surveillance mechanism that ensures accurate mitotic progression. Defective SAC signaling leads to premature sister chromatid separation and aneuploid daughter cells. Mechanistically, the SAC couples the kinetochore microtubule attachment status to the cell cycle progression machinery. In the presence of abnormal kinetochore microtubule attachments, the SAC prevents the metaphase-to-anaphase transition through a complex kinase-phosphatase signaling cascade which results in the correct balance of SAC components recruited to the kinetochore. The correct kinetochore localization of SAC proteins is a prerequisite for robust SAC signaling and, hence, accurate chromosome segregation. Here, we review recent progresses on the kinetochore recruitment of core SAC factors.
Collapse
|
23
|
Yang H, Zhang F, Huang CJ, Liao J, Han Y, Hao P, Chu Y, Lu X, Li W, Yu H, Kang J. Mps1 regulates spindle morphology through MCRS1 to promote chromosome alignment. Mol Biol Cell 2019; 30:1060-1068. [PMID: 30785839 PMCID: PMC6724509 DOI: 10.1091/mbc.e18-09-0546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Accurate partitioning of chromosomes during mitosis is essential for genetic stability and requires the assembly of the dynamic mitotic spindle and proper kinetochore–microtubule attachment. The spindle assembly checkpoint (SAC) monitors the incompleteness and errors in kinetochore–microtubule attachment and delays anaphase. The SAC kinase Mps1 regulates the recruitment of downstream effectors to unattached kinetochores. Mps1 also actively promotes chromosome alignment during metaphase, but the underlying mechanism is not completely understood. Here, we show that Mps1 regulates chromosome alignment through MCRS1, a spindle assembly factor that controls the dynamics of the minus end of kinetochore microtubules. Mps1 binds and phosphorylates MCRS1. This mechanism enables KIF2A localization to the minus end of spindle microtubules. Thus, our study reveals a novel role of Mps1 in regulating the dynamics of the minus end of microtubules and expands the functions of Mps1 in genome maintenance.
Collapse
Affiliation(s)
- Hongdan Yang
- College of Arts and Science, New York University at Shanghai, Shanghai 200122, China
| | - Fengxia Zhang
- College of Arts and Science, New York University at Shanghai, Shanghai 200122, China
| | - Ching-Jung Huang
- College of Arts and Science, New York University at Shanghai, Shanghai 200122, China
| | - Jun Liao
- School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
| | - Ying Han
- School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
| | - Piliang Hao
- School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
| | - Youjun Chu
- School of Life Science and Technology, Shanghaitech University, Shanghai 201210, China
| | - Xiaoai Lu
- College of Arts and Science, New York University at Shanghai, Shanghai 200122, China
| | - Wenshu Li
- College of Arts and Science, New York University at Shanghai, Shanghai 200122, China
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jungseog Kang
- College of Arts and Science, New York University at Shanghai, Shanghai 200122, China.,NYU-ECNU Center for Computational Chemistry, New York University at Shanghai, Shanghai 200062, China
| |
Collapse
|
24
|
Zhang G, Kruse T, Guasch Boldú C, Garvanska DH, Coscia F, Mann M, Barisic M, Nilsson J. Efficient mitotic checkpoint signaling depends on integrated activities of Bub1 and the RZZ complex. EMBO J 2019; 38:embj.2018100977. [PMID: 30782962 DOI: 10.15252/embj.2018100977] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022] Open
Abstract
Kinetochore localized Mad1 is essential for generating a "wait anaphase" signal during mitosis, hereby ensuring accurate chromosome segregation. Inconsistent models for the function and quantitative contribution of the two mammalian Mad1 kinetochore receptors: Bub1 and the Rod-Zw10-Zwilch (RZZ) complex exist. By combining genome editing and RNAi, we achieve penetrant removal of Bub1 and Rod in human cells, which reveals that efficient checkpoint signaling depends on the integrated activities of these proteins. Rod removal reduces the proximity of Bub1 and Mad1, and we can bypass the requirement for Rod by tethering Mad1 to kinetochores or increasing the strength of the Bub1-Mad1 interaction. We find that Bub1 has checkpoint functions independent of Mad1 localization that are supported by low levels of Bub1 suggesting a catalytic function. In conclusion, our results support an integrated model for the Mad1 receptors in which the primary role of RZZ is to localize Mad1 at kinetochores to generate the Mad1-Bub1 complex.
Collapse
Affiliation(s)
- Gang Zhang
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark .,Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.,Qingdao Cancer Institute, Qingdao, Shandong, China
| | - Thomas Kruse
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Guasch Boldú
- Cell Division Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Dimitriya H Garvanska
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Coscia
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marin Barisic
- Cell Division Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jakob Nilsson
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
26
|
Chen C, Whitney IP, Banerjee A, Sacristan C, Sekhri P, Kern DM, Fontan A, Kops GJPL, Tyson JJ, Cheeseman IM, Joglekar AP. Ectopic Activation of the Spindle Assembly Checkpoint Signaling Cascade Reveals Its Biochemical Design. Curr Biol 2018; 29:104-119.e10. [PMID: 30595520 DOI: 10.1016/j.cub.2018.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 11/27/2022]
Abstract
Switch-like activation of the spindle assembly checkpoint (SAC) is critical for accurate chromosome segregation and for cell division in a timely manner. To determine the mechanisms that achieve this, we engineered an ectopic, kinetochore-independent SAC activator: the "eSAC." The eSAC stimulates SAC signaling by artificially dimerizing Mps1 kinase domain and a cytosolic KNL1 phosphodomain, the kinetochore signaling scaffold. By exploiting variable eSAC expression in a cell population, we defined the dependence of the eSAC-induced mitotic delay on eSAC concentration in a cell to reveal the dose-response behavior of the core signaling cascade of the SAC. These quantitative analyses and subsequent mathematical modeling of the dose-response data uncover two crucial properties of the core SAC signaling cascade: (1) a cellular limit on the maximum anaphase-inhibitory signal that the cascade can generate due to the limited supply of SAC proteins and (2) the ability of the KNL1 phosphodomain to produce the anaphase-inhibitory signal synergistically, when it recruits multiple SAC proteins simultaneously. We propose that these properties together achieve inverse, non-linear scaling between the signal output per kinetochore and the number of signaling kinetochores. When the number of kinetochores is low, synergistic signaling by KNL1 enables each kinetochore to produce a disproportionately strong signal output. However, when many kinetochores signal concurrently, they compete for a limited supply of SAC proteins. This frustrates synergistic signaling and lowers their signal output. Thus, the signaling activity of unattached kinetochores will adapt to the changing number of signaling kinetochores to enable the SAC to approximate switch-like behavior.
Collapse
Affiliation(s)
- Chu Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ian P Whitney
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Anand Banerjee
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Carlos Sacristan
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), and Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Palak Sekhri
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David M Kern
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Adrienne Fontan
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), and Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Ajit P Joglekar
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
27
|
Amin P, Soper Ní Chafraidh S, Leontiou I, Hardwick KG. Regulated reconstitution of spindle checkpoint arrest and silencing through chemically induced dimerisation in vivo. J Cell Sci 2018; 132:jcs.219766. [PMID: 30237224 PMCID: PMC6398473 DOI: 10.1242/jcs.219766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/04/2018] [Indexed: 12/19/2022] Open
Abstract
Chemically induced dimerisation (CID) uses small molecules to control specific protein-protein interactions. We employed CID dependent on the plant hormone abscisic acid (ABA) to reconstitute spindle checkpoint signalling in fission yeast. The spindle checkpoint signal usually originates at unattached or inappropriately attached kinetochores. These are complex, multiprotein structures with several important functions. To bypass kinetochore complexity, we took a reductionist approach to studying checkpoint signalling. We generated a synthetic checkpoint arrest ectopically by inducing heterodimerisation of the checkpoint proteins Mph1 (the fission yeast homologue of Mps1) and Spc7 (the fission yeast homologue of KNL1). These proteins were engineered such that they cannot localise to kinetochores, and only form a complex in the presence of ABA. Using this novel assay we were able to checkpoint arrest a synchronous population of cells within 30 min of ABA addition. This assay allows detailed genetic dissection of checkpoint activation and, importantly, also provides a valuable tool for studying checkpoint silencing. To analyse silencing of the checkpoint and the ensuing mitotic exit, we simply washed out the ABA from arrested fission yeast cells. We show here that silencing is critically dependent on protein phosphatase 1 (PP1) recruitment to Mph1-Spc7 signalling platforms.
Collapse
Affiliation(s)
- Priya Amin
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Sadhbh Soper Ní Chafraidh
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Ioanna Leontiou
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Kevin G Hardwick
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| |
Collapse
|
28
|
Saurin AT. Kinase and Phosphatase Cross-Talk at the Kinetochore. Front Cell Dev Biol 2018; 6:62. [PMID: 29971233 PMCID: PMC6018199 DOI: 10.3389/fcell.2018.00062] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Adrian T. Saurin
- Jacqui Wood Cancer Centre, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
29
|
Luo Y, Ahmad E, Liu ST. MAD1: Kinetochore Receptors and Catalytic Mechanisms. Front Cell Dev Biol 2018; 6:51. [PMID: 29868582 PMCID: PMC5949338 DOI: 10.3389/fcell.2018.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
The mitotic checkpoint monitors kinetochore-microtubule attachment, delays anaphase onset and prevents aneuploidy when unattached or tensionless kinetochores are present in cells. Mitotic arrest deficiency 1 (MAD1) is one of the evolutionarily conserved core mitotic checkpoint proteins. MAD1 forms a cell cycle independent complex with MAD2 through its MAD2 interaction motif (MIM) in the middle region. Such a complex is enriched at unattached kinetochores and functions as an unusual catalyst to promote conformational change of additional MAD2 molecules, constituting a crucial signal amplifying mechanism for the mitotic checkpoint. Only MAD2 in its active conformation can be assembled with BUBR1 and CDC20 to form the Mitotic Checkpoint Complex (MCC), which is a potent inhibitor of anaphase onset. Recent research has shed light on how MAD1 is recruited to unattached kinetochores, and how it carries out its catalytic activity. Here we review these advances and discuss their implications for future research.
Collapse
Affiliation(s)
- Yibo Luo
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Ejaz Ahmad
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Song-Tao Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
30
|
Mechanistic insight into TRIP13-catalyzed Mad2 structural transition and spindle checkpoint silencing. Nat Commun 2017; 8:1956. [PMID: 29208896 PMCID: PMC5717197 DOI: 10.1038/s41467-017-02012-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/01/2017] [Indexed: 01/20/2023] Open
Abstract
The spindle checkpoint maintains genomic stability and prevents aneuploidy. Unattached kinetochores convert the latent open conformer of the checkpoint protein Mad2 (O-Mad2) to the active closed conformer (C-Mad2), bound to Cdc20. C-Mad2–Cdc20 is incorporated into the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex/cyclosome (APC/C). The C-Mad2-binding protein p31comet and the ATPase TRIP13 promote MCC disassembly and checkpoint silencing. Here, using nuclear magnetic resonance (NMR) spectroscopy, we show that TRIP13 and p31comet catalyze the conversion of C-Mad2 to O-Mad2, without disrupting its stably folded core. We determine the crystal structure of human TRIP13, and identify functional TRIP13 residues that mediate p31comet–Mad2 binding and couple ATP hydrolysis to local unfolding of Mad2. TRIP13 and p31comet prevent APC/C inhibition by MCC components, but cannot reactivate APC/C already bound to MCC. Therefore, TRIP13–p31comet intercepts and disassembles free MCC not bound to APC/C through mediating the local unfolding of the Mad2 C-terminal region. The spindle checkpoint ensures the fidelity of chromosome segregation during mitosis and meiosis. Here the authors use a combination of biochemical and structural biology approaches to show how the TRIP13 ATPase and its adaptor, p31comet, catalyze the conversion of the checkpoint protein Mad2 between latent and active forms
Collapse
|
31
|
Komaki S, Schnittger A. The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off during Severe Stress. Dev Cell 2017; 43:172-185.e5. [PMID: 29065308 DOI: 10.1016/j.devcel.2017.09.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/18/2017] [Accepted: 09/21/2017] [Indexed: 12/24/2022]
Abstract
The spindle assembly checkpoint (SAC) in animals and yeast assures equal segregation of chromosomes during cell division. The prevalent occurrence of polyploidy in flowering plants together with the observation that many plants can be readily forced to double their genomes by application of microtubule drugs raises the question of whether plants have a proper SAC. Here, we provide a functional framework of the core SAC proteins in Arabidopsis. We reveal that Arabidopsis will delay mitosis in a SAC-dependent manner if the spindle is perturbed. However, we also show that the molecular architecture of the SAC is unique in plants. Moreover, the SAC is short-lived and cannot stay active for more than 2 hr, after which the cell cycle is reset. This resetting opens the possibility for genome duplications and raises the hypothesis that a rapid termination of a SAC-induced mitotic arrest provides an adaptive advantage for plants impacting plant genome evolution.
Collapse
Affiliation(s)
- Shinichiro Komaki
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststrasse 18, D-22609 Hamburg, Germany
| | - Arp Schnittger
- University of Hamburg, Biozentrum Klein Flottbek, Department of Developmental Biology, Ohnhorststrasse 18, D-22609 Hamburg, Germany.
| |
Collapse
|
32
|
Overlack K, Bange T, Weissmann F, Faesen AC, Maffini S, Primorac I, Müller F, Peters JM, Musacchio A. BubR1 Promotes Bub3-Dependent APC/C Inhibition during Spindle Assembly Checkpoint Signaling. Curr Biol 2017; 27:2915-2927.e7. [PMID: 28943088 PMCID: PMC5640511 DOI: 10.1016/j.cub.2017.08.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/16/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
The spindle assembly checkpoint (SAC) prevents premature sister chromatid separation during mitosis. Phosphorylation of unattached kinetochores by the Mps1 kinase promotes recruitment of SAC machinery that catalyzes assembly of the SAC effector mitotic checkpoint complex (MCC). The SAC protein Bub3 is a phospho-amino acid adaptor that forms structurally related stable complexes with functionally distinct paralogs named Bub1 and BubR1. A short motif (“loop”) of Bub1, but not the equivalent loop of BubR1, enhances binding of Bub3 to kinetochore phospho-targets. Here, we asked whether the BubR1 loop directs Bub3 to different phospho-targets. The BubR1 loop is essential for SAC function and cannot be removed or replaced with the Bub1 loop. BubR1 loop mutants bind Bub3 and are normally incorporated in MCC in vitro but have reduced ability to inhibit the MCC target anaphase-promoting complex (APC/C), suggesting that BubR1:Bub3 recognition and inhibition of APC/C requires phosphorylation. Thus, small sequence differences in Bub1 and BubR1 direct Bub3 to different phosphorylated targets in the SAC signaling cascade. The molecular basis of kinetochore recruitment of Bub1 and BubR1 is dissected Bub1 and BubR1 modulate the ability of Bub3 to recognize phosphorylated targets A newly identified BubR1 motif targets Bub3 to the anaphase-promoting complex The newly identified motif of BubR1 is required for checkpoint signaling
Collapse
Affiliation(s)
- Katharina Overlack
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Florian Weissmann
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Alex C Faesen
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Ivana Primorac
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Franziska Müller
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Jan-Michael Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
33
|
Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling. Nat Commun 2017; 8:15822. [PMID: 28604727 PMCID: PMC5472792 DOI: 10.1038/ncomms15822] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 05/03/2017] [Indexed: 12/21/2022] Open
Abstract
Proper segregation of chromosomes depends on a functional spindle assembly checkpoint (SAC) and requires kinetochore localization of the Bub1 and Mad1/Mad2 checkpoint proteins. Several aspects of Mad1/Mad2 kinetochore recruitment in human cells are unclear and in particular the underlying direct interactions. Here we show that conserved domain 1 (CD1) in human Bub1 binds directly to Mad1 and a phosphorylation site exists in CD1 that stimulates Mad1 binding and SAC signalling. Importantly, fusion of minimal kinetochore-targeting Bub1 fragments to Mad1 bypasses the need for CD1, revealing that the main function of Bub1 is to position Mad1 close to KNL1 MELT repeats. Furthermore, we identify residues in Mad1 that are critical for Mad1 functionality, but not Bub1 binding, arguing for a direct role of Mad1 in the checkpoint. This work dissects functionally relevant molecular interactions required for spindle assembly checkpoint signalling at kinetochores in human cells. The spindle assembly checkpoint ensures correct chromosome segregation and relies on kinetochore localization of the Bub1 and Mad1/Mad2 checkpoint proteins. Here the authors show that main function of Bub1 is to position Mad1 close to KNL1 MELT repeats in human cells.
Collapse
|
34
|
Abstract
The kinase Mps1, long known to be the 'boss' in mitotic checkpoint signaling, phosphorylates multiple proteins in the checkpoint signaling cascade.
Collapse
Affiliation(s)
| | - Silke Hauf
- Department of Biological Sciences, Virginia Tech, Blacksburg, United States.,Biocomplexity Institute of Virginia Tech, Blacksburg, United States
| |
Collapse
|
35
|
Meadows JC, Lancaster TC, Buttrick GJ, Sochaj AM, Messin LJ, Del Mar Mora-Santos M, Hardwick KG, Millar JBA. Identification of a Sgo2-Dependent but Mad2-Independent Pathway Controlling Anaphase Onset in Fission Yeast. Cell Rep 2017; 18:1422-1433. [PMID: 28178520 PMCID: PMC5316559 DOI: 10.1016/j.celrep.2017.01.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/08/2016] [Accepted: 01/15/2017] [Indexed: 10/28/2022] Open
Abstract
The onset of anaphase is triggered by activation of the anaphase-promoting complex/cyclosome (APC/C) following silencing of the spindle assembly checkpoint (SAC). APC/C triggers ubiquitination of Securin and Cyclin B, which leads to loss of sister chromatid cohesion and inactivation of Cyclin B/Cdk1, respectively. This promotes relocalization of Aurora B kinase and other components of the chromosome passenger complex (CPC) from centromeres to the spindle midzone. In fission yeast, this is mediated by Clp1 phosphatase-dependent interaction of CPC with Klp9/MKLP2 (kinesin-6). When this interaction is disrupted, kinetochores bi-orient normally, but APC/C activation is delayed via a mechanism that requires Sgo2 and some (Bub1, Mph1/Mps1, and Mad3), but not all (Mad1 and Mad2), components of the SAC and the first, but not second, lysine, glutamic acid, glutamine (KEN) box in Mad3. These data indicate that interaction of CPC with Klp9 terminates a Sgo2-dependent, but Mad2-independent, APC/C-inhibitory pathway that is distinct from the canonical SAC.
Collapse
Affiliation(s)
- John C Meadows
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; Institute of Advanced Study, University of Warwick, Coventry CV4 7AL, UK
| | - Theresa C Lancaster
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Graham J Buttrick
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Alicja M Sochaj
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Liam J Messin
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Maria Del Mar Mora-Santos
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Kevin G Hardwick
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Jonathan B A Millar
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
36
|
Ji Z, Gao H, Jia L, Li B, Yu H. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling. eLife 2017; 6. [PMID: 28072388 PMCID: PMC5268738 DOI: 10.7554/elife.22513] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/09/2017] [Indexed: 12/18/2022] Open
Abstract
The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1–Bub3 and BubR1–Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1–Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/CCdc20) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1–Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment. DOI:http://dx.doi.org/10.7554/eLife.22513.001
Collapse
Affiliation(s)
- Zhejian Ji
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Haishan Gao
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Luying Jia
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Bing Li
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Hongtao Yu
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
37
|
Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies. Curr Biol 2016; 27:137-143. [PMID: 28017606 PMCID: PMC5226922 DOI: 10.1016/j.cub.2016.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 10/14/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
The spindle checkpoint acts as a mitotic surveillance system, monitoring interactions between kinetochores and spindle microtubules and ensuring high-fidelity chromosome segregation [1, 2, 3]. The checkpoint is activated by unattached kinetochores, and Mps1 kinase phosphorylates KNL1 on conserved MELT motifs to generate a binding site for the Bub3-Bub1 complex [4, 5, 6, 7]. This leads to dynamic kinetochore recruitment of Mad proteins [8, 9], a conformational change in Mad2 [10, 11, 12], and formation of the mitotic checkpoint complex (MCC: Cdc20-Mad3-Mad2 [13, 14, 15]). MCC formation inhibits the anaphase-promoting complex/cyclosome (Cdc20-APC/C), thereby preventing the proteolytic destruction of securin and cyclin and delaying anaphase onset. What happens at kinetochores after Mps1-dependent Bub3-Bub1 recruitment remains mechanistically unclear, and it is not known whether kinetochore proteins other than KNL1 have significant roles to play in checkpoint signaling and MCC generation. Here, we take a reductionist approach, avoiding the complexities of kinetochores, and demonstrate that co-recruitment of KNL1Spc7 and Mps1Mph1 is sufficient to generate a robust checkpoint signal and prolonged mitotic arrest. We demonstrate that a Mad1-Bub1 complex is formed during synthetic checkpoint signaling. Analysis of bub3Δ mutants demonstrates that Bub3 acts to suppress premature checkpoint signaling. This synthetic system will enable detailed, mechanistic dissection of MCC generation and checkpoint silencing. After analyzing several mutants that affect localization of checkpoint complexes, we conclude that spindle checkpoint arrest can be independent of their kinetochore, spindle pole, and nuclear envelope localization. Synthetic signaling scaffolds generate a spindle checkpoint arrest The combination of KNL1Spc7 and Mps1Mph1 kinase generates a robust arrest Kinetochore, spindle, and nuclear envelope enrichment of the scaffold is not required Bub3 acts to inhibit premature checkpoint activation
Collapse
|