1
|
Gao J, Shi X, Sun Y, Liu X, Zhang F, Shi C, Yu X, Yan Z, Liu L, Yu S, Zhang J, Zhang X, Zhang S, Guo W. Deficiency of betaine-homocysteine methyltransferase activates glucose-6-phosphate dehydrogenase (G6PD) by decreasing arginine methylation of G6PD in hepatocellular carcinogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1648-1665. [PMID: 38679670 DOI: 10.1007/s11427-023-2481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 05/01/2024]
Abstract
Betaine-homocysteine methyltransferase (BHMT) regulates protein methylation and is correlated with tumorigenesis; however, the effects and regulation of BHMT in hepatocarcinogenesis remain largely unexplored. Here, we determined the clinical significance of BHMT in the occurrence and progression of hepatocellular carcinoma (HCC) using tissue samples from 198 patients. BHMT was to be frequently found (86.6%) expressed at relatively low levels in HCC tissues and was positively correlated with the overall survival of patients with HCC. Bhmt overexpression effectively suppressed several malignant phenotypes in hepatoma cells in vitro and in vivo, whereas complete knockout of Bhmt (Bhmt-/-) produced the opposite effect. We combined proteomics, metabolomics, and molecular biological strategies and detected that Bhmt-/- promoted hepatocarcinogenesis and tumor progression by enhancing the activity of glucose-6-phosphate dehydrogenase (G6PD) and PPP metabolism in DEN-induced HCC mouse and subcutaneous tumor-bearing models. In contrast, restoration of Bhmt with an AAV8-Bhmt injection or pharmacological inhibition of G6PD attenuated hepatocarcinogenesis. Additionally, coimmunoprecipitation identified monomethylated modifications of the G6PD, and BHMT regulated the methylation of G6PD. Protein sequence analysis, generation and application of specific antibodies, and site-directed mutagenesis indicated G6PD methylation at the arginine residue 246. Furthermore, we established bidirectionally regulated BHMT cellular models combined with methylation-deficient G6PD mutants to demonstrate that BHMT potentiated arginine methylation of G6PD, thereby inhibiting G6PD activity, which in turn suppressed hepatocarcinogenesis. Taken together, this study reveals a new methylation-regulatory mechanism in hepatocarcinogenesis owing to BHMT deficiency, suggesting a potential therapeutic strategy for HCC treatment.
Collapse
Affiliation(s)
- Jie Gao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Yaohui Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Xudong Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Feng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Chengcheng Shi
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Zhiping Yan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Shizhe Yu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- Cancer Metastasis Institute, Fudan University, Shanghai, 200040, China
| | - Jiacheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Xiaodan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China.
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China.
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Diagnosis & Treatment League for Hepatopathy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan Innovative Research Group for Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation, Zhengzhou, 450052, China.
- Henan Organ Transplantation Quality Control Centre, Zhengzhou, 450052, China.
- Henan Engineering Technology Research Center for Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Bayliak MM, Demianchuk OI, Gospodaryov DV, Balatskyi VA, Lushchak VI. Specific and combined effects of dietary ethanol and arginine on Drosophila melanogaster. Drug Chem Toxicol 2023; 46:895-905. [PMID: 35903033 DOI: 10.1080/01480545.2022.2105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
In this study, we have investigated specific and combined effects of essential amino acid, l-arginine, and ethanol (EtOH), a natural component of Drosophila melanogaster food, on a range of physiological and biochemical parameters of the flies. Rearing of D. melanogaster during two weeks on the food supplemented with 50 mM l-arginine decreased activities of catalase, glucose-6-phosphate dehydrogenase, and glutathione-S-transferase in males by about 28%, 60%, and 60%, respectively. At the same time, arginine-fed males had 40% higher levels of lipid peroxides and arginine-fed females had 36% low-molecular mass thiol levels as compared to the control. Arginine decreased resistance of fruit flies to heat stress in both sexes, resistance to starvation in females, and resistance to sodium nitroprusside (SNP) in males. Nevertheless, arginine increased resistance to SNP in females. Consumption of food supplemented with 10% EtOH increased resistance of fruit flies to starvation but made them more sensitive to SNP. On the contrary, arginine abrogated the ability of EtOH to increase starvation resistance in males and to decrease SNP resistance in both sexes.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Vitalii A Balatskyi
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
3
|
Yu K, Ramkumar N, Wong KKL, Tettweiler G, Verheyen EM. The AMPK-like protein kinases Sik2 and Sik3 interact with Hipk and induce synergistic tumorigenesis in a Drosophila cancer model. Front Cell Dev Biol 2023; 11:1214539. [PMID: 37854071 PMCID: PMC10579798 DOI: 10.3389/fcell.2023.1214539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Homeodomain-interacting protein kinases (Hipks) regulate cell proliferation, apoptosis, and tissue development. Overexpression of Hipk in Drosophila causes tumorigenic phenotypes in larval imaginal discs. We find that depletion of Salt-inducible kinases Sik2 or Sik3 can suppress Hipk-induced overgrowth. Furthermore, co-expression of constitutively active forms of Sik2 or Sik3 with Hipk caused significant tissue hyperplasia and tissue distortion, indicating that both Sik2 and Sik3 can synergize with Hipk to promote tumorous phenotypes, accompanied by elevated dMyc, Armadillo/β-catenin, and the Yorkie target gene expanded. Larvae expressing these hyperplastic growths also display an extended larval phase, characteristic of other Drosophila tumour models. Examination of total protein levels from fly tissues showed that Hipk proteins were reduced when Siks were depleted through RNAi, suggesting that Siks may regulate Hipk protein stability and/or activity. Conversely, expression of constitutively active Siks with Hipk leads to increased Hipk protein levels. Furthermore, Hipk can interact with Sik2 and Sik3 by co-immunoprecipitation. Co-expression of both proteins leads to a mobility shift of Hipk protein, suggesting it is post-translationally modified. In summary, our research demonstrates a novel function of Siks in synergizing with Hipk to promote tumour growth.
Collapse
Affiliation(s)
- Kewei Yu
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Niveditha Ramkumar
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Gritta Tettweiler
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Esther M. Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
4
|
Meng Q, Zhang Y, Hao S, Sun H, Liu B, Zhou H, Wang Y, Xu ZX. Recent findings in the regulation of G6PD and its role in diseases. Front Pharmacol 2022; 13:932154. [PMID: 36091812 PMCID: PMC9448902 DOI: 10.3389/fphar.2022.932154] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is the only rate-limiting enzyme in the pentose phosphate pathway (PPP). Rapidly proliferating cells require metabolites from PPP to synthesize ribonucleotides and maintain intracellular redox homeostasis. G6PD expression can be abnormally elevated in a variety of cancers. In addition, G6PD may act as a regulator of viral replication and vascular smooth muscle function. Therefore, G6PD-mediated activation of PPP may promote tumor and non-neoplastic disease progression. Recently, studies have identified post-translational modifications (PTMs) as an important mechanism for regulating G6PD function. Here, we provide a comprehensive review of various PTMs (e.g., phosphorylation, acetylation, glycosylation, ubiquitination, and glutarylation), which are identified in the regulation of G6PD structure, expression and enzymatic activity. In addition, we review signaling pathways that regulate G6PD and evaluate the role of oncogenic signals that lead to the reprogramming of PPP in tumor and non-neoplastic diseases as well as summarize the inhibitors that target G6PD.
Collapse
Affiliation(s)
- Qingfei Meng
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Yanghe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Shiming Hao
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Huihui Sun
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Honglan Zhou, ; Yishu Wang, ; Zhi-Xiang Xu,
| | - Yishu Wang
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Honglan Zhou, ; Yishu Wang, ; Zhi-Xiang Xu,
| | - Zhi-Xiang Xu
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- Department of Urology, The First Hospital of Jilin University, Changchun, China
- School of Life Sciences, Henan University, Kaifeng, China
- *Correspondence: Honglan Zhou, ; Yishu Wang, ; Zhi-Xiang Xu,
| |
Collapse
|
5
|
Xu M, Ding L, Liang J, Yang X, Liu Y, Wang Y, Ding M, Huang X. NAD kinase sustains lipogenesis and mitochondrial metabolismthrough fatty acid synthesis. Cell Rep 2021; 37:110157. [PMID: 34965438 DOI: 10.1016/j.celrep.2021.110157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/27/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022] Open
Abstract
Lipid storage in fat tissue is important for energy homeostasis and cellular functions. Through RNAi screening in Drosophila fat body, we found that knockdown of a Drosophila NAD kinase (NADK), which phosphorylates NAD to synthesize NADP de novo, causes lipid storage defects. NADK sustains lipogenesis by maintaining the pool of NADPH. Promoting NADPH production rescues the lipid storage defect in the fat body of NADK RNAi animals. Furthermore, NADK and fatty acid synthase 1 (FASN1) regulate mitochondrial mass and function by altering the levels of acetyl-CoA and fatty acids. Reducing the level of acetyl-CoA or increasing the synthesis of cardiolipin (CL), a mitochondrion-specific phospholipid, partially rescues the mitochondrial defects of NADK RNAi. Therefore, NADK- and FASN1-mediated fatty acid synthesis coordinates lipid storage and mitochondrial function.
Collapse
Affiliation(s)
- Mengyao Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, TaiAn 271016, China
| | - Yuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Kokki K, Lamichane N, Nieminen AI, Ruhanen H, Morikka J, Robciuc M, Rovenko BM, Havula E, Käkelä R, Hietakangas V. Metabolic gene regulation by Drosophila GATA transcription factor Grain. PLoS Genet 2021; 17:e1009855. [PMID: 34634038 PMCID: PMC8530363 DOI: 10.1371/journal.pgen.1009855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/21/2021] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Nutrient-dependent gene regulation critically contributes to homeostatic control of animal physiology in changing nutrient landscape. In Drosophila, dietary sugars activate transcription factors (TFs), such as Mondo-Mlx, Sugarbabe and Cabut, which control metabolic gene expression to mediate physiological adaptation to high sugar diet. TFs that correspondingly control sugar responsive metabolic genes under conditions of low dietary sugar remain, however, poorly understood. Here we identify a role for Drosophila GATA TF Grain in metabolic gene regulation under both low and high sugar conditions. De novo motif prediction uncovered a significant over-representation of GATA-like motifs on the promoters of sugar-activated genes in Drosophila larvae, which are regulated by Grain, the fly ortholog of GATA1/2/3 subfamily. grain expression is activated by sugar in Mondo-Mlx-dependent manner and it contributes to sugar-responsive gene expression in the fat body. On the other hand, grain displays strong constitutive expression in the anterior midgut, where it drives lipogenic gene expression also under low sugar conditions. Consistently with these differential tissue-specific roles, Grain deficient larvae display delayed development on high sugar diet, while showing deregulated central carbon and lipid metabolism primarily on low sugar diet. Collectively, our study provides evidence for the role of a metazoan GATA transcription factor in nutrient-responsive metabolic gene regulation in vivo.
Collapse
Affiliation(s)
- Krista Kokki
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nicole Lamichane
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Anni I. Nieminen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Hanna Ruhanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Jack Morikka
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Marius Robciuc
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Bohdana M. Rovenko
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Essi Havula
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE) and Biocenter Finland, Helsinki, Finland
| | - Ville Hietakangas
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Zhang C, van Leeuwen W, Blotenburg M, Aguilera-Gomez A, Brussee S, Grond R, Kampinga HH, Rabouille C. Activation of salt Inducible Kinases, IRE1 and PERK leads to Sec bodies formation in Drosophila S2 cells. J Cell Sci 2021; 134:272062. [PMID: 34350957 PMCID: PMC8445602 DOI: 10.1242/jcs.258685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
The phase separation of the non-membrane bound Sec bodies occurs in Drosophila S2 cells by coalescence of components of the endoplasmic reticulum (ER) exit sites under the stress of amino acid starvation. Here, we address which signaling pathways cause Sec body formation and find that two pathways are critical. The first is the activation of the salt-inducible kinases (SIKs; SIK2 and SIK3) by Na+ stress, which, when it is strong, is sufficient. The second is activation of IRE1 and PERK (also known as PEK in flies) downstream of ER stress induced by the absence of amino acids, which needs to be combined with moderate salt stress to induce Sec body formation. SIK, and IRE1 and PERK activation appear to potentiate each other through the stimulation of the unfolded protein response, a key parameter in Sec body formation. This work shows the role of SIKs in phase transition and re-enforces the role of IRE1 and PERK as a metabolic sensor for the level of circulating amino acids and salt. This article has an associated First Person interview with the first author of the paper. Summary: In S2 cells, the phase-separated Sec bodies form upon the combined activation of salt-inducible kinases, IRE1 and PERK.
Collapse
Affiliation(s)
- Chujun Zhang
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | | | | | | | - Sem Brussee
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Rianne Grond
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands
| | - Harm H Kampinga
- Department of Biomedical Sciences in Cells and Systems, UMC Groningen, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht, The Netherlands.,Department of Biomedical Sciences in Cells and Systems, UMC Groningen, The Netherlands.,Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, The Netherlands
| |
Collapse
|
8
|
Chatterjee N, Perrimon N. What fuels the fly: Energy metabolism in Drosophila and its application to the study of obesity and diabetes. SCIENCE ADVANCES 2021; 7:7/24/eabg4336. [PMID: 34108216 PMCID: PMC8189582 DOI: 10.1126/sciadv.abg4336] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 05/16/2023]
Abstract
The organs and metabolic pathways involved in energy metabolism, and the process of ATP production from nutrients, are comparable between humans and Drosophila melanogaster This level of conservation, together with the power of Drosophila genetics, makes the fly a very useful model system to study energy homeostasis. Here, we discuss the major organs involved in energy metabolism in Drosophila and how they metabolize different dietary nutrients to generate adenosine triphosphate. Energy metabolism in these organs is controlled by cell-intrinsic, paracrine, and endocrine signals that are similar between Drosophila and mammals. We describe how these signaling pathways are regulated by several physiological and environmental cues to accommodate tissue-, age-, and environment-specific differences in energy demand. Last, we discuss several genetic and diet-induced fly models of obesity and diabetes that can be leveraged to better understand the molecular basis of these metabolic diseases and thereby promote the development of novel therapies.
Collapse
Affiliation(s)
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
9
|
Drosophila insulin-like peptides regulate concentration-dependent changes of appetite to different carbohydrates. ZOOLOGY 2021; 146:125927. [PMID: 33894679 DOI: 10.1016/j.zool.2021.125927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/04/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
The volumes of sugar solutions ingested and amounts of different carbohydrates eaten were measured in fruit fly lines with mutated genes for Drosophila insulin-like peptides (DILPs). The wild type w1118 flies consumed 20-40 μg of fructose or glucose per day regardless of carbohydrate concentration. This relatively constant amount of consumed carbohydrate was regulated due to satiety-driven decreases in the ingested volume of sugar solution, a so-called "compensatory feeding" strategy. This decrease was not observed for flies fed sucrose solutions. The dilp3 mutant and quadruple mutant dilp1-4 showed no "compensatory feeding" when fed glucose but these two mutants consumed larger amounts of sucrose than the wild type from solutions with carbohydrate concentrations equal to or higher than 4%. Flies with mutations of dilp2, dilp3, dilp4, dilp5, and dilp6 genes consumed larger amounts of carbohydrate from 4-10% sucrose solutions as compared to the wild type. Mutations of DILPs affected appetite mainly for sucrose and glucose, but the least for fructose. The presented data confirm our hypothesis that DILPs are involved in the regulation of fly appetite in response to type and concentration of carbohydrate.
Collapse
|
10
|
Jacobs HT, George J, Kemppainen E. Regulation of growth in Drosophila melanogaster: the roles of mitochondrial metabolism. J Biochem 2020; 167:267-277. [PMID: 31926002 PMCID: PMC7048069 DOI: 10.1093/jb/mvaa002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/05/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial functions are often considered purely from the standpoint of catabolism, but in growing cells they are mainly dedicated to anabolic processes, and can have a profound impact on the rate of growth. The Drosophila larva, which increases in body mass ∼200-fold over the course of ∼3 days at 25°C, provides an excellent model to study the underlying regulatory machinery that connects mitochondrial metabolic capacity to growth. In this review, we will focus on several key aspects of this machinery: nutrient sensing, endocrine control of feeding and nutrient mobilization, metabolic signalling, protein synthesis regulation and pathways of steroid biosynthesis and activity. In all these aspects, mitochondria appear to play a crucial role.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Jack George
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| | - Esko Kemppainen
- Faculty of Medicine and Health Technology, FI-33014 Tampere University, Finland
| |
Collapse
|
11
|
Salt inducible kinases as novel Notch interactors in the developing Drosophila retina. PLoS One 2020; 15:e0234744. [PMID: 32542037 PMCID: PMC7295197 DOI: 10.1371/journal.pone.0234744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/01/2020] [Indexed: 12/26/2022] Open
Abstract
Developmental processes require strict regulation of proliferation, differentiation and patterning for the generation of final organ size. Aberrations in these fundamental events are critically important in tumorigenesis and cancer progression. Salt inducible kinases (Siks) are evolutionarily conserved genes involved in diverse biological processes, including salt sensing, metabolism, muscle, cartilage and bone formation, but their role in development remains largely unknown. Recent findings implicate Siks in mitotic control, and in both tumor suppression and progression. Using a tumor model in the Drosophila eye, we show that perturbation of Sik function exacerbates tumor-like tissue overgrowth and metastasis. Furthermore, we show that both Drosophila Sik genes, Sik2 and Sik3, function in eye development processes. We propose that an important target of Siks may be the Notch signaling pathway, as we demonstrate genetic interaction between Siks and Notch pathway members. Finally, we investigate Sik expression in the developing retina and show that Sik2 is expressed in all photoreceptors, basal to cell junctions, while Sik3 appears to be expressed specifically in R3/R4 cells in the developing eye. Combined, our data suggest that Sik genes are important for eye tissue specification and growth, and that their dysregulation may contribute to tumor formation.
Collapse
|
12
|
Yin H, Guo J, Ding E, Zhang H, Han L, Zhu B. Salt-Inducible Kinase 3 Haplotypes Associated with Noise-Induced Hearing Loss in Chinese Workers. Audiol Neurootol 2020; 25:200-208. [PMID: 32126566 DOI: 10.1159/000506066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/21/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Noise-induced hearing loss (NIHL) is a common occupational disease that represents an irreversible hearing damage to the auditory system. It has been identified as a complicated disease involving both environmental and genetic factors. More efforts need to be made to explore the genes associated with susceptibility to NIHL. The main aim of this research is to detect the associations between SIK3 polymorphisms and NIHL susceptibility in Han people in China. METHODS A case-control study was performed in 586 cases and 639 controls in a textile factory matched for sex, age, smoking, drinking, work time with noise, and intensity of noise exposure. Three single nucleotide polymorphisms (SNPs) (rs493134, rs6589574, and rs7121898) of SIK3 were genotyped in the participants. Then, the main influences of the SNPs on and their interactions with NIHL were assessed. RESULTS Under the allelic model, distributions of rs493134 T, rs6589574 G, and rs7121898 A in the NIHL group are statistically different from those of the normal group (p = 0.001, p < 0.001, and p = 0.019, respectively). The following haplotype analysis shows that TAA (rs493134-rs6589574-rs7121898) may have a protective effect, while TGA (rs493134-rs6589574-rs7121898) (OR = 1.49, 95% CI = 1.25-1.79) may be a risk factor for NIHL. Multifactor dimensionality reduction analysis shows that the interaction of the 3 selected SNPs is associated with NIHL susceptibility (OR = 1.88, 95% CI = 1.50-2.36). CONCLUSION The results suggest that 3 SNPs (rs493134, rs6589574, and rs7121898) of SIK3 may be an important part of NIHL susceptibility and can be applied in the prevention, early diagnosis, and treatment of NIHL in noise-exposed Chinese workers.
Collapse
Affiliation(s)
- Haoyang Yin
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiadi Guo
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Enmin Ding
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Hengdong Zhang
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Lei Han
- Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Baoli Zhu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, School of Public Health, Nanjing Medical University, Nanjing, China, .,Institute of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China,
| |
Collapse
|
13
|
The derived allele of a novel intergenic variant at chromosome 11 associates with lower body mass index and a favorable metabolic phenotype in Greenlanders. PLoS Genet 2020; 16:e1008544. [PMID: 31978080 PMCID: PMC7001991 DOI: 10.1371/journal.pgen.1008544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 02/05/2020] [Accepted: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
The genetic architecture of the small and isolated Greenlandic population is advantageous for identification of novel genetic variants associated with cardio-metabolic traits. We aimed to identify genetic loci associated with body mass index (BMI), to expand the knowledge of the genetic and biological mechanisms underlying obesity. Stage 1 BMI-association analyses were performed in 4,626 Greenlanders. Stage 2 replication and meta-analysis were performed in additional cohorts comprising 1,058 Yup'ik Alaska Native people, and 1,529 Greenlanders. Obesity-related traits were assessed in the stage 1 study population. We identified a common variant on chromosome 11, rs4936356, where the derived G-allele had a frequency of 24% in the stage 1 study population. The derived allele was genome-wide significantly associated with lower BMI (beta (SE), -0.14 SD (0.03), p = 3.2x10-8), corresponding to 0.64 kg/m2 lower BMI per G allele in the stage 1 study population. We observed a similar effect in the Yup'ik cohort (-0.09 SD, p = 0.038), and a non-significant effect in the same direction in the independent Greenlandic stage 2 cohort (-0.03 SD, p = 0.514). The association remained genome-wide significant in meta-analysis of the Arctic cohorts (-0.10 SD (0.02), p = 4.7x10-8). Moreover, the variant was associated with a leaner body type (weight, -1.68 (0.37) kg; waist circumference, -1.52 (0.33) cm; hip circumference, -0.85 (0.24) cm; lean mass, -0.84 (0.19) kg; fat mass and percent, -1.66 (0.33) kg and -1.39 (0.27) %; visceral adipose tissue, -0.30 (0.07) cm; subcutaneous adipose tissue, -0.16 (0.05) cm, all p<0.0002), lower insulin resistance (HOMA-IR, -0.12 (0.04), p = 0.00021), and favorable lipid levels (triglyceride, -0.05 (0.02) mmol/l, p = 0.025; HDL-cholesterol, 0.04 (0.01) mmol/l, p = 0.0015). In conclusion, we identified a novel variant, where the derived G-allele possibly associated with lower BMI in Arctic populations, and as a consequence also leaner body type, lower insulin resistance, and a favorable lipid profile.
Collapse
|
14
|
Liang YL, Wu CH, Kang CY, Lin CN, Shih NY, Lin SH, Chen YC, Hsu KF. Downregulated Salt-inducible Kinase 3 Expression Promotes Chemoresistance in Serous Ovarian Cancer via the ATP-binding Cassette Protein ABCG2. J Cancer 2019; 10:6025-6036. [PMID: 31762812 PMCID: PMC6856590 DOI: 10.7150/jca.34886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 09/01/2019] [Indexed: 12/03/2022] Open
Abstract
Background: Epithelial ovarian cancer (EOC) has a high tumor-associated mortality rate among gynecological cancers. Although CA125 is a well-studied biomarker for ovarian cancer, it is also elevated under numerous conditions, resulting in decreased specificity. Recently, we identified a novel tumor-associated antigen, salt-inducible kinase 3 (SIK3), during tumorigenesis in ovarian cancer. However, the association between SIK3 expression and patient outcomes in ovarian cancer remains unclear. Materials and Methods: We collected EOC samples from 204 patients and examined tumor SIK3 expression by immunohistochemistry (IHC) and CA125 expression in tumors and serum. The expression levels of SIK3 and CA125 were correlated with patient survival. SIK3 expression was silenced with SIK3-specific shRNAs to investigate the possible mechanisms related to chemoresistance in serous-type ovarian cancer cell lines OVCAR4 and SKOV3. Results: In advanced-stage serous ovarian cancer, patients with low SIK3 expression have poorer overall survival (OS) and progression-free survival (PFS) than patients with high SIK3 expression. Ovarian cancer cells with SIK3 knockdown display increased chemoresistance to Taxol plus cisplatin treatment, which is associated with the upregulation of the ABCG2 transporter. In addition, in serous ovarian cancer, SIK3 expression is inversely correlated to ABCG2 expression, and patients with low SIK3 and high ABCG2 expression have worse prognosis than patients with high SIK3 and low ABCG2 expression. Conclusion: Our results demonstrated that serous EOC patients with low SIK3 expression have poor prognosis, which is associated with chemoresistance mediated by ABCG2 upregulation. SIK3 and ABCG2 expression levels may be potential prognostic markers to predict the outcome in serous EOC patients.
Collapse
Affiliation(s)
- Yu-Ling Liang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Han Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Dental Technology, Shu Zen Junior College of Medicine and Management
| | - Chieh-Yi Kang
- Department of Obstetrics and Gynecology, Chi Mei Medical Center, Yongkang, Tainan, Taiwan
| | - Chang-Ni Lin
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Neng-Yao Shih
- National Institute of Cancer Research, National Health Research Institutes
| | - Sheng-Hsiang Lin
- Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yeong-Chang Chen
- National Institute of Cancer Research, National Health Research Institutes
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Graduate Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
15
|
Li H, Rai M, Buddika K, Sterrett MC, Luhur A, Mahmoudzadeh NH, Julick CR, Pletcher RC, Chawla G, Gosney CJ, Burton AK, Karty JA, Montooth KL, Sokol NS, Tennessen JM. Lactate dehydrogenase and glycerol-3-phosphate dehydrogenase cooperatively regulate growth and carbohydrate metabolism during Drosophila melanogaster larval development. Development 2019; 146:dev175315. [PMID: 31399469 PMCID: PMC6765128 DOI: 10.1242/dev.175315] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
The dramatic growth that occurs during Drosophila larval development requires rapid conversion of nutrients into biomass. Many larval tissues respond to these biosynthetic demands by increasing carbohydrate metabolism and lactate dehydrogenase (LDH) activity. The resulting metabolic program is ideally suited for synthesis of macromolecules and mimics the manner by which cancer cells rely on aerobic glycolysis. To explore the potential role of Drosophila LDH in promoting biosynthesis, we examined how Ldh mutations influence larval development. Our studies unexpectedly found that Ldh mutants grow at a normal rate, indicating that LDH is dispensable for larval biomass production. However, subsequent metabolomic analyses suggested that Ldh mutants compensate for the inability to produce lactate by generating excess glycerol-3-phosphate (G3P), the production of which also influences larval redox balance. Consistent with this possibility, larvae lacking both LDH and G3P dehydrogenase (GPDH1) exhibit growth defects, synthetic lethality and decreased glycolytic flux. Considering that human cells also generate G3P upon inhibition of lactate dehydrogenase A (LDHA), our findings hint at a conserved mechanism in which the coordinate regulation of lactate and G3P synthesis imparts metabolic robustness to growing animal tissues.
Collapse
Affiliation(s)
- Hongde Li
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Madhulika Rai
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Kasun Buddika
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Maria C Sterrett
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Arthur Luhur
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | - Cole R Julick
- RNA Biology Laboratory, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Rose C Pletcher
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Geetanjali Chawla
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Chelsea J Gosney
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Anna K Burton
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kristi L Montooth
- RNA Biology Laboratory, School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - Nicholas S Sokol
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
16
|
Centrosome Loss Triggers a Transcriptional Program To Counter Apoptosis-Induced Oxidative Stress. Genetics 2019; 212:187-211. [PMID: 30867197 DOI: 10.1534/genetics.119.302051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Centrosomes play a critical role in mitotic spindle assembly through their role in microtubule nucleation and bipolar spindle assembly. Loss of centrosomes can impair the ability of some cells to properly conduct mitotic division, leading to chromosomal instability, cell stress, and aneuploidy. Multiple aspects of the cellular response to mitotic error associated with centrosome loss appear to involve activation of JNK signaling. To further characterize the transcriptional effects of centrosome loss, we compared gene expression profiles of wild-type and acentrosomal cells from Drosophila wing imaginal discs. We found elevation of expression of JNK target genes, which we verified at the protein level. Consistent with this, the upregulated gene set showed significant enrichment for the AP-1 consensus DNA-binding sequence. We also found significant elevation in expression of genes regulating redox balance. Based on those findings, we examined oxidative stress after centrosome loss, revealing that acentrosomal wing cells have significant increases in reactive oxygen species (ROS). We then performed a candidate genetic screen and found that one of the genes upregulated in acentrosomal cells, glucose-6-phosphate dehydrogenase, plays an important role in buffering acentrosomal cells against increased ROS and helps protect those cells from cell death. Our data and other recent studies have revealed a complex network of signaling pathways, transcriptional programs, and cellular processes that epithelial cells use to respond to stressors, like mitotic errors, to help limit cell damage and maintain normal tissue development.
Collapse
|
17
|
Using Mouse and Drosophila Models to Investigate the Mechanistic Links between Diet, Obesity, Type II Diabetes, and Cancer. Int J Mol Sci 2018; 19:ijms19124110. [PMID: 30567377 PMCID: PMC6320797 DOI: 10.3390/ijms19124110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023] Open
Abstract
Many of the links between diet and cancer are controversial and over simplified. To date, human epidemiological studies consistently reveal that patients who suffer diet-related obesity and/or type II diabetes have an increased risk of cancer, suffer more aggressive cancers, and respond poorly to current therapies. However, the underlying molecular mechanisms that increase cancer risk and decrease the response to cancer therapies in these patients remain largely unknown. Here, we review studies in mouse cancer models in which either dietary or genetic manipulation has been used to model obesity and/or type II diabetes. These studies demonstrate an emerging role for the conserved insulin and insulin-like growth factor signaling pathways as links between diet and cancer progression. However, these models are time consuming to develop and expensive to maintain. As the world faces an epidemic of obesity and type II diabetes we argue that the development of novel animal models is urgently required. We make the case for Drosophila as providing an unparalleled opportunity to combine dietary manipulation with models of human metabolic disease and cancer. Thus, combining diet and cancer models in Drosophila can rapidly and significantly advance our understanding of the conserved molecular mechanisms that link diet and diet-related metabolic disorders to poor cancer patient prognosis.
Collapse
|
18
|
Storelli G, Nam HJ, Simcox J, Villanueva CJ, Thummel CS. Drosophila HNF4 Directs a Switch in Lipid Metabolism that Supports the Transition to Adulthood. Dev Cell 2018; 48:200-214.e6. [PMID: 30554999 DOI: 10.1016/j.devcel.2018.11.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022]
Abstract
Animals must adjust their metabolism as they progress through development in order to meet the needs of each stage in the life cycle. Here, we show that the dHNF4 nuclear receptor acts at the onset of Drosophila adulthood to direct an essential switch in lipid metabolism. Lipid stores are consumed shortly after metamorphosis but contribute little to energy metabolism. Rather, dHNF4 directs their conversion to very long chain fatty acids and hydrocarbons, which waterproof the animal to preserve fluid homeostasis. Similarly, HNF4α is required in mouse hepatocytes for the expression of fatty acid elongases that contribute to a waterproof epidermis, suggesting that this pathway is conserved through evolution. This developmental switch in Drosophila lipid metabolism promotes lifespan and desiccation resistance in adults and suppresses hallmarks of diabetes, including elevated glucose levels and intolerance to dietary sugars. These studies establish dHNF4 as a regulator of the adult metabolic state.
Collapse
Affiliation(s)
- Gilles Storelli
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA
| | - Judith Simcox
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112-5330, USA.
| |
Collapse
|
19
|
Mattila J, Kokki K, Hietakangas V, Boutros M. Stem Cell Intrinsic Hexosamine Metabolism Regulates Intestinal Adaptation to Nutrient Content. Dev Cell 2018; 47:112-121.e3. [PMID: 30220570 PMCID: PMC6179903 DOI: 10.1016/j.devcel.2018.08.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/07/2018] [Accepted: 08/14/2018] [Indexed: 02/08/2023]
Abstract
The intestine is an organ with an exceptionally high rate of cell turnover, and perturbations in this process can lead to severe diseases such as cancer or intestinal atrophy. Nutrition has a profound impact on intestinal volume and cellular architecture. However, how intestinal homeostasis is maintained in fluctuating dietary conditions remains insufficiently understood. By utilizing the Drosophila midgut model, we reveal a novel stem cell intrinsic mechanism coupling cellular metabolism with stem cell extrinsic growth signal. Our results show that intestinal stem cells (ISCs) employ the hexosamine biosynthesis pathway (HBP) to monitor nutritional status. Elevated activity of HBP promotes Warburg effect-like metabolic reprogramming required for adjusting the ISC division rate according to nutrient content. Furthermore, HBP activity is an essential facilitator for insulin signaling-induced ISC proliferation. In conclusion, ISC intrinsic hexosamine synthesis regulates metabolic pathway activities and defines the stem cell responsiveness to niche-derived growth signals. HBP is a mediator of Drosophila midgut adaptation to nutrient content ISC intrinsic HBP is a necessary and sufficient driver of stem cell divisions HBP activity regulates a Warburg-like metabolic reprogramming of the intestine HBP activity determines the output of InR signaling of the ISCs
Collapse
Affiliation(s)
- Jaakko Mattila
- German Cancer Research Center, Division of Signaling and Functional Genomics and Heidelberg University, Heidelberg 69120, Germany
| | - Krista Kokki
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland; Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland; Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
| | - Michael Boutros
- German Cancer Research Center, Division of Signaling and Functional Genomics and Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
20
|
Regulation of Carbohydrate Energy Metabolism in Drosophila melanogaster. Genetics 2018; 207:1231-1253. [PMID: 29203701 DOI: 10.1534/genetics.117.199885] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/02/2017] [Indexed: 02/08/2023] Open
Abstract
Carbohydrate metabolism is essential for cellular energy balance as well as for the biosynthesis of new cellular building blocks. As animal nutrient intake displays temporal fluctuations and each cell type within the animal possesses specific metabolic needs, elaborate regulatory systems are needed to coordinate carbohydrate metabolism in time and space. Carbohydrate metabolism is regulated locally through gene regulatory networks and signaling pathways, which receive inputs from nutrient sensors as well as other pathways, such as developmental signals. Superimposed on cell-intrinsic control, hormonal signaling mediates intertissue information to maintain organismal homeostasis. Misregulation of carbohydrate metabolism is causative for many human diseases, such as diabetes and cancer. Recent work in Drosophila melanogaster has uncovered new regulators of carbohydrate metabolism and introduced novel physiological roles for previously known pathways. Moreover, genetically tractable Drosophila models to study carbohydrate metabolism-related human diseases have provided new insight into the mechanisms of pathogenesis. Due to the high degree of conservation of relevant regulatory pathways, as well as vast possibilities for the analysis of gene-nutrient interactions and tissue-specific gene function, Drosophila is emerging as an important model system for research on carbohydrate metabolism.
Collapse
|
21
|
Abstract
Excess adipose fat accumulation, or obesity, is a growing problem worldwide in terms of both the rate of incidence and the severity of obesity-associated metabolic disease. Adipose tissue evolved in animals as a specialized dynamic lipid storage depot: adipose cells synthesize fat (a process called lipogenesis) when energy is plentiful and mobilize stored fat (a process called lipolysis) when energy is needed. When a disruption of lipid homeostasis favors increased fat synthesis and storage with little turnover owing to genetic predisposition, overnutrition or sedentary living, complications such as diabetes and cardiovascular disease are more likely to arise. The vinegar fly Drosophila melanogaster (Diptera: Drosophilidae) is used as a model to better understand the mechanisms governing fat metabolism and distribution. Flies offer a wealth of paradigms with which to study the regulation and physiological effects of fat accumulation. Obese flies accumulate triacylglycerols in the fat body, an organ similar to mammalian adipose tissue, which specializes in lipid storage and catabolism. Discoveries in Drosophila have ranged from endocrine hormones that control obesity to subcellular mechanisms that regulate lipogenesis and lipolysis, many of which are evolutionarily conserved. Furthermore, obese flies exhibit pathophysiological complications, including hyperglycemia, reduced longevity and cardiovascular function - similar to those observed in obese humans. Here, we review some of the salient features of the fly that enable researchers to study the contributions of feeding, absorption, distribution and the metabolism of lipids to systemic physiology.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | - Ronald P Kühnlein
- Department of Biochemistry 1, Institute of Molecular Biosciences, University of Graz, Humboldtstraβe 50/II, A-8010 Graz, Austria.,BioTechMed-Graz, Graz, Austria
| |
Collapse
|
22
|
Sugar sensing by ChREBP/Mondo-Mlx-new insight into downstream regulatory networks and integration of nutrient-derived signals. Curr Opin Cell Biol 2017; 51:89-96. [PMID: 29278834 DOI: 10.1016/j.ceb.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/17/2017] [Accepted: 12/13/2017] [Indexed: 12/13/2022]
Abstract
Animals regulate their physiology with respect to nutrient status, which requires nutrient sensing pathways. Simple carbohydrates, sugars, are sensed by the basic-helix-loop-helix leucine zipper transcription factors ChREBP/Mondo, together with their heterodimerization partner Mlx, which are well-established activators of sugar-induced lipogenesis. Loss of ChREBP/Mondo-Mlx in mouse and Drosophila leads to sugar intolerance, that is, inability to survive on sugar containing diet. Recent evidence has revealed that ChREBP/Mondo-Mlx responds to sugar and fatty acid-derived metabolites through several mechanisms and cross-connects with other nutrient sensing pathways. ChREBP/Mondo-Mlx controls several downstream transcription factors and hormones, which mediate not only readjustment of metabolic pathways, but also control feeding behavior, intestinal digestion, and circadian rhythm.
Collapse
|