1
|
Okamoto A, Uenaka M, Ito Y, Kuroki Y, Miyasaka T, Toda K, Hiryu S, Kobayasi KI, Tamai Y. Safety evaluations for transtympanic laser stimulation of the cochlea in Mongolian gerbils (Meriones unguiculatus). Neurosci Res 2024:S0168-0102(24)00124-X. [PMID: 39447653 DOI: 10.1016/j.neures.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Infrared laser stimulation of the cochlea has been proposed as a possible alternative to conventional auditory prostheses. Whereas previous studies have focused primarily on the short-term effects of laser stimulation, the practical application of this technics requires an investigation into whether prolonged laser exposure can induce neural responses and safely. This study assessed the effect of laser-induced damage to the cochlea on auditory perception using Mongolian gerbils (Meriones unguiculatus) trained with a classical conditioning task. The broadband noise was presented as a conditioned stimulus, and reward licking was recorded as a conditioned response. After training, the subject's cochlea was exposed to a continuous pulsed laser for 15 h. Broadband noise of various intensities was presented without pairing it with water before and after laser exposure to assess the decrease in auditory perception due to laser-induced injury. The licking rate did not change after laser exposure of 6.6 W/cm2 or weaker but drastically decreased after 26.4 W/cm2 or higher. These findings showed, for the first time, that the safety margin of long-term, at least several hours, cochlear laser stimulation exists and will contribute to the appropriate delimitation of the safe and effective laser stimulation parameters in future research.
Collapse
Affiliation(s)
- Aya Okamoto
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Miku Uenaka
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Yuki Ito
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Yuta Kuroki
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Tomohiro Miyasaka
- Neuropathology, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Koji Toda
- Department of Psychology, Keio University, Tokyo, Japan
| | - Shizuko Hiryu
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kohta I Kobayasi
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan.
| | - Yuta Tamai
- Neuroethology and Bioengineering, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan; Neurobiology of Social Communication, Department of Otolaryngology-Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, Tübingen 72076, Germany.
| |
Collapse
|
2
|
Bruce R, Weber MA, Bova A, Volkman R, Jacobs C, Sivakumar K, Kim Y, Curtu R, Narayanan N. Complementary cognitive roles for D2-MSNs and D1-MSNs during interval timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.25.550569. [PMID: 37546735 PMCID: PMC10402049 DOI: 10.1101/2023.07.25.550569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited distinct dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model. This model predicted that disrupting either D2-MSNs or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased interval timing response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also changed MSN dynamics and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs make complementary contributions to interval timing despite opposing dynamics, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for human striatal diseases and therapies targeting striatal pathways.
Collapse
|
3
|
Marrero K, Aruljothi K, Delgadillo C, Kabbara S, Swatch L, Zagha E. Goal-directed learning is multidimensional and accompanied by diverse and widespread changes in neocortical signaling. Cereb Cortex 2024; 34:bhae328. [PMID: 39110412 PMCID: PMC11304966 DOI: 10.1093/cercor/bhae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
New tasks are often learned in stages with each stage reflecting a different learning challenge. Accordingly, each learning stage is likely mediated by distinct neuronal processes. And yet, most rodent studies of the neuronal correlates of goal-directed learning focus on individual outcome measures and individual brain regions. Here, we longitudinally studied mice from naïve to expert performance in a head-fixed, operant conditioning whisker discrimination task. In addition to tracking the primary behavioral outcome of stimulus discrimination, we tracked and compared an array of object-based and temporal-based behavioral measures. These behavioral analyses identify multiple, partially overlapping learning stages in this task, consistent with initial response implementation, early stimulus-response generalization, and late response inhibition. To begin to understand the neuronal foundations of these learning processes, we performed widefield Ca2+ imaging of dorsal neocortex throughout learning and correlated behavioral measures with neuronal activity. We found distinct and widespread correlations between neocortical activation patterns and various behavioral measures. For example, improvements in sensory discrimination correlated with target stimulus evoked activations of response-related cortices along with distractor stimulus evoked global cortical suppression. Our study reveals multidimensional learning for a simple goal-directed learning task and generates hypotheses for the neuronal modulations underlying these various learning processes.
Collapse
Affiliation(s)
- Krista Marrero
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Krithiga Aruljothi
- Department of Psychology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Christian Delgadillo
- Division of Biomedical Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Sarah Kabbara
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Lovleen Swatch
- College of Natural & Agricultural Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Edward Zagha
- Neuroscience Graduate Program, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
- Department of Psychology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Bigus ER, Lee HW, Bowler JC, Shi J, Heys JG. Medial entorhinal cortex mediates learning of context-dependent interval timing behavior. Nat Neurosci 2024; 27:1587-1598. [PMID: 38877306 DOI: 10.1038/s41593-024-01683-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/14/2024] [Indexed: 06/16/2024]
Abstract
Episodic memory requires encoding the temporal structure of experience and relies on brain circuits in the medial temporal lobe, including the medial entorhinal cortex (MEC). Recent studies have identified MEC 'time cells', which fire at specific moments during interval timing tasks, collectively tiling the entire timing period. It has been hypothesized that MEC time cells could provide temporal information necessary for episodic memories, yet it remains unknown whether they display learning dynamics required for encoding different temporal contexts. To explore this, we developed a new behavioral paradigm requiring mice to distinguish temporal contexts. Combined with methods for cellular resolution calcium imaging, we found that MEC time cells display context-dependent neural activity that emerges with task learning. Through chemogenetic inactivation we found that MEC activity is necessary for learning of context-dependent interval timing behavior. Finally, we found evidence of a common circuit mechanism that could drive sequential activity of both time cells and spatially selective neurons in MEC. Our work suggests that the clock-like firing of MEC time cells can be modulated by learning, allowing the tracking of various temporal structures that emerge through experience.
Collapse
Affiliation(s)
- Erin R Bigus
- Interdepartmental PhD Program in Neuroscience, University of Utah, Salt Lake City, UT, USA
| | - Hyun-Woo Lee
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - John C Bowler
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Jiani Shi
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - James G Heys
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Zhou M, Wu B, Jeong H, Burke DA, Namboodiri VMK. An open-source behavior controller for associative learning and memory (B-CALM). Behav Res Methods 2024; 56:2695-2710. [PMID: 37464151 PMCID: PMC10898869 DOI: 10.3758/s13428-023-02182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2023] [Indexed: 07/20/2023]
Abstract
Associative learning and memory, i.e., learning and remembering the associations between environmental stimuli, self-generated actions, and outcomes such as rewards or punishments, are critical for the well-being of animals. Hence, the neural mechanisms underlying these processes are extensively studied using behavioral tasks in laboratory animals. Traditionally, these tasks have been controlled using commercial hardware and software, which limits scalability and accessibility due to their cost. More recently, due to the revolution in microcontrollers or microcomputers, several general-purpose and open-source solutions have been advanced for controlling neuroscientific behavioral tasks. While these solutions have great strength due to their flexibility and general-purpose nature, for the same reasons, they suffer from some disadvantages including the need for considerable programming expertise, limited online visualization, or slower than optimal response latencies for any specific task. Here, to mitigate these concerns, we present an open-source behavior controller for associative learning and memory (B-CALM). B-CALM provides an integrated suite that can control a host of associative learning and memory behaviors. As proof of principle for its applicability, we show data from head-fixed mice learning Pavlovian conditioning, operant conditioning, discrimination learning, as well as a timing task and a choice task. These can be run directly from a user-friendly graphical user interface (GUI) written in MATLAB that controls many independently running Arduino Mega microcontrollers in parallel (one per behavior box). In sum, B-CALM will enable researchers to execute a wide variety of associative learning and memory tasks in a scalable, accurate, and user-friendly manner.
Collapse
Affiliation(s)
- Mingkang Zhou
- Department of Neurology, University of California, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA
| | - Brenda Wu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Huijeong Jeong
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Dennis A Burke
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vijay Mohan K Namboodiri
- Department of Neurology, University of California, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
- Weill Institute for Neuroscience, Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience, University of California, San Francisco, CA, USA.
| |
Collapse
|
6
|
Bigus ER, Lee HW, Bowler JC, Shi J, Heys JG. Medial entorhinal cortex plays a specialized role in learning of flexible, context-dependent interval timing behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.18.524598. [PMID: 38260332 PMCID: PMC10802491 DOI: 10.1101/2023.01.18.524598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Episodic memory requires encoding the temporal structure of experience and relies on brain circuits in the medial temporal lobe, including the medial entorhinal cortex (MEC). Recent studies have identified MEC 'time cells', which fire at specific moments during interval timing tasks, collectively tiling the entire timing period. It has been hypothesized that MEC time cells could provide temporal information necessary for episodic memories, yet it remains unknown whether MEC time cells display learning dynamics required for encoding different temporal contexts. To explore this, we developed a novel behavioral paradigm that requires distinguishing temporal contexts. Combined with methods for cellular resolution calcium imaging, we find that MEC time cells display context-dependent neural activity that emerges with task learning. Through chemogenetic inactivation we find that MEC activity is necessary for learning of context-dependent interval timing behavior. Finally, we find evidence of a common circuit mechanism that could drive sequential activity of both time cells and spatially selective neurons in MEC. Our work suggests that the clock-like firing of MEC time cells can be modulated by learning, allowing the tracking of various temporal structures that emerge through experience.
Collapse
|
7
|
Rueda-Orozco PE, Hidalgo-Balbuena AE, González-Pereyra P, Martinez-Montalvo MG, Báez-Cordero AS. The Interactions of Temporal and Sensory Representations in the Basal Ganglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:141-158. [PMID: 38918350 DOI: 10.1007/978-3-031-60183-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
In rodents and primates, interval estimation has been associated with a complex network of cortical and subcortical structures where the dorsal striatum plays a paramount role. Diverse evidence ranging from individual neurons to population activity has demonstrated that this area hosts temporal-related neural representations that may be instrumental for the perception and production of time intervals. However, little is known about how temporal representations interact with other well-known striatal representations, such as kinematic parameters of movements or somatosensory representations. An attractive hypothesis suggests that somatosensory representations may serve as the scaffold for complex representations such as elapsed time. Alternatively, these representations may coexist as independent streams of information that could be integrated into downstream nuclei, such as the substantia nigra or the globus pallidus. In this review, we will revise the available information suggesting an instrumental role of sensory representations in the construction of temporal representations at population and single-neuron levels throughout the basal ganglia.
Collapse
Affiliation(s)
- Pavel E Rueda-Orozco
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico.
| | | | | | | | - Ana S Báez-Cordero
- Institute of Neurobiology, National Autonomous University of México, Querétaro, Mexico
| |
Collapse
|
8
|
Hu Y, Ma TC, Alberico SL, Ding Y, Jin L, Kang UJ. Substantia Nigra Pars Reticulata Projections to the Pedunculopontine Nucleus Modulate Dyskinesia. Mov Disord 2023; 38:1850-1860. [PMID: 37461292 PMCID: PMC10932617 DOI: 10.1002/mds.29558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/02/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Long-term use of levodopa for Parkinson's disease (PD) treatment is often hindered by development of motor complications, including levodopa-induced dyskinesia (LID). The substantia nigra pars reticulata (SNr) and globus pallidus internal segment (GPi) are the output nuclei of the basal ganglia. Dysregulation of SNr and GPi activity contributes to PD pathophysiology and LID. OBJECTIVE The objective of this study was to determine whether direct modulation of SNr GABAergic neurons and SNr projections to the pedunculopontine nucleus (PPN) regulates PD symptoms and LID in a mouse model. METHODS We expressed Cre-recombinase activated channelrhodopsin-2 (ChR2) or halorhodopsin adeno-associated virus-2 (AAV2) vectors selectively in SNr GABAergic neurons of Vgat-IRES-Cre mice in a 6-hydroxydopamine model of PD to investigate whether direct optogenetic modulation of SNr neurons or their projections to the PPN regulates PD symptoms and LID expression. The forepaw stepping task, mouse LID rating scale, and open-field locomotion were used to assess akinesia and LID to test the effect of SNr modulation. RESULTS Akinesia was improved by suppressing SNr neuron activity with halorhodopsin. LID was significantly reduced by increasing SNr neuronal activity with ChR2, which did not interfere with the antiakinetic effect of levodopa. Optical stimulation of ChR2 in SNr projections to the PPN recapitulated direct SNr stimulation. CONCLUSIONS Modulation of SNr GABAergic neurons alters akinesia and LID expression in a manner consistent with the rate model of basal ganglia circuitry. Moreover, the projections from SNr to PPN likely mediate the antidyskinetic effect of increasing SNr neuronal activity, identifying a potential novel role for the PPN in LID. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Yong Hu
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Thong C. Ma
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | | | - Yunmin Ding
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 200092, China
| | - Un Jung Kang
- Department of Neurology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
9
|
Xie T, Huang C, Zhang Y, Liu J, Yao H. Influence of Recent Trial History on Interval Timing. Neurosci Bull 2023; 39:559-575. [PMID: 36209314 PMCID: PMC10073370 DOI: 10.1007/s12264-022-00954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022] Open
Abstract
Interval timing is involved in a variety of cognitive behaviors such as associative learning and decision-making. While it has been shown that time estimation is adaptive to the temporal context, it remains unclear how interval timing behavior is influenced by recent trial history. Here we found that, in mice trained to perform a licking-based interval timing task, a decrease of inter-reinforcement interval in the previous trial rapidly shifted the time of anticipatory licking earlier. Optogenetic inactivation of the anterior lateral motor cortex (ALM), but not the medial prefrontal cortex, for a short time before reward delivery caused a decrease in the peak time of anticipatory licking in the next trial. Electrophysiological recordings from the ALM showed that the response profiles preceded by short and long inter-reinforcement intervals exhibited task-engagement-dependent temporal scaling. Thus, interval timing is adaptive to recent experience of the temporal interval, and ALM activity during time estimation reflects recent experience of interval.
Collapse
Affiliation(s)
- Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Can Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
10
|
Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion. Nat Commun 2022; 13:7708. [PMID: 36550097 PMCID: PMC9780347 DOI: 10.1038/s41467-022-35346-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.
Collapse
|
11
|
Yu Q, Bi Z, Jiang S, Yan B, Chen H, Wang Y, Miao Y, Li K, Wei Z, Xie Y, Tan X, Liu X, Fu H, Cui L, Xing L, Weng S, Wang X, Yuan Y, Zhou C, Wang G, Li L, Ma L, Mao Y, Chen L, Zhang J. Visual cortex encodes timing information in humans and mice. Neuron 2022; 110:4194-4211.e10. [PMID: 36195097 DOI: 10.1016/j.neuron.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2022] [Accepted: 09/07/2022] [Indexed: 11/07/2022]
Abstract
Despite the importance of timing in our daily lives, our understanding of how the human brain mediates second-scale time perception is limited. Here, we combined intracranial stereoelectroencephalography (SEEG) recordings in epileptic patients and circuit dissection in mice to show that visual cortex (VC) encodes timing information. We first asked human participants to perform an interval-timing task and found VC to be a key timing brain area. We then conducted optogenetic experiments in mice and showed that VC plays an important role in the interval-timing behavior. We further found that VC neurons fired in a time-keeping sequential manner and exhibited increased excitability in a timed manner. Finally, we used a computational model to illustrate a self-correcting learning process that generates interval-timed activities with scalar-timing property. Our work reveals how localized oscillations in VC occurring in the seconds to deca-seconds range relate timing information from the external world to guide behavior.
Collapse
Affiliation(s)
- Qingpeng Yu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zedong Bi
- Lingang Laboratory, Shanghai 200031, China; Institute for Future, School of Automation, Qingdao University, Qingdao 266071, China; Department of Physics, Centre for Nonlinear Studies and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research Centre, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Shize Jiang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Biao Yan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Heming Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yiting Wang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yizhan Miao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Kexin Li
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Zixuan Wei
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanting Xie
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xinrong Tan
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaodi Liu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Hang Fu
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Liyuan Cui
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Lu Xing
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Shijun Weng
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Xin Wang
- Department of Neurology and Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yuanzhi Yuan
- Department of Neurology and Ophthalmology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Changsong Zhou
- Department of Physics, Centre for Nonlinear Studies and Institute of Computational and Theoretical Studies, Hong Kong Baptist University, Kowloon Tong, Hong Kong; Research Centre, HKBU Institute of Research and Continuing Education, Shenzhen, China
| | - Gang Wang
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Liang Li
- Center of Brain Sciences, Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Lan Ma
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Mao
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Chen
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China; Tianqiao and Chrissy Chen Institute Clinical Translational Research Center, Shanghai 200040, China.
| | - Jiayi Zhang
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science and Institutes of Brain Science, Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China; Institute for Medical and Engineering Innovation, Eye & ENT Hospital, Fudan University, Shanghai 200031, China.
| |
Collapse
|
12
|
Yamada K, Toda K. Pupillary dynamics of mice performing a Pavlovian delay conditioning task reflect reward-predictive signals. Front Syst Neurosci 2022; 16:1045764. [PMID: 36567756 PMCID: PMC9772849 DOI: 10.3389/fnsys.2022.1045764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Pupils can signify various internal processes and states, such as attention, arousal, and working memory. Changes in pupil size have been associated with learning speed, prediction of future events, and deviations from the prediction in human studies. However, the detailed relationships between pupil size changes and prediction are unclear. We explored pupil size dynamics in mice performing a Pavlovian delay conditioning task. A head-fixed experimental setup combined with deep-learning-based image analysis enabled us to reduce spontaneous locomotor activity and to track the precise dynamics of pupil size of behaving mice. By setting up two experimental groups, one for which mice were able to predict reward in the Pavlovian delay conditioning task and the other for which mice were not, we demonstrated that the pupil size of mice is modulated by reward prediction and consumption, as well as body movements, but not by unpredicted reward delivery. Furthermore, we clarified that pupil size is still modulated by reward prediction even after the disruption of body movements by intraperitoneal injection of haloperidol, a dopamine D2 receptor antagonist. These results suggest that changes in pupil size reflect reward prediction signals. Thus, we provide important evidence to reconsider the neuronal circuit involved in computing reward prediction error. This integrative approach of behavioral analysis, image analysis, pupillometry, and pharmacological manipulation will pave the way for understanding the psychological and neurobiological mechanisms of reward prediction and the prediction errors essential to learning and behavior.
Collapse
Affiliation(s)
- Kota Yamada
- Department of Psychology, Keio University, Tokyo, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Koji Toda
- Department of Psychology, Keio University, Tokyo, Japan
| |
Collapse
|
13
|
De Corte BJ, Akdoğan B, Balsam PD. Temporal scaling and computing time in neural circuits: Should we stop watching the clock and look for its gears? Front Behav Neurosci 2022; 16:1022713. [PMID: 36570701 PMCID: PMC9773401 DOI: 10.3389/fnbeh.2022.1022713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
Timing underlies a variety of functions, from walking to perceiving causality. Neural timing models typically fall into one of two categories-"ramping" and "population-clock" theories. According to ramping models, individual neurons track time by gradually increasing or decreasing their activity as an event approaches. To time different intervals, ramping neurons adjust their slopes, ramping steeply for short intervals and vice versa. In contrast, according to "population-clock" models, multiple neurons track time as a group, and each neuron can fire nonlinearly. As each neuron changes its rate at each point in time, a distinct pattern of activity emerges across the population. To time different intervals, the brain learns the population patterns that coincide with key events. Both model categories have empirical support. However, they often differ in plausibility when applied to certain behavioral effects. Specifically, behavioral data indicate that the timing system has a rich computational capacity, allowing observers to spontaneously compute novel intervals from previously learned ones. In population-clock theories, population patterns map to time arbitrarily, making it difficult to explain how different patterns can be computationally combined. Ramping models are viewed as more plausible, assuming upstream circuits can set the slope of ramping neurons according to a given computation. Critically, recent studies suggest that neurons with nonlinear firing profiles often scale to time different intervals-compressing for shorter intervals and stretching for longer ones. This "temporal scaling" effect has led to a hybrid-theory where, like a population-clock model, population patterns encode time, yet like a ramping neuron adjusting its slope, the speed of each neuron's firing adapts to different intervals. Here, we argue that these "relative" population-clock models are as computationally plausible as ramping theories, viewing population-speed and ramp-slope adjustments as equivalent. Therefore, we view identifying these "speed-control" circuits as a key direction for evaluating how the timing system performs computations. Furthermore, temporal scaling highlights that a key distinction between different neural models is whether they propose an absolute or relative time-representation. However, we note that several behavioral studies suggest the brain processes both scales, cautioning against a dichotomy.
Collapse
Affiliation(s)
- Benjamin J. De Corte
- Department of Psychology, Columbia University, New York, NY, United States
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Başak Akdoğan
- Department of Psychology, Columbia University, New York, NY, United States
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
| | - Peter D. Balsam
- Department of Psychology, Columbia University, New York, NY, United States
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, United States
- Department of Neuroscience and Behavior, Barnard College, New York, NY, United States
| |
Collapse
|
14
|
Yamamoto K, Yamada K, Yatagai S, Ujihara Y, Toda K. Spatiotemporal Pavlovian head-fixed reversal learning task for mice. Mol Brain 2022; 15:78. [PMID: 36071471 PMCID: PMC9454184 DOI: 10.1186/s13041-022-00952-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/09/2022] [Indexed: 11/19/2022] Open
Abstract
Our world is full of uncertainty. Animals, including humans, need to behave flexibly to adjust to ever-changing environments. Reversal learning tasks have been used to assess behavioral flexibility in many species. However, there are some limitations in the traditional free-moving methodology, including (1) sessions to train the animals, (2) within-session number of trials associated with reversals, (3) factors of physical movement unrelated to the task in the maze or operant box, and (4) incompatibility with techniques, such as two-photon imaging. Therefore, to address these limitations, we established a novel spatiotemporal Pavlovian head-fixed reversal learning task for mice. Six experimentally naive adult C57BL/6J mice were used in this study. First, we trained head-fixed mice on a fixed-time schedule task. Sucrose solution was delivered every 10 s with a single drinking spout placed within the licking distance of the mice. After the mice showed anticipatory licking toward the timing of sucrose solution delivery, we began training the mice on the fixed-time schedule reversal learning task with two licking spouts. In this task, sucrose solution was delivered through one of the two drinking spouts. The rewarding spout was switched every 10 trials. Mice quickly learned to switch anticipatory licking to the rewarding side of the spouts, suggesting that they learned this head-fixed reversal learning task. Using the head-fixed experimental design, behavioral measures can be simplified by eliminating the complex behavioral sequences observed in free-moving animals. This novel head-fixed reversal learning task is a useful assay for studying the neurobiological mechanism of behavioral flexibility that is impaired in various psychopathological conditions.
Collapse
Affiliation(s)
- Kohei Yamamoto
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108-8345, Japan
| | - Kota Yamada
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108-8345, Japan.,Japan Society for Promotion of Science, Chiyoda-ku, Tokyo, Japan
| | - Saya Yatagai
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108-8345, Japan
| | - Yusuke Ujihara
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108-8345, Japan.,Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Koji Toda
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, 108-8345, Japan.
| |
Collapse
|
15
|
Kaneko S, Niki Y, Yamada K, Nasukawa D, Ujihara Y, Toda K. Systemic injection of nicotinic acetylcholine receptor antagonist mecamylamine affects licking, eyelid size, and locomotor and autonomic activities but not temporal prediction in male mice. Mol Brain 2022; 15:77. [PMID: 36068635 PMCID: PMC9450238 DOI: 10.1186/s13041-022-00959-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/05/2022] [Indexed: 12/26/2022] Open
Abstract
Nicotinic acetylcholine receptors are thought to be associated with a wide range of phenomena, such as movement, learning, memory, attention, and addiction. However, the causal relationship between nicotinic receptor activity and behavior remains unclear. Contrary to the studies that examined the functions of muscarinic acetylcholine receptors, the role of the nicotinic acetylcholine receptors on behavior has not been examined as extensively. Here, we examined the effects of intraperitoneal injection of mecamylamine, a nicotinic acetylcholine receptor antagonist, on the performance of male mice in a head-fixed temporal conditioning task and a free-moving open-field task. The head-fixed experimental setup allowed us to record and precisely quantify the licking response while the mice performed the behavioral task with no external cues. In addition, by combining the utility of the head-fixed experimental design with computer vision analysis based on deep learning algorithms, we succeeded in quantifying the eyelid size of awake mice. In the temporal conditioning task, we delivered a 10% sucrose solution every 10 s using a blunt-tipped needle placed within the licking distance of the mice. After the training, the mice showed increased anticipatory licking toward the timing of sucrose delivery, suggesting that the mice could predict the timing of the reward. Systemic injection of mecamylamine decreased licking behavior and caused eye closure but had no effect on learned conditioned predictive behavior in the head-fixed temporal conditioning task. In addition, the injection of mecamylamine decreased spontaneous locomotor activity in a dose-dependent manner in the free-moving open-field task. The results in the open-field experiments further revealed that the effect of mecamylamine on fecal output and urination, suggesting the effects on autonomic activities. Our achievement of successful eyelid size recording has potential as a useful approach in initial screening for drug discovery. Our study paves a way forward to understanding the role of nicotinic acetylcholine receptors on learning and behavior.
Collapse
Affiliation(s)
- Shohei Kaneko
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yasuyuki Niki
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Kota Yamada
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
- Japan Society for Promotion of Science, Tokyo, Japan
| | - Daiki Nasukawa
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan
| | - Yusuke Ujihara
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, TN, Memphis, USA
| | - Koji Toda
- Department of Psychology, Keio University, Mita 2-15-45, Minato-ku, Tokyo, Japan.
| |
Collapse
|
16
|
Yin B, Shi Z, Wang Y, Meck WH. Oscillation/Coincidence-Detection Models of Reward-Related Timing in Corticostriatal Circuits. TIMING & TIME PERCEPTION 2022. [DOI: 10.1163/22134468-bja10057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
The major tenets of beat-frequency/coincidence-detection models of reward-related timing are reviewed in light of recent behavioral and neurobiological findings. This includes the emphasis on a core timing network embedded in the motor system that is comprised of a corticothalamic-basal ganglia circuit. Therein, a central hub provides timing pulses (i.e., predictive signals) to the entire brain, including a set of distributed satellite regions in the cerebellum, cortex, amygdala, and hippocampus that are selectively engaged in timing in a manner that is more dependent upon the specific sensory, behavioral, and contextual requirements of the task. Oscillation/coincidence-detection models also emphasize the importance of a tuned ‘perception’ learning and memory system whereby target durations are detected by striatal networks of medium spiny neurons (MSNs) through the coincidental activation of different neural populations, typically utilizing patterns of oscillatory input from the cortex and thalamus or derivations thereof (e.g., population coding) as a time base. The measure of success of beat-frequency/coincidence-detection accounts, such as the Striatal Beat-Frequency model of reward-related timing (SBF), is their ability to accommodate new experimental findings while maintaining their original framework, thereby making testable experimental predictions concerning diagnosis and treatment of issues related to a variety of dopamine-dependent basal ganglia disorders, including Huntington’s and Parkinson’s disease.
Collapse
Affiliation(s)
- Bin Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Zhuanghua Shi
- Department of Psychology, Ludwig Maximilian University of Munich, 80802 Munich, Germany
| | - Yaxin Wang
- School of Psychology, Fujian Normal University, Fuzhou, 350117, Fujian, China
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
17
|
Rodríguez-Saltos CA, Duque FG, Clarke JA. Precise and nonscalar timing of intervals in a bird vocalization. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
18
|
Gaffield MA, Sauerbrei BA, Christie JM. Cerebellum encodes and influences the initiation, performance, and termination of discontinuous movements in mice. eLife 2022; 11:e71464. [PMID: 35451957 PMCID: PMC9075950 DOI: 10.7554/elife.71464] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
The cerebellum is hypothesized to represent timing information important for organizing salient motor events during periodically performed discontinuous movements. To provide functional evidence validating this idea, we measured and manipulated Purkinje cell (PC) activity in the lateral cerebellum of mice trained to volitionally perform periodic bouts of licking for regularly allocated water rewards. Overall, PC simple spiking modulated during task performance, mapping phasic tongue protrusions and retractions, as well as ramping prior to both lick-bout initiation and termination, two important motor events delimiting movement cycles. The ramping onset occurred earlier for the initiation of uncued exploratory licking that anticipated water availability relative to licking that was reactive to water allocation, suggesting that the cerebellum is engaged differently depending on the movement context. In a subpopulation of PCs, climbing-fiber-evoked responses also increased during lick-bout initiation, but not termination, highlighting differences in how cerebellar input pathways represent task-related information. Optogenetic perturbation of PC activity disrupted the behavior by degrading lick-bout rhythmicity in addition to initiating and terminating licking bouts confirming a causative role in movement organization. Together, these results substantiate that the cerebellum contributes to the initiation and timing of repeated motor actions.
Collapse
Affiliation(s)
| | | | - Jason M Christie
- Max Planck Florida Institute for NeuroscienceJupiterUnited States
| |
Collapse
|
19
|
Villalobos CA, Basso MA. Optogenetic activation of the inhibitory nigro-collicular circuit evokes contralateral orienting movements in mice. Cell Rep 2022; 39:110699. [PMID: 35443172 PMCID: PMC10144672 DOI: 10.1016/j.celrep.2022.110699] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/20/2021] [Accepted: 03/29/2022] [Indexed: 11/03/2022] Open
Abstract
We report that increasing inhibition from the basal ganglia (BG) to the superior colliculus (SC) through the substantia nigra pars reticulata (nigra) using in vivo optogenetic activation of GABAergic terminals in mice produces contralateral orienting movements. These movements are unexpected because decreases, and not increases, in nigral activity are generally associated with the initiation of orienting movements. We found that, in slice recordings, the same optogenetic stimulation of nigral terminals producing movements in vivo evokes post-inhibitory rebound depolarization followed by Na+ spikes in SC output neurons. Moreover, blocking T-type Ca2+ channels in slices prevent post-inhibitory rebound and subsequent Na+ spiking in SC output neurons and also reduce the likelihood of contralateral orienting in vivo. On the basis of these results, we propose that, in addition to the permissive role, the BG may play an active role in the generation of orienting movements in mice by driving post-inhibitory rebound depolarization in SC output neurons.
Collapse
Affiliation(s)
- Claudio A Villalobos
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| | - Michele A Basso
- Fuster Laboratory of Cognitive Neuroscience, Department of Psychiatry and Biobehavioral Sciences, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Bakhurin KI, Yin HH. Closing the loop on models of interval timing. Nat Neurosci 2022; 25:270-271. [PMID: 35260861 DOI: 10.1038/s41593-022-01015-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
21
|
A nigra-subthalamic circuit is involved in acute and chronic pain states. Pain 2022; 163:1952-1966. [PMID: 35082251 DOI: 10.1097/j.pain.0000000000002588] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/18/2022] [Indexed: 11/25/2022]
Abstract
ABSTRACT The basal ganglia modulate somatosensory pain pathways but it is unclear whether a common circuit exists to mitigate hyperalgesia in pain states induced by peripheral nociceptive stimuli. As a key output nucleus of the basal ganglia, the substantia nigra pars reticulata (SNr) may be a candidate for this role. To test this possibility, we optogenetically modulated SNr GABAergic neurons and examined pain thresholds in freely behaving male mice in inflammatory and neuropathic pain states as well as comorbid depression in chronic pain. We observed that stimulation of either SNr GABAergic neurons or their projections to the subthalamic nucleus (STN) significantly alleviated nociceptive responses in all pain states on the contralateral side and comorbid depression in chronic pain, and that this analgesic effect was eliminated when SNr-STN GABAergic projection was blocked. However, SNr modulation did not affect baseline pain thresholds. We also found that SNr-STN GABAergic projection was attenuated in pain states, resulting in disinhibition of STN neurons. Thus, impairment of the SNr-STN GABAergic circuit may be a common pathophysiology for the maintenance of hyperalgesia in both inflammatory and neuropathic pain states and the comorbid depression in chronic pain; compensating this circuit has potential to effectively treat related pain conditions.
Collapse
|
22
|
Chen Z, Zhang ZY, Zhang W, Xie T, Li Y, Xu XH, Yao H. Direct and indirect pathway neurons in ventrolateral striatum differentially regulate licking movement and nigral responses. Cell Rep 2021; 37:109847. [PMID: 34686331 DOI: 10.1016/j.celrep.2021.109847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Drinking behavior in rodents is characterized by stereotyped, rhythmic licking movement, which is regulated by the basal ganglia. It is unclear how direct and indirect pathways control the lick bout and individual spout contact. We find that inactivating D1 and D2 receptor-expressing medium spiny neurons (MSNs) in the ventrolateral striatum (VLS) oppositely alters the number of licks in a bout. D1- and D2-MSNs exhibit different patterns of lick-sequence-related activity and different phases of oscillation time-locked to the lick cycle. On the timescale of a lick cycle, transient inactivation of D1-MSNs during tongue protrusion reduces spout contact probability, whereas transiently inactivating D2-MSNs has no effect. On the timescale of a lick bout, inactivation of D1-MSNs (D2-MSNs) causes rate increase (decrease) in a subset of basal ganglia output neurons that decrease firing during licking. Our results reveal the distinct roles of D1- and D2-MSNs in regulating licking at both coarse and fine timescales.
Collapse
Affiliation(s)
- Zhaorong Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Yu Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yaping Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
23
|
Eudave-Patiño M, Alcalá E, Dos Santos CV, Buriticá J. Similar attention and performance in female and male CD1 mice in the peak procedure. Behav Processes 2021; 189:104443. [PMID: 34139283 DOI: 10.1016/j.beproc.2021.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/28/2022]
Abstract
Inaccurate and distorted timing are associated with neurodegenerative disorders such as Alzheimer's disease and schizophrenia in humans, which generates interest in the discovery and understanding of the factors behind such timing difficulties. Timing research in mice has taken an important role, because the availability of genetically-altered strains allows establishing the causal role of specific genes on such neurodegenerative disorders. Nevertheless, few studies have considered mice's sex and some have found sex differences in timing, although results are not yet conclusive. We tested female and male CD1 mice, an outbred strain not yet studied in a peak procedure. By varying the percentage of peak trials and the presence of a gap and/or a distractor in the tests, we found no sex differences in accuracy, precision, or attention. Both females and males followed a stop-clock strategy after distractor and gap + distractor trials. This suggests that both male and female CD1 mice may be exposed to a peak procedure to study factors associated to neurotoxicology or neurogenesis.
Collapse
Affiliation(s)
| | - Emmanuel Alcalá
- Universidad de Guadalajara, Centro de Estudios e Investigaciones en Comportamiento, Mexico; Research Laboratory on Optimal Design, Devices and Advanced Materials, Department of Mathematics and Physics, ITESO, Tlaquepaque, Jalisco, 45604, Mexico
| | | | - Jonathan Buriticá
- Universidad de Guadalajara, Centro de Estudios e Investigaciones en Comportamiento, Mexico.
| |
Collapse
|
24
|
Ikarashi M, Tanimoto H. Drosophila acquires seconds-scale rhythmic behavior. J Exp Biol 2021; 224:238112. [PMID: 33795422 DOI: 10.1242/jeb.242443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/22/2021] [Indexed: 11/20/2022]
Abstract
Detection of the temporal structure of stimuli is crucial for prediction. While perception of interval timing is relevant for immediate behavioral adaptations, it has scarcely been investigated, especially in invertebrates. Here, we examined whether the fruit fly, Drosophila melanogaster, can acquire rhythmic behavior in the range of seconds. To this end, we developed a novel temporal conditioning paradigm utilizing repeated electric shocks. Combined automatic behavioral annotation and time-frequency analysis revealed that behavioral rhythms continued after cessation of the shocks. Furthermore, we found that aging impaired interval timing. This study thus not only demonstrates the ability of insects to acquire behavioral rhythms of a few seconds, but highlights a life-course decline of temporal coordination, which is also common in mammals.
Collapse
Affiliation(s)
- Masayoshi Ikarashi
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| | - Hiromu Tanimoto
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-Ku, Sendai, 980-8577, Japan
| |
Collapse
|
25
|
Los SA, Nieuwenstein J, Bouharab A, Stephens DJ, Meeter M, Kruijne W. The warning stimulus as retrieval cue: The role of associative memory in temporal preparation. Cogn Psychol 2021; 125:101378. [PMID: 33524889 DOI: 10.1016/j.cogpsych.2021.101378] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 01/04/2021] [Accepted: 01/16/2021] [Indexed: 10/22/2022]
Abstract
In a warned reaction time task, the warning stimulus (S1) initiates a process of temporal preparation, which promotes a speeded response to the impending target stimulus (S2). According to the multiple trace theory of temporal preparation (MTP), participants learn the timing of S2 by storing a memory trace on each trial, which contains a temporal profile of the events on that trial. On each new trial, S1 serves as a retrieval cue that implicitly and associatively activates memory traces created on earlier trials, which jointly drive temporal preparation for S2. The idea that S1 assumes this role as a retrieval cue was tested across eight experiments, in which two different S1s were associated with two different distributions of S1-S2 intervals: one with predominantly short and one with predominantly long intervals. Experiments differed regarding the S1 features that made up a pair, ranging from highly distinct (e.g., tone and flash) to more similar (e.g., red and green flash) and verbal (i.e., "short" vs "long"). Exclusively for pairs of highly distinct S1s, the results showed that the S1 cue modified temporal preparation, even in participants who showed no awareness of the contingency. This cueing effect persisted in a subsequent transfer phase, in which the contingency between S1 and the timing of S2 was broken - a fact participants were informed of in advance. Together, these findings support the role of S1 as an implicit retrieval cue, consistent with MTP.
Collapse
|
26
|
Tallot L, Doyère V. Neural encoding of time in the animal brain. Neurosci Biobehav Rev 2020; 115:146-163. [DOI: 10.1016/j.neubiorev.2019.12.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/23/2019] [Accepted: 12/03/2019] [Indexed: 01/25/2023]
|
27
|
Hughes RN, Bakhurin KI, Petter EA, Watson GDR, Kim N, Friedman AD, Yin HH. Ventral Tegmental Dopamine Neurons Control the Impulse Vector during Motivated Behavior. Curr Biol 2020; 30:2681-2694.e5. [PMID: 32470362 PMCID: PMC7590264 DOI: 10.1016/j.cub.2020.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/11/2020] [Accepted: 05/01/2020] [Indexed: 01/11/2023]
Abstract
The ventral tegmental area (VTA) is a major source of dopamine, especially to the limbic brain regions. Despite decades of research, the function of VTA dopamine neurons remains controversial. Here, using a novel head-fixed behavioral system with five orthogonal force sensors, we show for the first time that the activity of dopamine neurons precisely represents the impulse vector (force exerted over time) generated by the animal. Distinct populations of VTA dopamine neurons contribute to components of the impulse vector in different directions. Optogenetic excitation of these neurons shows a linear relationship between signal injected and impulse generated. Optogenetic inhibition paused force generation or produced force in the backward direction. At the same time, these neurons also regulate the initiation and execution of anticipatory licking. Our results indicate that VTA dopamine controls the magnitude, direction, and duration of force used to move toward or away from any motivationally relevant stimuli.
Collapse
Affiliation(s)
- Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | | | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Glenn D R Watson
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Alexander D Friedman
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA; Department of Neurobiology, Duke University School of Medicine, Durham, NC 27708, USA.
| |
Collapse
|
28
|
Mediodorsal Thalamus Contributes to the Timing of Instrumental Actions. J Neurosci 2020; 40:6379-6388. [PMID: 32493711 DOI: 10.1523/jneurosci.0695-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
The perception of time is critical to adaptive behavior. While prefrontal cortex and basal ganglia have been implicated in interval timing in the seconds to minutes range, little is known about the role of the mediodorsal thalamus (MD), which is a key component of the limbic cortico-basal ganglia-thalamocortical loop. In this study, we tested the role of the MD in timing, using an operant temporal production task in male mice. In this task, that the expected timing of available rewards is indicated by lever pressing. Inactivation of the MD with muscimol produced rightward shifts in peak pressing on probe trials as well as increases in peak spread, thus significantly altering both temporal accuracy and precision. Optogenetic inhibition of glutamatergic projection neurons in the MD also resulted in similar changes in timing. The observed effects were found to be independent of significant changes in movement. Our findings suggest that the MD is a critical component of the neural circuit for interval timing, without playing a direct role in regulating ongoing performance.SIGNIFICANCE STATEMENT The mediodorsal nucleus (MD) of the thalamus is strongly connected with the prefrontal cortex and basal ganglia, areas which have been implicated in interval timing. Previous work has shown that the MD contributes to working memory and learning of action-outcome contingencies, but its role in behavioral timing is poorly understood. Using an operant temporal production task, we showed that inactivation of the MD significantly impaired timing behavior.
Collapse
|
29
|
Bakhurin KI, Li X, Friedman AD, Lusk NA, Watson GDR, Kim N, Yin HH. Opponent regulation of action performance and timing by striatonigral and striatopallidal pathways. eLife 2020; 9:e54831. [PMID: 32324535 PMCID: PMC7180055 DOI: 10.7554/elife.54831] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia have been implicated in action selection and timing, but the relative contributions of the striatonigral (direct) and striatopallidal (indirect) pathways to these functions remain unclear. We investigated the effects of optogenetic stimulation of D1+ (direct) and A2A+ (indirect) neurons in the ventrolateral striatum in head-fixed mice on a fixed time reinforcement schedule. Direct pathway stimulation initiates licking, whereas indirect pathway stimulation suppresses licking and results in rebound licking after stimulation. Moreover, direct and indirect pathways also play distinct roles in timing. Direct pathway stimulation produced a resetting of the internal timing process, whereas indirect pathway stimulation transiently paused timing, and proportionally delayed the next bout of licking. Our results provide evidence for the continuous and opposing contributions of the direct and indirect pathways in the production and timing of reward-guided behavior.
Collapse
Affiliation(s)
| | - Xiaoran Li
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | | | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Glenn DR Watson
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Namsoo Kim
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke UniversityDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| |
Collapse
|
30
|
Hughes RN, Bakhurin KI, Barter JW, Zhang J, Yin HH. A Head-Fixation System for Continuous Monitoring of Force Generated During Behavior. Front Integr Neurosci 2020; 14:11. [PMID: 32210772 PMCID: PMC7076082 DOI: 10.3389/fnint.2020.00011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 02/20/2020] [Indexed: 11/28/2022] Open
Abstract
Many studies in neuroscience use head-fixed behavioral preparations, which confer a number of advantages, including the ability to limit the behavioral repertoire and use techniques for large-scale monitoring of neural activity. But traditional studies using this approach use extremely limited behavioral measures, in part because it is difficult to detect the subtle movements and postural adjustments that animals naturally exhibit during head fixation. Here we report a new head-fixed setup with analog load cells capable of precisely monitoring the continuous forces exerted by mice. The load cells reveal the dynamic nature of movements generated not only around the time of task-relevant events, such as presentation of stimuli and rewards, but also during periods in between these events, when there is no apparent overt behavior. It generates a new and rich set of behavioral measures that have been neglected in previous experiments. We detail the construction of the system, which can be 3D-printed and assembled at low cost, show behavioral results collected from head-fixed mice, and demonstrate that neural activity can be highly correlated with the subtle, whole-body movements continuously produced during head restraint.
Collapse
Affiliation(s)
- Ryan N Hughes
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Konstantin I Bakhurin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Joseph W Barter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Jinyong Zhang
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States.,Department of Neurobiology, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
31
|
Yousefzadeh SA, Hesslow G, Shumyatsky GP, Meck WH. Internal Clocks, mGluR7 and Microtubules: A Primer for the Molecular Encoding of Target Durations in Cerebellar Purkinje Cells and Striatal Medium Spiny Neurons. Front Mol Neurosci 2020; 12:321. [PMID: 31998074 PMCID: PMC6965020 DOI: 10.3389/fnmol.2019.00321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
The majority of studies in the field of timing and time perception have generally focused on sub- and supra-second time scales, specific behavioral processes, and/or discrete neuronal circuits. In an attempt to find common elements of interval timing from a broader perspective, we review the literature and highlight the need for cell and molecular studies that can delineate the neural mechanisms underlying temporal processing. Moreover, given the recent attention to the function of microtubule proteins and their potential contributions to learning and memory consolidation/re-consolidation, we propose that these proteins play key roles in coding temporal information in cerebellar Purkinje cells (PCs) and striatal medium spiny neurons (MSNs). The presence of microtubules at relevant neuronal sites, as well as their adaptability, dynamic structure, and longevity, makes them a suitable candidate for neural plasticity at both intra- and inter-cellular levels. As a consequence, microtubules appear capable of maintaining a temporal code or engram and thereby regulate the firing patterns of PCs and MSNs known to be involved in interval timing. This proposed mechanism would control the storage of temporal information triggered by postsynaptic activation of mGluR7. This, in turn, leads to alterations in microtubule dynamics through a "read-write" memory process involving alterations in microtubule dynamics and their hexagonal lattice structures involved in the molecular basis of temporal memory.
Collapse
Affiliation(s)
- S. Aryana Yousefzadeh
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Germund Hesslow
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
32
|
Reyes MB, de Miranda DH, Tunes GC, Cravo AM, Caetano MS. Rats can learn a temporal task in a single session. Behav Processes 2019; 170:103986. [PMID: 31783298 DOI: 10.1016/j.beproc.2019.103986] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 11/30/2022]
Abstract
Fixed interval, peak interval, and temporal bisection procedures have been used to assess cognitive functions and address questions such as how animals perceive, represent, and reproduce time intervals. They have also been extensively used to test the effects of drugs on behavior, and to describe the neural correlates of interval timing. However, those procedures usually require several weeks of training for behavior to stabilize. Here, we investigated a variation of the Differential Reinforcement of Response Duration (DRRD) task with a target time of 1.2 s. We compared three types of training protocols and reported a procedure in which performance by the end of the very first session nearly matches the performance of long-term training. We also showed that the initial distribution of the responses is uni-modal and, as training evolves (and rats improve their performance), a second peak emerges and progressively shifts toward longer times. This one-day training protocol can be used to investigate temporal learning and may be especially useful to electrophysiological and neuropharmacological studies.
Collapse
Affiliation(s)
- Marcelo Bussotti Reyes
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil.
| | - Diego Henrique de Miranda
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Gabriela Chiuffa Tunes
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - André Mascioli Cravo
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Marcelo Salvador Caetano
- Center for Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil; Instituto Nacional de Ciência e Tecnologia, Sobre Comportamento, Cognição e Ensino, Brazil
| |
Collapse
|
33
|
Morrissette AE, Chen PH, Bhamani C, Borden PY, Waiblinger C, Stanley GB, Jaeger D. Unilateral Optogenetic Inhibition and Excitation of Basal Ganglia Output Affect Directional Lick Choices and Movement Initiation in Mice. Neuroscience 2019; 423:55-65. [PMID: 31705892 DOI: 10.1016/j.neuroscience.2019.10.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/17/2019] [Accepted: 10/17/2019] [Indexed: 11/30/2022]
Abstract
Models of basal ganglia (BG) function predict that tonic inhibitory output to motor thalamus (MT) suppresses unwanted movements, and that a decrease in such activity leads to action selection. Further, for unilateral activity changes in the BG, a lateralized effect on contralateral movements can be expected due to ipsilateral thalamocortical connectivity. However, a direct test of these outcomes of thalamic inhibition has not been performed. To conduct such a direct test, we utilized rapid optogenetic activation and inactivation of the GABAergic output of the substantia nigra pars reticulata (SNr) to MT in male and female mice that were trained in a sensory cued left/right licking task. Directional licking tasks have previously been shown to depend on a thalamocortical feedback loop between ventromedial MT and antero-lateral premotor cortex. In confirmation of model predictions, we found that unilateral optogenetic inhibition of GABAergic output from the SNr, during ipsilaterally cued trials, biased decision making towards a contralateral lick without affecting motor performance. In contrast, optogenetic excitation of SNr terminals in MT resulted in an opposite bias towards the ipsilateral direction confirming a bidirectional effect of tonic nigral output on directional decision making. However, direct optogenetic excitation of neurons in the SNr resulted in bilateral movement suppression, which is in agreement with previous results that show such suppression for nigral terminals in the superior colliculus (SC), which receives a bilateral projection from SNr.
Collapse
Affiliation(s)
| | - Po-Han Chen
- Department of Biology, Emory University, Atlanta, GA, United States
| | | | - Peter Y Borden
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Christian Waiblinger
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Garrett B Stanley
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Dieter Jaeger
- Department of Biology, Emory University, Atlanta, GA, United States.
| |
Collapse
|
34
|
Mikhael JG, Gershman SJ. Adapting the flow of time with dopamine. J Neurophysiol 2019; 121:1748-1760. [PMID: 30864882 PMCID: PMC6589719 DOI: 10.1152/jn.00817.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/04/2019] [Accepted: 02/20/2019] [Indexed: 01/25/2023] Open
Abstract
The modulation of interval timing by dopamine (DA) has been well established over decades of research. The nature of this modulation, however, has remained controversial: Although the pharmacological evidence has largely suggested that time intervals are overestimated with higher DA levels, more recent optogenetic work has shown the opposite effect. In addition, a large body of work has asserted DA's role as a "reward prediction error" (RPE), or a teaching signal that allows the basal ganglia to learn to predict future rewards in reinforcement learning tasks. Whether these two seemingly disparate accounts of DA may be related has remained an open question. By taking a reinforcement learning-based approach to interval timing, we show here that the RPE interpretation of DA naturally extends to its role as a modulator of timekeeping and furthermore that this view reconciles the seemingly conflicting observations. We derive a biologically plausible, DA-dependent plasticity rule that can modulate the rate of timekeeping in either direction and whose effect depends on the timing of the DA signal itself. This bidirectional update rule can account for the results from pharmacology and optogenetics as well as the behavioral effects of reward rate on interval timing and the temporal selectivity of striatal neurons. Hence, by adopting a single RPE interpretation of DA, our results take a step toward unifying computational theories of reinforcement learning and interval timing. NEW & NOTEWORTHY How does dopamine (DA) influence interval timing? A large body of pharmacological evidence has suggested that DA accelerates timekeeping mechanisms. However, recent optogenetic work has shown exactly the opposite effect. In this article, we relate DA's role in timekeeping to its most established role, as a critical component of reinforcement learning. This allows us to derive a neurobiologically plausible framework that reconciles a large body of DA's temporal effects, including pharmacological, behavioral, electrophysiological, and optogenetic.
Collapse
Affiliation(s)
- John G Mikhael
- Program in Neuroscience and MD-PhD Program, Harvard Medical School , Boston, Massachusetts
| | - Samuel J Gershman
- Center for Brain Science and Department of Psychology, Harvard University , Cambridge, Massachusetts
| |
Collapse
|
35
|
Bareš M, Apps R, Avanzino L, Breska A, D'Angelo E, Filip P, Gerwig M, Ivry RB, Lawrenson CL, Louis ED, Lusk NA, Manto M, Meck WH, Mitoma H, Petter EA. Consensus paper: Decoding the Contributions of the Cerebellum as a Time Machine. From Neurons to Clinical Applications. CEREBELLUM (LONDON, ENGLAND) 2019; 18:266-286. [PMID: 30259343 DOI: 10.1007/s12311-018-0979-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Time perception is an essential element of conscious and subconscious experience, coordinating our perception and interaction with the surrounding environment. In recent years, major technological advances in the field of neuroscience have helped foster new insights into the processing of temporal information, including extending our knowledge of the role of the cerebellum as one of the key nodes in the brain for this function. This consensus paper provides a state-of-the-art picture from the experts in the field of the cerebellar research on a variety of crucial issues related to temporal processing, drawing on recent anatomical, neurophysiological, behavioral, and clinical research.The cerebellar granular layer appears especially well-suited for timing operations required to confer millisecond precision for cerebellar computations. This may be most evident in the manner the cerebellum controls the duration of the timing of agonist-antagonist EMG bursts associated with fast goal-directed voluntary movements. In concert with adaptive processes, interactions within the cerebellar cortex are sufficient to support sub-second timing. However, supra-second timing seems to require cortical and basal ganglia networks, perhaps operating in concert with cerebellum. Additionally, sensory information such as an unexpected stimulus can be forwarded to the cerebellum via the climbing fiber system, providing a temporally constrained mechanism to adjust ongoing behavior and modify future processing. Patients with cerebellar disorders exhibit impairments on a range of tasks that require precise timing, and recent evidence suggest that timing problems observed in other neurological conditions such as Parkinson's disease, essential tremor, and dystonia may reflect disrupted interactions between the basal ganglia and cerebellum.The complex concepts emerging from this consensus paper should provide a foundation for further discussion, helping identify basic research questions required to understand how the brain represents and utilizes time, as well as delineating ways in which this knowledge can help improve the lives of those with neurological conditions that disrupt this most elemental sense. The panel of experts agrees that timing control in the brain is a complex concept in whom cerebellar circuitry is deeply involved. The concept of a timing machine has now expanded to clinical disorders.
Collapse
Affiliation(s)
- Martin Bareš
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic.
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA.
| | - Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Genoa, Italy
- Centre for Parkinson's Disease and Movement Disorders, Ospedale Policlinico San Martino, Genoa, Italy
| | - Assaf Breska
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Egidio D'Angelo
- Neurophysiology Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, Fondazione Istituto Neurologico Nazionale Casimiro Mondino (IRCCS), Pavia, Italy
| | - Pavel Filip
- First Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcus Gerwig
- Department of Neurology, University of Duisburg-Essen, Duisburg, Germany
| | - Richard B Ivry
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, USA
| | - Charlotte L Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Nicholas A Lusk
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium -Service des Neurosciences, UMons, Mons, Belgium
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Elijah A Petter
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| |
Collapse
|
36
|
Abstract
Within the field of movement disorders, the conceptual understanding of dystonia has continued to evolve. Clinical advances have included improvements in recognition of certain features of dystonia, such as tremor, and understanding of phenotypic spectrums in the genetic dystonias and dystonia terminology and classification. Progress has also been made in the understanding of underlying biological processes which characterize dystonia from discoveries using approaches such as neurophysiology, functional imaging, genetics, and animal models. Important advances include the role of the cerebellum in dystonia, the concept of dystonia as an aberrant brain network disorder, additional evidence supporting the concept of dystonia endophenotypes, and new insights into psychogenic dystonia. These discoveries have begun to shape treatment approaches as, in parallel, important new treatment modalities, including magnetic resonance imaging-guided focused ultrasound, have emerged and existing interventions such as deep brain stimulation have been further refined. In this review, these topics are explored and discussed.
Collapse
Affiliation(s)
- Stephen Tisch
- Faculty of Medicine, University of New South Wales, Sydney, Australia.,Department of Neurology, St Vincent's Hospital, Sydney, Australia
| |
Collapse
|
37
|
Gu BM, Kukreja K, Meck WH. Oscillation patterns of local field potentials in the dorsal striatum and sensorimotor cortex during the encoding, maintenance, and decision stages for the ordinal comparison of sub- and supra-second signal durations. Neurobiol Learn Mem 2018; 153:79-91. [PMID: 29778763 DOI: 10.1016/j.nlm.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/25/2018] [Accepted: 05/12/2018] [Indexed: 11/27/2022]
Abstract
Ordinal comparison of successively presented signal durations requires (a) the encoding of the first signal duration (standard), (b) maintenance of temporal information specific to the standard duration in memory, and (c) timing of the second signal duration (comparison) during which a comparison is made of the first and second durations. Rats were first trained to make ordinal comparisons of signal durations within three time ranges using 0.5, 1.0, and 3.0-s standard durations. Local field potentials were then recorded from the dorsal striatum and sensorimotor cortex in order to investigate the pattern of neural oscillations during each phase of the ordinal-comparison process. Increased power in delta and theta frequency ranges was observed during both the encoding and comparison stages. Active maintenance of a selected response, "shorter" or "longer" (counter-balanced across left and right levers), was represented by an increase of theta and delta oscillations in the contralateral striatum and cortex. Taken together, these data suggest that neural oscillations in the delta-theta range play an important role in the encoding, maintenance, and comparison of signal durations.
Collapse
Affiliation(s)
- Bon-Mi Gu
- Department of Neurology, University of California, San Francisco, CA, USA; Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Keshav Kukreja
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Warren H Meck
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| |
Collapse
|
38
|
Balcı F. Interval Timing: Stopping the Internal Stopwatch by Photostimulation. Curr Biol 2017; 27:R1312-R1314. [PMID: 29257964 DOI: 10.1016/j.cub.2017.10.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Animals use estimates of time intervals to adaptively guide their anticipatory actions. New research on mice shows that photostimulation of the neural pathway that coordinates drinking behavior delays subsequent anticipatory responses by pausing/resetting the internal stopwatch.
Collapse
Affiliation(s)
- Fuat Balcı
- Department of Psychology & Research Center for Translational Medicine, Koç University, Sarıyer, Istanbul, 34450, Turkey.
| |
Collapse
|