1
|
Zheng J, Mallon J, Lammers A, Rados T, Litschel T, Moody ERR, Ramirez-Diaz DA, Schmid A, Williams TA, Bisson-Filho AW, Garner E. Salactin, a dynamically unstable actin homolog in Haloarchaea. mBio 2023; 14:e0227223. [PMID: 37966230 PMCID: PMC10746226 DOI: 10.1128/mbio.02272-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Protein filaments play important roles in many biological processes. We discovered an actin homolog in halophilic archaea, which we call Salactin. Just like the filaments that segregate DNA in eukaryotes, Salactin grows out of the cell poles towards the middle, and then quickly depolymerizes, a behavior known as dynamic instability. Furthermore, we see that Salactin affects the distribution of DNA in daughter cells when cells are grown in low-phosphate media, suggesting Salactin filaments might be involved in segregating DNA when the cell has only a few copies of the chromosome.
Collapse
Affiliation(s)
- Jenny Zheng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - John Mallon
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Alex Lammers
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Department of Biomedical Engineering, The Biological Design Center, Boston University, Boston, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Theopi Rados
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Thomas Litschel
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Edmund R. R. Moody
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Diego A. Ramirez-Diaz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Amy Schmid
- Department of Biology, Duke University, Durham, North Carolina, USA
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexandre W. Bisson-Filho
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Dudek NK, Galaz-Montoya JG, Shi H, Mayer M, Danita C, Celis AI, Viehboeck T, Wu GH, Behr B, Bulgheresi S, Huang KC, Chiu W, Relman DA. Previously uncharacterized rectangular bacterial structures in the dolphin mouth. Nat Commun 2023; 14:2098. [PMID: 37055390 PMCID: PMC10102025 DOI: 10.1038/s41467-023-37638-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/23/2023] [Indexed: 04/15/2023] Open
Abstract
Much remains to be explored regarding the diversity of uncultured, host-associated microbes. Here, we describe rectangular bacterial structures (RBSs) in the mouths of bottlenose dolphins. DNA staining revealed multiple paired bands within RBSs, suggesting the presence of cells dividing along the longitudinal axis. Cryogenic transmission electron microscopy and tomography showed parallel membrane-bound segments that are likely cells, encapsulated by an S-layer-like periodic surface covering. RBSs displayed unusual pilus-like appendages with bundles of threads splayed at the tips. We present multiple lines of evidence, including genomic DNA sequencing of micromanipulated RBSs, 16S rRNA gene sequencing, and fluorescence in situ hybridization, suggesting that RBSs are bacterial and distinct from the genera Simonsiella and Conchiformibius (family Neisseriaceae), with which they share similar morphology and division patterning. Our findings highlight the diversity of novel microbial forms and lifestyles that await characterization using tools complementary to genomics such as microscopy.
Collapse
Affiliation(s)
- Natasha K Dudek
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, 95064, USA
- Quantori, Cambridge, MA, 02142, USA
| | | | - Handuo Shi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Megan Mayer
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Cristina Danita
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Arianna I Celis
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, and Vienna Doctoral School of Ecology and Evolution, University of Vienna, Vienna, Austria
| | - Gong-Her Wu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
| | - Barry Behr
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Austria
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - David A Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Nyongesa S, Weber PM, Bernet È, Pulido F, Nieves C, Nieckarz M, Delaby M, Viehboeck T, Krause N, Rivera-Millot A, Nakamura A, Vischer NOE, vanNieuwenhze M, Brun YV, Cava F, Bulgheresi S, Veyrier FJ. Evolution of longitudinal division in multicellular bacteria of the Neisseriaceae family. Nat Commun 2022; 13:4853. [PMID: 35995772 PMCID: PMC9395523 DOI: 10.1038/s41467-022-32260-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Rod-shaped bacteria typically elongate and divide by transverse fission. However, several bacterial species can form rod-shaped cells that divide longitudinally. Here, we study the evolution of cell shape and division mode within the family Neisseriaceae, which includes Gram-negative coccoid and rod-shaped species. In particular, bacteria of the genera Alysiella, Simonsiella and Conchiformibius, which can be found in the oral cavity of mammals, are multicellular and divide longitudinally. We use comparative genomics and ultrastructural microscopy to infer that longitudinal division within Neisseriaceae evolved from a rod-shaped ancestor. In multicellular longitudinally-dividing species, neighbouring cells within multicellular filaments are attached by their lateral peptidoglycan. In these bacteria, peptidoglycan insertion does not appear concentric, i.e. from the cell periphery to its centre, but as a medial sheet guillotining each cell. Finally, we identify genes and alleles associated with multicellularity and longitudinal division, including the acquisition of amidase-encoding gene amiC2, and amino acid changes in proteins including MreB and FtsA. Introduction of amiC2 and allelic substitution of mreB in a rod-shaped species that divides by transverse fission results in shorter cells with longer septa. Our work sheds light on the evolution of multicellularity and longitudinal division in bacteria, and suggests that members of the Neisseriaceae family may be good models to study these processes due to their morphological plasticity and genetic tractability. Rod-shaped bacteria typically elongate and divide by transverse fission, but a few species are known to divide longitudinally. Here, the authors use genomic, phylogenetic and microscopy techniques to shed light on the evolution of cell shape, multicellularity and division mode within the family Neisseriaceae.
Collapse
Affiliation(s)
- Sammy Nyongesa
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Philipp M Weber
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria.,University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
| | - Ève Bernet
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Francisco Pulido
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Cecilia Nieves
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Marie Delaby
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria.,University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria.,Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, , University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Nicole Krause
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria.,University of Vienna, Vienna Doctoral School of Ecology and Evolution, Vienna, Austria
| | - Alex Rivera-Millot
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Arnaldo Nakamura
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada
| | - Norbert O E Vischer
- Bacterial Cell Biology & Physiology, Swammerdam Institute of Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098, Amsterdam, the Netherlands
| | | | - Yves V Brun
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Frédéric J Veyrier
- INRS-Centre Armand-Frappier Santé Biotechnologie, Bacterial Symbionts Evolution, Laval, QC, H7V 1B7, Canada.
| |
Collapse
|
4
|
Wang J, Bulgheresi S, den Blaauwen T. The Longitudinal Dividing Bacterium Candidatus Thiosymbion Oneisti Has a Natural Temperature-Sensitive FtsZ Protein with Low GTPase Activity. Int J Mol Sci 2022; 23:3016. [PMID: 35328438 PMCID: PMC8953583 DOI: 10.3390/ijms23063016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
FtsZ, the bacterial tubulin-homolog, plays a central role in cell division and polymerizes into a ring-like structure at midcell to coordinate other cell division proteins. The rod-shaped gamma-proteobacterium Candidatus Thiosymbion oneisti has a medial discontinuous ellipsoidal "Z-ring." Ca. T. oneisti FtsZ shows temperature-sensitive characteristics when it is expressed in Escherichia coli, where it localizes at midcell. The overexpression of Ca. T. oneisti FtsZ interferes with cell division and results in filamentous cells. In addition, it forms ring- and barrel-like structures independently of E. coli FtsZ, which suggests that the difference in shape and size of the Ca. T. oneisti FtsZ ring is likely the result of its interaction with Z-ring organizing proteins. Similar to some temperature-sensitive alleles of E. coli FtsZ, Ca. T. oneisti FtsZ has a weak GTPase and does not polymerize in vitro. The temperature sensitivity of Ca. Thiosymbion oneisti FtsZ is likely an adaptation to the preferred temperature of less than 30 °C of its host, the nematode Laxus oneistus.
Collapse
Affiliation(s)
- Jinglan Wang
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Silvia Bulgheresi
- Environmental Cell Biology, Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria;
| | - Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Science, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| |
Collapse
|
5
|
Weber PM, Paredes GF, Viehboeck T, Pende N, Volland JM, Gros O, VanNieuwenhze M, Ott J, Bulgheresi S. FtsZ-mediated fission of a cuboid bacterial symbiont. iScience 2022; 25:103552. [PMID: 35059602 PMCID: PMC8760462 DOI: 10.1016/j.isci.2021.103552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/25/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Less than a handful of cuboid and squared cells have been described in nature, which makes them a rarity. Here, we show how Candidatus Thiosymbion cuboideus, a cube-like gammaproteobacterium, reproduces on the surface of marine free-living nematodes. Immunostaining of symbiont cells with an anti-fimbriae antibody revealed that they are host-polarized, as these appendages exclusively localized at the host-proximal (animal-attached) pole. Moreover, by applying a fluorescently labeled metabolic probe to track new cell wall insertion in vivo, we observed that the host-attached pole started septation before the distal one. Similarly, Ca. T. cuboideus cells immunostained with an anti-FtsZ antibody revealed a proximal-to-distal localization pattern of this tubulin homolog. Although FtsZ has been shown to arrange into squares in synthetically remodeled cuboid cells, here we show that FtsZ may also mediate the division of naturally occurring ones. This implies that, even in natural settings, membrane roundness is not required for FtsZ function. Ca. T. cuboideus cells are cuboid Septation is host oriented in Ca. T. cuboideus FtsZ localization pattern recapitulates that of new PG insertion FtsZ polymerizes into either straight or sharp-cornered filaments
Collapse
Affiliation(s)
- Philipp M. Weber
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Gabriela F. Paredes
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Tobias Viehboeck
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Division of Microbial Ecology, Center for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Nika Pende
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Evolutionary Biology of the Microbial Cell Unit, Department of Microbiology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France
| | - Jean-Marie Volland
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- LRC Systems, Menlo Park, CA 94025, USA
| | - Olivier Gros
- C3MAG, UFR Des Sciences Exactes Et Naturelles, Université Des Antilles, BP 592, 97159 Pointe-à-Pitre, Guadeloupe, France
| | | | - Jörg Ott
- Department of Functional and Evolutionary Ecology, Limnology and Bio-Oceanography Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Silvia Bulgheresi
- Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- Corresponding author
| |
Collapse
|
6
|
Oren A, Garrity GM. CANDIDATUS LIST No. 3. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2022; 72. [PMID: 35100104 DOI: 10.1099/ijsem.0.005186] [Citation(s) in RCA: 251] [Impact Index Per Article: 125.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M Garrity
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| |
Collapse
|
7
|
Sogin EM, Kleiner M, Borowski C, Gruber-Vodicka HR, Dubilier N. Life in the Dark: Phylogenetic and Physiological Diversity of Chemosynthetic Symbioses. Annu Rev Microbiol 2021; 75:695-718. [PMID: 34351792 DOI: 10.1146/annurev-micro-051021-123130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- E Maggie Sogin
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; ,
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27607, USA
| | - Christian Borowski
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| | | | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, 28359, Bremen, Germany; , .,MARUM-Center for Marine Environmental Sciences, University of Bremen, 28359, Bremen, Germany
| |
Collapse
|
8
|
Paredes GF, Viehboeck T, Lee R, Palatinszky M, Mausz MA, Reipert S, Schintlmeister A, Maier A, Volland JM, Hirschfeld C, Wagner M, Berry D, Markert S, Bulgheresi S, König L. Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. mSystems 2021; 6:e0118620. [PMID: 34058098 PMCID: PMC8269255 DOI: 10.1128/msystems.01186-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on "Candidatus Thiosymbion oneisti." Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that "Ca. T. oneisti" may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of "Candidatus Thiosymbion oneisti," a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont.
Collapse
Affiliation(s)
- Gabriela F. Paredes
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Tobias Viehboeck
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Raymond Lee
- Washington State University, School of Biological Sciences, Pullman, Washington, USA
| | - Marton Palatinszky
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela A. Mausz
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Siegfried Reipert
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Vienna, Austria
| | - Arno Schintlmeister
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Vienna, Austria
| | - Andreas Maier
- University of Vienna, Faculty of Geosciences, Geography, and Astronomy, Department of Geography and Regional Research, Geoecology, Vienna, Austria
| | - Jean-Marie Volland
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Claudia Hirschfeld
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Michael Wagner
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Aalborg University, Department of Chemistry and Bioscience, Aalborg, Denmark
| | - David Berry
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Stephanie Markert
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Silvia Bulgheresi
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Lena König
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| |
Collapse
|
9
|
Garcia-Perez C, Ito K, Geijo J, Feldbauer R, Schreiber N, Zu Castell W. Efficient Detection of Longitudinal Bacteria Fission Using Transfer Learning in Deep Neural Networks. Front Microbiol 2021; 12:645972. [PMID: 34168623 PMCID: PMC8217615 DOI: 10.3389/fmicb.2021.645972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
A very common way to classify bacteria is through microscopic images. Microscopic cell counting is a widely used technique to measure microbial growth. To date, fully automated methodologies are available for accurate and fast measurements; yet for bacteria dividing longitudinally, as in the case of Candidatus Thiosymbion oneisti, its cell count mainly remains manual. The identification of this type of cell division is important because it helps to detect undergoing cellular division from those which are not dividing once the sample is fixed. Our solution automates the classification of longitudinal division by using a machine learning method called residual network. Using transfer learning, we train a binary classification model in fewer epochs compared to the model trained without it. This potentially eliminates most of the manual labor of classifying the type of bacteria cell division. The approach is useful in automatically labeling a certain bacteria division after detecting and segmenting (extracting) individual bacteria images from microscopic images of colonies.
Collapse
Affiliation(s)
- Carlos Garcia-Perez
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany
| | - Keiichi Ito
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany
| | - Javier Geijo
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria.,Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Roman Feldbauer
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Nico Schreiber
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany
| | - Wolfgang Zu Castell
- Information and Communication Technology Department (ICT), Complex Systems, Helmholtz Zentrum München, Neuherberg, Germany.,Department of Mathematics, Technische Universität München, Munich, Germany
| |
Collapse
|
10
|
Zhu L, Rajendram M, Huang KC. Effects of fixation on bacterial cellular dimensions and integrity. iScience 2021; 24:102348. [PMID: 33912815 PMCID: PMC8066382 DOI: 10.1016/j.isci.2021.102348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022] Open
Abstract
Fixation facilitates imaging of subcellular localization and cell morphology, yet it remains unknown how fixation affects cellular dimensions and intracellular fluorescence patterns, particularly during long-term storage. Here, we characterized the effects of multiple fixatives on several bacterial species. Fixation generally reduced cell length by 5-15%; single-cell tracking in microfluidics revealed that the length decrease was an aggregate effect of many steps in the fixation protocol and that fluorescence of cytoplasmic GFP but not membrane-bound MreB-msfGFP was rapidly lost with formaldehyde-based fixatives. Cellular dimensions were preserved in formaldehyde-based fixatives for ≥4 days, but methanol caused length to decrease. Although methanol preserved cytoplasmic fluorescence better than formaldehyde-based fixatives, some Escherichia coli cells were able to grow directly after fixation. Moreover, methanol fixation caused lysis in a subpopulation of cells, with virtually all Bacillus subtilis cells lysing after one day. These findings highlight tradeoffs between maintenance of fluorescence and membrane integrity for future applications of fixation.
Collapse
Affiliation(s)
- Lillian Zhu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Manohary Rajendram
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Wang J, Alvarez L, Bulgheresi S, Cava F, den Blaauwen T. PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti. Antibiotics (Basel) 2021; 10:antibiotics10030274. [PMID: 33803189 PMCID: PMC7999549 DOI: 10.3390/antibiotics10030274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for β-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some β-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle.
Collapse
Affiliation(s)
- Jinglan Wang
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Laura Alvarez
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Silvia Bulgheresi
- Environmental Cell Biology, University of Vienna, Althanstrasse 14 (UZA I), 1090 Vienna, Austria;
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
12
|
The Ethanologenic Bacterium Zymomonas mobilis Divides Asymmetrically and Exhibits Heterogeneity in DNA Content. Appl Environ Microbiol 2021; 87:AEM.02441-20. [PMID: 33452021 DOI: 10.1128/aem.02441-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 02/04/2023] Open
Abstract
The alphaproteobacterium Zymomonas mobilis exhibits extreme ethanologenic physiology, making this species a promising biofuel producer. Numerous studies have investigated its biology relevant to industrial applications and mostly at the population level. However, the organization of single cells in this industrially important polyploid species has been largely uncharacterized. In the present study, we characterized basic cellular behavior of Z. mobilis strain Zm6 under anaerobic conditions at the single-cell level. We observed that growing Z. mobilis cells often divided at a nonmidcell position, which contributed to variant cell size at birth. However, the cell size variance was regulated by a modulation of cell cycle span, mediated by a correlation of bacterial tubulin homologue FtsZ ring accumulation with cell growth. The Z. mobilis culture also exhibited heterogeneous cellular DNA content among individual cells, which might have been caused by asynchronous replication of chromosome that was not coordinated with cell growth. Furthermore, slightly angled divisions might have resulted in temporary curvatures of attached Z. mobilis cells. Overall, the present study uncovers a novel bacterial cell organization in Z. mobilis IMPORTANCE With increasing environmental concerns about the use of fossil fuels, development of a sustainable biofuel production platform has been attracting significant public attention. Ethanologenic Z. mobilis species are endowed with an efficient ethanol fermentation capacity that surpasses, in several respects, that of baker's yeast (Saccharomyces cerevisiae), the most-used microorganism for ethanol production. For development of a Z. mobilis culture-based biorefinery, an investigation of its uncharacterized cell biology is important, because bacterial cellular organization and metabolism are closely associated with each other in a single cell compartment. In addition, the current work demonstrates that the polyploid bacterium Z. mobilis exhibits a distinctive mode of bacterial cell organization, likely reflecting its unique metabolism that does not prioritize incorporation of nutrients for cell growth. Thus, another significant result of this work is to advance our general understanding in the diversity of bacterial cell architecture.
Collapse
|
13
|
Xiao X, Willemse J, Voskamp P, Li X, Prota AE, Lamers M, Pannu N, Abrahams JP, van Wezel GP. Ectopic positioning of the cell division plane is associated with single amino acid substitutions in the FtsZ-recruiting SsgB in Streptomyces. Open Biol 2021; 11:200409. [PMID: 33622102 PMCID: PMC8061694 DOI: 10.1098/rsob.200409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In most bacteria, cell division begins with the polymerization of the GTPase FtsZ at mid-cell, which recruits the division machinery to initiate cell constriction. In the filamentous bacterium Streptomyces, cell division is positively controlled by SsgB, which recruits FtsZ to the future septum sites and promotes Z-ring formation. Here, we show that various amino acid (aa) substitutions in the highly conserved SsgB protein result in ectopically placed septa that sever spores diagonally or along the long axis, perpendicular to the division plane. Fluorescence microscopy revealed that between 3.3% and 9.8% of the spores of strains expressing SsgB E120 variants were severed ectopically. Biochemical analysis of SsgB variant E120G revealed that its interaction with FtsZ had been maintained. The crystal structure of Streptomyces coelicolor SsgB was resolved and the key residues were mapped on the structure. Notably, residue substitutions (V115G, G118V, E120G) that are associated with septum misplacement localize in the α2-α3 loop region that links the final helix and the rest of the protein. Structural analyses and molecular simulation revealed that these residues are essential for maintaining the proper angle of helix α3. Our data suggest that besides altering FtsZ, aa substitutions in the FtsZ-recruiting protein SsgB also lead to diagonally or longitudinally divided cells in Streptomyces.
Collapse
Affiliation(s)
- Xiansha Xiao
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Joost Willemse
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | - Xinmeng Li
- LIC/Energy and Sustainability, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | | | - Meindert Lamers
- Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Navraj Pannu
- Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | - Jan Pieter Abrahams
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands.,Paul Scherrer Institute, CH-5232 Villigen, Switzerland.,Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Gilles P van Wezel
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
14
|
Abstract
The FtsZ protein is a highly conserved bacterial tubulin homolog. In vivo, the functional form of FtsZ is the polymeric, ring-like structure (Z-ring) assembled at the future division site during cell division. While it is clear that the Z-ring plays an essential role in orchestrating cytokinesis, precisely what its functions are and how these functions are achieved remain elusive. In this article, we review what we have learned during the past decade about the Z-ring's structure, function, and dynamics, with a particular focus on insights generated by recent high-resolution imaging and single-molecule analyses. We suggest that the major function of the Z-ring is to govern nascent cell pole morphogenesis by directing the spatiotemporal distribution of septal cell wall remodeling enzymes through the Z-ring's GTP hydrolysis-dependent treadmilling dynamics. In this role, FtsZ functions in cell division as the counterpart of the cell shape-determining actin homolog MreB in cell elongation.
Collapse
Affiliation(s)
- Ryan McQuillen
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| | - Jie Xiao
- Department of Biophysics & Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA; ,
| |
Collapse
|
15
|
Qian X, Santini C, Kosta A, Menguy N, Le Guenno H, Zhang W, Li J, Chen Y, Liu J, Alberto F, Espinosa L, Xiao T, Wu L. Juxtaposed membranes underpin cellular adhesion and display unilateral cell division of multicellular magnetotactic prokaryotes. Environ Microbiol 2020; 22:1481-1494. [DOI: 10.1111/1462-2920.14710] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Xin‐Xin Qian
- Aix Marseille University, CNRS, LCB Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
| | - Claire‐Lise Santini
- Aix Marseille University, CNRS, LCB Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
| | - Artemis Kosta
- Microscopy Core Facility, FR3479 IMM, CNRS, Aix Marseille University Marseille France
| | - Nicolas Menguy
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
- Sorbonne Université, UMR CNRS 7590, Muséum National d'Histoire Naturelle, IRD, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC 75005 Paris France
| | - Hugo Le Guenno
- Microscopy Core Facility, FR3479 IMM, CNRS, Aix Marseille University Marseille France
| | - Wenyan Zhang
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
| | - Jinhua Li
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences Beijing 100029 China
| | - Yi‐Ran Chen
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
| | - Jia Liu
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
| | - François Alberto
- Aix Marseille University, CNRS, LCB Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
| | - Leon Espinosa
- Aix Marseille University, CNRS, LCB Marseille 13402 France
| | - Tian Xiao
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao 266071 China
| | - Long‐Fei Wu
- Aix Marseille University, CNRS, LCB Marseille 13402 France
- International Associated Laboratory of Evolution and Development of Magnetotactic Multicellular Organisms (LIA‐MagMC), CNRS‐CAS Marseille 13402 France
| |
Collapse
|
16
|
Rivas-Marin E, Peeters SH, Claret Fernández L, Jogler C, van Niftrik L, Wiegand S, Devos DP. Non-essentiality of canonical cell division genes in the planctomycete Planctopirus limnophila. Sci Rep 2020; 10:66. [PMID: 31919386 PMCID: PMC6952346 DOI: 10.1038/s41598-019-56978-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Most bacteria divide by binary fission using an FtsZ-based mechanism that relies on a multi-protein complex, the divisome. In the majority of non-spherical bacteria another multi-protein complex, the elongasome, is also required for the maintenance of cell shape. Components of these multi-protein assemblies are conserved and essential in most bacteria. Here, we provide evidence that at least three proteins of these two complexes are not essential in the FtsZ-less ovoid planctomycete bacterium Planctopirus limnophila which divides by budding. We attempted to construct P. limnophila knock-out mutants of the genes coding for the divisome proteins FtsI, FtsK, FtsW and the elongasome protein MreB. Surprisingly, ftsI, ftsW and mreB could be deleted without affecting the growth rate. On the other hand, the conserved ftsK appeared to be essential in this bacterium. In conclusion, the canonical bacterial cell division machinery is not essential in P. limnophila and this bacterium divides via budding using an unknown mechanism.
Collapse
Affiliation(s)
- Elena Rivas-Marin
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain
| | - Stijn H Peeters
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Laura Claret Fernández
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain.,Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Christian Jogler
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands.,Institute of Microbiology, Department of Microbial Interactions, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Laura van Niftrik
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Sandra Wiegand
- Department of Microbiology, IWWR, Faculty of Science, Radboud University, Nijmegen, The Netherlands
| | - Damien P Devos
- Centro Andaluz de Biología del Desarrollo (CABD)-CSIC, Pablo de Olavide University, Seville, Spain.
| |
Collapse
|
17
|
Kuru E, Radkov A, Meng X, Egan A, Alvarez L, Dowson A, Booher G, Breukink E, Roper DI, Cava F, Vollmer W, Brun Y, VanNieuwenhze MS. Mechanisms of Incorporation for D-Amino Acid Probes That Target Peptidoglycan Biosynthesis. ACS Chem Biol 2019; 14:2745-2756. [PMID: 31743648 PMCID: PMC6929685 DOI: 10.1021/acschembio.9b00664] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Bacteria exhibit a myriad of different morphologies,
through the
synthesis and modification of their essential peptidoglycan (PG) cell
wall. Our discovery of a fluorescent D-amino acid (FDAA)-based PG labeling approach provided a powerful method
for observing how these morphological changes occur. Given that PG
is unique to bacterial cells and a common target for antibiotics,
understanding the precise mechanism(s) for incorporation of (F)DAA-based
probes is a crucial determinant in understanding the role of PG synthesis
in bacterial cell biology and could provide a valuable tool in the
development of new antimicrobials to treat drug-resistant antibacterial
infections. Here, we systematically investigate the mechanisms of
FDAA probe incorporation into PG using two model organisms Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive). Our in vitro and in vivo data unequivocally demonstrate
that these bacteria incorporate FDAAs using two extracytoplasmic pathways:
through activity of their D,D-transpeptidases, and,
if present, by their L,D-transpeptidases and not
via cytoplasmic incorporation into a D-Ala-D-Ala
dipeptide precursor. Our data also revealed the unprecedented finding
that the DAA-drug, D-cycloserine, can be incorporated into
peptide stems by each of these transpeptidases, in addition to its
known inhibitory activity against D-alanine racemase and D-Ala-D-Ala ligase. These mechanistic findings enabled
development of a new, FDAA-based, in vitro labeling approach that
reports on subcellular distribution of muropeptides, an especially
important attribute to enable the study of bacteria with poorly defined
growth modes. An improved understanding of the incorporation mechanisms
utilized by DAA-based probes is essential when interpreting results
from high resolution experiments and highlights the antimicrobial
potential of synthetic DAAs.
Collapse
Affiliation(s)
- Erkin Kuru
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Atanas Radkov
- Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California 94158, United States
| | - Xin Meng
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Alexander Egan
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Laura Alvarez
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Amanda Dowson
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Garrett Booher
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Eefjan Breukink
- Department of Chemistry, Utrecht University, 3584 CH, Utrecht, Netherlands
| | - David I. Roper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, SE-901 87, Umeå, Sweden
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, NE2 4AX, United Kingdom
| | - Yves Brun
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Michael S. VanNieuwenhze
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
18
|
Weber PM, Moessel F, Paredes GF, Viehboeck T, Vischer NO, Bulgheresi S. A Bidimensional Segregation Mode Maintains Symbiont Chromosome Orientation toward Its Host. Curr Biol 2019; 29:3018-3028.e4. [DOI: 10.1016/j.cub.2019.07.064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/24/2019] [Accepted: 07/22/2019] [Indexed: 11/24/2022]
|
19
|
The Bacterial DNA Binding Protein MatP Involved in Linking the Nucleoid Terminal Domain to the Divisome at Midcell Interacts with Lipid Membranes. mBio 2019; 10:mBio.00376-19. [PMID: 31138739 PMCID: PMC6538776 DOI: 10.1128/mbio.00376-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The division of an E. coli cell into two daughter cells with equal genomic information and similar size requires duplication and segregation of the chromosome and subsequent scission of the envelope by a protein ring, the Z-ring. MatP is a DNA binding protein that contributes both to the positioning of the Z-ring at midcell and the temporal control of nucleoid segregation. Our integrated in vivo and in vitro analysis provides evidence that MatP can interact with lipid membranes reproducing the phospholipid mixture in the E. coli inner membrane, without concomitant recruitment of the short DNA sequences specifically targeted by MatP. This observation strongly suggests that the membrane may play a role in the regulation of the function and localization of MatP, which could be relevant for the coordination of the two fundamental processes in which this protein participates, nucleoid segregation and cell division. Division ring formation at midcell is controlled by various mechanisms in Escherichia coli, one of them being the linkage between the chromosomal Ter macrodomain and the Z-ring mediated by MatP, a DNA binding protein that organizes this macrodomain and contributes to the prevention of premature chromosome segregation. Here we show that, during cell division, just before splitting the daughter cells, MatP seems to localize close to the cytoplasmic membrane, suggesting that this protein might interact with lipids. To test this hypothesis, we investigated MatP interaction with lipids in vitro. We found that, when encapsulated inside vesicles and microdroplets generated by microfluidics, MatP accumulates at phospholipid bilayers and monolayers matching the lipid composition in the E. coli inner membrane. MatP binding to lipids was independently confirmed using lipid-coated microbeads and biolayer interferometry assays, which suggested that the recognition is mainly hydrophobic. Interaction of MatP with the lipid membranes also occurs in the presence of the DNA sequences specifically targeted by the protein, but there is no evidence of ternary membrane/protein/DNA complexes. We propose that the association of MatP with lipids may modulate its spatiotemporal localization and its recognition of other ligands.
Collapse
|
20
|
den Blaauwen T. Is Longitudinal Division in Rod-Shaped Bacteria a Matter of Swapping Axis? Front Microbiol 2018; 9:822. [PMID: 29867786 PMCID: PMC5952006 DOI: 10.3389/fmicb.2018.00822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/11/2018] [Indexed: 01/21/2023] Open
Abstract
The morphology of bacterial species shows a wealth of variation from star-shaped to spherical and rod- to spiral-shaped, to mention a few. Their mode of growth and division is also very diverse and flexible ranging from polar growth and lateral surface increase to midcell expansion and from perpendicular to longitudinal asymmetric division. Gammaproteobacterial rod-shaped species such as Escherchia coli divide perpendicularly and grow in length, whereas the genetically very similar rod-shaped symbiotic Thiosymbion divide longitudinally, and some species even divide asynchronously while growing in width. The ovococcal Streptococcus pneumoniae also lengthens and divides perpendicularly, yet it is genetically very different from E. coli. Are these differences as dramatic as is suggested by visual inspection, or can they all be achieved by subtle variation in the regulation of the same protein complexes that synthesize the cell envelope? Most bacteria rely on the cytoskeletal polymer FtsZ to organize cell division, but only a subset of species use the actin homolog MreB for length growth, although some of them are morphologically not that different. Poles are usually negative determinant for cell division. Curved cell poles can be inert or active with respect to peptidoglycan synthesis, can localize chemotaxis and other sensing proteins or other bacterial equipment, such as pili, depending on the species. But what is actually the definition of a pole? This review discusses the possible common denominators for growth and division of distinct and similar bacterial species.
Collapse
Affiliation(s)
- Tanneke den Blaauwen
- Bacterial Cell Biology and Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
21
|
Abstract
Symbiotic bacteria of the genus Thiosymbion attach to the surface of their nematode hosts using their poles and divide by longitudinal binary fission. A new study now sheds light on the molecular mechanisms that underlie this peculiar mode of proliferation.
Collapse
Affiliation(s)
- Martin Thanbichler
- Faculty of Biology & LOEWE Center for Synthetic Microbiology, Philipps-Universität Marburg and Max Planck Fellow Group "Prokaryotic Cell Biology", Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.
| |
Collapse
|