1
|
Banerjee N, Gang SS, Castelletto ML, Walsh B, Ruiz F, Hallem EA. Carbon dioxide shapes parasite-host interactions in a human-infective nematode. Curr Biol 2025; 35:277-286.e6. [PMID: 39719698 PMCID: PMC11753939 DOI: 10.1016/j.cub.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 12/26/2024]
Abstract
Skin-penetrating nematodes infect nearly one billion people worldwide. The developmentally arrested infective larvae (iL3s) seek out hosts, invade hosts via skin penetration, and resume development inside the host in a process called activation. Activated infective larvae (iL3as) traverse the host body, ending up as parasitic adults in the small intestine. Skin-penetrating nematodes respond to many chemosensory cues, but how chemosensation contributes to host seeking and intra-host navigation-two crucial steps of the parasite-host interaction-remains poorly understood. Here, we investigate the role of carbon dioxide (CO2) in promoting host seeking and intra-host navigation in the human-infective threadworm Strongyloides stercoralis. We show that S. stercoralis exhibits life-stage-specific behavioral preferences for CO2: iL3s are repelled, non-infective larvae and adults are neutral, and iL3as are attracted. CO2 repulsion in iL3s may prime them for host seeking by stimulating dispersal from host feces, while CO2 attraction in iL3as may direct worms toward high-CO2 areas of the body, such as the lungs and intestine. We also identify sensory neurons that detect CO2; these neurons display CO2-evoked calcium activity, promote behavioral responses to CO2, and express the receptor guanylate cyclase Ss-GCY-9. Finally, we develop an approach for generating stable knockout lines in S. stercoralis and use this approach to show that Ss-gcy-9 is required for CO2-evoked behavioral responses in both iL3s and iL3as. Our results highlight chemosensory mechanisms that shape the interaction between parasitic nematodes and their human hosts and may aid in the design of novel anthelmintics that target the CO2-sensing pathway.
Collapse
Affiliation(s)
- Navonil Banerjee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Breanna Walsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA-Caltech Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
2
|
Gregory BT, Desouky M, Slaughter J, Hallem EA, Bryant AS. Thermosensory behaviors of the free-living life stages of Strongyloides species support parasitism in tropical environments. PLoS Negl Trop Dis 2024; 18:e0012529. [PMID: 39689121 DOI: 10.1371/journal.pntd.0012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/31/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
Soil-transmitted parasitic nematodes infect over 1 billion people worldwide and are a common source of neglected disease. Strongyloides stercoralis is a potentially fatal skin-penetrating human parasite that is endemic to tropical and subtropical regions around the world. The complex life cycle of Strongyloides species is unique among human-parasitic nematodes in that it includes a single free-living generation featuring soil-dwelling, bacterivorous adults whose progeny all develop into infective larvae. The sensory behaviors that enable free-living Strongyloides adults to navigate and survive soil environments are unknown. S. stercoralis infective larvae display parasite-specific sensory-driven behaviors, including robust attraction to mammalian body heat. In contrast, the free-living model nematode Caenorhabditis elegans displays thermosensory behaviors that guide adult worms to stay within a physiologically permissive range of environmental temperatures. Do S. stercoralis and C. elegans free-living adults, which experience similar environmental stressors, display common thermal preferences? Here, we characterize the thermosensory behaviors of the free-living adults of S. stercoralis as well as those of the closely related rat parasite, Strongyloides ratti. We find that Strongyloides free-living adults are exclusively attracted to near-tropical temperatures, despite their inability to infect mammalian hosts. We further show that lifespan is shorter at higher temperatures for free-living Strongyloides adults, similar to the effect of temperature on C. elegans lifespan. However, we also find that the reproductive potential of the free-living life stage is enhanced at warmer temperatures, particularly for S. stercoralis. Together, our results reveal a novel role for thermotaxis to maximize the infectious capacity of obligate parasites and provide insight into the biological adaptations that may contribute to their endemicity in tropical climates.
Collapse
Affiliation(s)
- Ben T Gregory
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Mariam Desouky
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Jaidyn Slaughter
- BRIGHT-UP Summer Research Program, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Astra S Bryant
- Department of Neurobiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
3
|
Mori Y, Ohta A, Kuhara A. Molecular, neural, and tissue circuits underlying physiological temperature responses in Caenorhabditis elegans. Neurosci Res 2024:S0168-0102(24)00134-2. [PMID: 39547476 DOI: 10.1016/j.neures.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 11/17/2024]
Abstract
Temperature is a constant environmental factor on Earth, acting as a continuous stimulus that organisms must constantly perceive to survive. Organisms possess neural systems that receive various types of environmental information, including temperature, and mechanisms for adapting to their surroundings. This paper provides insights into the neural circuits and intertissue networks involved in physiological temperature responses, specifically the mechanisms of "cold tolerance" and "temperature acclimation," based on an analysis of the nematode Caenorhabditis elegans as an experimental system for neural and intertissue information processing.
Collapse
Affiliation(s)
- Yukina Mori
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan
| | - Akane Ohta
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan; Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan; Institute for Integrative Neurobiology, Konan University, Kobe 658-8501, Japan; AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan.
| |
Collapse
|
4
|
Gregory BT, Desouky M, Slaughter J, Hallem EA, Bryant AS. Thermosensory behaviors of the free-living life stages of Strongyloides species support parasitism in tropical environments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612595. [PMID: 39314377 PMCID: PMC11419086 DOI: 10.1101/2024.09.12.612595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Soil-transmitted parasitic nematodes infect over 1 billion people worldwide and are a common source of neglected disease. Strongyloides stercoralis is a potentially fatal skin-penetrating human parasite that is endemic to tropical and subtropical regions around the world. The complex life cycle of Strongyloides species is unique among human-parasitic nematodes in that it includes a single free-living generation featuring soil-dwelling, bacterivorous adults whose progeny all develop into infective larvae. The sensory behaviors that enable free-living Strongyloides adults to navigate and survive soil environments are unknown. S. stercoralis infective larvae display parasite-specific sensory-driven behaviors, including robust attraction to mammalian body heat. In contrast, the free-living model nematode Caenorhabditis elegans displays thermosensory behaviors that guide adult worms to stay within a physiologically permissive range of environmental temperatures. Do S. stercoralis and C. elegans free-living adults, which experience similar environmental stressors, display common thermal preferences? Here, we characterize the thermosensory behaviors of the free-living adults of S. stercoralis as well as those of the closely related rat parasite, Strongyloides ratti. We find that Strongyloides free-living adults are exclusively attracted to near-tropical temperatures, despite their inability to infect mammalian hosts. We further show that lifespan is shorter at higher temperatures for free-living Strongyloides adults, similar to the effect of temperature on C. elegans lifespan. However, we also find that the reproductive potential of the free-living life stage is enhanced at warmer temperatures, particularly for S. stercoralis. Together, our results reveal a novel role for thermotaxis to maximize the infectious capacity of obligate parasites and provide insight into the biological adaptations that may contribute to their endemicity in tropical climates.
Collapse
Affiliation(s)
- Ben T Gregory
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Mariam Desouky
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Jaidyn Slaughter
- BRIGHT-UP Summer Research Program, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Astra S Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Patel R, Bryant AS, Castelletto ML, Walsh B, Akimori D, Hallem EA. The generation of stable transgenic lines in the human-infective nematode Strongyloides stercoralis. G3 (BETHESDA, MD.) 2024; 14:jkae122. [PMID: 38839055 PMCID: PMC11304987 DOI: 10.1093/g3journal/jkae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
The skin-penetrating gastrointestinal parasitic nematode Strongyloides stercoralis causes strongyloidiasis, which is a neglected tropical disease that is associated with severe chronic illness and fatalities. Unlike other human-infective nematodes, S. stercoralis cycles through a single free-living generation and thus serves as a genetically tractable model organism for understanding the mechanisms that enable parasitism. Techniques such as CRISPR/Cas9-mediated mutagenesis and transgenesis are now routinely performed in S. stercoralis by introducing exogenous DNA into free-living adults and then screening their F1 progeny for transgenic or mutant larvae. However, transgenesis in S. stercoralis has been severely hindered by the inability to establish stable transgenic lines that can be propagated for multiple generations through a host; to date, studies of transgenic S. stercoralis have been limited to heterogeneous populations of transgenic F1 larvae. Here, we develop an efficient pipeline for the generation of stable transgenic lines in S. stercoralis. We also show that this approach can be used to efficiently generate stable transgenic lines in the rat-infective nematode Strongyloides ratti. The ability to generate stable transgenic lines circumvents the limitations of working with heterogeneous F1 populations, such as variable transgene expression and the inability to generate transgenics of all life stages. Our transgenesis approach will enable novel lines of inquiry into parasite biology, such as transgene-based comparisons between free-living and parasitic generations.
Collapse
Affiliation(s)
- Ruhi Patel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Astra S Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Breanna Walsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Damia Akimori
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Moser MS, Hallem EA. Astacin metalloproteases in human-parasitic nematodes. ADVANCES IN PARASITOLOGY 2024; 126:177-204. [PMID: 39448190 DOI: 10.1016/bs.apar.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Parasitic nematodes infect over 2 billion individuals worldwide, primarily in low-resource areas, and are responsible for several chronic and potentially deadly diseases. Throughout their life cycle, these parasites are thought to use astacin metalloproteases, a subfamily of zinc-containing metalloendopeptidases, for processes such as skin penetration, molting, and tissue migration. Here, we review the known functions of astacins in human-infective, soil-transmitted parasitic nematodes - including the hookworms Necator americanus and Ancylostoma duodenale, the threadworm Strongyloides stercoralis, the giant roundworm Ascaris lumbricoides, and the whipworm Trichuris trichiura - as well as the human-infective, vector-borne filarial nematodes Wuchereria bancrofti, Onchocerca volvulus, and Brugia malayi. We also review astacin function in parasitic nematodes that infect other mammalian hosts and discuss the potential of astacins as anthelmintic drug targets. Finally, we highlight the molecular and genetic tools that are now available for further exploration of astacin function and discuss how a better understanding of astacin function in human-parasitic nematodes could lead to new avenues for nematode control and drug therapies.
Collapse
Affiliation(s)
- Matthew S Moser
- Molecular Biology Interdepartmental PhD Program; Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
7
|
Banerjee N, Gang SS, Castelletto ML, Ruiz F, Hallem EA. Carbon dioxide shapes parasite-host interactions in a human-infective nematode. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.28.587273. [PMID: 38585813 PMCID: PMC10996684 DOI: 10.1101/2024.03.28.587273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Skin-penetrating nematodes infect nearly one billion people worldwide. The developmentally arrested infective larvae (iL3s) seek out hosts, invade hosts via skin penetration, and resume development inside the host in a process called activation. Activated infective larvae (iL3as) traverse the host body, ending up as parasitic adults in the small intestine. Skin-penetrating nematodes respond to many chemosensory cues, but how chemosensation contributes to host seeking, intra-host development, and intra-host navigation - three crucial steps of the parasite-host interaction - remains poorly understood. Here, we investigate the role of carbon dioxide (CO2) in promoting parasite-host interactions in the human-infective threadworm Strongyloides stercoralis. We show that S. stercoralis exhibits life-stage-specific preferences for CO2: iL3s are repelled, non-infective larvae and adults are neutral, and iL3as are attracted. CO2 repulsion in iL3s may prime them for host seeking by stimulating dispersal from host feces, while CO2 attraction in iL3as may direct worms toward high-CO2 areas of the body such as the lungs and intestine. We also identify sensory neurons that detect CO2; these neurons are depolarized by CO2 in iL3s and iL3as. In addition, we demonstrate that the receptor guanylate cyclase Ss-GCY-9 is expressed specifically in CO2-sensing neurons and is required for CO2-evoked behavior. Ss-GCY-9 also promotes activation, indicating that a single receptor can mediate both behavioral and physiological responses to CO2. Our results illuminate chemosensory mechanisms that shape the interaction between parasitic nematodes and their human hosts and may aid in the design of novel anthelmintics that target the CO2-sensing pathway.
Collapse
Affiliation(s)
- Navonil Banerjee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Spencer S. Gang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Michelle L. Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
- Lead contact
| |
Collapse
|
8
|
Bryant AS, Akimori D, Stoltzfus JDC, Hallem EA. A standard workflow for community-driven manual curation of Strongyloides genome annotations. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220443. [PMID: 38008112 PMCID: PMC10676816 DOI: 10.1098/rstb.2022.0443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/18/2023] [Indexed: 11/28/2023] Open
Abstract
Advances in the functional genomics and bioinformatics toolkits for Strongyloides species have positioned these species as genetically tractable model systems for gastrointestinal parasitic nematodes. As community interest in mechanistic studies of Strongyloides species continues to grow, publicly accessible reference genomes and associated genome annotations are critical resources for researchers. Genome annotations for multiple Strongyloides species are broadly available via the WormBase and WormBase ParaSite online repositories. However, a recent phylogenetic analysis of the receptor-type guanylate cyclase (rGC) gene family in two Strongyloides species highlights the potential for errors in a large percentage of current Strongyloides gene models. Here, we present three examples of gene annotation updates within the Strongyloides rGC gene family; each example illustrates a type of error that may occur frequently within the annotation data for Strongyloides genomes. We also extend our analysis to 405 previously curated Strongyloides genes to confirm that gene model errors are found at high rates across gene families. Finally, we introduce a standard manual curation workflow for assessing gene annotation quality and generating corrections, and we discuss how it may be used to facilitate community-driven curation of parasitic nematode biodata. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Astra S. Bryant
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Damia Akimori
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Interdepartmental PhD Program, University of California, Los Angeles, CA 90095, USA
| | | | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
McClure CR, Patel R, Hallem EA. Invade or die: behaviours and biochemical mechanisms that drive skin penetration in Strongyloides and other skin-penetrating nematodes. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220434. [PMID: 38008119 PMCID: PMC10676818 DOI: 10.1098/rstb.2022.0434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/05/2023] [Indexed: 11/28/2023] Open
Abstract
Skin-penetrating nematodes, including the human threadworm Strongyloides stercoralis and hookworms in the genera Necator and Ancylostoma, are gastrointestinal parasites that are a major cause of neglected tropical disease in low-resource settings worldwide. These parasites infect hosts as soil-dwelling infective larvae that navigate towards hosts using host-emitted sensory cues such as odorants and body heat. Upon host contact, they invade the host by penetrating through the skin. The process of skin penetration is critical for successful parasitism but remains poorly understood and understudied. Here, we review current knowledge of skin-penetration behaviour and its underlying mechanisms in the human parasite S. stercoralis, the closely related rat parasite Strongyloides ratti, and other skin-penetrating nematodes such as hookworms. We also highlight important directions for future investigations into this underexplored process and discuss how recent advances in molecular genetic and genomic tools for Strongyloides species will enable mechanistic investigations of skin penetration and other essential parasitic behaviours in future studies. This article is part of the Theo Murphy meeting issue 'Strongyloides: omics to worm-free populations'.
Collapse
Affiliation(s)
- Courtney R. McClure
- Molecular Toxicology Interdepartmental PhD Program, University of California, Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Ruhi Patel
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Elissa A. Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Ye C, Zhang L, Tang L, Duan Y, Liu J, Zhou H. Host genetic backgrounds: the key to determining parasite-host adaptation. Front Cell Infect Microbiol 2023; 13:1228206. [PMID: 37637465 PMCID: PMC10449477 DOI: 10.3389/fcimb.2023.1228206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/20/2023] [Indexed: 08/29/2023] Open
Abstract
Parasitic diseases pose a significant threat to global public health, particularly in developing countries. Host genetic factors play a crucial role in determining susceptibility and resistance to infection. Recent advances in molecular and biological technologies have enabled significant breakthroughs in understanding the impact of host genes on parasite adaptation. In this comprehensive review, we analyze the host genetic factors that influence parasite adaptation, including hormones, nitric oxide, immune cells, cytokine gene polymorphisms, parasite-specific receptors, and metabolites. We also establish an interactive network to better illustrate the complex relationship between host genetic factors and parasite-host adaptation. Additionally, we discuss future directions and collaborative research priorities in the parasite-host adaptation field, including investigating the impact of host genes on the microbiome, developing more sophisticated models, identifying and characterizing parasite-specific receptors, utilizing patient-derived sera as diagnostic and therapeutic tools, and developing novel treatments and management strategies targeting specific host genetic factors. This review highlights the need for a comprehensive and systematic approach to investigating the underlying mechanisms of parasite-host adaptation, which requires interdisciplinary collaborations among biologists, geneticists, immunologists, and clinicians. By deepening our understanding of the complex interactions between host genetics and parasite adaptation, we can develop more effective and targeted interventions to prevent and treat parasitic diseases. Overall, this review provides a valuable resource for researchers and clinicians working in the parasitology field and offers insights into the future directions of this critical research area.
Collapse
Affiliation(s)
- Caixia Ye
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Pediatrics, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Lianhua Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Surgery, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Lili Tang
- The 3rd Affiliated Teaching Hospital of Xinjiang Medical University (Affiliated Tumor Hospital), Urumqi, China
| | - Yongjun Duan
- Department of Pediatrics, Yunyang Women and Children’s Hospital (Yunyang Maternal and Child Health Hospital), Chongqing, China
| | - Ji Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongli Zhou
- Clinical Medical Research Center, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
11
|
Kukhtar D, Fussenegger M. Synthetic biology in multicellular organisms: Opportunities in nematodes. Biotechnol Bioeng 2023. [PMID: 37448225 DOI: 10.1002/bit.28497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/27/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Synthetic biology has mainly focused on introducing new or altered functionality in single cell systems: primarily bacteria, yeast, or mammalian cells. Here, we describe the extension of synthetic biology to nematodes, in particular the well-studied model organism Caenorhabditis elegans, as a convenient platform for developing applications in a multicellular setting. We review transgenesis techniques for nematodes, as well as the application of synthetic biology principles to construct nematode gene switches and genetic devices to control motility. Finally, we discuss potential applications of engineered nematodes.
Collapse
Affiliation(s)
- Dmytro Kukhtar
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Faculty of Life Science, University of Basel, Basel, Switzerland
| |
Collapse
|
12
|
Nunn LR, Juang TD, Beebe DJ, Wheeler NJ, Zamanian M. A high-throughput sensory assay for parasitic and free-living nematodes. Integr Biol (Camb) 2023; 15:zyad010. [PMID: 37555835 PMCID: PMC10752570 DOI: 10.1093/intbio/zyad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023]
Abstract
Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes. Insight box Nematodes are powerful model organisms for understanding the sensory biology of multicellular eukaryotes, and many parasitic species cause disease in humans. Simple sensory assays performed on agarose plates have been the bedrock for establishing the neuronal, genetic, and developmental foundations for many sensory modalities in nematodes. However, these classical assays are poorly suited for translational movement of many parasitic nematodes and the sensation of water-soluble molecules (gustation). We have designed a device for high-throughput nematode sensory assays in a gel matrix. This 'gustatory microplate' is amenable to several species and reveals novel responses by free-living and parasitic nematodes to cues and drugs.
Collapse
Affiliation(s)
- Leonardo R. Nunn
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Terry D. Juang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - David J. Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI USA
| | - Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
- Department of Biology, University of Wisconsin-Eau Claire, Eau Claire, WI USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI USA
| |
Collapse
|
13
|
de Korne CM, van Lieshout L, van Leeuwen FWB, Roestenberg M. Imaging as a (pre)clinical tool in parasitology. Trends Parasitol 2023; 39:212-226. [PMID: 36641293 DOI: 10.1016/j.pt.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023]
Abstract
Imaging of parasites is central to diagnosis of many parasitic diseases and has thus far played an important role in the development of antiparasitic strategies. The development of novel imaging technologies has revolutionized medicine in fields other than parasitology and has also opened up new avenues for the visualization of parasites. Here we review the role imaging technology has played so far in parasitology and how it may spur further advancement. We point out possibilities to improve current microscopy-based diagnostic methods and how to extend them with radiological imaging modalities. We also highlight in vivo tracking of parasites as a readout for efficacy of new antiparasitic strategies and as a source of fundamental insights for rational design.
Collapse
Affiliation(s)
- Clarize Maria de Korne
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands; Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Fijs Willem Bernhard van Leeuwen
- Interventional Molecular Imaging laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Centre, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
14
|
Cadd LC, Crooks B, Marks NJ, Maule AG, Mousley A, Atkinson LE. The Strongyloides bioassay toolbox: A unique opportunity to accelerate functional biology for nematode parasites. Mol Biochem Parasitol 2022; 252:111526. [PMID: 36240960 DOI: 10.1016/j.molbiopara.2022.111526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 12/31/2022]
Abstract
Caenorhabditis elegans is a uniquely powerful tool to aid understanding of fundamental nematode biology. While C. elegans boasts an unrivalled array of functional genomics tools and phenotype bioassays the inherent differences between free-living and parasitic nematodes underscores the need to develop these approaches in tractable parasite models. Advances in functional genomics approaches, including RNA interference and CRISPR/Cas9 gene editing, in the parasitic nematodes Strongyloides ratti and Strongyloides stercoralis provide a unique and timely opportunity to probe basic parasite biology and reveal novel anthelmintic targets in species that are both experimentally and therapeutically relevant pathogens. While Strongyloides functional genomics tools have progressed rapidly, the complementary range of bioassays required to elucidate phenotypic outcomes post-functional genomics remain more limited in scope. To adequately support the exploitation of functional genomic pipelines for studies of gene function in Strongyloides a comprehensive set of species- and parasite-specific quantitative bioassays are required to assess nematode behaviours post-genetic manipulation. Here we review the scope of the current Strongyloides bioassay toolbox, how established Strongyloides bioassays have advanced knowledge of parasite biology, opportunities for Strongyloides bioassay development and, the need for investment in tractable model parasite platforms such as Strongyloides to drive the discovery of novel targets for parasite control.
Collapse
Affiliation(s)
- Luke C Cadd
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Bethany Crooks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Nikki J Marks
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Aaron G Maule
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Angela Mousley
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Louise E Atkinson
- Microbes & Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK.
| |
Collapse
|
15
|
Wheeler NJ, Hallem EA, Zamanian M. Making sense of sensory behaviors in vector-borne helminths. Trends Parasitol 2022; 38:841-853. [PMID: 35931639 PMCID: PMC9481669 DOI: 10.1016/j.pt.2022.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 10/16/2022]
Abstract
Migrations performed by helminths are impressive and diverse, and accumulating evidence shows that many are controlled by sophisticated sensory programs. The migrations of vector-borne helminths are particularly complex, requiring precise, stage-specific regulation. We review the contrasting states of knowledge on snail-borne schistosomes and mosquito-borne filarial nematodes. Rich observational data exist for the chemosensory behaviors of schistosomes, while the molecular sensory pathways in nematodes are well described. Recent investigations on the molecular mechanisms of sensation in schistosomes and filarial nematodes have revealed some features conserved within their respective phyla, but adaptations correlated with parasitism are pronounced. Technological developments are likely to extend these advances, and we forecast how these technologies may be applied.
Collapse
Affiliation(s)
- Nicolas J Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology & Molecular Genetics and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Mendez P, Walsh B, Hallem EA. Using newly optimized genetic tools to probe Strongyloides sensory behaviors. Mol Biochem Parasitol 2022; 250:111491. [PMID: 35697205 PMCID: PMC9339661 DOI: 10.1016/j.molbiopara.2022.111491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The oft-neglected human-parasitic threadworm, Strongyloides stercoralis, infects roughly eight percent of the global population, placing disproportionate medical and economic burden upon marginalized communities. While current chemotherapies treat strongyloidiasis, disease recrudescence and the looming threat of anthelminthic resistance necessitate novel strategies for nematode control. Throughout its life cycle, S. stercoralis relies upon sensory cues to aid in environmental navigation and coordinate developmental progression. Odorants, tastants, gases, and temperature have been shown to shape parasite behaviors that drive host seeking and infectivity; however, many of these sensory behaviors remain poorly understood, and their underlying molecular and neural mechanisms are largely uncharacterized. Disruption of sensory circuits essential to parasitism presents a promising strategy for future interventions. In this review, we describe our current understanding of sensory behaviors - namely olfactory, gustatory, gas sensing, and thermosensory behaviors - in Strongyloides spp. We also highlight the ever-growing cache of genetic tools optimized for use in Strongyloides that have facilitated these findings, including transgenesis, CRISPR/Cas9-mediated mutagenesis, RNAi, chemogenetic neuronal silencing, and the use of fluorescent biosensors to measure neuronal activity. Bolstered by these tools, we are poised to enter an era of rapid discovery in Strongyloides sensory neurobiology, which has the potential to shape pioneering advances in the prevention and treatment of strongyloidiasis.
Collapse
Affiliation(s)
- Patricia Mendez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA.
| | - Breanna Walsh
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Interdepartmental PhD Program, University of California Los Angeles, Los Angeles, CA, USA; Medical Scientist Training Program, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Lok JB, Kliewer SA, Mangelsdorf DJ. The 'nuclear option' revisited: Confirmation of Ss-daf-12 function and therapeutic potential in Strongyloides stercoralis and other parasitic nematode infections. Mol Biochem Parasitol 2022; 250:111490. [PMID: 35697206 DOI: 10.1016/j.molbiopara.2022.111490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
Mechanisms governing morphogenesis and development of infectious third-stage larvae (L3i) of parasitic nematodes have been likened to those regulating dauer development in Caenorhabditis elegans. Dauer regulatory signal transduction comprises initial G protein-coupled receptor (GPCR) signaling in chemosensory neurons of the amphidial complex that regulates parallel insulin- and TGFβ-like signaling in the tissues. Insulin- and TGFβ-like signals converge to co-regulate steroid signaling through the nuclear receptor (NR) DAF-12. Discovery of the steroid ligands of DAF-12 opened a new avenue of small molecule physiology in C. elegans. These signaling pathways are conserved in parasitic nematodes and an increasing body of evidence supports their function in formation and developmental regulation of L3i during the infectious process in soil transmitted species. This review presents these lines of evidence for G protein-coupled receptor (GPCR), insulin- and TGFβ-like signaling in brief and focuses primarily on signaling through parasite orthologs of DAF-12. We discuss in some depth the deployment of sensitive analytical techniques to identify Δ7-dafachronic acid as the natural ligand of DAF-12 homologs in Strongyloides stercoralis and Haemonchus contortus and of targeted mutagenesis by CRISPR/Cas9 to assign dauer-like regulatory function to the NR Ss-DAF-12, its coactivator Ss-DIP-1 and the key ligand biosynthetic enzyme Ss-CYP-22a9. Finally, we present published evidence of the potential of Ss-DAF-12 signaling as a chemotherapeutic target in human strongyloidiasis.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA, USA.
| | - Steven A Kliewer
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David J Mangelsdorf
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
18
|
Bryant AS, Ruiz F, Lee JH, Hallem EA. The neural basis of heat seeking in a human-infective parasitic worm. Curr Biol 2022; 32:2206-2221.e6. [PMID: 35483361 PMCID: PMC9158753 DOI: 10.1016/j.cub.2022.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/21/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
Soil-transmitted parasitic nematodes infect over one billion people and cause devastating morbidity worldwide. Many of these parasites have infective larvae that locate hosts using thermal cues. Here, we identify the thermosensory neurons of the human threadworm Strongyloides stercoralis and show that they display unique functional adaptations that enable the precise encoding of temperatures up to human body temperature. We demonstrate that experience-dependent thermal plasticity regulates the dynamic range of these neurons while preserving their ability to encode host-relevant temperatures. We describe a novel behavior in which infective larvae spontaneously reverse attraction to heat sources at sub-body temperatures and show that this behavior is mediated by rapid adaptation of the thermosensory neurons. Finally, we identify thermoreceptors that confer parasite-specific sensitivity to body heat. Our results pinpoint the parasite-specific neural adaptations that enable parasitic nematodes to target humans and provide the foundation for drug development to prevent human infection.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Felicitas Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joon Ha Lee
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
19
|
Thermosensation: How a human-infective nematode finds its host. Curr Biol 2022; 32:R464-R466. [PMID: 35609543 PMCID: PMC9980427 DOI: 10.1016/j.cub.2022.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The parasitic nematode Strongyloides stercoralis locates human hosts via thermal cues through unknown neural mechanisms. A new study finds that the heat-sensing neuron AFD mediates attraction to human body heat. Interestingly, this neuron also mediates thermotaxis in the nematode C. elegans.
Collapse
|
20
|
Takeishi A. Environmental-temperature and internal-state dependent thermotaxis plasticity of nematodes. Curr Opin Neurobiol 2022; 74:102541. [PMID: 35447377 DOI: 10.1016/j.conb.2022.102541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
Abstract
Thermotaxis behavior of Caenorhabditis elegans is robust and highly plastic. A pair of sensory neurons, AFD, memorize environmental/cultivation temperature and communicate with a downstream neural circuit to adjust the temperature preference of the animal. This results in a behavioral bias where worms will move toward their cultivation temperature on a thermal gradient. Thermotaxis of C. elegans is also affected by the internal state and is temporarily abolished when worms are starved. Here I will discuss how C. elegans is able to modulate its behavior based on temperature by integrating environmental and internal information. Recent studies show that some parasitic nematodes have a similar thermosensory mechanism to C. elegans and exhibit cultivation-temperature-dependent thermotaxis. I will also discuss the common neural mechanisms that regulate thermosensation and thermotaxis in C. elegans and Strongyloides stercoralis.
Collapse
Affiliation(s)
- Asuka Takeishi
- RIKEN Center for Brain Science, RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research, Japan.
| |
Collapse
|
21
|
Dulovic A, Norman M, Harbecke D, Streit A. Chemotactic and temperature-dependent responses of the Strongyloidoidea superfamily of nematodes. Parasitology 2022; 149:116-123. [PMID: 35184785 PMCID: PMC11010508 DOI: 10.1017/s003118202100161x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 01/08/2023]
Abstract
Host-seeking behaviour and how a parasite identifies the correct host to infect remains a poorly understood area of parasitology. What is currently known is that host sensation and seeking behaviour is formed from a complex mixture of chemo-, thermo- and mechanosensory behaviours, of which chemosensation is the best studied. Previous studies of olfaction in parasitic nematodes suggested that this behaviour appears to be more closely related to target host and infection mode than phylogeny. However, there has not yet been a study comparing the chemotactic and temperature-dependent behaviours of very closely related parasitic and non-parasitic nematodes. To this end, we examined the temperature-dependent and chemotactic responses of the Strongyloidoidea superfamily of nematodes. We found differences in temperature response between the different species and within infective larvae. Chemotactic responses were highly divergent, with different attraction profiles between all species studied. When examining direct stimulation with fur, we found that it was insufficient to cause an attractive response. Overall, our results support the notion that olfactory sensation is more closely related to lifestyle and host range than phylogeny, and that multiple cues are required to initiate host-seeking behaviour.
Collapse
Affiliation(s)
- Alex Dulovic
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Tübingen, Baden Württemberg, Germany
| | - Mat Norman
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
- UBC Faculty of Medicine, Vancouver, British Columbia, Canada
| | - Dorothee Harbecke
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
| | - Adrian Streit
- Max Planck Institute for Developmental Biology, Tübingen, Baden Württemberg, Germany
| |
Collapse
|
22
|
Vlaar LE, Bertran A, Rahimi M, Dong L, Kammenga JE, Helder J, Goverse A, Bouwmeester HJ. On the role of dauer in the adaptation of nematodes to a parasitic lifestyle. Parasit Vectors 2021; 14:554. [PMID: 34706780 PMCID: PMC8555053 DOI: 10.1186/s13071-021-04953-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/13/2021] [Indexed: 11/25/2022] Open
Abstract
Nematodes are presumably the most abundant Metazoa on Earth, and can even be found in some of the most hostile environments of our planet. Various types of hypobiosis evolved to adapt their life cycles to such harsh environmental conditions. The five most distal major clades of the phylum Nematoda (Clades 8-12), formerly referred to as the Secernentea, contain many economically relevant parasitic nematodes. In this group, a special type of hypobiosis, dauer, has evolved. The dauer signalling pathway, which culminates in the biosynthesis of dafachronic acid (DA), is intensively studied in the free-living nematode Caenorhabditis elegans, and it has been hypothesized that the dauer stage may have been a prerequisite for the evolution of a wide range of parasitic lifestyles among other nematode species. Biosynthesis of DA is not specific for hypobiosis, but if it results in exit of the hypobiotic state, it is one of the main criteria to define certain behaviour as dauer. Within Clades 9 and 10, the involvement of DA has been validated experimentally, and dauer is therefore generally accepted to occur in those clades. However, for other clades, such as Clade 12, this has hardly been explored. In this review, we provide clarity on the nomenclature associated with hypobiosis and dauer across different nematological subfields. We discuss evidence for dauer-like stages in Clades 8 to 12 and support this with a meta-analysis of available genomic data. Furthermore, we discuss indications for a simplified dauer signalling pathway in parasitic nematodes. Finally, we zoom in on the host cues that induce exit from the hypobiotic stage and introduce two hypotheses on how these signals might feed into the dauer signalling pathway for plant-parasitic nematodes. With this work, we contribute to the deeper understanding of the molecular mechanisms underlying hypobiosis in parasitic nematodes. Based on this, novel strategies for the control of parasitic nematodes can be developed.
Collapse
Affiliation(s)
- Lieke E Vlaar
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Andre Bertran
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Mehran Rahimi
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Lemeng Dong
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, 6708 PB, Wageningen, The Netherlands
| | - Harro J Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Castelletto ML, Hallem EA. Generating Transgenics and Knockouts in Strongyloides Species by Microinjection. J Vis Exp 2021:10.3791/63023. [PMID: 34694289 PMCID: PMC9109651 DOI: 10.3791/63023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genus Strongyloides consists of multiple species of skin-penetrating nematodes with different host ranges, including Strongyloides stercoralis and Strongyloides ratti. S. stercoralis is a human-parasitic, skin-penetrating nematode that infects approximately 610 million people, while the rat parasite S. ratti is closely related to S. stercoralis and is often used as a laboratory model for S. stercoralis. Both S. stercoralis and S. ratti are easily amenable to the generation of transgenics and knockouts through the exogenous nucleic acid delivery technique of intragonadal microinjection, and as such, have emerged as model systems for other parasitic helminths that are not yet amenable to this technique. Parasitic Strongyloides adults inhabit the small intestine of their host and release progeny into the environment via the feces. Once in the environment, the larvae develop into free-living adults, which live in feces and produce progeny that must find and invade a new host. This environmental generation is unique to the Strongyloides species and similar enough in morphology to the model free-living nematode Caenorhabditis elegans that techniques developed for C. elegans can be adapted for use with these parasitic nematodes, including intragonadal microinjection. Using intragonadal microinjection, a wide variety of transgenes can be introduced into Strongyloides. CRISPR/Cas9 components can also be microinjected to create mutant Strongyloides larvae. Here, the technique of intragonadal microinjection into Strongyloides, including the preparation of free-living adults, the injection procedure, and the selection of transgenic progeny, is described. Images of transgenic Strongyloides larvae created using CRISPR/Cas9 mutagenesis are included. The aim of this paper is to enable other researchers to use microinjection to create transgenic and mutant Strongyloides.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles; Molecular Biology Institute, University of California, Los Angeles;
| |
Collapse
|
24
|
Chavez IN, Brown TM, Assié A, Bryant AS, Samuel BS, Hallem EA. Skin-penetrating nematodes exhibit life-stage-specific interactions with host-associated and environmental bacteria. BMC Biol 2021; 19:221. [PMID: 34620172 PMCID: PMC8499433 DOI: 10.1186/s12915-021-01153-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/14/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Skin-penetrating nematodes of the genus Strongyloides infect over 600 million people, posing a major global health burden. Their life cycle includes both a parasitic and free-living generation. During the parasitic generation, infective third-stage larvae (iL3s) actively engage in host seeking. During the free-living generation, the nematodes develop and reproduce on host feces. At different points during their life cycle, Strongyloides species encounter a wide variety of host-associated and environmental bacteria. However, the microbiome associated with Strongyloides species, and the behavioral and physiological interactions between Strongyloides species and bacteria, remain unclear. RESULTS We first investigated the microbiome of the human parasite Strongyloides stercoralis using 16S-based amplicon sequencing. We found that S. stercoralis free-living adults have an associated microbiome consisting of specific fecal bacteria. We then investigated the behavioral responses of S. stercoralis and the closely related rat parasite Strongyloides ratti to an ecologically diverse panel of bacteria. We found that S. stercoralis and S. ratti showed similar responses to bacteria. The responses of both nematodes to bacteria varied dramatically across life stages: free-living adults were strongly attracted to most of the bacteria tested, while iL3s were attracted specifically to a narrow range of environmental bacteria. The behavioral responses to bacteria were dynamic, consisting of distinct short- and long-term behaviors. Finally, a comparison of the growth and reproduction of S. stercoralis free-living adults on different bacteria revealed that the bacterium Proteus mirabilis inhibits S. stercoralis egg hatching, and thereby greatly decreases parasite viability. CONCLUSIONS Skin-penetrating nematodes encounter bacteria from various ecological niches throughout their life cycle. Our results demonstrate that bacteria function as key chemosensory cues for directing parasite movement in a life-stage-specific manner. Some bacterial genera may form essential associations with the nematodes, while others are detrimental and serve as a potential source of novel nematicides.
Collapse
Affiliation(s)
- Ivan N Chavez
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Taylor M Brown
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Adrien Assié
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Buck S Samuel
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
25
|
Rodpai R, Sanpool O, Thanchomnang T, Laoraksawong P, Sadaow L, Boonroumkaew P, Wangwiwatsin A, Wongkham C, Laummaunwai P, Ittiprasert W, Brindley PJ, Intapan PM, Maleewong W. Exposure to dexamethasone modifies transcriptomic responses of free-living stages of Strongyloides stercoralis. PLoS One 2021; 16:e0253701. [PMID: 34181669 PMCID: PMC8238218 DOI: 10.1371/journal.pone.0253701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperinfection and disseminated infection by the parasitic nematode Strongyloides stercoralis can be induced by iatrogenic administration of steroids and immunosuppression and lead to an elevated risk of mortality. Responses of free-living stages of S. stercoralis to the therapeutic corticosteroid dexamethasone (DXM) were investigated using RNA-seq transcriptomes of DXM-treated female and male worms. A total of 17,950 genes representing the transcriptome of these free-living adult stages were obtained, among which 199 and 263 were differentially expressed between DXM-treated females and DXM-treated males, respectively, compared with controls. According to Gene Ontology analysis, differentially expressed genes from DXM-treated females participate in developmental process, multicellular organismal process, cell differentiation, carbohydrate metabolic process and embryonic morphogenesis. Others are involved in signaling and signal transduction, including cAMP, cGMP-dependent protein kinase pathway, endocrine system, and thyroid hormone pathway, as based on Kyoto Encyclopedia of Genes and Genomes analysis. The novel findings warrant deeper investigation of the influence of DXM on growth and other pathways in this neglected tropical disease pathogen, particularly in a setting of autoimmune and/or allergic disease, which may require the clinical use of steroid-like hormones during latent or covert strongyloidiasis.
Collapse
Affiliation(s)
- Rutchanee Rodpai
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Oranuch Sanpool
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | | | - Pokkamol Laoraksawong
- School of Health Science, Sukhothai Thammathirat Open University, Nonthaburi, Thailand
| | - Lakkhana Sadaow
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharaporn Boonroumkaew
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Arporn Wangwiwatsin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chaisiri Wongkham
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Porntip Laummaunwai
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| | - Paul J. Brindley
- Department of Microbiology, Immunology and Tropical Medicine, and Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States of America
| | - Pewpan M. Intapan
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Wanchai Maleewong
- Department of Parasitology, Faculty of Medicine, and Mekong Health Science Research Institute, Khon Kaen University, Khon Kaen, Thailand
- * E-mail:
| |
Collapse
|
26
|
High-content approaches to anthelmintic drug screening. Trends Parasitol 2021; 37:780-789. [PMID: 34092518 DOI: 10.1016/j.pt.2021.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 11/23/2022]
Abstract
Most anthelmintics were discovered through in vivo screens using animal models of infection. Developing in vitro assays for parasitic worms presents several challenges. The lack of in vitro life cycle culture protocols requires harvesting worms from vertebrate hosts or vectors, limiting assay throughput. Once worms are removed from the host environment, established anthelmintics often show no obvious phenotype - raising concerns about the predictive value of many in vitro assays. However, with recent progress in understanding how anthelmintics subvert host-parasite interactions, and breakthroughs in high-content imaging and machine learning, in vitro assays have the potential to discern subtle cryptic parasite phenotypes. These may prove better endpoints than conventional in vitro viability assays.
Collapse
|
27
|
Bryant AS, DeMarco SF, Hallem EA. Strongyloides RNA-seq Browser: a web-based software platform for on-demand bioinformatics analyses of Strongyloides species. G3 (BETHESDA, MD.) 2021; 11:jkab104. [PMID: 33823530 PMCID: PMC8104939 DOI: 10.1093/g3journal/jkab104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/25/2021] [Indexed: 12/03/2022]
Abstract
Soil-transmitted gastrointestinal parasitic nematodes infect approximately 1 billion people worldwide, predominantly in low-resource communities. Skin-penetrating gastrointestinal nematodes in the genus Strongyloides are emerging as model systems for mechanistic studies of soil-transmitted helminths due to the growing availability of functional genomics tools for these species. To facilitate future genomics studies of Strongyloides species, we have designed a web-based application, the Strongyloides RNA-seq Browser, that provides an open source, user-friendly portal for accessing and analyzing Strongyloides genomic expression data. Specifically, the Strongyloides RNA-seq Browser takes advantage of alignment-free read mapping tools and R-based transcriptomics tools to re-analyze publicly available RNA sequencing datasets from four Strongyloides species: Strongyloides stercoralis, Strongyloides ratti, Strongyloides papillosus, and Strongyloides venezuelensis. This application permits on-demand exploration and quantification of gene expression across life stages without requiring previous coding experience. Here, we describe this interactive application and demonstrate how it may be used by nematode researchers to conduct a standard set of bioinformatics queries.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie F DeMarco
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
28
|
Bryant AS, Hallem EA. The Wild Worm Codon Adapter: a web tool for automated codon adaptation of transgenes for expression in non-Caenorhabditis nematodes. G3 (BETHESDA, MD.) 2021; 11:6259089. [PMID: 33914084 PMCID: PMC8496300 DOI: 10.1093/g3journal/jkab146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 01/22/2023]
Abstract
Advances in genomics techniques are expanding the range of nematode species that are amenable to transgenesis. Due to divergent codon usage biases across species, codon optimization is often a critical step for the successful expression of exogenous transgenes in nematodes. Platforms for generating DNA sequences codon-optimized for the free-living model nematode Caenorhabditis elegans are broadly available. However, until now such tools did not exist for non-Caenorhabditis nematodes. We therefore developed the Wild Worm Codon Adapter, a tool for rapid transgene codon optimization for expression in non-Caenorhabditis nematodes. The app includes built-in optimization for parasitic nematodes in the Strongyloides, Nippostrongylus, and Brugia genera as well as the predatory nematode Pristionchus pacificus. The app also supports custom optimization for any species using user-provided optimization rules. In addition, the app supports automated insertion of synthetic or native introns, as well as the analysis of codon bias in transgene and native sequences. Here, we describe this web-based tool and demonstrate how it may be used to analyze genome-wide codon bias in Strongyloides species.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author: University of California, Los Angeles, MIMG, 237 BSRB, 615 Charles E. Young Dr. S., Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Hagen J, Sarkies P, Selkirk ME. Lentiviral transduction facilitates RNA interference in the nematode parasite Nippostrongylus brasiliensis. PLoS Pathog 2021; 17:e1009286. [PMID: 33497411 PMCID: PMC7864396 DOI: 10.1371/journal.ppat.1009286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/05/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
Animal-parasitic nematodes have thus far been largely refractory to genetic manipulation, and methods employed to effect RNA interference (RNAi) have been ineffective or inconsistent in most cases. We describe here a new approach for genetic manipulation of Nippostrongylus brasiliensis, a widely used laboratory model of gastrointestinal nematode infection. N. brasiliensis was successfully transduced with Vesicular Stomatitis Virus glycoprotein G (VSV-G)-pseudotyped lentivirus. The virus was taken up via the nematode intestine, RNA reverse transcribed into proviral DNA, and transgene transcripts produced stably in infective larvae, which resulted in expression of the reporter protein mCherry. Improved transgene expression was achieved by incorporating the C. elegans hlh11 promoter and the tbb2 3´-UTR into viral constructs. MicroRNA-adapted short hairpin RNAs delivered in this manner were processed correctly and resulted in partial knockdown of β-tubulin isotype-1 (tbb-iso-1) and secreted acetylcholinesterase B (ache-B). The system was further refined by lentiviral delivery of double stranded RNAs, which acted as a trigger for RNAi following processing and generation of 22G-RNAs. Virus-encoded sequences were detectable in F1 eggs and third stage larvae, demonstrating that proviral DNA entered the germline and was heritable. Lentiviral transduction thus provides a new means for genetic manipulation of parasitic nematodes, including gene silencing and expression of exogenous genes. The complex life cycle of parasitic nematodes makes them very difficult to manipulate genetically, and methods to delete or silence genes which are routinely used in other organisms are ineffective in most species of nematodes which infect animals. This has hindered attempts to understand the function of defined genes and proteins, and their roles in development and interaction of nematode parasites with their host. We show here that foreign genetic material can be introduced into a widely used laboratory model of intestinal nematode infection by using a viral vector. The vector was modified to improve transgene expression, and a reporter protein expressed by transduced nematode larvae in vitro. We subsequently utilised the viral vector to deliver double stranded RNA molecules to the larvae. These molecules were processed along known pathways, resulting in partial knockdown of two test genes. This system represents a new means of genetically manipulating nematode parasites, and will aid in understanding their complex biology, in addition to defining new targets for control of infection.
Collapse
Affiliation(s)
- Jana Hagen
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Salikin NH, Nappi J, Majzoub ME, Egan S. Combating Parasitic Nematode Infections, Newly Discovered Antinematode Compounds from Marine Epiphytic Bacteria. Microorganisms 2020; 8:E1963. [PMID: 33322253 PMCID: PMC7764037 DOI: 10.3390/microorganisms8121963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Parasitic nematode infections cause debilitating diseases and impede economic productivity. Antinematode chemotherapies are fundamental to modern medicine and are also important for industries including agriculture, aquaculture and animal health. However, the lack of suitable treatments for some diseases and the rise of nematode resistance to many available therapies necessitates the discovery and development of new drugs. Here, marine epiphytic bacteria represent a promising repository of newly discovered antinematode compounds. Epiphytic bacteria are ubiquitous on marine surfaces where they are under constant pressure of grazing by bacterivorous predators (e.g., protozoans and nematodes). Studies have shown that these bacteria have developed defense strategies to prevent grazers by producing toxic bioactive compounds. Although several active metabolites against nematodes have been identified from marine bacteria, drug discovery from marine microorganisms remains underexplored. In this review, we aim to provide further insight into the need and potential for marine epiphytic bacteria to become a new source of antinematode drugs. We discuss current and emerging strategies, including culture-independent high throughput screening and the utilization of Caenorhabditis elegans as a model target organism, which will be required to advance antinematode drug discovery and development from marine microbial sources.
Collapse
Affiliation(s)
- Nor Hawani Salikin
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
- School of Industrial Technology, Universiti Sains Malaysia, USM, 11800 Penang, Malaysia
| | - Jadranka Nappi
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Marwan E. Majzoub
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW 2052, Australia; (N.H.S.); (J.N.); (M.E.M.)
| |
Collapse
|
31
|
Du X, McManus DP, French JD, Jones MK, You H. CRISPR/Cas9: A new tool for the study and control of helminth parasites. Bioessays 2020; 43:e2000185. [PMID: 33145822 DOI: 10.1002/bies.202000185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Recent reports of CRISPR/Cas9 genome editing in parasitic helminths open up new avenues for research on these dangerous pathogens. However, the complex morphology and life cycles inherent to these parasites present obstacles for the efficient application of CRISPR/Cas9-targeted mutagenesis. This is especially true with the trematode flukes where only modest levels of gene mutation efficiency have been achieved. Current major challenges in the application of CRISPR/Cas9 for study of parasitic worms thus lie in enhancing gene mutation efficiency and overcoming issues involved in host passage so that mutated parasites survive. Strategies developed for CRISPR/Cas9 studies on Caenorhabditis elegans, protozoa and mammalian cells, including novel delivery methods, the choice of selectable markers, and refining mutation precision represent novel tactics whereby these impediments can be overcome. Furthermore, employing CRISPR/Cas9-mediated gene drive to interfere with vector transmission represents a novel approach for the control of parasitic worms that is worthy of further exploration.
Collapse
Affiliation(s)
- Xiaofeng Du
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia
| | - Juliet D French
- Genetics & Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of Queensland, Gatton, Queensland, Australia
| | - Hong You
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia
| |
Collapse
|
32
|
CRISPR-mediated Transfection of Brugia malayi. PLoS Negl Trop Dis 2020; 14:e0008627. [PMID: 32866158 PMCID: PMC7485969 DOI: 10.1371/journal.pntd.0008627] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/11/2020] [Accepted: 07/21/2020] [Indexed: 01/25/2023] Open
Abstract
The application of reverse genetics in the human filarial parasites has lagged due to the difficult biology of these organisms. Recently, we developed a co-culture system that permitted the infective larval stage of Brugia malayi to be transfected and efficiently develop to fecund adults. This was exploited to develop a piggyBac transposon-based toolkit that can be used to produce parasites with transgene sequences stably integrated into the parasite genome. However, the piggyBac system has generally been supplanted by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based technology, which allows precise editing of a genome. Here we report adapting the piggyBac mediated transfection system of B. malayi for CRISPR mediated knock-in insertion into the parasite genome. Suitable CRISPR insertion sites were identified in intergenic regions of the B. malayi genome. A dual reporter piggybac vector was modified, replacing the piggyBac inverted terminal repeat regions with sequences flanking the insertion site. B. malayi molting L3 were transfected with a synthetic guide RNA, the modified plasmid and the CAS9 nuclease. The transfected parasites were implanted into gerbils and allowed to develop into adults. Progeny microfilariae were recovered and screened for expression of a secreted luciferase reporter encoded in the plasmid. Approximately 3% of the microfilariae were found to secrete luciferase; all contained the transgenic sequences inserted at the expected location in the parasite genome. Using an adaptor mediated PCR assay, transgenic microfilariae were examined for the presence of off target insertions; no off-target insertions were found. These data demonstrate that CRISPR can be used to modify the genome of B. malayi, opening the way to precisely edit the genome of this important human filarial parasite. Human filarial parasites are the causative agents of lymphatic filariasis (elephantiasis) and onchocerciasis (river blindness) and are some of the most important causes of morbidity worldwide. A large obstacle to research on these organisms has been the inability to employ reverse genetic methods and to develop integrated transgenic parasite lines. Recently, we developed a piggyBac transposon-based method that employed a co-culture system that permitted the infective larval stage of B. malayi to be transfected by lipofection in culture, resulting in the production of developmentally competent transgenic parasites. However, the piggyBac system cannot be used to precisely edit particular sequences in the genome. Thus, the piggyBac system has generally been supplanted by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based technology, which permits precise targeting (and editing) of particular sequences in the genome. Here, we report building upon the methods developed for piggyBac mediated transfection of B. malayi to develop a CRISPR mediated method for precise transgenesis in this parasite.
Collapse
|
33
|
Chemosensory mechanisms of host seeking and infectivity in skin-penetrating nematodes. Proc Natl Acad Sci U S A 2020; 117:17913-17923. [PMID: 32651273 DOI: 10.1073/pnas.1909710117] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Approximately 800 million people worldwide are infected with one or more species of skin-penetrating nematodes. These parasites persist in the environment as developmentally arrested third-stage infective larvae (iL3s) that navigate toward host-emitted cues, contact host skin, and penetrate the skin. iL3s then reinitiate development inside the host in response to sensory cues, a process called activation. Here, we investigate how chemosensation drives host seeking and activation in skin-penetrating nematodes. We show that the olfactory preferences of iL3s are categorically different from those of free-living adults, which may restrict host seeking to iL3s. The human-parasitic threadworm Strongyloides stercoralis and hookworm Ancylostoma ceylanicum have highly dissimilar olfactory preferences, suggesting that these two species may use distinct strategies to target humans. CRISPR/Cas9-mediated mutagenesis of the S. stercoralis tax-4 gene abolishes iL3 attraction to a host-emitted odorant and prevents activation. Our results suggest an important role for chemosensation in iL3 host seeking and infectivity and provide insight into the molecular mechanisms that underlie these processes.
Collapse
|
34
|
Wheeler NJ, Heimark ZW, Airs PM, Mann A, Bartholomay LC, Zamanian M. Genetic and functional diversification of chemosensory pathway receptors in mosquito-borne filarial nematodes. PLoS Biol 2020; 18:e3000723. [PMID: 32511224 PMCID: PMC7302863 DOI: 10.1371/journal.pbio.3000723] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 06/18/2020] [Accepted: 05/20/2020] [Indexed: 12/25/2022] Open
Abstract
Lymphatic filariasis (LF) afflicts over 60 million people worldwide and leads to severe pathological outcomes in chronic cases. The nematode parasites (Nematoda: Filarioidea) that cause LF require both arthropod (mosquito) intermediate hosts and mammalian definitive hosts for their propagation. The invasion and migration of filarial worms through host tissues are complex and critical to survival, yet little is known about the receptors and signaling pathways that mediate directed migration in these medically important species. In order to better understand the role of chemosensory signaling in filarial worm taxis, we employ comparative genomics, transcriptomics, reverse genetics, and chemical approaches to identify putative chemosensory receptor proteins and perturb chemotaxis phenotypes in filarial worms. We find that chemoreceptor family size is correlated with the presence of environmental (extrahost) stages in nematode life cycles, and that filarial worms contain compact and highly diverged chemoreceptor complements and lineage-specific ion channels that are predicted to operate downstream of chemoreceptor activation. In Brugia malayi, an etiological agent of LF, chemoreceptor expression patterns correspond to distinct parasite migration events across the life cycle. To interrogate the role of chemosensation in the migration of larval worms, arthropod and mammalian infectious stage Brugia parasites were incubated in nicotinamide, an agonist of the nematode transient receptor potential (TRP) channel OSM-9. Exposure of microfilariae to nicotinamide alters intramosquito migration, and exposure of L3s reduces chemotaxis toward host-associated cues in vitro. Nicotinamide also potently modulates thermosensory responses in L3s, suggesting a polymodal sensory role for Brugia osm-9. Reverse genetic studies implicate both Brugia osm-9 and the cyclic nucleotide-gated (CNG) channel subunit tax-4 in larval chemotaxis toward host serum, and these ion channel subunits partially rescue sensory defects in Caenorhabditis elegans osm-9 and tax-4 knock-out strains. Together, these data reveal genetic and functional diversification of chemosensory signaling proteins in filarial worms and encourage a more thorough investigation of clade- and parasite-specific facets of nematode sensory receptor biology.
Collapse
Affiliation(s)
- Nicolas J. Wheeler
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Zachary W. Heimark
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Paul M. Airs
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis Mann
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lyric C. Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mostafa Zamanian
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
35
|
Takeishi A, Takagaki N, Kuhara A. Temperature signaling underlying thermotaxis and cold tolerance in Caenorhabditis elegans. J Neurogenet 2020; 34:351-362. [DOI: 10.1080/01677063.2020.1734001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Asuka Takeishi
- Neural Circuit of Multisensory Integration RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR), RIKEN Center for Brain Science (CBS), Wako, Japan
| | - Natsune Takagaki
- Graduate School of Natural Science, Konan University, Kobe, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Japan
| | - Atsushi Kuhara
- Graduate School of Natural Science, Konan University, Kobe, Japan
- Institute for Integrative Neurobiology, Konan University, Kobe, Japan
- Faculty of Science and Engineering, Konan University, Kobe, Japan
- AMED-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan
| |
Collapse
|
36
|
Thermosensation: Human Parasitic Nematodes Use Heat to Hunt Hosts. Curr Biol 2020; 28:R795-R798. [PMID: 30040942 DOI: 10.1016/j.cub.2018.05.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Temperature is a critical host-emitted cue for many parasitic species. A recent study shows that skin-penetrating human parasitic hookworms and threadworms exhibit adaptive host-seeking behaviors that are based on their temperature experience, opening up possibilities for new intervention strategies.
Collapse
|
37
|
Castelletto ML, Gang SS, Hallem EA. Recent advances in functional genomics for parasitic nematodes of mammals. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb206482. [PMID: 32034038 DOI: 10.1242/jeb.206482] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Human-parasitic nematodes infect over a quarter of the world's population and are a major cause of morbidity in low-resource settings. Currently available treatments have not been sufficient to eliminate infections in endemic areas, and drug resistance is an increasing concern, making new treatment options a priority. The development of new treatments requires an improved understanding of the basic biology of these nematodes. Specifically, a better understanding of parasitic nematode development, reproduction and behavior may yield novel drug targets or new opportunities for intervention such as repellents or traps. Until recently, our ability to study parasitic nematode biology was limited because few tools were available for their genetic manipulation. This is now changing as a result of recent advances in the large-scale sequencing of nematode genomes and the development of new techniques for their genetic manipulation. Notably, skin-penetrating gastrointestinal nematodes in the genus Strongyloides are now amenable to transgenesis, RNAi and CRISPR/Cas9-mediated targeted mutagenesis, positioning the Strongyloides species as model parasitic nematode systems. A number of other mammalian-parasitic nematodes, including the giant roundworm Ascaris suum and the tissue-dwelling filarial nematode Brugia malayi, are also now amenable to transgenesis and/or RNAi in some contexts. Using these tools, recent studies of Strongyloides species have already provided insight into the molecular pathways that control the developmental decision to form infective larvae and that drive the host-seeking behaviors of infective larvae. Ultimately, a mechanistic understanding of these processes could lead to the development of new avenues for nematode control.
Collapse
Affiliation(s)
- Michelle L Castelletto
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Spencer S Gang
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92161, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
38
|
Abstract
Carbon dioxide (CO2) is an important sensory cue for many animals, including both parasitic and free-living nematodes. Many nematodes show context-dependent, experience-dependent and/or life-stage-dependent behavioural responses to CO2, suggesting that CO2 plays crucial roles throughout the nematode life cycle in multiple ethological contexts. Nematodes also show a wide range of physiological responses to CO2. Here, we review the diverse responses of parasitic and free-living nematodes to CO2. We also discuss the molecular, cellular and neural circuit mechanisms that mediate CO2 detection in nematodes, and that drive context-dependent and experience-dependent responses of nematodes to CO2.
Collapse
|
39
|
Abstract
Purpose of Review This paper constitutes an update of recent studies on the general biology, molecular genetics, and cellular biology of Strongyloides spp. and related parasitic nematodes. Recent Findings Increasingly, human strongyloidiasis is considered the most neglected of neglected tropical diseases. Despite this, the last 5 years has seen remarkable advances in the molecular biology of Strongyloides spp. Genome sequences for S. stercoralis, S. ratti, S. venezuelensis, S. papillosus, and the related parasite Parastrongyloides trichosuri were created, annotated, and analyzed. These genomic resources, along with a practical transgenesis platform for Strongyloides spp., aided a major achievement, the advent of targeted mutagenesis via CRISPR/Cas9 in S. stercoralis and S. ratti. The genome sequences have also enabled significant molecular epidemiologic and phylogenetic findings on human strongyloidiasis, including the first genetic evidence of zoonotic transmission of S. stercoralis between dogs and humans. Studies of molecular signaling pathways identified the nuclear receptor Ss-DAF-12 as one that can be manipulated in the parasite by exogenous application of its steroid ligands. The chemotherapeutic implications of this were unscored by a study in which a Ss-DAF-12 ligand suppressed autoinfection by S. stercoralis in a new murine model of human strongyloidiasis. Summary Seminal advances in genomics of Strongyloides spp. have transformed research into strongyloidiasis, facilitating fundamental phylogenetic and epidemiologic studies and aiding the deployment of CRISPR/Cas9 gene disruption and editing as functional genomic tools in Strongyloides spp. Studies of Ss-DAF-12 signaling in S. stercoralis demonstrated the potential of this pathway as a novel chemotherapeutic target in parasitic nematodes.
Collapse
Affiliation(s)
- Tegegn G. Jaleta
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Lok JB. CRISPR/Cas9 Mutagenesis and Expression of Dominant Mutant Transgenes as Functional Genomic Approaches in Parasitic Nematodes. Front Genet 2019; 10:656. [PMID: 31379923 PMCID: PMC6646703 DOI: 10.3389/fgene.2019.00656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
DNA transformation of parasitic nematodes enables novel approaches to validating predictions from genomic and transcriptomic studies of these important pathogens. Notably, proof of principle for CRISPR/Cas9 mutagenesis has been achieved in Strongyloides spp., allowing identification of molecules essential to the functions of sensory neurons that mediate behaviors comprising host finding, invasion, and location of predilection sites by parasitic nematodes. Likewise, CRISPR/Cas9 knockout of the developmental regulatory transcription factor Ss-daf-16 has validated its function in regulating morphogenesis of infective third-stage larvae in Strongyloides stercoralis. While encouraging, these studies underscore challenges that remain in achieving straightforward validation of essential intervention targets in parasitic nematodes. Chief among these is the likelihood that knockout of multifunctional regulators like Ss-DAF-16 or its downstream mediator, the nuclear receptor Ss-DAF-12, will produce phenotypes so complex as to defy interpretation and will render affected worms incapable of infecting their hosts, thus preventing establishment of stable mutant lines. Approaches to overcoming these impediments could involve refinements to current CRISPR/Cas9 methods in Strongyloides including regulatable Cas9 expression from integrated transgenes and CRISPR/Cas9 editing to ablate specific functional motifs in regulatory molecules without complete knockout. Another approach would express transgenes encoding regulatory molecules of interest with mutations designed to similarly ablate or degrade specific functional motifs such as the ligand binding domain of Ss-DAF-12 while preserving core functions such as DNA binding. Such mutant transgenes would be expected to exert a dominant interfering effect on their endogenous counterparts. Published reports validate the utility of such dominant-negative approaches in Strongyloides.
Collapse
Affiliation(s)
- James B Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
41
|
Angilletta MJ, Youngblood JP, Neel LK, VandenBrooks JM. The neuroscience of adaptive thermoregulation. Neurosci Lett 2019; 692:127-136. [DOI: 10.1016/j.neulet.2018.10.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 01/05/2023]
|
42
|
Bryant AS, Hallem EA. Terror in the dirt: Sensory determinants of host seeking in soil-transmitted mammalian-parasitic nematodes. Int J Parasitol Drugs Drug Resist 2018; 8:496-510. [PMID: 30396862 PMCID: PMC6287541 DOI: 10.1016/j.ijpddr.2018.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Abstract
Infection with gastrointestinal parasitic nematodes is a major cause of chronic morbidity and economic burden around the world, particularly in low-resource settings. Some parasitic nematode species, including the human-parasitic threadworm Strongyloides stercoralis and human-parasitic hookworms in the genera Ancylostoma and Necator, feature a soil-dwelling infective larval stage that seeks out hosts for infection using a variety of host-emitted sensory cues. Here, we review our current understanding of the behavioral responses of soil-dwelling infective larvae to host-emitted sensory cues, and the molecular and cellular mechanisms that mediate these responses. We also discuss the development of methods for transgenesis and CRISPR/Cas9-mediated targeted mutagenesis in Strongyloides stercoralis and the closely related rat parasite Strongyloides ratti. These methods have established S. stercoralis and S. ratti as genetic model systems for gastrointestinal parasitic nematodes and are enabling more detailed investigations into the neural mechanisms that underlie the sensory-driven behaviors of this medically and economically important class of parasites.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
43
|
Bryant AS, Hallem EA. Temperature-dependent behaviors of parasitic helminths. Neurosci Lett 2018; 687:290-303. [PMID: 30336196 PMCID: PMC6240462 DOI: 10.1016/j.neulet.2018.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023]
Abstract
Parasitic helminth infections are the most common source of neglected tropical disease among impoverished global communities. Many helminths infect their hosts via an active, sensory-driven process in which environmentally motile infective larvae position themselves near potential hosts. For these helminths, host seeking and host invasion can be divided into several discrete behaviors that are regulated by both host-emitted and environmental sensory cues, including heat. Thermosensation is a critical sensory modality for helminths that infect warm-blooded hosts, driving multiple behaviors necessary for host seeking and host invasion. Furthermore, thermosensory cues influence the host-seeking behaviors of both helminths that parasitize endothermic hosts and helminths that parasitize insect hosts. Here, we discuss the role of thermosensation in guiding the host-seeking and host-infection behaviors of a diverse group of helminths, including mammalian-parasitic nematodes, entomopathogenic nematodes, and schistosomes. We also discuss the neural circuitry and molecular pathways that underlie thermosensory responses in these species.
Collapse
Affiliation(s)
- Astra S Bryant
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elissa A Hallem
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|