1
|
Gracia-Rodriguez C, Lopez-Ortiz C, Flores-Iga G, Ibarra-Muñoz L, Nimmakayala P, Reddy UK, Balagurusamy N. From genes to ecosystems: Decoding plant tolerance mechanisms to arsenic stress. Heliyon 2024; 10:e29140. [PMID: 38601600 PMCID: PMC11004893 DOI: 10.1016/j.heliyon.2024.e29140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Arsenic (As), a metalloid of considerable toxicity, has become increasingly bioavailable through anthropogenic activities, raising As contamination levels in groundwater and agricultural soils worldwide. This bioavailability has profound implications for plant biology and farming systems. As can detrimentally affect crop yield and pose risks of bioaccumulation and subsequent entry into the food chain. Upon exposure to As, plants initiate a multifaceted molecular response involving crucial signaling pathways, such as those mediated by calcium, mitogen-activated protein kinases, and various phytohormones (e.g., auxin, methyl jasmonate, cytokinin). These pathways, in turn, activate enzymes within the antioxidant system, which combat the reactive oxygen/nitrogen species (ROS and RNS) generated by As-induced stress. Plants exhibit a sophisticated genomic response to As, involving the upregulation of genes associated with uptake, chelation, and sequestration. Specific gene families, such as those coding for aquaglyceroporins and ABC transporters, are key in mediating As uptake and translocation within plant tissues. Moreover, we explore the gene regulatory networks that orchestrate the synthesis of phytochelatins and metallothioneins, which are crucial for As chelation and detoxification. Transcription factors, particularly those belonging to the MYB, NAC, and WRKY families, emerge as central regulators in activating As-responsive genes. On a post-translational level, we examine how ubiquitination pathways modulate the stability and function of proteins involved in As metabolism. By integrating omics findings, this review provides a comprehensive overview of the complex genomic landscape that defines plant responses to As. Knowledge gained from these genomic and epigenetic insights is pivotal for developing biotechnological strategies to enhance crop As tolerance.
Collapse
Affiliation(s)
- Celeste Gracia-Rodriguez
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Gerardo Flores-Iga
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Lizbeth Ibarra-Muñoz
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| | - Padma Nimmakayala
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Umesh K. Reddy
- Gus R. Douglass Institute and Department of Biology, West Virginia State University, Institute, Dunbar, WV 25112-1000, USA
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, Torreón, Mexico
| |
Collapse
|
2
|
Bai Y, Wan X, Lei M, Wang L, Chen T. Research advances in mechanisms of arsenic hyperaccumulation of Pteris vittata: Perspectives from plant physiology, molecular biology, and phylogeny. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132463. [PMID: 37690196 DOI: 10.1016/j.jhazmat.2023.132463] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
Pteris vittata, as the firstly discovered arsenic (As) hyperaccumulator, has great application value in As-contaminated soil remediation. Currently, the genes involved in As hyperaccumulation in P. vittata have been mined continuously, while they have not been used in practice to enhance phytoremediation efficiency. Aiming to better assist the practice of phytoremediation, this review collects 130 studies to clarify the progress in research into the As hyperaccumulation process in P. vittata from multiple perspectives. Antioxidant defense, rhizosphere activities, vacuolar sequestration, and As efflux are important physiological activities involved in As hyperaccumulation in P. vittata. Among related 19 genes, PHT, TIP, ACR3, ACR2 and HAC family genes play essential roles in arsenate (AsⅤ) transport, arsenite (AsⅢ) transport, vacuole sequestration of AsⅢ, and the reduction of AsⅤ to AsⅢ, respectively. Gene ontology enrichment analysis indicated it is necessary to further explore genes that can bind to related ions, with transport activity, or with function of transmembrane transport. Phylogeny analysis results implied ACR2, HAC and ACR3 family genes with rapid evolutionary rate may be the decisive factors for P. vittata as an As hyperaccumulator. A deeper understanding of the As hyperaccumulation network and key gene components could provide useful tools for further bio-engineered phytoremediation.
Collapse
Affiliation(s)
- Yang Bai
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoming Wan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingqing Wang
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tongbin Chen
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Sweef O, Zaabout E, Bakheet A, Halawa M, Gad I, Akela M, Tousson E, Abdelghany A, Furuta S. Unraveling Therapeutic Opportunities and the Diagnostic Potential of microRNAs for Human Lung Cancer. Pharmaceutics 2023; 15:2061. [PMID: 37631277 PMCID: PMC10459057 DOI: 10.3390/pharmaceutics15082061] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Lung cancer is a major public health problem and a leading cause of cancer-related deaths worldwide. Despite advances in treatment options, the five-year survival rate for lung cancer patients remains low, emphasizing the urgent need for innovative diagnostic and therapeutic strategies. MicroRNAs (miRNAs) have emerged as potential biomarkers and therapeutic targets for lung cancer due to their crucial roles in regulating cell proliferation, differentiation, and apoptosis. For example, miR-34a and miR-150, once delivered to lung cancer via liposomes or nanoparticles, can inhibit tumor growth by downregulating critical cancer promoting genes. Conversely, miR-21 and miR-155, frequently overexpressed in lung cancer, are associated with increased cell proliferation, invasion, and chemotherapy resistance. In this review, we summarize the current knowledge of the roles of miRNAs in lung carcinogenesis, especially those induced by exposure to environmental pollutants, namely, arsenic and benzopyrene, which account for up to 1/10 of lung cancer cases. We then discuss the recent advances in miRNA-based cancer therapeutics and diagnostics. Such information will provide new insights into lung cancer pathogenesis and innovative diagnostic and therapeutic modalities based on miRNAs.
Collapse
Affiliation(s)
- Osama Sweef
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Elsayed Zaabout
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ahmed Bakheet
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| | - Mohamed Halawa
- Department of Pharmacology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ibrahim Gad
- Department of Statistics and Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Mohamed Akela
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ehab Tousson
- Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Ashraf Abdelghany
- Biomedical Research Center of University of Granada, Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
| | - Saori Furuta
- Division of Cancer Biology, Department of Medicine, MetroHealth Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109, USA
| |
Collapse
|
4
|
Rai PK, Sonne C, Kim KH. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162327. [PMID: 36813200 DOI: 10.1016/j.scitotenv.2023.162327] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The spread of heavy metal(loid)s at soil-food crop interfaces has become a threat to sustainable agricultural productivity, food security, and human health. The eco-toxic effects of heavy metals on food crops can be manifested through reactive oxygen species that have the potential to disturb seed germination, normal growth, photosynthesis, cellular metabolism, and homeostasis. This review provides a critical overview of stress tolerance mechanisms in food crops/hyperaccumulator plants against heavy metals and arsenic (HM-As). The HM-As antioxidative stress tolerance in food crops is associated with changes in metabolomics (physico-biochemical/lipidomics) and genomics (molecular level). Furthermore, HM-As stress tolerance can occur through plant-microbe, phytohormone, antioxidant, and signal molecule interactions. Information regarding the avoidance, tolerance, and stress resilience of HM-As should help pave the way to minimize food chain contamination, eco-toxicity, and health risks. Advanced biotechnological approaches (e.g., genome modification with CRISPR-Cas9 gene editing) in concert with traditional sustainable biological methods are useful options to develop 'pollution safe designer cultivars' with increased climate change resilience and public health risks mitigation. Further, the usage of HM-As tolerant hyperaccumulator biomass in biorefineries (e.g., environmental remediation, value added chemicals, and bioenergy) is advocated to realize the synergy between biotechnological research and socio-economic policy frameworks, which are inextricably linked with environmental sustainability. The biotechnological innovations, if directed toward 'cleaner climate smart phytotechnologies' and 'HM-As stress resilient food crops', should help open the new path to achieve sustainable development goals (SDGs) and a circular bioeconomy.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
5
|
Tang R, Luo H, Prommer H, Yue Z, Wang W, Su K, Hu ZH. Response of anaerobic granular sludge to long-term loading of roxarsone: From macro- to micro-scale perspective. WATER RESEARCH 2021; 204:117599. [PMID: 34481285 DOI: 10.1016/j.watres.2021.117599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Extensive use of organoarsenic feed additives such as roxarsone has caused organoarsenicals to occur in livestock wastewater and further within anaerobic wastewater treatment systems. Currently, information on the long-term impacts of roxarsone on anaerobic granular sludge (AGS) activity and the underlying mechanisms is very limited. In this study, the response of AGS to long-term loading of roxarsone was investigated using a laboratory up-flow anaerobic sludge blanket reactor spiked with 5.0 mg L-1 of roxarsone. Under the effect of roxarsone, methane production decreased by ∼40% due to the complete inhibition on acetoclastic methanogenic activity on day 260, before being restored eventually. Over 30% of the influent arsenic was accumulated in the AGS and the capability of AGS to prevent intracellular As(III) accumulation increased with time. The AGS size was reduced by ∼30% to 1.20‒1.26 mm. Based on morphology and confocal laser scanning microscopy analysis, roxarsone exposure stimulated the excretion of extracellular polymeric substances and the surface spalling of AGS. High-throughput sequencing analysis further indicated roxarsone initially altered the acidogenic pathway and severely inhibited the acetoclastic methanogen Methanothrix. Acetogenic bacteria and Methanothrix were finally enriched and became the main contributor for a full restoration of the initial methane production. These findings provide a deeper understanding on the effect of organoarsenicals on AGS, which is highly beneficial for the effective anaerobic treatment of organoarsenic-bearing wastewater.
Collapse
Affiliation(s)
- Rui Tang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Henning Prommer
- CSIRO Land and Water, Private Bag No. 5, Wembley, WA 6913, Australia; School of Earth Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Wang
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kuizu Su
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China
| | - Zhen-Hu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
6
|
Hirano S. Biotransformation of arsenic and toxicological implication of arsenic metabolites. Arch Toxicol 2020; 94:2587-2601. [PMID: 32435915 DOI: 10.1007/s00204-020-02772-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Arsenic is a well-known environmental carcinogen and chronic exposure to arsenic through drinking water has been reported to cause skin, bladder and lung cancers, with arsenic metabolites being implicated in the pathogenesis. In contrast, arsenic trioxide (As2O3) is an effective therapeutic agent for the treatment of acute promyelocytic leukemia, in which the binding of arsenite (iAsIII) to promyelocytic leukemia (PML) protein is the proposed initial step. These findings on the two-edged sword characteristics of arsenic suggest that after entry into cells, arsenic reaches the nucleus and triggers various nuclear events. Arsenic is reduced, conjugated with glutathione, and methylated in the cytosol. These biotransformations, including the production of reactive metabolic intermediates, appear to determine the intracellular dynamics, target organs, and biological functions of arsenic.
Collapse
Affiliation(s)
- Seishiro Hirano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.
| |
Collapse
|
7
|
Rai PK, Kim KH, Lee SS, Lee JH. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135858. [PMID: 31846820 DOI: 10.1016/j.scitotenv.2019.135858] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Concerns about emerging environmental contaminants have been growing along with industrialization and urbanization around the globe. Among various options for remediating these contaminants, phytotechnology is suggested as a feasible option to maintain the environmental sustainability. The recent advances in phytoremediation, genetic/molecular/omics/metabolic engineering, and nanotechnology are opening new paths for efficient treatment of emerging organic/inorganic contaminants. In this respect, elucidation of molecular mechanisms and genetic engineering of hyperaccumulator plants is expected to enhance remediation of environmental contaminants. This review was organized to offer valuable insights into the molecular mechanisms of phytoremediation and the prospects of transgenic hyperaccumulators with enhanced stress tolerance to diverse contaminants such as heavy metals and metalloids, xenobiotics, explosives, poly aromatic hydrocarbons (PAHs), petroleum hydrocarbons, pesticides, and nanoparticles. The roles of genoremediation and nanoparticles in augmenting the phytoremediation technology are also described in an interrelated framework with biotechnological prospects (e.g., plant molecular nano-farming). Finally, political debate on the preferential use of crops versus non-crop hyperaccumulators in genoremediation, limitations of transgenics in phytotechnologies, and their public acceptance issues are discussed in the policy framework.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26494, Republic of Korea.
| | - Jin-Hong Lee
- Department of Environmental Engineering, Chungnam National University, Daejeon 34148, Republic of Korea
| |
Collapse
|