1
|
Yang C, Mammen L, Kim B, Li M, Robson DN, Li JM. A population code for spatial representation in the zebrafish telencephalon. Nature 2024; 634:397-406. [PMID: 39198641 PMCID: PMC11464381 DOI: 10.1038/s41586-024-07867-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/23/2024] [Indexed: 09/01/2024]
Abstract
Spatial learning in teleost fish requires an intact telencephalon1, a brain region that contains putative analogues to components of the mammalian limbic system (for example, hippocampus)2-4. However, cells fundamental to spatial cognition in mammals-for example, place cells (PCs)5,6-have yet to be established in any fish species. In this study, using tracking microscopy to record brain-wide calcium activity in freely swimming larval zebrafish7, we compute the spatial information content8 of each neuron across the brain. Strikingly, in every recorded animal, cells with the highest spatial specificity were enriched in the zebrafish telencephalon. These PCs form a population code of space from which we can decode the animal's spatial location across time. By continuous recording of population-level activity, we found that the activity manifold of PCs refines and untangles over time. Through systematic manipulation of allothetic and idiothetic cues, we demonstrate that zebrafish PCs integrate multiple sources of information and can flexibly remap to form distinct spatial maps. Using analysis of neighbourhood distance between PCs across environments, we found evidence for a weakly preconfigured network in the telencephalon. The discovery of zebrafish PCs represents a step forward in our understanding of spatial cognition across species and the functional role of the early vertebrate telencephalon.
Collapse
Affiliation(s)
- Chuyu Yang
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Lorenz Mammen
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- University of Tuebingen, Tuebingen, Germany
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | - Byoungsoo Kim
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Meng Li
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
- Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- INSIDE Institute for Biological and Artificial Intelligence, Shanghai, China
| | - Drew N Robson
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
| | - Jennifer M Li
- Max Planck Institute for Biological Cybernetics, Tuebingen, Germany.
| |
Collapse
|
2
|
Martínez García SJ, Padilla Longoria P. Analysis of Shannon's entropy to contrast between the Embodied and Neurocentrist hypothesis of conscious experience. Biosystems 2024; 246:105323. [PMID: 39244080 DOI: 10.1016/j.biosystems.2024.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
We usually accept that consciousness is in the brain. This statement corresponds to a Neurocentrist view. However, with all the physical and physiological data currently available, a convincing explanation of how consciousness emerges has not been given this topic is aborded by Anil Seth (2021). Because of this, a natural question arises: Is consciousness really in the brain or not? If the answer is no, this corresponds to the Embodied perspective. We cannot discriminate between these two points of view because we cannot identify how the organism processes the information. If we try to measure information processing in the brain, then the Neurocentrist view is unavoidable. For example, the information integration theory of Tononi's research group and the global work area theory developed by Dehaene and Baars, focus solely on the brain without considering aspects of Embodied vision (See Tononi, 2021; Dehaene, 2021). In this article, we propose an index based on Shannon's entropy, capable of identifying the leading processing elements acting: Are they mainly inner or external? In order to validate it, we performed simulations with networks accounting for different amounts of internal and outer layers. Since Shannon's entropy is an abstract measure of the information content, this index is not dependent on the physical network nor the proportion of different layers. Therefore, we validate the index as free of bias. This index is a way to discriminate between Embodied from Neurocentrist hypotheses.
Collapse
Affiliation(s)
- Sergio J Martínez García
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México and Facultad de Ciencias, Universidad Nacional Autónoma de México. Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico.
| | - Pablo Padilla Longoria
- Universidad Nacional Autónoma and Instituto de Investigaciones en Matemáticas Aplicadas y Sistemas, Universidad Nacional Autónoma de México. Universidad Nacional Autónoma de México, Circuito Escolar sin número, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, D.F, Mexico.
| |
Collapse
|
3
|
Thor S. Indirect neurogenesis in space and time. Nat Rev Neurosci 2024; 25:519-534. [PMID: 38951687 DOI: 10.1038/s41583-024-00833-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 07/03/2024]
Abstract
During central nervous system (CNS) development, neural progenitor cells (NPCs) generate neurons and glia in two different ways. In direct neurogenesis, daughter cells differentiate directly into neurons or glia, whereas in indirect neurogenesis, neurons or glia are generated after one or more daughter cell divisions. Intriguingly, indirect neurogenesis is not stochastically deployed and plays instructive roles during CNS development: increased generation of cells from specific lineages; increased generation of early or late-born cell types within a lineage; and increased cell diversification. Increased indirect neurogenesis might contribute to the anterior CNS expansion evident throughout the Bilateria and help to modify brain-region size without requiring increased NPC numbers or extended neurogenesis. Increased indirect neurogenesis could be an evolutionary driver of the gyrencephalic (that is, folded) cortex that emerged during mammalian evolution and might even have increased during hominid evolution. Thus, selection of indirect versus direct neurogenesis provides a powerful developmental and evolutionary instrument that drives not only the evolution of CNS complexity but also brain expansion and modulation of brain-region size, and thereby the evolution of increasingly advanced cognitive abilities. This Review describes indirect neurogenesis in several model species and humans, and highlights some of the molecular genetic mechanisms that control this important process.
Collapse
Affiliation(s)
- Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland, Australia.
| |
Collapse
|
4
|
Sun C, Yao M, Xiong R, Su Y, Zhu B, Chen YC, Ao P. Evolution of Telencephalon Anterior-Posterior Patterning through Core Endogenous Network Bifurcation. ENTROPY (BASEL, SWITZERLAND) 2024; 26:631. [PMID: 39202101 PMCID: PMC11353805 DOI: 10.3390/e26080631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024]
Abstract
How did the complex structure of the telencephalon evolve? Existing explanations are based on phenomena and lack a first-principles account. The Darwinian dynamics and endogenous network theory-established decades ago-provides a mathematical and theoretical framework and a general constitutive structure for theory-experiment coupling for answering this question from a first-principles perspective. By revisiting a gene network that explains the anterior-posterior patterning of the vertebrate telencephalon, we found that upon increasing the cooperative effect within this network, fixed points gradually evolve, accompanied by the occurrence of two bifurcations. The dynamic behavior of this network is informed by the knowledge obtained from experiments on telencephalic evolution. Our work provides a quantitative explanation for how telencephalon anterior-posterior patterning evolved from the pre-vertebrate chordate to the vertebrate and provides a series of verifiable predictions from a first-principles perspective.
Collapse
Affiliation(s)
- Chen Sun
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Mengchao Yao
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Ruiqi Xiong
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Yang Su
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Binglin Zhu
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Yong-Cong Chen
- Center for Quantitative Life Sciences & Physics Department, Shanghai University, Shanghai 200444, China; (C.S.); (M.Y.); (R.X.); (Y.S.); (B.Z.)
| | - Ping Ao
- School of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Lucon-Xiccato T. Inhibitory control in teleost fish: a methodological and conceptual review. Anim Cogn 2024; 27:27. [PMID: 38530456 DOI: 10.1007/s10071-024-01867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
Inhibitory control (IC) plays a central role in behaviour control allowing an individual to resist external lures and internal predispositions. While IC has been consistently investigated in humans, other mammals, and birds, research has only recently begun to explore IC in other vertebrates. This review examines current literature on teleost fish, focusing on both methodological and conceptual aspects. I describe the main paradigms adopted to study IC in fish, identifying well-established tasks that fit various research applications and highlighting their advantages and limitations. In the conceptual analysis, I identify two well-developed lines of research with fish examining IC. The first line focuses on a comparative approach aimed to describe IC at the level of species and to understand the evolution of interspecific differences in relation to ecological specialisation, brain size, and factors affecting cognitive performance. Findings suggest several similarities between fish and previously studied vertebrates. The second line of research focuses on intraspecific variability of IC. Available results indicate substantial variation in fish IC related to sex, personality, genetic, age, and phenotypic plasticity, aligning with what is observed with other vertebrates. Overall, this review suggests that although data on teleosts are still scarce compared to mammals, the contribution of this group to IC research is already substantial and can further increase in various disciplines including comparative psychology, cognitive ecology, and neurosciences, and even in applied fields such as psychiatry research.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
6
|
Zhang J, Zhao R, Lin S, Yang D, Lu S, Liu Z, Gao Y, Zhang Y, Hou B, Xi C, Liu J, Bing J, Pang E, Lin K, Zeng S. Comparison of genes involved in brain development: insights into the organization and evolution of the telencephalic pallium. Sci Rep 2024; 14:6102. [PMID: 38480729 PMCID: PMC10937912 DOI: 10.1038/s41598-024-51964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/11/2024] [Indexed: 03/17/2024] Open
Abstract
The mechanisms underlying the organization and evolution of the telencephalic pallium are not yet clear.. To address this issue, we first performed comparative analysis of genes critical for the development of the pallium (Emx1/2 and Pax6) and subpallium (Dlx2 and Nkx1/2) among 500 vertebrate species. We found that these genes have no obvious variations in chromosomal duplication/loss, gene locus synteny or Darwinian selection. However, there is an additional fragment of approximately 20 amino acids in mammalian Emx1 and a poly-(Ala)6-7 in Emx2. Lentiviruses expressing mouse or chick Emx2 (m-Emx2 or c-Emx2 Lv) were injected into the ventricle of the chick telencephalon at embryonic Day 3 (E3), and the embryos were allowed to develop to E12-14 or to posthatchling. After transfection with m-Emx2 Lv, the cells expressing Reelin, Vimentin or GABA increased, and neurogenesis of calbindin cells changed towards the mammalian inside-out pattern in the dorsal pallium and mesopallium. In addition, a behavior test for posthatched chicks indicated that the passive avoidance ratio increased significantly. The study suggests that the acquisition of an additional fragment in mammalian Emx2 is associated with the organization and evolution of the mammalian pallium.
Collapse
Affiliation(s)
- Jiangyan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Rui Zhao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Shiying Lin
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Dong Yang
- Beijing Key Laboratory of Genetic Engineering Drugs and Biological Technology, Beijing Normal University, Beijing, China
| | - Shan Lu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Zenan Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Yuanyuan Gao
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Yiyun Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Bing Hou
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Chao Xi
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jin Liu
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Jie Bing
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China
| | - Erli Pang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kui Lin
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China.
| | - Shaoju Zeng
- Beijing Key Laboratory of Gene Resource and Molecular Development, Beijing Normal University, Beijing, China.
| |
Collapse
|
7
|
Folgueira M, Clarke JDW. Telencephalic eversion in embryos and early larvae of four teleost species. Evol Dev 2024; 26:e12474. [PMID: 38425004 DOI: 10.1111/ede.12474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
The telencephalon of ray-finned fishes undergoes eversion, which is very different to the evagination that occurs in most other vertebrates. Ventricle morphogenesis is key to build an everted telencephalon. Thus, here we use the apical marker zona occludens 1 to understand ventricle morphology, extension of the tela choroidea and the eversion process during early telencephalon development of four teleost species: giant danio (Devario aequipinnatus), blind cavefish (Astyanax mexicanus), medaka (Oryzias latipes), and paradise fish (Macroposus opercularis). In addition, by using immunohistochemistry against tubulin and calcium-binding proteins, we analyze the general morphology of the telencephalon, showing changes in the location and extension of the olfactory bulb and other telencephalic regions from 2 to 5 days of development. We also analyze the impact of abnormal eye and telencephalon morphogenesis on eversion, showing that cyclops mutants do undergo eversion despite very dramatic abnormal eye morphology. We discuss how the formation of the telencephalic ventricle in teleost fish, with its characteristic shape, is a crucial event during eversion.
Collapse
Affiliation(s)
- Mónica Folgueira
- Departamento de Bioloxía, Facultade de Ciencias, Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña, A Coruña, Spain
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| |
Collapse
|
8
|
Kirschhock ME, Nieder A. Association neurons in the crow telencephalon link visual signs to numerical values. Proc Natl Acad Sci U S A 2023; 120:e2313923120. [PMID: 37903264 PMCID: PMC10636302 DOI: 10.1073/pnas.2313923120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/20/2023] [Indexed: 11/01/2023] Open
Abstract
Many animals can associate signs with numerical values and use these signs in a goal-directed way during task performance. However, the neuronal basis of this semantic association has only rarely been investigated, and so far only in primates. How mechanisms of number associations are implemented in the distinctly evolved brains of other animal taxa such as birds is currently unknown. Here, we explored this semantic number-sign mapping by recording single-neuron activity in the crows' nidopallium caudolaterale (NCL), a brain structure critically involved in avian numerical cognition. Crows were trained to associate visual shapes with varying numbers of items in a number production task. The responses of many NCL neurons during stimulus presentation reflected the numerical values associated with visual shapes in a behaviorally relevant way. Consistent with the crow's better behavioral performance with signs, neuronal representations of numerical values extracted from shapes were more selective compared to those from dot arrays. The existence of number association neurons in crows points to a phylogenetic preadaptation of the brains of cognitively advanced vertebrates to link visual shapes with numerical meaning.
Collapse
Affiliation(s)
- Maximilian E. Kirschhock
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen72076, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Tübingen72076, Germany
| |
Collapse
|
9
|
Lamanna F, Hervas-Sotomayor F, Oel AP, Jandzik D, Sobrido-Cameán D, Santos-Durán GN, Martik ML, Stundl J, Green SA, Brüning T, Mößinger K, Schmidt J, Schneider C, Sepp M, Murat F, Smith JJ, Bronner ME, Rodicio MC, Barreiro-Iglesias A, Medeiros DM, Arendt D, Kaessmann H. A lamprey neural cell type atlas illuminates the origins of the vertebrate brain. Nat Ecol Evol 2023; 7:1714-1728. [PMID: 37710042 PMCID: PMC10555824 DOI: 10.1038/s41559-023-02170-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/18/2023] [Indexed: 09/16/2023]
Abstract
The vertebrate brain emerged more than ~500 million years ago in common evolutionary ancestors. To systematically trace its cellular and molecular origins, we established a spatially resolved cell type atlas of the entire brain of the sea lamprey-a jawless species whose phylogenetic position affords the reconstruction of ancestral vertebrate traits-based on extensive single-cell RNA-seq and in situ sequencing data. Comparisons of this atlas to neural data from the mouse and other jawed vertebrates unveiled various shared features that enabled the reconstruction of cell types, tissue structures and gene expression programs of the ancestral vertebrate brain. However, our analyses also revealed key tissues and cell types that arose later in evolution. For example, the ancestral brain was probably devoid of cerebellar cell types and oligodendrocytes (myelinating cells); our data suggest that the latter emerged from astrocyte-like evolutionary precursors in the jawed vertebrate lineage. Altogether, our work illuminates the cellular and molecular architecture of the ancestral vertebrate brain and provides a foundation for exploring its diversification during evolution.
Collapse
Affiliation(s)
- Francesco Lamanna
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | | - A Phillip Oel
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
- Department of Zoology, Comenius University, Bratislava, Slovakia
| | - Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Gabriel N Santos-Durán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Megan L Martik
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Jan Stundl
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Stephen A Green
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thoomke Brüning
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Katharina Mößinger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julia Schmidt
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Celine Schneider
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Mari Sepp
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Florent Murat
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
- INRAE, LPGP, Rennes, France
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel M Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Henrik Kaessmann
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
10
|
Zacks O, Jablonka E. The evolutionary origins of the Global Neuronal Workspace in vertebrates. Neurosci Conscious 2023; 2023:niad020. [PMID: 37711313 PMCID: PMC10499063 DOI: 10.1093/nc/niad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
The Global Neuronal Workspace theory of consciousness offers an explicit functional architecture that relates consciousness to cognitive abilities such as perception, attention, memory, and evaluation. We show that the functional architecture of the Global Neuronal Workspace, which is based mainly on human studies, corresponds to the cognitive-affective architecture proposed by the Unlimited Associative Learning theory that describes minimal consciousness. However, we suggest that when applied to basal vertebrates, both models require important modifications to accommodate what has been learned about the evolution of the vertebrate brain. Most importantly, comparative studies suggest that in basal vertebrates, the Global Neuronal Workspace is instantiated by the event memory system found in the hippocampal homolog. This proposal has testable predictions and implications for understanding hippocampal and cortical functions, the evolutionary relations between memory and consciousness, and the evolution of unified perception.
Collapse
Affiliation(s)
- Oryan Zacks
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
- CPNSS, London School of Economics, Houghton St., London WC2A 2AE, United Kingdom
| |
Collapse
|
11
|
Wang J, Ma S, Yu P, He X. Evolution of Human Brain Left-Right Asymmetry: Old Genes with New Functions. Mol Biol Evol 2023; 40:msad181. [PMID: 37561991 PMCID: PMC10473864 DOI: 10.1093/molbev/msad181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
The human brain is generally anatomically symmetrical, boasting mirror-like brain regions in the left and right hemispheres. Despite this symmetry, fine-scale structural asymmetries are prevalent and are believed to be responsible for distinct functional divisions within the brain. Prior studies propose that these asymmetric structures are predominantly primate specific or even unique to humans, suggesting that the genes contributing to the structural asymmetry of the human brain might have evolved recently. In our study, we identified approximately 1,500 traits associated with human brain asymmetry by collecting paired brain magnetic resonance imaging features from the UK Biobank. Each trait is measured in a specific region of one hemisphere and mirrored in the corresponding region of the other hemisphere. Conducting genome-wide association studies on these traits, we identified over 1,000 quantitative trait loci. Around these index single nucleotide polymorphisms, we found approximately 200 genes that are enriched in brain-related Gene Ontology terms and are predominantly upregulated in brain tissues. Interestingly, most of these genes are evolutionarily old, originating just prior to the emergence of Bilateria (bilaterally symmetrical animals) and Euteleostomi (bony vertebrates with a brain), at a significantly higher ratio than expected. Further analyses of these genes reveal a brain-specific upregulation in humans relative to other mammalian species. This suggests that the structural asymmetry of the human brain has been shaped by evolutionarily ancient genes that have assumed new functions over time.
Collapse
Affiliation(s)
- Jianguo Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Sidi Ma
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Peijie Yu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | | |
Collapse
|
12
|
Wagener L, Nieder A. Categorical representation of abstract spatial magnitudes in the executive telencephalon of crows. Curr Biol 2023; 33:2151-2162.e5. [PMID: 37137309 DOI: 10.1016/j.cub.2023.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 05/05/2023]
Abstract
The ability to group abstract continuous magnitudes into meaningful categories is cognitively demanding but key to intelligent behavior. To explore its neuronal mechanisms, we trained carrion crows to categorize lines of variable lengths into arbitrary "short" and "long" categories. Single-neuron activity in the nidopallium caudolaterale (NCL) of behaving crows reflected the learned length categories of visual stimuli. The length categories could be reliably decoded from neuronal population activity to predict the crows' conceptual decisions. NCL activity changed with learning when a crow was retrained with the same stimuli assigned to more categories with new boundaries ("short", "medium," and "long"). Categorical neuronal representations emerged dynamically so that sensory length information at the beginning of the trial was transformed into behaviorally relevant categorical representations shortly before the crows' decision making. Our data show malleable categorization capabilities for abstract spatial magnitudes mediated by the flexible networks of the crow NCL.
Collapse
Affiliation(s)
- Lysann Wagener
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
13
|
Korzh V. Development of the brain ventricular system from a comparative perspective. Clin Anat 2023; 36:320-334. [PMID: 36529666 DOI: 10.1002/ca.23994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The brain ventricular system (BVS) consists of brain ventricles and channels filled with cerebrospinal fluid (CSF). Disturbance of CSF flow has been linked to scoliosis and neurodegenerative diseases, including hydrocephalus. This could be due to defects of CSF production by the choroid plexus or impaired CSF movement over the ependyma dependent on motile cilia. Most vertebrates have horizontal body posture. They retain additional evolutionary innovations assisting CSF flow, such as the Reissner fiber. The causes of hydrocephalus have been studied using animal models including rodents (mice, rats, hamsters) and zebrafish. However, the horizontal body posture reduces the effect of gravity on CSF flow, which limits the use of mammalian models for scoliosis. In contrast, fish swim against the current and experience a forward-to-backward mechanical force akin to that caused by gravity in humans. This explains the increased popularity of the zebrafish model for studies of scoliosis. "Slit-ventricle" syndrome is another side of the spectrum of BVS anomalies. It develops because of insufficient inflation of the BVS. Recent advances in zebrafish functional genetics have revealed genes that could regulate the development of the BVS and CSF circulation. This review will describe the BVS of zebrafish, a typical teleost, and vertebrates in general, in comparative perspective. It will illustrate the usefulness of the zebrafish model for developmental studies of the choroid plexus (CP), CSF flow and the BVS.
Collapse
Affiliation(s)
- Vladimir Korzh
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
14
|
I F. The unique neuropathological vulnerability of the human brain to aging. Ageing Res Rev 2023; 87:101916. [PMID: 36990284 DOI: 10.1016/j.arr.2023.101916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Alzheimer's disease (AD)-related neurofibrillary tangles (NFT), argyrophilic grain disease (AGD), aging-related tau astrogliopathy (ARTAG), limbic predominant TDP-43 proteinopathy (LATE), and amygdala-predominant Lewy body disease (LBD) are proteinopathies that, together with hippocampal sclerosis, progressively appear in the elderly affecting from 50% to 99% of individuals aged 80 years, depending on the disease. These disorders usually converge on the same subject and associate with additive cognitive impairment. Abnormal Tau, TDP-43, and α-synuclein pathologies progress following a pattern consistent with an active cell-to-cell transmission and abnormal protein processing in the host cell. However, cell vulnerability and transmission pathways are specific for each disorder, albeit abnormal proteins may co-localize in particular neurons. All these alterations are unique or highly prevalent in humans. They all affect, at first, the archicortex and paleocortex to extend at later stages to the neocortex and other regions of the telencephalon. These observations show that the phylogenetically oldest areas of the human cerebral cortex and amygdala are not designed to cope with the lifespan of actual humans. New strategies aimed at reducing the functional overload of the human telencephalon, including optimization of dream repair mechanisms and implementation of artificial circuit devices to surrogate specific brain functions, appear promising.
Collapse
Affiliation(s)
- Ferrer I
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain; Emeritus Researcher of the Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain; Biomedical Research Network of Neurodegenerative Diseases (CIBERNED), Barcelona, Spain; Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
15
|
Earl B. Humans, fish, spiders and bees inherited working memory and attention from their last common ancestor. Front Psychol 2023; 13:937712. [PMID: 36814887 PMCID: PMC9939904 DOI: 10.3389/fpsyg.2022.937712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/11/2022] [Indexed: 02/08/2023] Open
Abstract
All brain processes that generate behaviour, apart from reflexes, operate with information that is in an "activated" state. This activated information, which is known as working memory (WM), is generated by the effect of attentional processes on incoming information or information previously stored in short-term or long-term memory (STM or LTM). Information in WM tends to remain the focus of attention; and WM, attention and STM together enable information to be available to mental processes and the behaviours that follow on from them. WM and attention underpin all flexible mental processes, such as solving problems, making choices, preparing for opportunities or threats that could be nearby, or simply finding the way home. Neither WM nor attention are necessarily conscious, and both may have evolved long before consciousness. WM and attention, with similar properties, are possessed by humans, archerfish, and other vertebrates; jumping spiders, honey bees, and other arthropods; and members of other clades, whose last common ancestor (LCA) is believed to have lived more than 600 million years ago. It has been reported that very similar genes control the development of vertebrate and arthropod brains, and were likely inherited from their LCA. Genes that control brain development are conserved because brains generate adaptive behaviour. However, the neural processes that generate behaviour operate with the activated information in WM, so WM and attention must have existed prior to the evolution of brains. It is proposed that WM and attention are widespread amongst animal species because they are phylogenetically conserved mechanisms that are essential to all mental processing, and were inherited from the LCA of vertebrates, arthropods, and some other animal clades.
Collapse
|
16
|
Exceptional fossil preservation and evolution of the ray-finned fish brain. Nature 2023; 614:486-491. [PMID: 36725931 DOI: 10.1038/s41586-022-05666-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 12/16/2022] [Indexed: 02/03/2023]
Abstract
Brain anatomy provides key evidence for the relationships between ray-finned fishes1, but two major limitations obscure our understanding of neuroanatomical evolution in this major vertebrate group. First, the deepest branching living lineages are separated from the group's common ancestor by hundreds of millions of years, with indications that aspects of their brain morphology-like other aspects of their anatomy2,3-are specialized relative to primitive conditions. Second, there are no direct constraints on brain morphology in the earliest ray-finned fishes beyond the coarse picture provided by cranial endocasts: natural or virtual infillings of void spaces within the skull4-8. Here we report brain and cranial nerve soft-tissue preservation in Coccocephalus wildi, an approximately 319-million-year-old ray-finned fish. This example of a well-preserved vertebrate brain provides a window into neural anatomy deep within ray-finned fish phylogeny. Coccocephalus indicates a more complicated pattern of brain evolution than suggested by living species alone, highlighting cladistian apomorphies1 and providing temporal constraints on the origin of traits uniting all extant ray-finned fishes1,9. Our findings, along with a growing set of studies in other animal groups10-12, point to the importance of ancient soft tissue preservation in understanding the deep evolutionary assembly of major anatomical systems outside of the narrow subset of skeletal tissues13-15.
Collapse
|
17
|
Fritzsch B, Elliott KL, Yamoah EN. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. Front Neural Circuits 2022; 16:913480. [PMID: 36213204 PMCID: PMC9539932 DOI: 10.3389/fncir.2022.913480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization, genetics, and various neuronal connections of four sensory systems: trigeminal, taste, vestibular, and auditory systems. The development of trigeminal fibers is comparable to many sensory systems, for they project mostly contralaterally from the brainstem or spinal cord to the telencephalon. Taste bud information is primarily projected ipsilaterally through the thalamus to reach the insula. The vestibular fibers develop bilateral connections that eventually reach multiple areas of the cortex to provide a complex map. The auditory fibers project in a tonotopic contour to the auditory cortex. The spatial and tonotopic organization of trigeminal and auditory neuron projections are distinct from the taste and vestibular systems. The individual sensory projections within the cortex provide multi-sensory integration in the telencephalon that depends on context-dependent tertiary connections to integrate other cortical sensory systems across the four modalities.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, The University of Iowa, Iowa City, IA, United States
- Department of Otolaryngology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch,
| | - Karen L. Elliott
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
18
|
Abstract
Numerosity, that is, the number of items in a set, is a significant aspect in the perception of the environment. Behavioral and in silico experiments suggest that number sense belongs to a core knowledge system and can be present already at birth. However, neurons sensitive to the number of visual items have been so far described only in the brain of adult animals. Therefore, it remained unknown to what extent their selectivity would depend on visual learning and experience. We found number neurons in the caudal nidopallium (a higher associative area functionally similar to the mammalian prefrontal cortex) of very young, numerically naïve domestic chicks. This result suggests that numerosity perception is possibly an inborn feature of the vertebrate brain. Numerical cognition is ubiquitous in the animal kingdom. Domestic chicks are a widely used developmental model for studying numerical cognition. Soon after hatching, chicks can perform sophisticated numerical tasks. Nevertheless, the neural basis of their numerical abilities has remained unknown. Here, we describe number neurons in the caudal nidopallium (functionally equivalent to the mammalian prefrontal cortex) of young domestic chicks. Number neurons that we found in young chicks showed remarkable similarities to those in the prefrontal cortex and caudal nidopallium of adult animals. Thus, our results suggest that numerosity perception based on number neurons might be an inborn feature of the vertebrate brain.
Collapse
|
19
|
Turner KJ, Hawkins TA, Henriques PM, Valdivia LE, Bianco IH, Wilson SW, Folgueira M. A Structural Atlas of the Developing Zebrafish Telencephalon Based on Spatially-Restricted Transgene Expression. Front Neuroanat 2022; 16:840924. [PMID: 35721460 PMCID: PMC9198225 DOI: 10.3389/fnana.2022.840924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/22/2022] [Indexed: 11/28/2022] Open
Abstract
Zebrafish telencephalon acquires an everted morphology by a two-step process that occurs from 1 to 5 days post-fertilization (dpf). Little is known about how this process affects the positioning of discrete telencephalic cell populations, hindering our understanding of how eversion impacts telencephalic structural organization. In this study, we characterize the neurochemistry, cycle state and morphology of an EGFP positive (+) cell population in the telencephalon of Et(gata2:EGFP)bi105 transgenic fish during eversion and up to 20dpf. We map the transgene insertion to the early-growth-response-gene-3 (egr3) locus and show that EGFP expression recapitulates endogenous egr3 expression throughout much of the pallial telencephalon. Using the gata2:EGFPbi105 transgene, in combination with other well-characterized transgenes and structural markers, we track the development of various cell populations in the zebrafish telencephalon as it undergoes the morphological changes underlying eversion. These datasets were registered to reference brains to form an atlas of telencephalic development at key stages of the eversion process (1dpf, 2dpf, and 5dpf) and compared to expression in adulthood. Finally, we registered gata2:EGFPbi105 expression to the Zebrafish Brain Browser 6dpf reference brain (ZBB, see Marquart et al., 2015, 2017; Tabor et al., 2019), to allow comparison of this expression pattern with anatomical data already in ZBB.
Collapse
Affiliation(s)
- Katherine J. Turner
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Thomas A. Hawkins
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Pedro M. Henriques
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Leonardo E. Valdivia
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Isaac H. Bianco
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephen W. Wilson
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- *Correspondence: Stephen W. Wilson,
| | - Mónica Folgueira
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA), Facultade de Ciencias, Department of Biology, University of A Coruña, A Coruña, Spain
- Mónica Folgueira,
| |
Collapse
|
20
|
Miller CT, Gire D, Hoke K, Huk AC, Kelley D, Leopold DA, Smear MC, Theunissen F, Yartsev M, Niell CM. Natural behavior is the language of the brain. Curr Biol 2022; 32:R482-R493. [PMID: 35609550 PMCID: PMC10082559 DOI: 10.1016/j.cub.2022.03.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The breadth and complexity of natural behaviors inspires awe. Understanding how our perceptions, actions, and internal thoughts arise from evolved circuits in the brain has motivated neuroscientists for generations. Researchers have traditionally approached this question by focusing on stereotyped behaviors, either natural or trained, in a limited number of model species. This approach has allowed for the isolation and systematic study of specific brain operations, which has greatly advanced our understanding of the circuits involved. At the same time, the emphasis on experimental reductionism has left most aspects of the natural behaviors that have shaped the evolution of the brain largely unexplored. However, emerging technologies and analytical tools make it possible to comprehensively link natural behaviors to neural activity across a broad range of ethological contexts and timescales, heralding new modes of neuroscience focused on natural behaviors. Here we describe a three-part roadmap that aims to leverage the wealth of behaviors in their naturally occurring distributions, linking their variance with that of underlying neural processes to understand how the brain is able to successfully navigate the everyday challenges of animals' social and ecological landscapes. To achieve this aim, experimenters must harness one challenge faced by all neurobiological systems, namely variability, in order to gain new insights into the language of the brain.
Collapse
Affiliation(s)
- Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92039, USA.
| | - David Gire
- Department of Psychology, University of Washington, Guthrie Hall, Seattle, WA 98105, USA
| | - Kim Hoke
- Department of Biology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO 80523, USA
| | - Alexander C Huk
- Center for Perceptual Systems, Departments of Neuroscience and Psychology, University of Texas at Austin, 116 Inner Campus Drive, Austin, TX 78712, USA
| | - Darcy Kelley
- Department of Biological Sciences, Columbia University, 1212 Amsterdam Avenue, New York, NY 10027, USA
| | - David A Leopold
- Section of Cognitive Neurophysiology and Imaging, National Institute of Mental Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Matthew C Smear
- Department of Psychology and Institute of Neuroscience, University of Oregon, 1227 University Street, Eugene, OR 97403, USA
| | - Frederic Theunissen
- Department of Psychology, University of California Berkeley, 2121 Berkeley Way, Berkeley, CA 94720, USA
| | - Michael Yartsev
- Department of Bioengineering, University of California Berkeley, 306 Stanley Hall, Berkeley, CA 94720, USA
| | - Cristopher M Niell
- Department of Biology and Institute of Neuroscience, University of Oregon, 222 Huestis Hall, Eugene, OR 97403, USA.
| |
Collapse
|
21
|
Vogenstahl J, Parrilla M, Acker-Palmer A, Segarra M. Vascular Regulation of Developmental Neurogenesis. Front Cell Dev Biol 2022; 10:890852. [PMID: 35573692 PMCID: PMC9099230 DOI: 10.3389/fcell.2022.890852] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Evolutionary studies indicate that the nervous system evolved prior to the vascular system, but the increasing complexity of organisms prompted the vascular system to emerge in order to meet the growing demand for oxygen and nutrient supply. In recent years, it has become apparent that the symbiotic communication between the nervous and the vascular systems goes beyond the exclusive covering of the demands on nutrients and oxygen carried by blood vessels. Indeed, this active interplay between both systems is crucial during the development of the central nervous system (CNS). Several neural-derived signals that initiate and regulate the vascularization of the CNS have been described, however less is known about the vascular signals that orchestrate the development of the CNS cytoarchitecture. Here, we focus on reviewing the effects of blood vessels in the process of neurogenesis during CNS development in vertebrates. In mammals, we describe the spatiotemporal features of vascular-driven neurogenesis in two brain regions that exhibit different neurogenic complexity in their germinal zone, the hindbrain and the forebrain.
Collapse
Affiliation(s)
- Johanna Vogenstahl
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Marta Parrilla
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
- *Correspondence: Amparo Acker-Palmer, ; Marta Segarra,
| | - Marta Segarra
- Neuro and Vascular Guidance Group, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Frankfurt am Main, Germany
- Cardio-Pulmonary Institute (CPI), Frankfurt am Main, Germany
- *Correspondence: Amparo Acker-Palmer, ; Marta Segarra,
| |
Collapse
|
22
|
Gattoni G, Andrews TGR, Benito-Gutiérrez È. Restricted Proliferation During Neurogenesis Contributes to Regionalisation of the Amphioxus Nervous System. Front Neurosci 2022; 16:812223. [PMID: 35401089 PMCID: PMC8987370 DOI: 10.3389/fnins.2022.812223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The central nervous system of the cephalochordate amphioxus consists of a dorsal neural tube with an anterior brain. Two decades of gene expression analyses in developing amphioxus embryos have shown that, despite apparent morphological simplicity, the amphioxus neural tube is highly regionalised at the molecular level. However, little is known about the morphogenetic mechanisms regulating the spatiotemporal emergence of cell types at distinct sites of the neural axis and how their arrangements contribute to the overall neural architecture. In vertebrates, proliferation is key to provide appropriate cell numbers of specific types to particular areas of the nervous system as development proceeds, but in amphioxus proliferation has never been studied at this level of detail, nor in the specific context of neurogenesis. Here, we describe the dynamics of cell division during the formation of the central nervous system in amphioxus embryos, and identify specific regions of the nervous system that depend on proliferation of neuronal precursors at precise time-points for their maturation. By labelling proliferating cells in vivo at specific time points in development, and inhibiting cell division during neurulation, we demonstrate that localised proliferation in the anterior cerebral vesicle is required to establish the full cell type repertoire of the frontal eye complex and the putative hypothalamic region of the amphioxus brain, while posterior proliferating progenitors, which were found here to derive from the dorsal lip of the blastopore, contribute to elongation of the caudal floor plate. Between these proliferative domains, we find that trunk nervous system differentiation is independent from cell division, in which proliferation decreases during neurulation and resumes at the early larval stage. Taken together, our results highlight the importance of proliferation as a tightly controlled mechanism for shaping and regionalising the amphioxus neural axis during development, by addition of new cells fated to particular types, or by influencing tissue geometry.
Collapse
|
23
|
Suryanarayana SM, Robertson B, Grillner S. The neural bases of vertebrate motor behaviour through the lens of evolution. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200521. [PMID: 34957847 PMCID: PMC8710883 DOI: 10.1098/rstb.2020.0521] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022] Open
Abstract
The primary driver of the evolution of the vertebrate nervous system has been the necessity to move, along with the requirement of controlling the plethora of motor behavioural repertoires seen among the vast and diverse vertebrate species. Understanding the neural basis of motor control through the perspective of evolution, mandates thorough examinations of the nervous systems of species in critical phylogenetic positions. We present here, a broad review of studies on the neural motor infrastructure of the lamprey, a basal and ancient vertebrate, which enjoys a unique phylogenetic position as being an extant representative of the earliest group of vertebrates. From the central pattern generators in the spinal cord to the microcircuits of the pallial cortex, work on the lamprey brain over the years, has provided detailed insights into the basic organization (a bauplan) of the ancestral vertebrate brain, and narrates a compelling account of common ancestry of fundamental aspects of the neural bases for motion control, maintained through half a billion years of vertebrate evolution. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Shreyas M. Suryanarayana
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Brita Robertson
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska institutet, 17177 Stockholm, Sweden
| |
Collapse
|
24
|
Expression of Doublecortin, Glial Fibrillar Acidic Protein, and Vimentin in the Intact Subpallium and after Traumatic Injury to the Pallium in Juvenile Salmon, Oncorhynchus masou. Int J Mol Sci 2022; 23:ijms23031334. [PMID: 35163257 PMCID: PMC8836249 DOI: 10.3390/ijms23031334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 02/04/2023] Open
Abstract
Fetalization associated with a delay in development and the preservation of the features of the embryonic structure of the brain dominates the ontogeny of salmonids. The aim of the present study was to comparatively analyze the distribution of the glial-type aNSC markers such as vimentin and glial fibrillar acidic protein (GFAP) and the migratory neuronal precursors such as doublecortin in the telencephalon subpallium of juvenile masu salmon, Oncorhynchus masou, in normal conditions and at 1 week after an injury to the dorsal pallium. Immunohistochemical labeling of vimentin, GFAP, and doublecortin in the pallium of intact juvenile masu salmon revealed single cells with similar morphologies corresponding to a persistent pool of neuronal and/or glial progenitors. The study of the posttraumatic process showed the presence of intensely GFAP-labeled cells of the neuroepithelial type that form reactive neurogenic zones in all areas of the subpallial zone of juvenile masu salmon. A comparative analysis of the distribution of radial glia in the dorsal, ventral, and lateral zones of the subpallium showed a maximum concentration of cells in the dorsal part of subpallium (VD) and a minimum concentration in the lateral part of subpallium VL. An essential feature of posttraumatic immunolabeling in the masu salmon subpallium is the GFAP distribution patterns that are granular intracellular in the apical periventricular zone (PVZ) and fibrillar extracellular in the subventricular (SVZ) and parenchymal zones (PZ). In contrast to those in intact animals, most of the GFAP+ granules and constitutive neurogenic niches in injured fish were localized in the basal part of the PVZ. With the traumatic injury to the subpallium, the number of Vim+ cells in the lateral and ventral regions significantly increased. At 1 week post-injury, the total immunolabeling of vimentin cells in the PVZ was replaced by the granular pattern of Vim immunodistribution spreading from the PVZ to the SVZ and deeper parenchymal layers of the brain in all areas of the subpallium. A significant increase in the number of DC+ cells was observed also in all areas of the subpallium. The number of cells increased both in the PVZ and in the SVZ, as well as in the deeper PZ. Thus, at 1 week after the injury to the dorsal pallium, the number of DC, Vim, and GFAP expressing cells of the neuroepithelial type in the subpallium of juvenile masu salmon increased, and additionally GFAP+ radial glia appeared in VD, which was absent from intact animals.
Collapse
|
25
|
Triki Z, Fong S, Amcoff M, Kolm N. Artificial mosaic brain evolution of relative telencephalon size improves inhibitory control abilities in the guppy (Poecilia reticulata). Evolution 2021; 76:128-138. [PMID: 34806770 DOI: 10.1111/evo.14405] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 01/03/2023]
Abstract
Mosaic brain evolution, the change in the size of separate brain regions in response to selection on cognitive performance, is an important idea in the field of cognitive evolution. However, untill now, most of the data on how separate brain regions respond to selection and their cognitive consequences stem from comparative studies. To experimentally investigate the influence of mosaic brain evolution on cognitive ability, we used male guppies artificially selected for large and small telencephalons relative to the rest of the brain. Here, we tested an important aspect of executive cognitive ability using a detour task. We found that males with larger telencephalons outperformed males with smaller telencephalons. Fish with larger telencephalons showed faster improvement in performance during detour training and were more successful in reaching the food reward without touching the transparent barrier (i.e., through correct detouring) during the test phase. Together, our findings provide the first experimental evidence showing that evolutionary enlargement of relative telencephalon size confers cognitive benefits, supporting an important role for mosaic brain evolution during cognitive evolution.
Collapse
Affiliation(s)
- Zegni Triki
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
26
|
Puelles L. Current status of the hypothesis of a claustro-insular homolog in sauropsids. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:212-241. [PMID: 34753135 DOI: 10.1159/000520742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 11/07/2021] [Indexed: 11/19/2022]
Abstract
The author worked before on the wide problem of the evolution of the vertebrate pallium. He proposed various Bauplan models based in the definition of a set of pallial sectors with characteristic (topologically invariant) mutual relationships and distinct molecular profiles. Out of one of these models, known as the 'updated tetrapartite pallium model', a modified definition of the earlier lateral pallium sector (LPall) emerged, which characterized it in mammals as consisting of an unitary claustro-insular transitional (mesocortical) complex intercalated between neocortex or dorsal pallium (DPall) above and olfactory cortex or ventral pallium (VPall) underneath. A distinctive molecular marker of the early-born deep claustral component of the LPall was found to be the transcription factor Nr4a2, which is not expressed significantly in the overlying insular cortex or in adjoining cortical territories (Puelles 2014). Given that earlier comparative studies had identified molecularly and topologically comparable VPall, LPall and DPall sectors in the avian pallium, an avian Nr4a2 probe was applied aiming to identify the reportedly absent avian claustro-insular complex. An early-born superficial subpopulation of the avian LPall that expresses selectively this marker through development was indeed found. This was proposed to be a claustrum homolog, whereas the remaining Nr4a2-negative avian LPall cells were assumed to represent a possible insular homolog (Puelles et al. 2016a). This last notion was supported by comparable selective expression of the mouse insular marker Cyp26b, also found restricted to the avian LPall (Puelles 2017). Some published data suggested that similar molecular properties and structure apply at the reptilian LPall. This analysis was reviewed in Puelles et al. (2017). The present commentary discusses 3-4 years later some international publications accrued in the interval that touch on the claustro-insular homology hypothesis. Some of them are opposed to the hypothesis whereas others corroborate or support it. This raises a number of secondary issues of general interest.
Collapse
Affiliation(s)
- Luis Puelles
- Department of Human Anatomy, University of Murcia, Institute of Biomedical Research (IMIB-Arrixaca), El Palmar, Spain
| |
Collapse
|
27
|
Nieder A. Consciousness without cortex. Curr Opin Neurobiol 2021; 71:69-76. [PMID: 34656051 DOI: 10.1016/j.conb.2021.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022]
Abstract
Sensory consciousness - the awareness and ability to report subjective experiences - is a property of biological nervous systems that has evolved out of unconscious processing over hundreds of millions of years. From which brain structures and based on which mechanisms can conscious experience emerge? Based on the body of work in human and nonhuman primates, the emergence of consciousness is intimately associated with the workings of the mammalian cerebral cortex with its specific cell types and layered structure. However, recent neurophysiological recordings demonstrate a neuronal correlate of consciousness in the pallial endbrain of crows. These telencephalic integration centers in birds originate embryonically from other pallial territories, lack a layered architecture characteristic for the cerebral cortex, and exhibit independently evolved pallial cell types. This argues that the mammalian cerebral cortex is not a prerequisite for consciousness to emerge in all vertebrates. Rather, it seems that the anatomical and physiological principles of the telencephalic pallium offer this structure as a brain substrate for consciousness to evolve independently across vertebrate phylogeny.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany.
| |
Collapse
|
28
|
Stressor controllability modulates the stress response in fish. BMC Neurosci 2021; 22:48. [PMID: 34348667 PMCID: PMC8336412 DOI: 10.1186/s12868-021-00653-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In humans the stress response is known to be modulated to a great extent by psychological factors, particularly by the predictability and the perceived control that the subject has of the stressor. This psychological dimension of the stress response has also been demonstrated in animals phylogenetically closer to humans (i.e. mammals). However, its occurrence in fish, which represent a divergent vertebrate evolutionary lineage from that of mammals, has not been established yet, and, if present, would indicate a deep evolutionary origin of these mechanisms across vertebrates. Moreover, the fact that psychological modulation of stress is implemented in mammals by a brain cortical top-down inhibitory control over subcortical stress-responsive structures, and the absence of a brain cortex in fish, has been used as an argument against the possibility of psychological stress in fish, with implications for the assessment of fish sentience and welfare. Here, we have investigated the occurrence of psychological stress in fish by assessing how stressor controllability modulates the stress response in European seabass (Dicentrarchus labrax). RESULTS Fish were exposed to either a controllable or an uncontrollable stressor (i.e. possibility or impossibility to escape a signaled stressor). The effect of loss of control (possibility to escape followed by impossibility to escape) was also assessed. Both behavioral and circulating cortisol data indicates that the perception of control reduces the response to the stressor, when compared to the uncontrollable situation. Losing control had the most detrimental effect. The brain activity of the teleost homologues to the sensory cortex (Dld) and hippocampus (Dlv) parallels the uncontrolled and loss of control stressors, respectively, whereas the activity of the lateral septum (Vv) homologue responds in different ways depending on the gene marker of brain activity used. CONCLUSIONS These results suggest the psychological modulation of the stress response to be evolutionary conserved across vertebrates, despite being implemented by different brain circuits in mammals (pre-frontal cortex) and fish (Dld-Dlv).
Collapse
|
29
|
Suryanarayana SM, Pérez-Fernández J, Robertson B, Grillner S. The Lamprey Forebrain - Evolutionary Implications. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:318-333. [PMID: 34192700 DOI: 10.1159/000517492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/26/2021] [Indexed: 12/20/2022]
Abstract
The forebrain plays a critical role in a broad range of neural processes encompassing sensory integration and initiation/selection of behaviour. The forebrain functions through an interaction between different cortical areas, the thalamus, the basal ganglia with the dopamine system, and the habenulae. The ambition here is to compare the mammalian forebrain with that of the lamprey representing the oldest now living group of vertebrates, by a review of earlier studies. We show that the lamprey dorsal pallium has a motor, a somatosensory, and a visual area with retinotopic representation. The lamprey pallium was previously thought to be largely olfactory. There is also a detailed similarity between the lamprey and mammals with regard to other forebrain structures like the basal ganglia in which the general organisation, connectivity, transmitters and their receptors, neuropeptides, and expression of ion channels are virtually identical. These initially unexpected results allow for the possibility that many aspects of the basic design of the vertebrate forebrain had evolved before the lamprey diverged from the evolutionary line leading to mammals. Based on a detailed comparison between the mammalian forebrain and that of the lamprey and with due consideration of data from other vertebrate groups, we propose a compelling account of a pan-vertebrate schema for basic forebrain structures, suggesting a common ancestry of over half a billion years of vertebrate evolution.
Collapse
Affiliation(s)
- Shreyas M Suryanarayana
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Juan Pérez-Fernández
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden.,CINBIO, Universidade de Vigo, Campus Universitario Lagoas, Vigo, Spain
| | - Brita Robertson
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Sten Grillner
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
30
|
Patil C, Sylvester JB, Abdilleh K, Norsworthy MW, Pottin K, Malinsky M, Bloomquist RF, Johnson ZV, McGrath PT, Streelman JT. Genome-enabled discovery of evolutionary divergence in brains and behavior. Sci Rep 2021; 11:13016. [PMID: 34155279 PMCID: PMC8217251 DOI: 10.1038/s41598-021-92385-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/08/2021] [Indexed: 02/05/2023] Open
Abstract
Lake Malawi cichlid fishes exhibit extensive divergence in form and function built from a relatively small number of genetic changes. We compared the genomes of rock- and sand-dwelling species and asked which genetic variants differed among the groups. We found that 96% of differentiated variants reside in non-coding sequence but these non-coding diverged variants are evolutionarily conserved. Genome regions near differentiated variants are enriched for craniofacial, neural and behavioral categories. Following leads from genome sequence, we used rock- vs. sand-species and their hybrids to (i) delineate the push-pull roles of BMP signaling and irx1b in the specification of forebrain territories during gastrulation and (ii) reveal striking context-dependent brain gene expression during adult social behavior. Our results demonstrate how divergent genome sequences can predict differences in key evolutionary traits. We highlight the promise of evolutionary reverse genetics-the inference of phenotypic divergence from unbiased genome sequencing and then empirical validation in natural populations.
Collapse
Affiliation(s)
- Chinar Patil
- School of Biological Sciences and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Jonathan B Sylvester
- School of Biological Sciences and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Kawther Abdilleh
- School of Biological Sciences and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael W Norsworthy
- Catalog Technologies Inc., Boston, MA, USA
- Freedom of Form Foundation, Inc., Cambridge, MA, USA
| | - Karen Pottin
- Laboratoire de Biologie du Dévelopement (IBPS-LBD, UMR7622), CNRS, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Milan Malinsky
- Department of Environmental Sciences, Zoological Institute, University of Basel, Basel, Switzerland
- Wellcome Trust Sanger Institute, Cambridge, UK
| | - Ryan F Bloomquist
- School of Biological Sciences and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Oral Biology and Diagnostic Sciences, Department of Restorative Sciences, Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Zachary V Johnson
- School of Biological Sciences and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Patrick T McGrath
- School of Biological Sciences and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jeffrey T Streelman
- School of Biological Sciences and Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
31
|
Benito-Gutiérrez È, Gattoni G, Stemmer M, Rohr SD, Schuhmacher LN, Tang J, Marconi A, Jékely G, Arendt D. The dorsoanterior brain of adult amphioxus shares similarities in expression profile and neuronal composition with the vertebrate telencephalon. BMC Biol 2021; 19:110. [PMID: 34020648 PMCID: PMC8139002 DOI: 10.1186/s12915-021-01045-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 05/06/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND The evolutionary origin of the telencephalon, the most anterior part of the vertebrate brain, remains obscure. Since no obvious counterpart to the telencephalon has yet been identified in invertebrate chordates, it is difficult to trace telencephalic origins. One way to identify homologous brain parts between distantly related animal groups is to focus on the combinatorial expression of conserved regionalisation genes that specify brain regions. RESULTS Here, we report the combined expression of conserved transcription factors known to specify the telencephalon in the vertebrates in the chordate amphioxus. Focusing on adult specimens, we detect specific co-expression of these factors in the dorsal part of the anterior brain vesicle, which we refer to as Pars anterodorsalis (PAD). As in vertebrates, expression of the transcription factors FoxG1, Emx and Lhx2/9 overlaps that of Pax4/6 dorsally and of Nkx2.1 ventrally, where we also detect expression of the Hedgehog ligand. This specific pattern of co-expression is not observed prior to metamorphosis. Similar to the vertebrate telencephalon, the amphioxus PAD is characterised by the presence of GABAergic neurons and dorsal accumulations of glutamatergic as well as dopaminergic neurons. We also observe sustained proliferation of neuronal progenitors at the ventricular zone of the amphioxus brain vesicle, as observed in the vertebrate brain. CONCLUSIONS Our findings suggest that the PAD in the adult amphioxus brain vesicle and the vertebrate telencephalon evolved from the same brain precursor region in ancestral chordates, which would imply homology of these structures. Our comparative data also indicate that this ancestral brain already contained GABA-, glutamatergic and dopaminergic neurons, as is characteristic for the olfactory bulb of the vertebrate telencephalon. We further speculate that the telencephalon might have evolved in vertebrates via a heterochronic shift in developmental timing.
Collapse
Affiliation(s)
- Èlia Benito-Gutiérrez
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK.
| | - Giacomo Gattoni
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Manuel Stemmer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Max-Planck Institute for Neurobiology in Martinsried, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Silvia D Rohr
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laura N Schuhmacher
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
- Present Address: Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jocelyn Tang
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Aleksandra Marconi
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany.
| |
Collapse
|
32
|
Spool JA, Macedo-Lima M, Scarpa G, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Genetically identified neurons in avian auditory pallium mirror core principles of their mammalian counterparts. Curr Biol 2021; 31:2831-2843.e6. [PMID: 33989528 DOI: 10.1016/j.cub.2021.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Matheus Macedo-Lima
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
| | - Garrett Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
33
|
The Evolutionary History of Brains for Numbers. Trends Cogn Sci 2021; 25:608-621. [PMID: 33926813 DOI: 10.1016/j.tics.2021.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/21/2022]
Abstract
Humans and other animals share a number sense', an intuitive understanding of countable quantities. Having evolved independent from one another for hundreds of millions of years, the brains of these diverse species, including monkeys, crows, zebrafishes, bees, and squids, differ radically. However, in all vertebrates investigated, the pallium of the telencephalon has been implicated in number processing. This suggests that properties of the telencephalon make it ideally suited to host number representations that evolved by convergent evolution as a result of common selection pressures. In addition, promising candidate regions in the brains of invertebrates, such as insects, spiders, and cephalopods, can be identified, opening the possibility of even deeper commonalities for number sense.
Collapse
|
34
|
Ferrari R, Grandi N, Tramontano E, Dieci G. Retrotransposons as Drivers of Mammalian Brain Evolution. Life (Basel) 2021; 11:life11050376. [PMID: 33922141 PMCID: PMC8143547 DOI: 10.3390/life11050376] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Retrotransposons, a large and diverse class of transposable elements that are still active in humans, represent a remarkable force of genomic innovation underlying mammalian evolution. Among the features distinguishing mammals from all other vertebrates, the presence of a neocortex with a peculiar neuronal organization, composition and connectivity is perhaps the one that, by affecting the cognitive abilities of mammals, contributed mostly to their evolutionary success. Among mammals, hominids and especially humans display an extraordinarily expanded cortical volume, an enrichment of the repertoire of neural cell types and more elaborate patterns of neuronal connectivity. Retrotransposon-derived sequences have recently been implicated in multiple layers of gene regulation in the brain, from transcriptional and post-transcriptional control to both local and large-scale three-dimensional chromatin organization. Accordingly, an increasing variety of neurodevelopmental and neurodegenerative conditions are being recognized to be associated with retrotransposon dysregulation. We review here a large body of recent studies lending support to the idea that retrotransposon-dependent evolutionary novelties were crucial for the emergence of mammalian, primate and human peculiarities of brain morphology and function.
Collapse
Affiliation(s)
- Roberto Ferrari
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy; (N.G.); (E.T.)
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, 09042 Monserrato, Italy
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy;
- Correspondence:
| |
Collapse
|
35
|
Abstract
Many species from diverse and often distantly related animal groups (e.g. monkeys, crows, fish and bees) have a sense of number. This means that they can assess the number of items in a set - its 'numerosity'. The brains of these phylogenetically distant species are markedly diverse. This Review examines the fundamentally different types of brains and neural mechanisms that give rise to numerical competence across the animal tree of life. Neural correlates of the number sense so far exist only for specific vertebrate species: the richest data concerning explicit and abstract number representations have been collected from the cerebral cortex of mammals, most notably human and nonhuman primates, but also from the pallium of corvid songbirds, which evolved independently of the mammalian cortex. In contrast, the neural data relating to implicit and reflexive numerical representations in amphibians and fish is limited. The neural basis of a number sense has not been explored in any protostome so far. However, promising candidate regions in the brains of insects, spiders and cephalopods - all of which are known to have number skills - are identified in this Review. A comparative neuroscientific approach will be indispensable for identifying evolutionarily stable neuronal circuits and deciphering codes that give rise to a sense of number across phylogeny.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
36
|
Colquitt BM, Merullo DP, Konopka G, Roberts TF, Brainard MS. Cellular transcriptomics reveals evolutionary identities of songbird vocal circuits. Science 2021; 371:371/6530/eabd9704. [PMID: 33574185 DOI: 10.1126/science.abd9704] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Birds display advanced behaviors, including vocal learning and problem-solving, yet lack a layered neocortex, a structure associated with complex behavior in mammals. To determine whether these behavioral similarities result from shared or distinct neural circuits, we used single-cell RNA sequencing to characterize the neuronal repertoire of the songbird song motor pathway. Glutamatergic vocal neurons had considerable transcriptional similarity to neocortical projection neurons; however, they displayed regulatory gene expression patterns more closely related to neurons in the ventral pallium. Moreover, while γ-aminobutyric acid-releasing neurons in this pathway appeared homologous to those in mammals and other amniotes, the most abundant avian class is largely absent in the neocortex. These data suggest that songbird vocal circuits and the mammalian neocortex have distinct developmental origins yet contain transcriptionally similar neurons.
Collapse
Affiliation(s)
- Bradley M Colquitt
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA 94158, USA
| | - Devin P Merullo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Todd F Roberts
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Michael S Brainard
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. .,Departments of Physiology and Psychiatry, University of California-San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
37
|
Mack AF, DeOliveira-Mello L, Mattheus U, Neckel PH. Organization of radial glia reveals growth pattern in the telencephalon of a percomorph fish Astatotilapia burtoni. J Comp Neurol 2021; 529:2813-2823. [PMID: 33580516 DOI: 10.1002/cne.25126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 01/20/2023]
Abstract
In the brain of teleost fish, radial glial cells are the main astroglial cell type. To understand how radial glia structures are adapting to continuous growth of the brain, we studied the astroglial cells in the telencephalon of the cichlid fish Astatotilapia burtoni in small fry to large specimens. These animals grow to a standard length of 10-12 cm in this fish species, corresponding to a more than 100-fold increase in brain volume. Focusing on the telencephalon where glial cells are arranged radially in the everted (dorsal) pallium, immunocytochemistry for glial markers revealed an aberrant pattern of radial glial fibers in the central division of the dorsal pallium (DC, i.e., DC4 and DC5). The main glial processes curved around these nuclei, especially in the posterior part of the telencephalon. This was verified in tissue-cleared brains stained for glial markers. We further analyzed the growth of radial glia by immunocytochemically applied stem cell (proliferating cell nuclear antigen [PCNA], Sox2) and differentiation marker (doublecortin) and found that these markers were expressed at the ventricular surface consistent with a stacking growth pattern. In addition, we detected doublecortin and Sox2 positive cells in deeper nuclei of DC areas. Our data suggest that radial glial cells give rise to migrating cells providing new neurons and glia to deeper pallial regions. This results in expansion of the central pallial areas and displacement of existing radial glial. In summary, we show that radial glial cells can adapt to morphological growth processes in the adult fish brain and contribute to this growth.
Collapse
Affiliation(s)
- Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Laura DeOliveira-Mello
- Department of Cell Biology and Pathology, IBSAL-Institute of Neurosciences of Castilla and León, University of Salamanca, Spain
| | - Ulrich Mattheus
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| | - Peter H Neckel
- Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, Tübingen, Germany
| |
Collapse
|
38
|
Toscano-Márquez B, Oboti L, Harvey-Girard E, Maler L, Krahe R. Distribution of the cholinergic nuclei in the brain of the weakly electric fish, Apteronotus leptorhynchus: Implications for sensory processing. J Comp Neurol 2020; 529:1810-1829. [PMID: 33089503 DOI: 10.1002/cne.25058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Acetylcholine acts as a neurotransmitter/neuromodulator of many central nervous system processes such as learning and memory, attention, motor control, and sensory processing. The present study describes the spatial distribution of cholinergic neurons throughout the brain of the weakly electric fish, Apteronotus leptorhynchus, using in situ hybridization of choline acetyltransferase mRNA. Distinct groups of cholinergic cells were observed in the telencephalon, diencephalon, mesencephalon, and hindbrain. These included cholinergic cell groups typically identified in other vertebrate brains, for example, motor neurons. Using both in vitro and ex vivo neuronal tracing methods, we identified two new cholinergic connections leading to novel hypotheses on their functional significance. Projections to the nucleus praeeminentialis (nP) arise from isthmic nuclei, possibly including the nucleus lateralis valvulae (nLV) and the isthmic nucleus (nI). The nP is a central component of all electrosensory feedback pathways to the electrosensory lateral line lobe (ELL). We have previously shown that some neurons in nP, TS, and tectum express muscarinic receptors. We hypothesize that, based on nLV/nI cell responses in other teleosts and isthmic connectivity in A. leptorhynchus, the isthmic connections to nP, TS, and tectum modulate responses to electrosensory and/or visual motion and, in particular, to looming/receding stimuli. In addition, we found that the octavolateral efferent (OE) nucleus is the likely source of cholinergic fibers innervating the ELL. In other teleosts, OE inhibits octavolateral hair cells during locomotion. In gymnotiform fish, OE may also act on the first central processing stage and, we hypothesize, implement corollary discharge modulation of electrosensory processing during locomotion.
Collapse
Affiliation(s)
| | - Livio Oboti
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| | - Erik Harvey-Girard
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Rüdiger Krahe
- Department of Biology, McGill University, Montreal, Quebec.,Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany
| |
Collapse
|
39
|
Hong S, Hu P, Jang JH, Carrington B, Sood R, Berger SI, Roessler E, Muenke M. Functional analysis of Sonic Hedgehog variants associated with holoprosencephaly in humans using a CRISPR/Cas9 zebrafish model. Hum Mutat 2020; 41:2155-2166. [PMID: 32939873 DOI: 10.1002/humu.24119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 09/12/2020] [Indexed: 01/20/2023]
Abstract
Genetic variation in the highly conserved Sonic Hedgehog (SHH) gene is one of the most common genetic causes for the malformations of the brain and face in humans described as the holoprosencephaly clinical spectrum. However, only a minor fraction of known SHH variants have been experimentally proven to lead to abnormal function. Employing a phenotypic rescue assay with synthetic human messenger RNA variant constructs in shha-/- knockout zebrafish, we evaluated 104 clinically reported in-frame and missense SHH variants. Our data helped us to classify them into loss of function variants (31), hypomorphic variants (33), and nonpathogenic variants (40). We discuss the strengths and weaknesses of currently accepted predictors of variant deleteriousness and the American College of Medical Genetics and Genomics guidelines for variant interpretation in the context of this functional model; furthermore, we demonstrate the robustness of model systems such as zebrafish as a rapid method to resolve variants of uncertain significance.
Collapse
Affiliation(s)
- Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jae Hee Jang
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, USA
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raman Sood
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth I Berger
- Children's National Hospital, Center for Genetic Medicine Research and Rare Disease Institute, Washington DC, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,American College of Medical Genetics and Genomics, Bethesda, Maryland, USA
| |
Collapse
|
40
|
Liu B, Satou Y. The genetic program to specify ectodermal cells in ascidian embryos. Dev Growth Differ 2020; 62:301-310. [PMID: 32130723 DOI: 10.1111/dgd.12660] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/11/2020] [Accepted: 02/21/2020] [Indexed: 12/18/2022]
Abstract
The ascidian belongs to the sister group of vertebrates and shares many features with them. The gene regulatory network (GRN) controlling gene expression in ascidian embryonic development leading to the tadpole larva has revealed evolutionarily conserved gene circuits between ascidians and vertebrates. These conserved mechanisms are indeed useful to infer the original developmental programs of the ancestral chordates. Simultaneously, these studies have revealed which gene circuits are missing in the ascidian GRN; these gene circuits may have been acquired in the vertebrate lineage. In particular, the GRN responsible for gene expression in ectodermal cells of ascidian embryos has revealed the genetic programs that regulate the regionalization of the brain, formation of palps derived from placode-like cells, and differentiation of sensory neurons derived from neural crest-like cells. We here discuss how these studies have given insights into the evolution of these traits.
Collapse
Affiliation(s)
- Boqi Liu
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Yutaka Satou
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
The evolutionary origin of visual and somatosensory representation in the vertebrate pallium. Nat Ecol Evol 2020; 4:639-651. [DOI: 10.1038/s41559-020-1137-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/05/2020] [Indexed: 12/16/2022]
|
42
|
Němec P, Osten P. The evolution of brain structure captured in stereotyped cell count and cell type distributions. Curr Opin Neurobiol 2020; 60:176-183. [PMID: 31945723 PMCID: PMC7191610 DOI: 10.1016/j.conb.2019.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/13/2022]
Abstract
The stereotyped features of brain structure, such as the distribution, morphology and connectivity of neuronal cell types across brain areas, are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors. Recent advances in anatomical methods, including the simple but versatile isotropic fractionator and several whole-brain labeling, clearing and microscopy methods, have opened the door to an exciting new era in comparative brain anatomy, one that has the potential to transform our understanding of the brain structure-function relationship by representing the evolution of brain complexity in quantitative anatomical features shared across species and species-specific or clade-specific. Here we discuss these methods and their application to mapping brain cell count and cell type distributions-two particularly powerful neural correlates of vertebrate cognitive and behavioral capabilities.
Collapse
Affiliation(s)
- Pavel Němec
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 12844 Prague, Czech Republic.
| | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11743, USA.
| |
Collapse
|
43
|
Bueno D, Parvas M, Nabiuni M, Miyan J. Embryonic cerebrospinal fluid formation and regulation. Semin Cell Dev Biol 2019; 102:3-12. [PMID: 31615690 DOI: 10.1016/j.semcdb.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
The vertebrate brain is organized, from its embryonic origin and throughout adult life, around a dynamic and complex fluid, the cerebrospinal fluid (CSF). There is growing interest in the composition, dynamics and function of the CSF in brain development research. It has been demonstrated in higher vertebrates that CSF has key functions in delivering diffusible signals and nutrients to the developing brain, contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the patterning of the brain. It has also been shown that the composition and the homeostasis of CSF are tightly regulated following the closure of the anterior neuropore, just before the initiation of primary neurogenesis in the neural tissue surrounding brain cavities, before the formation of functional choroid plexus. In this review we draw together existing literature about the composition and formation of embryonic cerebrospinal fluid in birds and mammals, from the closure of the anterior neuropore to the formation of functional fetal choroid plexus, including mechanisms regulating its composition and homeostasis. The significance of CSF regulation within embryonic brain is also discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- David Bueno
- Section of Biomedical, Evolutionary and Developmental Genetics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643. Barcelona 08028, Catalonia Spain.
| | - Maryam Parvas
- Section of Biomedical, Evolutionary and Developmental Genetics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643. Barcelona 08028, Catalonia Spain
| | - Mohammad Nabiuni
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine & Health, The University of Manchester, Stopford Building, Oxford Road. Manchester M13 9PT, UK
| | - Jaleel Miyan
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine & Health, The University of Manchester, Stopford Building, Oxford Road. Manchester M13 9PT, UK
| |
Collapse
|
44
|
Pessoa L, Medina L, Hof PR, Desfilis E. Neural architecture of the vertebrate brain: implications for the interaction between emotion and cognition. Neurosci Biobehav Rev 2019; 107:296-312. [PMID: 31541638 DOI: 10.1016/j.neubiorev.2019.09.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/06/2019] [Accepted: 09/13/2019] [Indexed: 11/15/2022]
Abstract
Cognition is considered a hallmark of the primate brain that requires a high degree of signal integration, such as achieved in the prefrontal cortex. Moreover, it is often assumed that cognitive capabilities imply "superior" computational mechanisms compared to those involved in emotion or motivation. In contrast to these ideas, we review data on the neural architecture across vertebrates that support the concept that association and integration are basic features of the vertebrate brain, which are needed to successfully adapt to a changing world. This property is not restricted to a few isolated brain centers, but rather resides in neuronal networks working collectively in a context-dependent manner. In different vertebrates, we identify shared large-scale connectional systems involving the midbrain, hypothalamus, thalamus, basal ganglia, and amygdala. The high degree of crosstalk and association between these systems at different levels supports the notion that cognition, emotion, and motivation cannot be separated - all of them involve a high degree of signal integration.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, Department of Electrical and Computer Engineering, Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| | - Loreta Medina
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198 Lleida, Spain
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ester Desfilis
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Experimental Medicine, University of Lleida, Lleida Institute for Biomedical Research Dr. Pifarré Foundation (IRBLleida), 25198 Lleida, Spain
| |
Collapse
|
45
|
Aboitiz F, Montiel JF. Morphological evolution of the vertebrate forebrain: From mechanical to cellular processes. Evol Dev 2019; 21:330-341. [DOI: 10.1111/ede.12308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Francisco Aboitiz
- Departamento de Psiquiatría, Escuela de MedicinaPontificia Universidad Católica de Chile Santiago Chile
- Centro Interdisciplinario de NeurocienciasPontificia Universidad Católica de Chile Santiago Chile
| | - Juan F. Montiel
- Centro de Investigación Biomédica, Facultad de MedicinaUniversidad Diego Portales Santiago Chile
| |
Collapse
|